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Shuffling words
Definition (shuffle product of words)
The shuffle product � on words of A∗ is defined recursively by

u� ε := {u} =: ε� u,

(ua� vb) := (ua� v)b ∪ (u� vb)a.

To take into account multiplicities, we consider � as a linear product

� : Q[A∗]⊗Q[A∗]→ Q[A∗]

on Q[A∗], the Q-linear span of words defined by

u� ε := u =: ε� u,

(ua� vb) := (ua� v)b+ (u� vb)a.

Example
a b� b a = a bb a + abba + ab ab + ba ba + baab + b aa b

= 2 a b b a + a b a b + b a b a +2 b a a b
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Key results
Given two words v1 and v2, the set v1 � v2 can be computed in

O

(
(|v1| + |v2|)

(
|v1|

|v1| + |v2|
))

time [Spehner, 1986].

Given three words u, v1, and v2, deciding if u is in v1 � v2 can be done in

O

(
|u|2

log(|u|)

)
time [van Leeuwen, Nivat, 1982].

Given a word u, deciding if there is a word v such that u is in v� v is
NP-complete [Rizzi, Vialette, 2013] [Buss, Soltys, 2014].
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Square words

Definition (square words)
A word u is a square (w.r.t. the shuffle product �) if there is a word v such
that u appears in v� v.

Example
The word u := cca babb b is a square since u can be obtained by shuffling
c a b b with itself.

The first numbers of square binary words of length 2n are

1, 2, 6, 22, 82, 320, 1268, 5102, 20632, 83972.

Open problem [Henshall, Rampersad, Shallit, 2012]

Enumeration of square (binary) words.
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Recognizing square words
Definition (perfect matchings for words)
A perfect matching of a word u is a graph (V,E) such that

V := {(ui, i) : i ∈ {1, . . . , |u|};
every vertex of V belongs to exactly one edge of E;
(ui, i)− (uj , j) ∈ E implies ui = uj .

Example
The word b a b a b b c c admits the perfect matching

(b, 1) (a, 2) (b, 3) (a, 4) (b, 5) (b, 6) (c, 7) (c, 8) .

Definition (inclusion-free perfect matchings)
A perfect matching (V,E) of a word u is inclusion-free if there are no edges
(ui, i)− (uj , j) and (uk, k)− (u`, `) of E such that i < k < ` < j.
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Recognizing square words
Proposition [Rizzi, Vialette, 2013]

A word u is a square iff u admits an inclusion-free perfect matching.

Example
The word cca babb b admits the perfect matching

(c, 1) (c, 2) (a, 3) (b, 4) (a, 5) (b, 6) (b, 7) (b, 8)

which is inclusion-free and hence is a square.

Example
The word a b b a is not a square. Its only perfect matching

(a, 1) (b, 2) (b, 3) (a, 4)

is not inclusion-free.
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Main motivations
Let Sn be the set of permutations of size n and S be the set of all
permutations.

There are several products on permutations, analogs of the shuffle product of
words. Among these, there are

the shifted shuffle product [Duchamp, Hivert, Thibon, 2002];

the convolution product [Duchamp, Hivert, Thibon, 2002];

the supershuffle [Vargas, 2014].

Main questions
Combinatorial properties of “square permutations” w.r.t. the
supershuffle?

Complexity of the recognition of “square permutations”?
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Combinatorial products and coproducts
Let C be a set of combinatorial objects and Q[C] be the Q-linear span of C.

Key idea
Knowing how to break combinatorial objects explains how to combine these.

To define a product · : Q[C]⊗Q[C]→ Q[C], it is in some cases more
convenient to start by defining a coproduct ∆ : Q[C]→ Q[C]⊗Q[C].

Every coproduct fits into the general form

∆(z) =
∑
x,y∈C

λzx,y (x⊗ y)

where the λzx,y ∈ Q are structure coefficients.

Then, ∆ leads by duality to the definition of · by

x · y :=
∑
z∈C

λzx,y z.
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Example: unshuffling words
Consider the coproduct

∆ : Q[A∗]→ Q[A∗]⊗Q[A∗]

on words defined by

∆(u) :=
∑

PtQ={1,...,|u|}

u|P ⊗ u|Q.

Example
∆(b a a) = ε⊗ b a a + b⊗ a a +2(a⊗ b a) + 2(b a⊗ a) + a a⊗ b + b a a⊗ε

Proposition [Reutenauer, 1993]

The shuffle product of words is the dual product of the unshuffling coproduct
of words.

Example
Since a⊗ b a has multiplicity 2 in ∆(b a a), the coeff. of b a a is 2 in a� b a:

a� b a = a b a +2 b a a.
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Unshuffling permutations
Definition (standardization of words)
If u is a word of integers without multiple occurrence of a same letter, the
standardized std(u) of u is the unique permutation of S|u| order-isomorphic
to u.

Example
std(82194) = 42153

Definition (unshuffling coproduct of permutations)
The unshuffling coproduct of permutations is the coproduct on Q[S] defined by

∆(π) :=
∑

PtQ={1,...,|π|}

std
(
π|P
)
⊗ std

(
π|Q
)
.

Example
∆(213) = ε⊗ 213 + 2(1⊗ 12) + 1⊗ 21 + 2(12⊗ 1) + 21⊗ 1 + 213⊗ ε
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Shuffling permutations

Definition (shuffling product of permutations)
The shuffling product of permutations (supershuffle) is the product • on Q[S]
defined as the dual product of the unshuffling product of permutations.

Proposition
The permutations appearing in σ • ν are exactly the one obtained by shuffling
two words u and v respectively order-isomorphic to σ and ν.

Example
12 • 21 = 1243 + 1324 + 2(1342) + 2(1423) + 3(1432) + 2134 + 2(2314)

+ 3(2341) + 2413 + 2(2431) + 2(3124) + 3142 + 3(3214) + 2(3241)

+ 3421 + 3(4123) + 2(4132) + 2(4213) + 4231 + 4312
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Square permutations

Definition (square permutations)
A permutation π is a square (w.r.t. the shuffle product •) if there is σ ∈ S
such that π appears in σ •σ. We say that σ is a square root of π.

By duality, π is a square if there is σ ∈ S such that σ ⊗ σ appears in ∆(π).

Proposition
A permutation π is a square iff π can be obtained by shuffling two
order-isomorphic words.

Example
The permutation π := 25167834 is square since π can be obtained by shuffling
1683 and 2574 and std(1683) = std(2574) = 1342.
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Some properties of square permutations
The first numbers of square permutations of size 2n are

1, 2, 20, 504, 21032, 1293418.

Square permutations are compatible with some involutions on permutations:

Proposition
Let π be a square permutation and σ be a square root of π. Then,

1 π̃ is a square and σ̃ is one of its square roots;
2 π̄ is a square and σ̄ is one of its square roots;
3 π−1 is a square and σ−1 is one of its square roots.

There is a link with square binary words:

Proposition
The set of binary words of length n that are square w.r.t. � is in one-to-one
correspondence with the set of square permutations of length n avoiding the
patterns 213 and 231.
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3 Algorithmic issues

Samuele Giraudo (LIGM) Unshuffling Permutations LATIN 16 17 / 23



Pattern involvement problem
Definition (permutation patterns)
A permutation π contains a permutation σ if there exists a subsequence of
(not necessarily consecutive) letters of π that has the same relative order as σ,
and in this case σ is said to be a pattern of π, written σ ≤ π.
Otherwise, π avoids σ.

Example
The permutation π = 391867452 contains the pattern σ := 51342 since
std(91674) = 51342.

Definition (pattern involvement problem)
The pattern involvement problem is the decision problem consisting in, given
π, σ ∈ S, decide whether σ ≤ π.

Proposition [Bose, Buss, Lubiw, 1998]

The pattern involvement problem is NP-complete.
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Recognizing square permutations

Definition (perfect matchings for permutations)
A perfect matching of a permutation π ∈ Sn is a directed graph (V,A) such
that

V := {(πi, i) : i ∈ {1, . . . , n}};
every vertex of V belongs to exactly one arc of A.

Definition (property P1)
Let π ∈ S. A perfect matching (V,A) of π has property P1 if it avoids all the
six patterns , , , , , and .

Definition (property P2)
Let π ∈ S. A perfect matching (V,A) of π has property P2 if, for all arcs
(πi, i)→ (πj , j) and (πk, k)→ (π`, `) of A, πi < πk iff πj < π`.
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Recognizing square permutations

Proposition
A permutation π is a square (w.r.t. the shuffle product •) iff π admits a
perfect matching satisfying P1 and P2.

Example
The permutation π := 35867241 is a square since it admits the perfect
matching

(3, 1) (5, 2) (8, 3) (6, 4) (7, 5) (2, 6) (4, 7) (1, 8)

satisfying P1 and P2.
Moreover, this shows that π appears in the shuffle of the words 3641 and 5872,
both order-isomorphic to 2431.
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Hardness of recognizing square permutations

Proposition
Deciding whether a permutation is a square is NP-complete.

Main ideas of the proof
We show that the pattern involvement problem is reducible in polynomial
time to the problem of deciding if a permutation is a square.

For this, given two permutations σ and π, we show that σ ≤ π iff µσ,π is a
square, where µσ,π is a permutation constructed in polynomial time from
σ and π.

We use the fact that µσ,π is a square iff µσ,π admits a perfect matching
satisfying P1 and P2.
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Hardness of recognizing square permutations
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Open problems

Combinatorics
Enumeration of square permutations?

Algorithms
Given two permutations π and σ, how hard is the problem of deciding whether
σ is a square root of π?

Algebra
How algebraic properties of the associative algebra (Q[S], •) or of the
coalgebra (Q[S],∆) are connected to combinatorial and algorithmic properties
of square permutations?
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