Unshuffling Permutations

Samuele Giraudo Stéphane Vialette

Laboratoire d'Informatique Gaspard-Monge Université Paris-Est Marne-la-Vallée UMR CNRS 8049

Latin American Theoretical Informatics Symposium ${\it April~11-15~2016}$

Contents

Background

2 Algebraic and combinatorial issues

Algorithmic issues

Contents

Background

Definition (shuffle product of words)

The shuffle product \sqcup on words of A^* is defined recursively by

$$u \sqcup \epsilon := \{u\} =: \epsilon \sqcup u,$$

$$(ua \sqcup vb) := (ua \sqcup v)b \cup (u \sqcup vb)a.$$

To take into account multiplicities, we consider \square as a linear product

$$\sqcup : \mathbb{Q}[A^*] \otimes \mathbb{Q}[A^*] \to \mathbb{Q}[A^*]$$

on $\mathbb{Q}[A^*]$, the \mathbb{Q} -linear span of words defined by

$$u \coprod \epsilon := u =: \epsilon \coprod u,$$

$$ua \coprod vb) := (ua \coprod v)b + (u \coprod vb)a.$$

Example

 $ab \coprod ba = abba + abba + abab + baba + baab + baab$

Definition (shuffle product of words)

The shuffle product \sqcup on words of A^* is defined recursively by

$$u \sqcup \epsilon := \{u\} =: \epsilon \sqcup u,$$

$$(ua \sqcup vb) := (ua \sqcup v)b \cup (u \sqcup vb)a.$$

To take into account multiplicities, we consider \sqcup as a linear product

$$\sqcup : \mathbb{Q}[A^*] \otimes \mathbb{Q}[A^*] \to \mathbb{Q}[A^*]$$

on $\mathbb{Q}[A^*]$, the \mathbb{Q} -linear span of words defined by

$$u \sqcup \epsilon := u =: \epsilon \sqcup u,$$

$$(ua \sqcup vb) := (ua \sqcup v)b + (u \sqcup vb)a.$$

Example

 $ab \coprod ba = abba + abba + abab + baba + baab + baab$

Definition (shuffle product of words)

The shuffle product \sqcup on words of A^* is defined recursively by

$$u \sqcup \epsilon := \{u\} =: \epsilon \sqcup u,$$

$$(ua \sqcup vb) := (ua \sqcup v)b \cup (u \sqcup vb)a.$$

To take into account multiplicities, we consider \sqcup as a linear product

$$\sqcup : \mathbb{Q}[A^*] \otimes \mathbb{Q}[A^*] \to \mathbb{Q}[A^*]$$

on $\mathbb{Q}[A^*]$, the \mathbb{Q} -linear span of words defined by

$$u \sqcup \epsilon := u =: \epsilon \sqcup u,$$

$$(ua \sqcup vb) := (ua \sqcup v)b + (u \sqcup vb)a.$$

Example

 $ab \coprod ba = abba + abba + abab + baba + baab$ = 2abba + abab + baba + 2baab

Definition (shuffle product of words)

The shuffle product \sqcup on words of A^* is defined recursively by

$$u \sqcup \epsilon := \{u\} =: \epsilon \sqcup u,$$

$$(ua \sqcup vb) := (ua \sqcup v)b \cup (u \sqcup vb)a.$$

To take into account multiplicities, we consider \sqcup as a linear product

$$\sqcup : \mathbb{Q}[A^*] \otimes \mathbb{Q}[A^*] \to \mathbb{Q}[A^*]$$

on $\mathbb{Q}[A^*]$, the \mathbb{Q} -linear span of words defined by

$$u \sqcup \epsilon := u =: \epsilon \sqcup u,$$

$$(ua \sqcup vb) := (ua \sqcup v)b + (u \sqcup vb)a.$$

Example

$$ab \sqcup ba = abba + abba + abab + baba + baab + baab$$

= $2abba + abab + baba + 2baab$

Key results

Given two words v_1 and v_2 , the set $v_1 \coprod v_2$ can be computed in

$$O\left((|v_1| + |v_2|) \ \binom{|v_1| + |v_2|}{|v_1|}\right)$$

time [Spehner, 1986].

Given three words u, v_1 , and v_2 , deciding if u is in $v_1 \coprod v_2$ can be done in

$$O\left(\frac{|u|^2}{\log(|u|)}\right)$$

time [van Leeuwen, Nivat, 1982].

Given a word u, deciding if there is a word v such that u is in $v \sqcup v$ is **NP**-complete [Rizzi, Vialette, 2013] [Buss, Soltys, 2014].

Key results

Given two words v_1 and v_2 , the set $v_1 \coprod v_2$ can be computed in

$$O\left((|v_1| + |v_2|) \ \binom{|v_1| + |v_2|}{|v_1|}\right)$$

time [Spehner, 1986].

Given three words u, v_1 , and v_2 , deciding if u is in $v_1 \coprod v_2$ can be done in

$$O\left(\frac{|u|^2}{\log(|u|)}\right)$$

time [van Leeuwen, Nivat, 1982].

Given a word u, deciding if there is a word v such that u is in $v \sqcup v$ is **NP**-complete [Rizzi, Vialette, 2013] [Buss, Soltys, 2014].

Key results

Given two words v_1 and v_2 , the set $v_1 \coprod v_2$ can be computed in

$$O\left((|v_1| + |v_2|) \ \binom{|v_1| + |v_2|}{|v_1|}\right)$$

time [Spehner, 1986].

Given three words u, v_1 , and v_2 , deciding if u is in $v_1 \coprod v_2$ can be done in

$$O\left(\frac{|u|^2}{\log(|u|)}\right)$$

time [van Leeuwen, Nivat, 1982].

Given a word u, deciding if there is a word v such that u is in $v \sqcup v$ is **NP**-complete [Rizzi, Vialette, 2013] [Buss, Soltys, 2014].

Definition (square words)

A word u is a square (w.r.t. the shuffle product \square) if there is a word v such that u appears in $v \square v$.

Example

The word $u := \operatorname{cca} \operatorname{babb} \operatorname{b}$ is a square since u can be obtained by shuffling cabb with itself.

The first numbers of square binary words of length 2n are

1, 2, 6, 22, 82, 320, 1268, 5102, 20632, 83972.

Open problem [Henshall, Rampersad, Shallit, 2012

Enumeration of square (binary) words

Definition (square words)

A word u is a square (w.r.t. the shuffle product \sqcup) if there is a word v such that u appears in $v \sqcup v$.

Example

The word $u := \operatorname{cca} \operatorname{babb} b$ is a square since u can be obtained by shuffling $\operatorname{cab} b$ with itself.

The first numbers of square binary words of length 2n are

1, 2, 6, 22, 82, 320, 1268, 5102, 20632, 83972.

Open problem [Henshall, Rampersad, Shallit, 2012

Enumeration of square (binary) words

Definition (square words)

A word u is a square (w.r.t. the shuffle product \sqcup) if there is a word v such that u appears in $v \sqcup v$.

Example

The word $u := \operatorname{cca} \operatorname{babb} b$ is a square since u can be obtained by shuffling $\operatorname{cab} b$ with itself.

The first numbers of square binary words of length 2n are

1, 2, 6, 22, 82, 320, 1268, 5102, 20632, 83972.

Open problem [Henshall, Rampersad, Shallit, 2012] Enumeration of square (binary) words.

Definition (square words)

A word u is a square (w.r.t. the shuffle product \sqcup) if there is a word v such that u appears in $v \sqcup v$.

Example

The word $u := \operatorname{cca} \operatorname{babb} b$ is a square since u can be obtained by shuffling $\operatorname{cab} b$ with itself.

The first numbers of square binary words of length 2n are

1, 2, 6, 22, 82, 320, 1268, 5102, 20632, 83972.

Open problem [Henshall, Rampersad, Shallit, 2012]

Enumeration of square (binary) words.

Definition (perfect matchings for words)

A perfect matching of a word u is a graph (V, E) such that

- $V := \{(u_i, i) : i \in \{1, \dots, |u|\};$
- ullet every vertex of V belongs to exactly one edge of E;
- $(u_i, i) (u_j, j) \in E$ implies $u_i = u_j$.

Example

The word bababcc admits the perfect matching

Definition (inclusion-free perfect matchings)

A perfect matching (V, E) of a word u is inclusion-free if there are no edges $(u_i, i) - (u_j, j)$ and $(u_k, k) - (u_\ell, \ell)$ of E such that $i < k < \ell < j$.

Definition (perfect matchings for words)

A perfect matching of a word u is a graph (V, E) such that

- $V := \{(u_i, i) : i \in \{1, \dots, |u|\};$
- ullet every vertex of V belongs to exactly one edge of E;
- $(u_i, i) (u_j, j) \in E$ implies $u_i = u_j$.

Example

The word bababcc admits the perfect matching

Definition (inclusion-free perfect matchings)

A perfect matching (V, E) of a word u is inclusion-free if there are no edges $(u_i, i) - (u_j, j)$ and $(u_k, k) - (u_\ell, \ell)$ of E such that $i < k < \ell < j$.

Definition (perfect matchings for words)

A perfect matching of a word u is a graph (V, E) such that

- $V := \{(u_i, i) : i \in \{1, \dots, |u|\};$
- ullet every vertex of V belongs to exactly one edge of E;
- $(u_i, i) (u_j, j) \in E$ implies $u_i = u_j$.

Example

The word bababcc admits the perfect matching

Definition (inclusion-free perfect matchings)

A perfect matching (V, E) of a word u is inclusion-free if there are no edges $(u_i, i) - (u_j, j)$ and $(u_k, k) - (u_\ell, \ell)$ of E such that $i < k < \ell < j$.

Proposition [Rizzi, Vialette, 2013]

A word u is a square iff u admits an inclusion-free perfect matching.

Example

The word ccababbb admits the perfect matching

which is inclusion-free and hence is a square.

Example

The word abba is not a square. Its only perfect matching

is not inclusion-free.

Proposition [Rizzi, Vialette, 2013]

A word u is a square iff u admits an inclusion-free perfect matching.

Example

The word ccababbb admits the perfect matching

which is inclusion-free and hence is a square.

Example

The word abba is not a square. Its only perfect matching

is not inclusion-free.

Proposition [Rizzi, Vialette, 2013]

A word u is a square iff u admits an inclusion-free perfect matching.

Example

The word ccababbb admits the perfect matching

which is inclusion-free and hence is a square.

Example

The word abba is not a square. Its only perfect matching

is not inclusion-free.

Main motivations

Let S_n be the set of permutations of size n and S be the set of all permutations.

There are several products on permutations, analogs of the shuffle product of words. Among these, there are

- the shifted shuffle product [Duchamp, Hivert, Thibon, 2002];
- the convolution product [Duchamp, Hivert, Thibon, 2002];
- the supershuffle [Vargas, 2014].

Main questions

- Combinatorial properties of "square permutations" w.r.t. the supershuffle?
- Complexity of the recognition of "square permutations"?

Main motivations

Let S_n be the set of permutations of size n and S be the set of all permutations.

There are several products on permutations, analogs of the shuffle product of words. Among these, there are

- the shifted shuffle product [Duchamp, Hivert, Thibon, 2002];
- the convolution product [Duchamp, Hivert, Thibon, 2002];
- the supershuffle [Vargas, 2014].

Main questions

- Combinatorial properties of "square permutations" w.r.t. the supershuffle?
- Complexity of the recognition of "square permutations"?

Main motivations

Let S_n be the set of permutations of size n and S be the set of all permutations.

There are several products on permutations, analogs of the shuffle product of words. Among these, there are

- the shifted shuffle product [Duchamp, Hivert, Thibon, 2002];
- the convolution product [Duchamp, Hivert, Thibon, 2002];
- the supershuffle [Vargas, 2014].

Main questions

- Combinatorial properties of "square permutations" w.r.t. the supershuffle?
- Complexity of the recognition of "square permutations"?

Contents

2 Algebraic and combinatorial issues

Let C be a set of combinatorial objects and $\mathbb{Q}[C]$ be the \mathbb{Q} -linear span of C.

Key idea

Knowing how to break combinatorial objects explains how to combine these.

To define a product $\cdot : \mathbb{Q}[C] \otimes \mathbb{Q}[C] \to \mathbb{Q}[C]$, it is in some cases more convenient to start by defining a coproduct $\Delta : \mathbb{Q}[C] \to \mathbb{Q}[C] \otimes \mathbb{Q}[C]$.

Every coproduct fits into the general form

$$\Delta(z) = \sum_{x,y \in C} \lambda_{x,y}^z \; (x \otimes y)$$

where the $\lambda_{x,n}^z \in \mathbb{Q}$ are structure coefficients.

$$x \cdot y := \sum_{z \in C} \lambda_{x,y}^z \ z.$$

Let C be a set of combinatorial objects and $\mathbb{Q}[C]$ be the \mathbb{Q} -linear span of C.

Key idea

Knowing how to break combinatorial objects explains how to combine these.

To define a product $\cdot : \mathbb{Q}[C] \otimes \mathbb{Q}[C] \to \mathbb{Q}[C]$, it is in some cases more convenient to start by defining a coproduct $\Delta : \mathbb{Q}[C] \to \mathbb{Q}[C] \otimes \mathbb{Q}[C]$.

Every coproduct fits into the general form

$$\Delta(z) = \sum_{x,y \in C} \lambda_{x,y}^z \ (x \otimes y)$$

where the $\lambda_{x,y}^z \in \mathbb{Q}$ are structure coefficients.

$$x \cdot y := \sum_{z \in C} \lambda_{x,y}^z \ z.$$

Let C be a set of combinatorial objects and $\mathbb{Q}[C]$ be the \mathbb{Q} -linear span of C.

Key idea

Knowing how to break combinatorial objects explains how to combine these.

To define a product $\cdot : \mathbb{Q}[C] \otimes \mathbb{Q}[C] \to \mathbb{Q}[C]$, it is in some cases more convenient to start by defining a coproduct $\Delta : \mathbb{Q}[C] \to \mathbb{Q}[C] \otimes \mathbb{Q}[C]$.

Every coproduct fits into the general form

$$\Delta(z) = \sum_{x,y \in C} \lambda_{x,y}^z \; (x \otimes y)$$

where the $\lambda_{x,y}^z \in \mathbb{Q}$ are structure coefficients.

$$x \cdot y := \sum_{z \in C} \lambda_{x,y}^z \ z.$$

Let C be a set of combinatorial objects and $\mathbb{Q}[C]$ be the \mathbb{Q} -linear span of C.

Key idea

Knowing how to break combinatorial objects explains how to combine these.

To define a product $\cdot : \mathbb{Q}[C] \otimes \mathbb{Q}[C] \to \mathbb{Q}[C]$, it is in some cases more convenient to start by defining a coproduct $\Delta : \mathbb{Q}[C] \to \mathbb{Q}[C] \otimes \mathbb{Q}[C]$.

Every coproduct fits into the general form

$$\Delta(z) = \sum_{x,y \in C} \lambda_{x,y}^{z} (x \otimes y)$$

where the $\lambda_{x,y}^z \in \mathbb{Q}$ are structure coefficients.

$$x \cdot y := \sum_{z \in C} \lambda_{x,y}^z \ z.$$

Let C be a set of combinatorial objects and $\mathbb{Q}[C]$ be the \mathbb{Q} -linear span of C.

Key idea

Knowing how to break combinatorial objects explains how to combine these.

To define a product $\cdot : \mathbb{Q}[C] \otimes \mathbb{Q}[C] \to \mathbb{Q}[C]$, it is in some cases more convenient to start by defining a coproduct $\Delta : \mathbb{Q}[C] \to \mathbb{Q}[C] \otimes \mathbb{Q}[C]$.

Every coproduct fits into the general form

$$\Delta(z) = \sum_{x,y \in C} \lambda_{x,y}^{z} (x \otimes y)$$

where the $\lambda_{x,y}^z \in \mathbb{Q}$ are structure coefficients.

$$x \cdot y := \sum_{z \in C} \lambda_{x,y}^z \ z.$$

Consider the coproduct

$$\Delta: \mathbb{Q}[A^*] \to \mathbb{Q}[A^*] \otimes \mathbb{Q}[A^*]$$

on words defined by

$$\Delta(u) := \sum_{P \sqcup Q = \{1, \dots, |u|\}} u_{|P} \otimes u_{|Q}.$$

Example

$$\Delta(\mathtt{b}\,\mathtt{a}\,\mathtt{a}) = \epsilon \otimes \mathtt{b}\,\mathtt{a}\,\mathtt{a} + \mathtt{b} \otimes \mathtt{a}\,\mathtt{a} + 2(\mathtt{a}\,\otimes\,\mathtt{b}\,\mathtt{a}) + 2(\mathtt{b}\,\mathtt{a}\,\otimes\,\mathtt{a}) + \mathtt{a}\,\mathtt{a}\,\otimes\,\mathtt{b} + \mathtt{b}\,\mathtt{a}\,\mathtt{a}\,\otimes\epsilon$$

Proposition [Reutenauer, 1993

The shuffle product of words is the dual product of the unshuffling coproduct of words.

Example

Since $\mathbf{a} \otimes \mathbf{b} \mathbf{a}$ has multiplicity 2 in $\Delta(\mathbf{b} \mathbf{a} \mathbf{a})$, the coeff. of $\mathbf{b} \mathbf{a} \mathbf{a}$ is 2 in $\mathbf{a} \coprod \mathbf{b} \mathbf{a}$: $\mathbf{a} \coprod \mathbf{b} \mathbf{a} = \mathbf{a} \mathbf{b} \mathbf{a} + 2 \mathbf{b} \mathbf{a} \mathbf{a}$.

Consider the coproduct

$$\Delta: \mathbb{Q}[A^*] \to \mathbb{Q}[A^*] \otimes \mathbb{Q}[A^*]$$

on words defined by

$$\Delta(u) := \sum_{P \sqcup Q = \{1, \dots, |u|\}} u_{|P} \otimes u_{|Q}.$$

Example

$$\Delta(\mathtt{b}\,\mathtt{a}\,\mathtt{a}) = \epsilon \otimes \mathtt{b}\,\mathtt{a}\,\mathtt{a} + \mathtt{b}\otimes\mathtt{a}\,\mathtt{a} + 2(\mathtt{a}\otimes\mathtt{b}\,\mathtt{a}) + 2(\mathtt{b}\,\mathtt{a}\otimes\mathtt{a}) + \mathtt{a}\,\mathtt{a}\otimes\mathtt{b} + \mathtt{b}\,\mathtt{a}\,\mathtt{a}\otimes\epsilon$$

Proposition [Reutenauer, 1993]

The shuffle product of words is the dual product of the unshuffling coproduct of words.

Example

Since $\mathbf{a} \otimes \mathbf{b} \mathbf{a}$ has multiplicity 2 in $\Delta(\mathbf{b} \mathbf{a} \mathbf{a})$, the coeff. of $\mathbf{b} \mathbf{a} \mathbf{a}$ is 2 in $\mathbf{a} \sqcup \mathbf{b} \mathbf{a}$: $\mathbf{a} \sqcup \mathbf{b} \mathbf{a} = \mathbf{a} \mathbf{b} \mathbf{a} + 2 \mathbf{b} \mathbf{a} \mathbf{a}$.

Consider the coproduct

$$\Delta: \mathbb{Q}[A^*] \to \mathbb{Q}[A^*] \otimes \mathbb{Q}[A^*]$$

on words defined by

$$\Delta(u) := \sum_{P \sqcup Q = \{1, \dots, |u|\}} u_{|P} \otimes u_{|Q}.$$

Example

$$\Delta(\mathtt{b}\,\mathtt{a}\,\mathtt{a}) = \epsilon \otimes \mathtt{b}\,\mathtt{a}\,\mathtt{a} + \mathtt{b}\otimes\mathtt{a}\,\mathtt{a} + 2(\mathtt{a}\otimes\mathtt{b}\,\mathtt{a}) + 2(\mathtt{b}\,\mathtt{a}\otimes\mathtt{a}) + \mathtt{a}\,\mathtt{a}\otimes\mathtt{b} + \mathtt{b}\,\mathtt{a}\,\mathtt{a}\otimes\epsilon$$

Proposition [Reutenauer, 1993]

The shuffle product of words is the dual product of the unshuffling coproduct of words.

Example

Since $\mathbf{a} \otimes \mathbf{b} \mathbf{a}$ has multiplicity 2 in $\Delta(\mathbf{b} \mathbf{a} \mathbf{a})$, the coeff. of $\mathbf{b} \mathbf{a} \mathbf{a}$ is 2 in $\mathbf{a} \sqcup \mathbf{b} \mathbf{a}$: $\mathbf{a} \sqcup \mathbf{b} \mathbf{a} = \mathbf{a} \mathbf{b} \mathbf{a} + 2 \mathbf{b} \mathbf{a} \mathbf{a}$.

Consider the coproduct

$$\Delta: \mathbb{Q}[A^*] \to \mathbb{Q}[A^*] \otimes \mathbb{Q}[A^*]$$

on words defined by

$$\Delta(u) := \sum_{P \sqcup Q = \{1, \dots, |u|\}} u_{|P} \otimes u_{|Q}.$$

Example

$$\Delta(\mathtt{b}\,\mathtt{a}\,\mathtt{a}) = \epsilon \otimes \mathtt{b}\,\mathtt{a}\,\mathtt{a} + \mathtt{b}\otimes\mathtt{a}\,\mathtt{a} + 2(\mathtt{a}\otimes\mathtt{b}\,\mathtt{a}) + 2(\mathtt{b}\,\mathtt{a}\otimes\mathtt{a}) + \mathtt{a}\,\mathtt{a}\otimes\mathtt{b} + \mathtt{b}\,\mathtt{a}\,\mathtt{a}\otimes\epsilon$$

Proposition [Reutenauer, 1993]

The shuffle product of words is the dual product of the unshuffling coproduct of words.

Example

Since $\mathbf{a} \otimes \mathbf{b} \mathbf{a}$ has multiplicity $\mathbf{2}$ in $\Delta(\mathbf{b} \mathbf{a} \mathbf{a})$, the coeff. of $\mathbf{b} \mathbf{a} \mathbf{a}$ is $\mathbf{2}$ in $\mathbf{a} \coprod \mathbf{b} \mathbf{a}$: $\mathbf{a} \coprod \mathbf{b} \mathbf{a} = \mathbf{a} \mathbf{b} \mathbf{a} + \mathbf{2} \mathbf{b} \mathbf{a} \mathbf{a}.$

Unshuffling permutations

Definition (standardization of words)

If u is a word of integers without multiple occurrence of a same letter, the standardized $\operatorname{std}(u)$ of u is the unique permutation of $S_{|u|}$ order-isomorphic to u.

Example

$$std(82194) = 42153$$

Definition (unshuffling coproduct of permutations)

The unshuffling coproduct of permutations is the coproduct on $\mathbb{Q}[S]$ defined by

$$\Delta(\pi) := \sum_{P \sqcup Q = \{1, \dots, |\pi|\}} \operatorname{std}\left(\pi_{|P}\right) \otimes \operatorname{std}\left(\pi_{|Q}\right).$$

Example

 $\Delta(213) = \epsilon \otimes 213 + 2(1 \otimes 12) + 1 \otimes 21 + 2(12 \otimes 1) + 21 \otimes 1 + 213 \otimes \epsilon$

Unshuffling permutations

Definition (standardization of words)

If u is a word of integers without multiple occurrence of a same letter, the standardized $\operatorname{std}(u)$ of u is the unique permutation of $S_{|u|}$ order-isomorphic to u.

Example

$$std(82194) = 42153$$

Definition (unshuffling coproduct of permutations)

The unshuffling coproduct of permutations is the coproduct on $\mathbb{Q}[S]$ defined by

$$\Delta(\pi) := \sum_{P \sqcup Q = \{1, \dots, |\pi|\}} \operatorname{std}\left(\pi_{|P}\right) \otimes \operatorname{std}\left(\pi_{|Q}\right).$$

Example

 $\Delta(213) = \epsilon \otimes 213 + 2(1 \otimes 12) + 1 \otimes 21 + 2(12 \otimes 1) + 21 \otimes 1 + 213 \otimes \epsilon$

Unshuffling permutations

Definition (standardization of words)

If u is a word of integers without multiple occurrence of a same letter, the standardized $\operatorname{std}(u)$ of u is the unique permutation of $S_{|u|}$ order-isomorphic to u.

Example

$$std(82194) = 42153$$

Definition (unshuffling coproduct of permutations)

The unshuffling coproduct of permutations is the coproduct on $\mathbb{Q}[S]$ defined by

$$\Delta(\pi) := \sum_{P \sqcup Q = \{1, \dots, |\pi|\}} \operatorname{std}\left(\pi_{|P}\right) \otimes \operatorname{std}\left(\pi_{|Q}\right).$$

Example

 $\Delta(213) = \epsilon \otimes 213 + 2(1 \otimes 12) + 1 \otimes 21 + 2(12 \otimes 1) + 21 \otimes 1 + 213 \otimes \epsilon$

Unshuffling permutations

Definition (standardization of words)

If u is a word of integers without multiple occurrence of a same letter, the standardized $\operatorname{std}(u)$ of u is the unique permutation of $S_{|u|}$ order-isomorphic to u.

Example

$$std(82194) = 42153$$

Definition (unshuffling coproduct of permutations)

The unshuffling coproduct of permutations is the coproduct on $\mathbb{Q}[S]$ defined by

$$\Delta(\pi) := \sum_{P \sqcup Q = \{1, \dots, |\pi|\}} \operatorname{std}\left(\pi_{|P}\right) \otimes \operatorname{std}\left(\pi_{|Q}\right).$$

$$\Delta(213) = \epsilon \otimes 213 + 2(1 \otimes 12) + 1 \otimes 21 + 2(12 \otimes 1) + 21 \otimes 1 + 213 \otimes \epsilon$$

Shuffling permutations

Definition (shuffling product of permutations)

The shuffling product of permutations (supershuffle) is the product \bullet on $\mathbb{Q}[S]$ defined as the dual product of the unshuffling product of permutations.

Proposition

The permutations appearing in $\sigma \bullet \nu$ are exactly the one obtained by shuffling two words u and v respectively order-isomorphic to σ and ν .

$$12 \bullet 21 = 1243 + 1324 + 2(1342) + 2(1423) + 3(1432) + 2134 + 2(2314)$$
$$+ 3(2341) + 2413 + 2(2431) + 2(3124) + 3142 + 3(3214) + 2(3241)$$
$$+ 3421 + 3(4123) + 2(4132) + 2(4213) + 4231 + 4312$$

Shuffling permutations

Definition (shuffling product of permutations)

The shuffling product of permutations (supershuffle) is the product \bullet on $\mathbb{Q}[S]$ defined as the dual product of the unshuffling product of permutations.

Proposition

The permutations appearing in $\sigma \bullet \nu$ are exactly the one obtained by shuffling two words u and v respectively order-isomorphic to σ and ν .

$$12 \bullet 21 = 1243 + 1324 + 2(1342) + 2(1423) + 3(1432) + 2134 + 2(2314)$$
$$+ 3(2341) + 2413 + 2(2431) + 2(3124) + 3142 + 3(3214) + 2(3241)$$
$$+ 3421 + 3(4123) + 2(4132) + 2(4213) + 4231 + 4312$$

Shuffling permutations

Definition (shuffling product of permutations)

The shuffling product of permutations (supershuffle) is the product \bullet on $\mathbb{Q}[S]$ defined as the dual product of the unshuffling product of permutations.

Proposition

The permutations appearing in $\sigma \bullet \nu$ are exactly the one obtained by shuffling two words u and v respectively order-isomorphic to σ and ν .

$$12 \bullet 21 = 1243 + 1324 + 2(1342) + 2(1423) + 3(1432) + 2134 + 2(2314)$$
$$+ 3(2341) + 2413 + 2(2431) + 2(3124) + 3142 + 3(3214) + 2(3241)$$
$$+ 3421 + 3(4123) + 2(4132) + 2(4213) + 4231 + 4312$$

Square permutations

Definition (square permutations)

A permutation π is a square (w.r.t. the shuffle product \bullet) if there is $\sigma \in S$ such that π appears in $\sigma \bullet \sigma$. We say that σ is a square root of π .

By duality, π is a square if there is $\sigma \in S$ such that $\sigma \otimes \sigma$ appears in $\Delta(\pi)$.

Proposition

A permutation π is a square iff π can be obtained by shuffling two order-isomorphic words.

Example

The permutation $\pi := 25167834$ is square since π can be obtained by shuffling 1683 and 2574 and $\operatorname{std}(1683) = \operatorname{std}(2574) = 1342$.

Square permutations

Definition (square permutations)

A permutation π is a square (w.r.t. the shuffle product \bullet) if there is $\sigma \in S$ such that π appears in $\sigma \bullet \sigma$. We say that σ is a square root of π .

By duality, π is a square if there is $\sigma \in S$ such that $\sigma \otimes \sigma$ appears in $\Delta(\pi)$.

Proposition

A permutation π is a square iff π can be obtained by shuffling two order-isomorphic words.

Example

The permutation $\pi := 25167834$ is square since π can be obtained by shuffling 1683 and 2574 and $\operatorname{std}(1683) = \operatorname{std}(2574) = 1342$.

Square permutations

Definition (square permutations)

A permutation π is a square (w.r.t. the shuffle product \bullet) if there is $\sigma \in S$ such that π appears in $\sigma \bullet \sigma$. We say that σ is a square root of π .

By duality, π is a square if there is $\sigma \in S$ such that $\sigma \otimes \sigma$ appears in $\Delta(\pi)$.

Proposition

A permutation π is a square iff π can be obtained by shuffling two order-isomorphic words.

Example

The permutation $\pi:=25167834$ is square since π can be obtained by shuffling 1683 and 2574 and $\mathrm{std}(1683)=\mathrm{std}(2574)=1342$.

Some properties of square permutations

The first numbers of square permutations of size 2n are

1, 2, 20, 504, 21032, 1293418.

Square permutations are compatible with some involutions on permutations:

Proposition

Let π be a square permutation and σ be a square root of π . Then,

- ① $\widetilde{\pi}$ is a square and $\widetilde{\sigma}$ is one of its square roots;
- ② $\bar{\pi}$ is a square and $\bar{\sigma}$ is one of its square roots;
- \odot π^{-1} is a square and σ^{-1} is one of its square roots.

There is a link with square binary words:

Proposition

The set of binary words of length n that are square w.r.t. \square is in one-to-one correspondence with the set of square permutations of length n avoiding the patterns 213 and 231.

Some properties of square permutations

The first numbers of square permutations of size 2n are

1, 2, 20, 504, 21032, 1293418.

Square permutations are compatible with some involutions on permutations:

Proposition

Let π be a square permutation and σ be a square root of π . Then,

- \bullet $\widetilde{\pi}$ is a square and $\widetilde{\sigma}$ is one of its square roots;
- ② $\bar{\pi}$ is a square and $\bar{\sigma}$ is one of its square roots;
- \bullet π^{-1} is a square and σ^{-1} is one of its square roots.

There is a link with square binary words:

Proposition

The set of binary words of length n that are square w.r.t. \square is in one-to-one correspondence with the set of square permutations of length n avoiding the patterns 213 and 231.

Some properties of square permutations

The first numbers of square permutations of size 2n are

1, 2, 20, 504, 21032, 1293418.

Square permutations are compatible with some involutions on permutations:

Proposition

Let π be a square permutation and σ be a square root of π . Then,

- \bullet $\widetilde{\pi}$ is a square and $\widetilde{\sigma}$ is one of its square roots;
- ② $\bar{\pi}$ is a square and $\bar{\sigma}$ is one of its square roots;
- \bullet π^{-1} is a square and σ^{-1} is one of its square roots.

There is a link with square binary words:

Proposition

The set of binary words of length n that are square w.r.t. \square is in one-to-one correspondence with the set of square permutations of length n avoiding the patterns 213 and 231.

Contents

Algorithmic issues

Definition (permutation patterns)

A permutation π contains a permutation σ if there exists a subsequence of (not necessarily consecutive) letters of π that has the same relative order as σ , and in this case σ is said to be a pattern of π , written $\sigma \leq \pi$.

Otherwise, π avoids σ .

Example

The permutation $\pi = 391867452$ contains the pattern $\sigma := 51342$ since std(91674) = 51342.

Definition (pattern involvement problem)

The pattern involvement problem is the decision problem consisting in, given $\pi, \sigma \in S$, decide whether $\sigma \leq \pi$.

Proposition [Bose, Buss, Lubiw, 1998

The pattern involvement problem is NP-complete

Definition (permutation patterns)

A permutation π contains a permutation σ if there exists a subsequence of (not necessarily consecutive) letters of π that has the same relative order as σ , and in this case σ is said to be a pattern of π , written $\sigma \leq \pi$.

Otherwise, π avoids σ .

Example

The permutation $\pi = 391867452$ contains the pattern $\sigma := 51342$ since std(91674) = 51342.

Definition (pattern involvement problem)

The pattern involvement problem is the decision problem consisting in, given $\pi, \sigma \in S$, decide whether $\sigma \leq \pi$.

Proposition [Bose, Buss, Lubiw, 1998]

The pattern involvement problem is NP-complete

Definition (permutation patterns)

A permutation π contains a permutation σ if there exists a subsequence of (not necessarily consecutive) letters of π that has the same relative order as σ , and in this case σ is said to be a pattern of π , written $\sigma \leq \pi$.

Otherwise, π avoids σ .

Example

The permutation $\pi = 391867452$ contains the pattern $\sigma := 51342$ since std(91674) = 51342.

Definition (pattern involvement problem)

The pattern involvement problem is the decision problem consisting in, given $\pi, \sigma \in S$, decide whether $\sigma \leq \pi$.

Proposition [Bose, Buss, Lubiw, 1998]

The pattern involvement problem is NP-complete

Definition (permutation patterns)

A permutation π contains a permutation σ if there exists a subsequence of (not necessarily consecutive) letters of π that has the same relative order as σ , and in this case σ is said to be a pattern of π , written $\sigma \leq \pi$.

Otherwise, π avoids σ .

Example

The permutation $\pi = 391867452$ contains the pattern $\sigma := 51342$ since std(91674) = 51342.

Definition (pattern involvement problem)

The pattern involvement problem is the decision problem consisting in, given $\pi, \sigma \in S$, decide whether $\sigma \leq \pi$.

Proposition [Bose, Buss, Lubiw, 1998]

The pattern involvement problem is **NP**-complete.

Definition (perfect matchings for permutations)

A perfect matching of a permutation $\pi \in S_n$ is a directed graph (V, A) such that

- $V := \{(\pi_i, i) : i \in \{1, \dots, n\}\};$
- ullet every vertex of V belongs to exactly one arc of A.

Definition (property P_1)

Let $\pi \in S$. A perfect matching (V, A) of π has property $\mathbf{P_1}$ if it avoids all the six patterns (V, A), (V, A), (V, A), (V, A), and (V, A).

Definition (property P_2)

Let $\pi \in S$. A perfect matching (V, A) of π has property $\mathbf{P_2}$ if, for all arcs $(\pi_i, i) \to (\pi_j, j)$ and $(\pi_k, k) \to (\pi_\ell, \ell)$ of A, $\pi_i < \pi_k$ iff $\pi_j < \pi_\ell$.

Definition (perfect matchings for permutations)

A perfect matching of a permutation $\pi \in S_n$ is a directed graph (V, A) such that

- $V := \{(\pi_i, i) : i \in \{1, \dots, n\}\};$
- ullet every vertex of V belongs to exactly one arc of A.

Definition (property P_1)

Let $\pi \in S$. A perfect matching (V, A) of π has property $\mathbf{P_1}$ if it avoids all the six patterns \widehat{f} , \widehat{f} , and \widehat{f} .

Definition (property P₂)

Let $\pi \in S$. A perfect matching (V, A) of π has property $\mathbf{P_2}$ if, for all arcs $(\pi_i, i) \to (\pi_j, j)$ and $(\pi_k, k) \to (\pi_\ell, \ell)$ of $A, \pi_i < \pi_k$ iff $\pi_j < \pi_\ell$.

Definition (perfect matchings for permutations)

A perfect matching of a permutation $\pi \in S_n$ is a directed graph (V, A) such that

- $V := \{(\pi_i, i) : i \in \{1, \dots, n\}\};$
- ullet every vertex of V belongs to exactly one arc of A.

Definition (property P_1)

Let $\pi \in S$. A perfect matching (V, A) of π has property $\mathbf{P_1}$ if it avoids all the six patterns \bigcap , \bigcap , \bigcap , \bigcap , \bigcap , \bigcap , and \bigcap .

Definition (property P_2)

Let $\pi \in S$. A perfect matching (V, A) of π has property $\mathbf{P_2}$ if, for all arcs $(\pi_i, i) \to (\pi_j, j)$ and $(\pi_k, k) \to (\pi_\ell, \ell)$ of A, $\pi_i < \pi_k$ iff $\pi_j < \pi_\ell$.

Proposition

A permutation π is a square (w.r.t. the shuffle product \bullet) iff π admits a perfect matching satisfying $\mathbf{P_1}$ and $\mathbf{P_2}$.

Example

The permutation $\pi := 35867241$ is a square since it admits the perfect matching

satisfying P_1 and P_2

Moreover, this shows that π appears in the shuffle of the words 3641 and 5872, both order-isomorphic to 2431.

Proposition

A permutation π is a square (w.r.t. the shuffle product \bullet) iff π admits a perfect matching satisfying $\mathbf{P_1}$ and $\mathbf{P_2}$.

Example

The permutation $\pi := 35867241$ is a square since it admits the perfect matching

satisfying P_1 and P_2 .

Moreover, this shows that π appears in the shuffle of the words 3641 and 5872, both order-isomorphic to 2431.

Proposition

Deciding whether a permutation is a square is **NP**-complete.

- We show that the pattern involvement problem is reducible in polynomial time to the problem of deciding if a permutation is a square.
- For this, given two permutations σ and π , we show that $\sigma \leq \pi$ iff $\mu_{\sigma,\pi}$ is a square, where $\mu_{\sigma,\pi}$ is a permutation constructed in polynomial time from σ and π .
- . We use the fact that $\mu_{\sigma,\tau}$ is a square iff $\mu_{\sigma,\tau}$ admits a perfect matching satisfying \mathbb{P}_1 and \mathbb{P}_2 .

Proposition

Deciding whether a permutation is a square is **NP**-complete.

- We show that the pattern involvement problem is reducible in polynomial time to the problem of deciding if a permutation is a square.
- For this, given two permutations σ and π , we show that $\sigma \leq \pi$ iff $\mu_{\sigma,\pi}$ is a square, where $\mu_{\sigma,\pi}$ is a permutation constructed in polynomial time from σ and π .
- We use the fact that $\mu_{\sigma,\pi}$ is a square iff $\mu_{\sigma,\pi}$ admits a perfect matching satisfying $\mathbf{P_1}$ and $\mathbf{P_2}$.

Proposition

Deciding whether a permutation is a square is **NP**-complete.

- We show that the pattern involvement problem is reducible in polynomial time to the problem of deciding if a permutation is a square.
- For this, given two permutations σ and π , we show that $\sigma \leq \pi$ iff $\mu_{\sigma,\pi}$ is a square, where $\mu_{\sigma,\pi}$ is a permutation constructed in polynomial time from σ and π .
- We use the fact that $\mu_{\sigma,\pi}$ is a square iff $\mu_{\sigma,\pi}$ admits a perfect matching satisfying $\mathbf{P_1}$ and $\mathbf{P_2}$.

Proposition

Deciding whether a permutation is a square is NP-complete.

- We show that the pattern involvement problem is reducible in polynomial time to the problem of deciding if a permutation is a square.
- For this, given two permutations σ and π , we show that $\sigma \leq \pi$ iff $\mu_{\sigma,\pi}$ is a square, where $\mu_{\sigma,\pi}$ is a permutation constructed in polynomial time from σ and π .
- We use the fact that $\mu_{\sigma,\pi}$ is a square iff $\mu_{\sigma,\pi}$ admits a perfect matching satisfying $\mathbf{P_1}$ and $\mathbf{P_2}$.

Open problems

Combinatorics

Enumeration of square permutations?

Algorithms

Given two permutations π and σ , how hard is the problem of deciding whether σ is a square root of π ?

Algebra

How algebraic properties of the associative algebra $(\mathbb{Q}[S], \bullet)$ or of the coalgebra $(\mathbb{Q}[S], \Delta)$ are connected to combinatorial and algorithmic properties of square permutations?

Open problems

Combinatorics

Enumeration of square permutations?

Algorithms

Given two permutations π and σ , how hard is the problem of deciding whether σ is a square root of π ?

Algebra

How algebraic properties of the associative algebra $(\mathbb{Q}[S], \bullet)$ or of the coalgebra $(\mathbb{Q}[S], \Delta)$ are connected to combinatorial and algorithmic properties of square permutations?

Open problems

Combinatorics

Enumeration of square permutations?

Algorithms

Given two permutations π and σ , how hard is the problem of deciding whether σ is a square root of π ?

Algebra

How algebraic properties of the associative algebra $(\mathbb{Q}[S], \bullet)$ or of the coalgebra $(\mathbb{Q}[S], \Delta)$ are connected to combinatorial and algorithmic properties of square permutations?