Tree rewriting and enumeration

Samuele Giraudo

LIGM, Université Paris-Est Marne-la-Vallée

GT Combinatoire Énumérative et Algébrique, LaBRI

September 17, 2018

Outline

Trees, patterns, and rewrite systems

Tree series and pattern avoidance

Operads and enumeration

Outline

Trees, patterns, and rewrite systems

Syntax trees

A set of letters is a graded set

$$\mathfrak{G} := \bigsqcup_{n\geqslant 1} \mathfrak{G}(n)$$

such that each $\mathfrak{G}(n)$ is finite.

Syntax trees

A set of letters is a graded set

$$\mathfrak{G} := \bigsqcup_{n \geqslant 1} \mathfrak{G}(n)$$

such that each $\mathfrak{G}(n)$ is finite.

A syntax tree on \mathfrak{G} (called \mathfrak{G} -tree) is a planar rooted tree \mathfrak{t} such that each internal node of arity n is labeled by a letter of $\mathfrak{G}(n)$.

Syntax trees

A set of letters is a graded set

$$\mathfrak{G} := \bigsqcup_{n \geqslant 1} \mathfrak{G}(n)$$

such that each $\mathfrak{G}(n)$ is finite.

A syntax tree on \mathfrak{G} (called \mathfrak{G} -tree) is a planar rooted tree \mathfrak{t} such that each internal node of arity n is labeled by a letter of $\mathfrak{G}(n)$.

Example

Let $\mathfrak{G} := \mathfrak{G}(2) \sqcup \mathfrak{G}(3)$ such that $\mathfrak{G}(2) = \{a, b\}$ and $\mathfrak{G}(3) = \{c\}$.

Here is a 6-tree:

Let 6 be a set of letters.

The set of all \mathfrak{G} -trees is denoted by $\mathbf{F}(\mathfrak{G})$.

Let 6 be a set of letters.

The set of all \mathfrak{G} -trees is denoted by $\mathbf{F}(\mathfrak{G})$.

For any $\mathfrak{t} \in \mathbf{F}(\mathfrak{G})$, let

▶ |t| be the arity of t, that is its number of leaves;

Let 6 be a set of letters.

The set of all \mathfrak{G} -trees is denoted by $\mathbf{F}(\mathfrak{G})$.

For any $\mathfrak{t} \in \mathbf{F}(\mathfrak{G})$, let

- ▶ |t| be the arity of t, that is its number of leaves;
- $ightharpoonup \deg(\mathfrak{t})$ be the degree of \mathfrak{t} , that is the number of internal nodes of \mathfrak{t} ;

Let 6 be a set of letters.

The set of all \mathfrak{G} -trees is denoted by $\mathbf{F}(\mathfrak{G})$.

For any $\mathfrak{t} \in \mathbf{F}(\mathfrak{G})$, let

- ▶ |t| be the arity of t, that is its number of leaves;
- $ightharpoonup \deg(\mathfrak{t})$ be the degree of \mathfrak{t} , that is the number of internal nodes of \mathfrak{t} ;
- ightharpoonup a(t) be the number of edges of t (satisfying a(t) = |t| + deg(t)).

Let 6 be a set of letters.

The set of all \mathfrak{G} -trees is denoted by $\mathbf{F}(\mathfrak{G})$.

For any $\mathfrak{t} \in \mathbf{F}(\mathfrak{G})$, let

- ▶ |t| be the arity of t, that is its number of leaves;
- $ightharpoonup \deg(\mathfrak{t})$ be the degree of \mathfrak{t} , that is the number of internal nodes of \mathfrak{t} ;
- ightharpoonup a(t) be the number of edges of t (satisfying a(t) = |t| + deg(t)).

We set $\mathbf{F}(\mathfrak{G})(n)$ as the set of the \mathfrak{G} -trees of arity n.

Therefore,

$$\mathbf{F}(\mathfrak{G}) = \bigsqcup_{n \ge 1} \mathbf{F}(\mathfrak{G})(n).$$

Let 6 be a set of letters.

The set of all \mathfrak{G} -trees is denoted by $\mathbf{F}(\mathfrak{G})$.

For any $\mathfrak{t} \in \mathbf{F}(\mathfrak{G})$, let

- ▶ |t| be the arity of t, that is its number of leaves;
- $ightharpoonup \deg(\mathfrak{t})$ be the degree of \mathfrak{t} , that is the number of internal nodes of \mathfrak{t} ;
- ightharpoonup a(t) be the number of edges of t (satisfying a(t) = |t| + deg(t)).

We set $\mathbf{F}(\mathfrak{G})(n)$ as the set of the \mathfrak{G} -trees of arity n.

Therefore,

$$\mathbf{F}(\mathfrak{G}) = \bigsqcup_{n \geq 1} \mathbf{F}(\mathfrak{G})(n).$$

Remark: since each $\mathfrak{G}(n)$ is finite, if if $\mathfrak{G}(1) = \emptyset$, then all $\mathbf{F}(\mathfrak{G})(n)$ are finite.

Partial composition

Let $\mathfrak{t}, \mathfrak{s} \in \mathbf{F}(\mathfrak{G})$.

For each $i \in [|\mathfrak{t}|]$, $\mathfrak{t} \circ_i \mathfrak{s}$ is the tree obtained by grafting the root of a copy of \mathfrak{s} onto the ith leaf of \mathfrak{t} .

Partial composition

Let
$$\mathfrak{t}, \mathfrak{s} \in \mathbf{F}(\mathfrak{G})$$
.

For each $i \in [|\mathfrak{t}|]$, $\mathfrak{t} \circ_i \mathfrak{s}$ is the tree obtained by grafting the root of a copy of \mathfrak{s} onto the ith leaf of \mathfrak{t} .

Therefore, \circ_i is a map

$$\circ_i : \mathbf{F}(\mathfrak{G})(n) \times \mathbf{F}(\mathfrak{G})(m) \to \mathbf{F}(\mathfrak{G})(n+m-1)$$

where $i \in [n]$ and $1 \leqslant m$, called partial composition map.

Complete composition

Let $\mathfrak{t}, \mathfrak{s}_1, \ldots, \mathfrak{s}_{|\mathfrak{t}|} \in \mathbf{F}(\mathfrak{G})$.

The $\mathfrak{t} \circ [\mathfrak{s}_1, \dots, \mathfrak{s}_{|\mathfrak{t}|}]$ is obtained by grafting simultaneously the roots of copies of the \mathfrak{s}_i onto the ith leaves of \mathfrak{t} .

Example

$$\begin{bmatrix} b \\ a \\ c \\ a \end{bmatrix} = \begin{bmatrix} b \\ b \\ a \\ a \end{bmatrix} = \begin{bmatrix} b \\ a \\ a \\ c \\ c \\ c \end{bmatrix}$$

Complete composition

Let $\mathfrak{t}, \mathfrak{s}_1, \ldots, \mathfrak{s}_{|\mathfrak{t}|} \in \mathbf{F}(\mathfrak{G})$.

The $\mathfrak{t} \circ [\mathfrak{s}_1, \dots, \mathfrak{s}_{|\mathfrak{t}|}]$ is obtained by grafting simultaneously the roots of copies of the \mathfrak{s}_i onto the ith leaves of \mathfrak{t} .

Example

$$\begin{bmatrix} b \\ b \\ a \\ c \end{bmatrix} = \begin{bmatrix} b \\ b \\ b \\ c \\ a \\ c \\ c \\ c \end{bmatrix}$$

Therefore, ○ is a map

$$\circ: \mathbf{F}(\mathfrak{G})(n) \times \mathbf{F}(\mathfrak{G})(m_1) \times \cdots \times \mathbf{F}(\mathfrak{G})(m_n) \to \mathbf{F}(\mathfrak{G})(m_1 + \cdots + m_n)$$

where $1 \leq n$ and $1 \leq m_1, \ldots, m_n$, called complete composition map.

Let $\mathfrak{t}, \mathfrak{s} \in \mathbf{F}(\mathfrak{G})$. A \mathfrak{G} -tree \mathfrak{t} admits an occurrence of a \mathfrak{G} -tree \mathfrak{s} if one can put \mathfrak{s} onto \mathfrak{t} by superimposing the root of \mathfrak{s} and a node of \mathfrak{t} and leaves of \mathfrak{s} with leaves of nodes of \mathfrak{t} .

This property is denoted by $\mathfrak{s} \preccurlyeq \mathfrak{t}$.

Let $\mathfrak{t}, \mathfrak{s} \in \mathbf{F}(\mathfrak{G})$. A \mathfrak{G} -tree \mathfrak{t} admits an occurrence of a \mathfrak{G} -tree \mathfrak{s} if one can put \mathfrak{s} onto \mathfrak{t} by superimposing the root of \mathfrak{s} and a node of \mathfrak{t} and leaves of \mathfrak{s} with leaves of nodes of \mathfrak{t} .

This property is denoted by $\mathfrak{s} \preccurlyeq \mathfrak{t}$.

Let $\mathfrak{t}, \mathfrak{s} \in \mathbf{F}(\mathfrak{G})$. A \mathfrak{G} -tree \mathfrak{t} admits an occurrence of a \mathfrak{G} -tree \mathfrak{s} if one can put \mathfrak{s} onto \mathfrak{t} by superimposing the root of \mathfrak{s} and a node of \mathfrak{t} and leaves of \mathfrak{s} with leaves of nodes of \mathfrak{t} .

This property is denoted by $\mathfrak{s} \preccurlyeq \mathfrak{t}$.

This relation \leq endows $\mathbf{F}(\mathfrak{G})$ with the structure of a poset.

Let $\mathfrak{t}, \mathfrak{s} \in \mathbf{F}(\mathfrak{G})$. A \mathfrak{G} -tree \mathfrak{t} admits an occurrence of a \mathfrak{G} -tree \mathfrak{s} if one can put \mathfrak{s} onto \mathfrak{t} by superimposing the root of \mathfrak{s} and a node of \mathfrak{t} and leaves of \mathfrak{s} with leaves of nodes of \mathfrak{t} .

This property is denoted by $\mathfrak{s} \preccurlyeq \mathfrak{t}$.

Example c c b a b a c // // // // //

This relation \leq endows $\mathbf{F}(\mathfrak{G})$ with the structure of a poset.

More formally, $\mathfrak{s} \preccurlyeq \mathfrak{t}$ holds if there exist $\mathfrak{r}, \mathfrak{r}_1, \dots, \mathfrak{r}_{|\mathfrak{s}|} \in \mathbf{F}(\mathfrak{G})$ and $i \in [|\mathfrak{r}|]$ such that

$$\mathfrak{t} = \mathfrak{r} \circ_i (\mathfrak{s} \circ [\mathfrak{r}_1, \dots, \mathfrak{r}_{|\mathfrak{s}|}]).$$

Given a set $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$, let $A(\mathcal{P})$ be the set of all \mathfrak{G} -trees avoiding all patterns of \mathcal{P} .

Counting the elements of $A(\mathcal{P})$ w.r.t. the arity is a usual question.

Given a set $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$, let $A(\mathcal{P})$ be the set of all \mathfrak{G} -trees avoiding all patterns of \mathcal{P} .

Counting the elements of $A(\mathcal{P})$ w.r.t. the arity is a usual question.

Examples

For
$$\mathcal{P} := \left\{ \begin{bmatrix} \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a} \\ \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a} \\ \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a} \\ \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a} \\ \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a}, & \frac{1}{a} \\ \frac{1}{a}, & \frac$$

Given a set $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$, let $A(\mathcal{P})$ be the set of all \mathfrak{G} -trees avoiding all patterns of \mathcal{P} .

Counting the elements of $A(\mathcal{P})$ w.r.t. the arity is a usual question.

Examples

For
$$\mathcal{P} := \left\{ \begin{array}{ccc} \frac{1}{a}, & \frac{1}{b}, & \frac{1}{b}, \\ \frac{1}{a}, & \frac{1}{b}, & \frac{1}{b}, & \frac{1}{b}, \\ \frac{1}{a}, & \frac{1}{b}, & \frac{1}{b}, \\ \frac{1}{a}, & \frac{1}{b}, & \frac{1}{b},$$

For
$$\mathcal{P} := \left\{ \begin{array}{ccc} \frac{1}{3}, & \frac{1}{3}, & \frac{1}{5}, & \frac{1}{5}, \\ \frac{1}{3}, & \frac{1}{3}, & \frac{1}{3}, & \frac{1}{5}, \\ \frac{1}{3}, & \frac{1}{3}, & \frac{1}{3}, & \frac{1}{3}, \\ \end{array} \right\}, A(\mathcal{P}) \text{ is enumerated by}$$

$$1, 1, 2, 4, 9, 21, 51, 127, \dots;$$

Given a set $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$, let $A(\mathcal{P})$ be the set of all \mathfrak{G} -trees avoiding all patterns of \mathcal{P} .

Counting the elements of $A(\mathcal{P})$ w.r.t. the arity is a usual question.

Examples

For
$$\mathcal{P} := \left\{ \begin{array}{ccc} \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \end{array} \right\}, A(\mathcal{P}) \text{ is enumerated by}$$

$$\mathsf{For}\, \mathcal{P} := \left\{ \begin{array}{c} \begin{smallmatrix} 1 \\ 3 \end{smallmatrix} , \begin{smallmatrix} 1 \\ 5 \end{smallmatrix} , \begin{smallmatrix} 1 \end{smallmatrix} , \begin{smallmatrix} 1 \\ 5 \end{smallmatrix} , \begin{smallmatrix} 1 \\ 5 \end{smallmatrix} , \begin{smallmatrix} 1 \end{smallmatrix} , \begin{smallmatrix} 1 \\ 5 \end{smallmatrix} , \begin{smallmatrix} 1 \end{smallmatrix} , \begin{smallmatrix} 1 \\ 5 \end{smallmatrix} , \begin{smallmatrix} 1 \end{smallmatrix} , \begin{smallmatrix} 1 \\ 5 \end{smallmatrix} , \begin{smallmatrix} 1 \end{smallmatrix} , \begin{smallmatrix} 1 \end{smallmatrix} , \begin{smallmatrix} 1 \\ 5 \end{smallmatrix} , \begin{smallmatrix} 1 \end{smallmatrix} , \begin{smallmatrix} 1$$

Rewrite rules

A rewrite rule is a binary relation \to on $\mathbf{F}(\mathfrak{G})$ such that $\mathfrak{s} \to \mathfrak{s}'$ implies $|\mathfrak{s}| = |\mathfrak{s}'|$.

Rewrite rules

A rewrite rule is a binary relation \to on $\mathbf{F}(\mathfrak{G})$ such that $\mathfrak{s} \to \mathfrak{s}'$ implies $|\mathfrak{s}| = |\mathfrak{s}'|$.

The rewrite relation induced by \to is the binary relation \Rightarrow on $\mathbf{F}(\mathfrak{G})$ satisfying

$$\mathfrak{r} \circ_i \left(\mathfrak{s} \circ \left[\mathfrak{r}_1, \dots, \mathfrak{r}_{|\mathfrak{s}|} \right] \right) \Rightarrow \mathfrak{r} \circ_i \left(\mathfrak{s}' \circ \left[\mathfrak{r}_1, \dots, \mathfrak{r}_{|\mathfrak{s}|} \right] \right)$$

if $\mathfrak{s} \to \mathfrak{s}'$, where \mathfrak{r} and $\mathfrak{r}_1, \ldots, \mathfrak{r}_{|\mathfrak{s}|}$ are any \mathfrak{G} -trees.

Rewrite rules

A rewrite rule is a binary relation \to on $\mathbf{F}(\mathfrak{G})$ such that $\mathfrak{s} \to \mathfrak{s}'$ implies $|\mathfrak{s}| = |\mathfrak{s}'|$.

The rewrite relation induced by \to is the binary relation \Rightarrow on $\mathbf{F}(\mathfrak{G})$ satisfying

$$\mathfrak{r} \circ_i (\mathfrak{s} \circ [\mathfrak{r}_1, \dots, \mathfrak{r}_{|\mathfrak{s}|}]) \Rightarrow \mathfrak{r} \circ_i (\mathfrak{s}' \circ [\mathfrak{r}_1, \dots, \mathfrak{r}_{|\mathfrak{s}|}])$$

if $\mathfrak{s} \to \mathfrak{s}'$, where \mathfrak{r} and $\mathfrak{r}_1, \ldots, \mathfrak{r}_{|\mathfrak{s}|}$ are any \mathfrak{G} -trees.

Example If \rightarrow is the rewrite rule satisfying $\stackrel{a}{\downarrow}$ $\stackrel{a}{\downarrow}$ $\stackrel{a}{\downarrow}$ $\stackrel{a}{\downarrow}$ $\stackrel{b}{\downarrow}$, one has

Let \to a rewrite rule on ${\mathfrak G}$ -trees and \Rightarrow be the rewrite relation induced by \to .

Let us define

- $ightharpoonup \stackrel{*}{\Rightarrow}$ as the reflexive and transitive closure of \Rightarrow ;
- $\stackrel{*}{\Leftrightarrow}$ as the reflexive, symmetric, and transitive closure of \Rightarrow .

Let \to a rewrite rule on ${\mathfrak G}$ -trees and \Rightarrow be the rewrite relation induced by \to .

Let us define

- $ightharpoonup \stackrel{*}{\Rightarrow}$ as the reflexive and transitive closure of \Rightarrow ;
- $\blacktriangleright \stackrel{*}{\Leftrightarrow}$ as the reflexive, symmetric, and transitive closure of \Rightarrow .

A tree \mathfrak{t} rewrites into a tree \mathfrak{t}' if $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{t}'$.

Let \to a rewrite rule on ${\mathfrak G}$ -trees and \Rightarrow be the rewrite relation induced by \to .

Let us define

- ightharpoonup $\stackrel{*}{\Rightarrow}$ as the reflexive and transitive closure of \Rightarrow ;
- $\blacktriangleright \stackrel{*}{\Leftrightarrow}$ as the reflexive, symmetric, and transitive closure of \Rightarrow .

A tree \mathfrak{t} rewrites into a tree \mathfrak{t}' if $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{t}'$.

Two trees $\mathfrak t$ and $\mathfrak t'$ are linked if $\mathfrak t \overset{*}{\Leftrightarrow} \mathfrak t'$. Let $\mathbf F(\mathfrak G)/_{\overset{*}{\Leftrightarrow}}$ be the set of all $\overset{*}{\Leftrightarrow}$ -equivalence classes.

Let \to a rewrite rule on $\mathfrak G$ -trees and \Rightarrow be the rewrite relation induced by \to .

Let us define

- $ightharpoonup \stackrel{*}{\Rightarrow}$ as the reflexive and transitive closure of \Rightarrow ;
- $\blacktriangleright \stackrel{*}{\Leftrightarrow}$ as the reflexive, symmetric, and transitive closure of \Rightarrow .

A tree \mathfrak{t} rewrites into a tree \mathfrak{t}' if $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{t}'$.

Two trees $\mathfrak t$ and $\mathfrak t'$ are linked if $\mathfrak t \overset{*}{\Leftrightarrow} \mathfrak t'$. Let $\mathbf F(\mathfrak G)/_{\overset{*}{\Leftrightarrow}}$ be the set of all $\overset{*}{\Leftrightarrow}$ -equivalence classes.

A normal form for \Rightarrow is a tree \mathfrak{t} such that $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{t}'$ implies $\mathfrak{t} = \mathfrak{t}'$. Let $\mathcal{N}_{\Rightarrow}$ be the set of all normal forms.

When there is no infinite chain $t_0\Rightarrow t_1\Rightarrow t_2\Rightarrow \cdots$, the rewrite relation \Rightarrow is terminating.

When there is no infinite chain $\mathfrak{t}_0\Rightarrow\mathfrak{t}_1\Rightarrow\mathfrak{t}_2\Rightarrow\cdots$, the rewrite relation \Rightarrow is terminating.

When $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}_1$ and $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}_2$ implies the existence of \mathfrak{t}' such that $\mathfrak{s}_1 \stackrel{*}{\Rightarrow} \mathfrak{t}'$ and $\mathfrak{s}_2 \stackrel{*}{\Rightarrow} \mathfrak{t}', \Rightarrow$ is confluent.

When there is no infinite chain $\mathfrak{t}_0\Rightarrow\mathfrak{t}_1\Rightarrow\mathfrak{t}_2\Rightarrow\cdots$, the rewrite relation \Rightarrow is terminating.

When $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}_1$ and $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}_2$ implies the existence of \mathfrak{t}' such that $\mathfrak{s}_1 \stackrel{*}{\Rightarrow} \mathfrak{t}'$ and $\mathfrak{s}_2 \stackrel{*}{\Rightarrow} \mathfrak{t}'$, \Rightarrow is confluent.

When $\mathfrak{t} \Rightarrow \mathfrak{s}_1$ and $\mathfrak{t} \Rightarrow \mathfrak{s}_2$ implies the existence of \mathfrak{t}' such that $\mathfrak{s}_1 \stackrel{*}{\Rightarrow} \mathfrak{t}'$ and $\mathfrak{s}_2 \stackrel{*}{\Rightarrow} \mathfrak{t}'$, \Rightarrow is locally confluent.

When there is no infinite chain $\mathfrak{t}_0\Rightarrow\mathfrak{t}_1\Rightarrow\mathfrak{t}_2\Rightarrow\cdots$, the rewrite relation \Rightarrow is terminating.

When $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}_1$ and $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}_2$ implies the existence of \mathfrak{t}' such that $\mathfrak{s}_1 \stackrel{*}{\Rightarrow} \mathfrak{t}'$ and $\mathfrak{s}_2 \stackrel{*}{\Rightarrow} \mathfrak{t}'$, \Rightarrow is confluent.

When $\mathfrak{t} \Rightarrow \mathfrak{s}_1$ and $\mathfrak{t} \Rightarrow \mathfrak{s}_2$ implies the existence of \mathfrak{t}' such that $\mathfrak{s}_1 \stackrel{*}{\Rightarrow} \mathfrak{t}'$ and $\mathfrak{s}_2 \stackrel{*}{\Rightarrow} \mathfrak{t}'$, \Rightarrow is locally confluent.

Theorem (Diamond property)

If \Rightarrow is terminating and locally confluent, then \Rightarrow is confluent.

When there is no infinite chain $\mathfrak{t}_0\Rightarrow\mathfrak{t}_1\Rightarrow\mathfrak{t}_2\Rightarrow\cdots$, the rewrite relation \Rightarrow is terminating.

When $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}_1$ and $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}_2$ implies the existence of \mathfrak{t}' such that $\mathfrak{s}_1 \stackrel{*}{\Rightarrow} \mathfrak{t}'$ and $\mathfrak{s}_2 \stackrel{*}{\Rightarrow} \mathfrak{t}'$, \Rightarrow is confluent.

When $\mathfrak{t} \Rightarrow \mathfrak{s}_1$ and $\mathfrak{t} \Rightarrow \mathfrak{s}_2$ implies the existence of \mathfrak{t}' such that $\mathfrak{s}_1 \stackrel{*}{\Rightarrow} \mathfrak{t}'$ and $\mathfrak{s}_2 \stackrel{*}{\Rightarrow} \mathfrak{t}'$, \Rightarrow is locally confluent.

Theorem (Diamond property)

If \Rightarrow is terminating and locally confluent, then \Rightarrow is confluent.

Proposition

Let \to be a rewrite rule on $\mathbf{F}(\mathfrak{G})$. If \Rightarrow is terminating and confluent, then $\mathcal{N}_{\Rightarrow}$ is

- ▶ the set of all \mathfrak{G} -trees avoiding the left members of \rightarrow ;
- \blacktriangleright in a one-to-one correspondence respecting the arities with $F(\mathfrak{G})/_{\stackrel{*}{\Leftrightarrow}}.$

Tamari lattices

Let \to be the rewrite rule on $\mathbf{F}(\{\mathsf{a}\})$ defined by $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$.

Tamari lattices

Let \to be the rewrite rule on $\mathbf{F}(\{\mathsf{a}\})$ defined by

First graphs $(\mathbf{F}(\{\mathtt{a}\})(n),\Rightarrow)$:

Tamari lattices

Let \to be the rewrite rule on $\mathbf{F}(\{\mathsf{a}\})$ defined by (a,b) .

First graphs ($\mathbf{F}(\{\mathbf{a}\})(n), \Rightarrow$):

Properties:

- ightharpoonup \Rightarrow is terminating and confluent;
- $\blacktriangleright~\mathcal{N}_{\Rightarrow}$ is the set of the trees avoiding $~ \nearrow ~,$ that are right comb trees;
- ► The sequence $(\mathbf{F}(\{\mathbf{a}\})/_{\stackrel{*}{\Leftrightarrow}}(n))_{n\geq 1}$ is $1,1,1,1,\ldots$

Let \to be the rewrite rule on $\mathbf{F}(\{\mathsf{a}\})$ defined by $\bigwedge^{\lambda} \to \bigwedge_{\lambda}$.

Let \to be the rewrite rule on $\mathbf{F}(\{\mathsf{a}\})$ defined by $\bigwedge^{\lambda} \to \bigwedge_{\lambda}$.

First graphs $(\mathbf{F}(\{\mathbf{a}\})(n), \Rightarrow)$:

1	À	太太	* * *	
1	2	3	4	5

Let \rightarrow be the rewrite rule on $\mathbf{F}(\{a\})$ defined by $\swarrow^{\downarrow} \rightarrow {}^{\downarrow}_{\searrow}$.

First graphs ($\mathbf{F}(\{\mathbf{a}\})(n), \Rightarrow$):

1	Å	太太	* * *	
1	2	3	4	5

- ▶ ⇒ is terminating but not confluent;
- $ightharpoonup \mathcal{N}_{\Rightarrow}$ can be described as the set of the $\{a\}$ -trees avoiding 11 patterns;

Let \rightarrow be the rewrite rule on $\mathbf{F}(\{a\})$ defined by $\wedge \wedge \rightarrow \wedge_{\wedge}$.

First graphs ($\mathbf{F}(\{\mathbf{a}\})(n), \Rightarrow$):

1	À	太太	* * *	
1	2	3	4	5

- ► ⇒ is terminating but not confluent;
- ▶ $\mathcal{N}_{\Rightarrow}$ can be described as the set of the $\{a\}$ -trees avoiding 11 patterns;
- ► The sequence $\left(\mathbf{F}(\{\mathbf{a}\})/_{\stackrel{*}{\Leftrightarrow}}(n)\right)_{n\geqslant 1}$ is 1, 1, 2, 4, 8,

Let \rightarrow be the rewrite rule on $\mathbf{F}(\{a\})$ defined by $\wedge \wedge \rightarrow \wedge_{\wedge}$.

First graphs $(\mathbf{F}(\{\mathbf{a}\})(n),\Rightarrow)$:

1	Å	太太	\$ \$ \$	
1	2	3	4	5

- ► ⇒ is terminating but not confluent;
- ▶ $\mathcal{N}_{\Rightarrow}$ can be described as the set of the $\{a\}$ -trees avoiding 11 patterns;
- The sequence $\left(\mathbf{F}(\{\mathbf{a}\})/_{\stackrel{*}{\Leftrightarrow}}(n)\right)_{n\geqslant 1}$ is 1,1,2,4,8,14,

Let \rightarrow be the rewrite rule on $\mathbf{F}(\{a\})$ defined by $\swarrow^{\downarrow} \rightarrow {}^{\downarrow}_{\searrow}$.

First graphs ($\mathbf{F}(\{\mathbf{a}\})(n), \Rightarrow$):

1	À	太太	* * *	
1	2	3	4	5

- ► ⇒ is terminating but not confluent;
- ▶ $\mathcal{N}_{\Rightarrow}$ can be described as the set of the $\{a\}$ -trees avoiding 11 patterns;
- The sequence $\left(\mathbf{F}(\{\mathbf{a}\})/_{\stackrel{\star}{\Leftrightarrow}}(n)\right)_{n\geqslant 1}$ is 1,1,2,4,8,14,20,

Let \rightarrow be the rewrite rule on $\mathbf{F}(\{a\})$ defined by $\wedge \wedge \rightarrow \wedge_{\wedge}$.

First graphs ($\mathbf{F}(\{\mathbf{a}\})(n), \Rightarrow$):

ı	À	太太	* * *	
1	2	3	4	5

- ► ⇒ is terminating but not confluent;
- ▶ $\mathcal{N}_{\Rightarrow}$ can be described as the set of the $\{a\}$ -trees avoiding 11 patterns;
- The sequence $\left(\mathbf{F}(\{a\})/_{\stackrel{*}{\Leftrightarrow}}(n)\right)_{n\geqslant 1}$ is $1,1,2,4,8,14,20,\frac{19}{2}$

Let \rightarrow be the rewrite rule on $\mathbf{F}(\{a\})$ defined by $\wedge \wedge \rightarrow \wedge_{\wedge}$.

First graphs ($\mathbf{F}(\{\mathbf{a}\})(n), \Rightarrow$):

ı	À	太太	* * *	
1	2	3	4	5

- ► ⇒ is terminating but not confluent;
- $ightharpoonup \mathcal{N}_{\Rightarrow}$ can be described as the set of the $\{a\}$ -trees avoiding 11 patterns;
- ► The sequence $\left(\mathbf{F}(\{\mathbf{a}\})/_{\stackrel{*}{\Leftrightarrow}}(n)\right)_{n\geqslant 1}$ is

Let \rightarrow be the rewrite rule on $\mathbf{F}(\{a\})$ defined by $\swarrow^{\downarrow} \rightarrow {}^{\downarrow}_{\searrow}$.

First graphs ($\mathbf{F}(\{\mathbf{a}\})(n), \Rightarrow$):

1	Å	太太太	* * *	
1	2	3	4	5

- ► ⇒ is terminating but not confluent;
- ▶ $\mathcal{N}_{\Rightarrow}$ can be described as the set of the $\{a\}$ -trees avoiding 11 patterns;
- ▶ The sequence $\left(\mathbf{F}(\{\mathsf{a}\})/_{\stackrel{*}{\Leftrightarrow}}(n)\right)_{n\geqslant 1}$ is

Let \rightarrow be the rewrite rule on $\mathbf{F}(\{a\})$ defined by $\wedge \wedge \rightarrow \wedge_{\wedge}$.

First graphs ($\mathbf{F}(\{\mathbf{a}\})(n), \Rightarrow$):

ı	Å	太太	\$ \$ \$	
1	2	3	4	5

- ► ⇒ is terminating but not confluent;
- $ightharpoonup \mathcal{N}_{\Rightarrow}$ can be described as the set of the $\{a\}$ -trees avoiding 11 patterns;
- ▶ The sequence $\left(\mathbf{F}(\{\mathsf{a}\})/_{\stackrel{*}{\Leftrightarrow}}(n)\right)_{n\geqslant 1}$ is

Let \rightarrow be the rewrite rule on $\mathbf{F}(\{a\})$ defined by $\swarrow^{\downarrow} \rightarrow {}^{\downarrow}_{\searrow}$.

First graphs ($\mathbf{F}(\{\mathbf{a}\})(n), \Rightarrow$):

1	À	太太	* * * *	
1	2	3	4	5

- ▶ ⇒ is terminating but not confluent;
- $ightharpoonup \mathcal{N}_{\Rightarrow}$ can be described as the set of the $\{a\}$ -trees avoiding 11 patterns;
- \blacktriangleright The sequence $\Big(\mathbf{F}(\{\mathbf{a}\})/_{\stackrel{*}{\Leftrightarrow}}(n)\Big)_{n\geqslant 1}$ is

$$1, 1, 2, 4, 8, 14, 20, \frac{19}{10}, \frac{16}{14}, 14, 15, 16, 17, \dots$$

Let \rightarrow be the rewrite rule on $\mathbf{F}(\{a\})$ defined by $\bigwedge^{A} \rightarrow \bigwedge^{A}$.

First graphs ($\mathbf{F}(\{\mathbf{a}\})(n), \Rightarrow$):

1	À	太太	* * *	
1	2	3	4	5

Theorem [Chenavier, Cordero, G., 2018]

- ▶ ⇒ is terminating but not confluent;
- ▶ $\mathcal{N}_{\Rightarrow}$ can be described as the set of the $\{a\}$ -trees avoiding 11 patterns;
- ► The sequence $\left(\mathbf{F}(\{\mathbf{a}\})/_{\overset{*}{\Leftrightarrow}}(n)\right)_{n\geq 1}$ is

$$1, 1, 2, 4, 8, 14, 20, 19, 16, 14, 14, 15, 16, 17, \dots$$

and its generating function is

$$\frac{t}{(1-t)^2} \left(1-t+t^2+t^3+2t^4+2t^5-7t^7-2t^8+t^9+2t^{10}+t^{11}\right).$$

Outline

Tree series and pattern avoidance

Let \mathbb{K} be the field $\mathbb{Q}\left(q_0,q_1,q_2,\dots\right)$ and \mathfrak{G} be a set of letters.

Let \mathbb{K} be the field $\mathbb{Q}(q_0, q_1, q_2, \dots)$ and \mathfrak{G} be a set of letters.

A $\mathbf{F}(\mathfrak{G})$ -series (tree series) is a map

$$f:F(\mathfrak{G})\to\mathbb{K}.$$

Let $\mathbb K$ be the field $\mathbb Q\left(q_0,q_1,q_2,\dots\right)$ and ${\mathfrak G}$ be a set of letters.

A $\mathbf{F}(\mathfrak{G})$ -series (tree series) is a map

$$\mathbf{f}: \mathbf{F}(\mathfrak{G}) \to \mathbb{K}.$$

The coefficient $\mathbf{f}(\mathfrak{t})$ of $\mathfrak{t} \in \mathbf{F}(\mathfrak{G})$ in \mathbf{f} is denoted by $\langle \mathfrak{t}, \mathbf{f} \rangle$.

Let \mathbb{K} be the field $\mathbb{Q}(q_0, q_1, q_2, \dots)$ and \mathfrak{G} be a set of letters.

A $\mathbf{F}(\mathfrak{G})$ -series (tree series) is a map

$$\mathbf{f}: \mathbf{F}(\mathfrak{G}) \to \mathbb{K}$$
.

The coefficient f(t) of $t \in F(\mathfrak{G})$ in f is denoted by $\langle t, f \rangle$.

The set of all $\mathbf{F}(\mathfrak{G})$ -series is $\mathbb{K}\langle\langle\mathbf{F}(\mathfrak{G})\rangle\rangle$.

Let \mathbb{K} be the field $\mathbb{Q}(q_0, q_1, q_2, \dots)$ and \mathfrak{G} be a set of letters.

A $\mathbf{F}(\mathfrak{G})$ -series (tree series) is a map

$$\mathbf{f}: \mathbf{F}(\mathfrak{G}) \to \mathbb{K}$$
.

The coefficient f(t) of $t \in F(\mathfrak{G})$ in f is denoted by $\langle t, f \rangle$.

The set of all $\mathbf{F}(\mathfrak{G})$ -series is $\mathbb{K}\langle\langle\mathbf{F}(\mathfrak{G})\rangle\rangle$.

Endowed with the pointwise addition

$$\langle \mathfrak{t}, \mathbf{f} + \mathbf{g} \rangle := \langle \mathfrak{t}, \mathbf{f} \rangle + \langle \mathfrak{t}, \mathbf{g} \rangle$$

and the pointwise multiplication by a scalar

$$\langle \mathfrak{t}, \lambda \mathbf{f} \rangle := \lambda \langle \mathfrak{t}, \mathbf{f} \rangle,$$

the set $\mathbb{K}\langle\langle \mathbf{F}(\mathfrak{G})\rangle\rangle$ is a vector space.

Let \mathbb{K} be the field $\mathbb{Q}(q_0, q_1, q_2, \dots)$ and \mathfrak{G} be a set of letters.

A $\mathbf{F}(\mathfrak{G})$ -series (tree series) is a map

$$\mathbf{f}: \mathbf{F}(\mathfrak{G}) \to \mathbb{K}$$
.

The coefficient $f(\mathfrak{t})$ of $\mathfrak{t} \in F(\mathfrak{G})$ in f is denoted by $\langle \mathfrak{t}, f \rangle$.

The set of all $\mathbf{F}(\mathfrak{G})$ -series is $\mathbb{K} \langle \langle \mathbf{F}(\mathfrak{G}) \rangle \rangle$.

Endowed with the pointwise addition

$$\langle \mathbf{t}, \mathbf{f} + \mathbf{g} \rangle := \langle \mathbf{t}, \mathbf{f} \rangle + \langle \mathbf{t}, \mathbf{g} \rangle$$

and the pointwise multiplication by a scalar

$$\langle \mathbf{t}, \lambda \mathbf{f} \rangle := \lambda \langle \mathbf{t}, \mathbf{f} \rangle$$
,

the set $\mathbb{K}\langle\langle \mathbf{F}(\mathfrak{G})\rangle\rangle$ is a vector space.

The sum notation of f is

$$\mathbf{f} = \sum_{\mathbf{t} \in \mathbf{F}(\mathfrak{G})} \langle \mathbf{t}, \mathbf{f} \rangle \, \mathbf{t}.$$

Example

For $x \in \mathfrak{G}$, let \mathbf{f}_x be the $\mathbf{F}(\mathfrak{G})$ -series wherein $\langle \mathfrak{t}, \mathbf{f}_x \rangle$ is the number of occurrences of x in \mathfrak{t} . For instance,

$$\mathbf{f}_{\mathsf{a}} = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + 2 \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + 2 \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + 3 \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + \cdots$$

Example

For $x \in \mathfrak{G}$, let \mathbf{f}_x be the $\mathbf{F}(\mathfrak{G})$ -series wherein $\langle \mathfrak{t}, \mathbf{f}_x \rangle$ is the number of occurrences of x in \mathfrak{t} . For instance,

$$\mathbf{f_a} = \frac{1}{100} + 2 \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + 2 \frac{1}{100} + 3 \frac{1}{100} + \cdots$$

Example

Let \mathbf{f}_{ι} be the $\mathbf{F}(\mathfrak{G})$ -series wherein $\langle \mathfrak{t}, \mathbf{f}_{\iota} \rangle := |\mathfrak{t}|$. Hence,

$$\mathbf{f}_{1} = 1 + 2 \cdot \frac{1}{10} + 2 \cdot \frac{1}{10} + 3 \cdot$$

Example

For $x \in \mathfrak{G}$, let \mathbf{f}_x be the $\mathbf{F}(\mathfrak{G})$ -series wherein $\langle \mathfrak{t}, \mathbf{f}_x \rangle$ is the number of occurrences of x in \mathfrak{t} . For instance,

$$\mathbf{f}_{\mathsf{a}} = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + 2 \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + 2 \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + 3 \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + \cdots$$

Example

Let \mathbf{f}_{\perp} be the $\mathbf{F}(\mathfrak{G})$ -series wherein $\langle \mathfrak{t}, \mathbf{f}_{\perp} \rangle := |\mathfrak{t}|$. Hence,

$$\mathbf{f}_{\scriptscriptstyle \parallel} = {\scriptscriptstyle \parallel} + 2 \begin{array}{c} {\scriptscriptstyle \parallel} \\ {\scriptscriptstyle \parallel} \\ {\scriptscriptstyle \parallel} \end{array} + 2 \begin{array}{c} {\scriptscriptstyle \parallel} \\ {\scriptscriptstyle \parallel} \\ {\scriptscriptstyle \parallel} \end{array} + 3 \begin{array}{c} {\scriptscriptstyle \parallel} \\ {\scriptscriptstyle \parallel} \\ {\scriptscriptstyle \parallel} \end{array} + 3 \begin{array}{c} {\scriptscriptstyle \parallel} \\ {\scriptscriptstyle \parallel} \\ {\scriptscriptstyle \parallel} \end{array} + 3 \begin{array}{c} {\scriptscriptstyle \parallel} \\ {\scriptscriptstyle \parallel} \\ {\scriptscriptstyle \parallel} \end{array} + 3 \begin{array}{c} {\scriptscriptstyle \parallel} \\ {\scriptscriptstyle \parallel} \\ {\scriptscriptstyle \parallel} \end{array} + \cdots .$$

Example

In the tree series $\mathbf{f}_a + \mathbf{f}_b + \mathbf{f}_c$, the coefficient of a tree is its degree.

Example

For $x \in \mathfrak{G}$, let \mathbf{f}_x be the $\mathbf{F}(\mathfrak{G})$ -series wherein $\langle \mathfrak{t}, \mathbf{f}_x \rangle$ is the number of occurrences of x in \mathfrak{t} . For instance,

$$\mathbf{f}_{\mathsf{a}} = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) + \left(\begin{array}{c} 1 \end{array}$$

Example

Let \mathbf{f}_1 be the $\mathbf{F}(\mathfrak{G})$ -series wherein $\langle \mathbf{t}, \mathbf{f}_1 \rangle := |\mathbf{t}|$. Hence,

$$\mathbf{f}_{_{1}} = _{1} + 2 \, _{_{/ \, \wedge}}^{_{1}} + 2 \, _{_{/ \, \wedge}}^{_{1}} + 3 \, _{_{/ \, \wedge}}^{_{1}} + 3 \, _{_{/ \, \wedge}}^{_{1}}^{_{1}} + \cdots \, .$$

Example

In the tree series $\mathbf{f}_a + \mathbf{f}_b + \mathbf{f}_c$, the coefficient of a tree is its degree.

In the tree series $\mathbf{f}_1 + \mathbf{f}_a + \mathbf{f}_b + \mathbf{f}_c$, the coefficient of a tree is its number of edges.

Evaluation and generating series

Let S be a set of \mathfrak{G} -trees.

The characteristic series of $\mathcal S$ is the $\mathbf F(\mathfrak G)$ -série

$$\mathbf{f}_{\mathcal{S}} := \sum_{\mathfrak{t} \in \mathcal{S}} \mathfrak{t}.$$

Evaluation and generating series

Let S be a set of \mathfrak{G} -trees.

The characteristic series of S is the $F(\mathfrak{G})$ -série

$$\mathbf{f}_{\mathcal{S}} := \sum_{\mathfrak{t} \in \mathcal{S}} \mathfrak{t}.$$

The evaluation map

$$\operatorname{ev}: \mathbb{K}\langle\langle \mathbf{F}(\mathfrak{G}) \rangle\rangle \to \mathbb{K}\langle\langle t \rangle\rangle$$

is the linear map satisfying

$$\operatorname{ev}(\mathfrak{t}) = t^{|\mathfrak{t}|}.$$

Evaluation and generating series

Let S be a set of \mathfrak{G} -trees.

The characteristic series of S is the $F(\mathfrak{G})$ -série

$$\mathbf{f}_{\mathcal{S}} := \sum_{\mathfrak{t} \in \mathcal{S}} \mathfrak{t}.$$

The evaluation map

$$\operatorname{ev}: \mathbb{K} \left\langle \left\langle \mathbf{F}(\mathfrak{G}) \right\rangle \right\rangle \to \mathbb{K} \left\langle \left\langle t \right\rangle \right\rangle$$

is the linear map satisfying

$$\operatorname{ev}(\mathfrak{t}) = t^{|\mathfrak{t}|}.$$

One has

$$\operatorname{ev}\left(\mathbf{f}_{\mathcal{S}}\right) = \sum_{\mathbf{t} \in \mathcal{S}} t^{|\mathbf{t}|} = \sum_{n \geq 1} \#\left\{\mathbf{t} \in \mathcal{S} : |\mathbf{t}| = n\right\} t^{n} = \mathcal{G}_{\mathcal{S}}(t)$$

where $\mathcal{G}_{\mathcal{S}}(t)$ is the generating series of \mathcal{S} , enumerating its elements w.r.t. the arity.

Composition of tree series

The composition of the $\mathbf{F}(\mathfrak{G})$ -series \mathbf{f} and $\mathbf{g}_1, ..., \mathbf{g}_n$ is the series

$$\mathbf{f} \bar{\circ} [g_1, \dots, g_n] := \sum_{\substack{\mathbf{t} \in \mathbf{F}(\mathfrak{G})(n) \\ \mathfrak{s}_1, \dots, \mathfrak{s}_n \in \mathbf{F}(\mathfrak{G})}} \left(\langle \mathbf{t}, \mathbf{f} \rangle \prod_{i \in [n]} \langle \mathfrak{s}_i, g_i \rangle \right) \mathbf{t} \circ [\mathfrak{s}_1, \dots, \mathfrak{s}_n].$$

Observe that this product is linear in all its arguments.

Composition of tree series

The composition of the $\mathbf{F}(\mathfrak{G})$ -series \mathbf{f} and $\mathbf{g}_1, ..., \mathbf{g}_n$ is the series

$$\mathbf{f} \bar{\circ} [\mathbf{g}_1, \dots, \mathbf{g}_n] := \sum_{\substack{\mathbf{t} \in \mathbf{F}(\mathfrak{G})(n) \\ \mathfrak{s}_1, \dots, \mathfrak{s}_n \in \mathbf{F}(\mathfrak{G})}} \left(\langle \mathbf{t}, \mathbf{f} \rangle \prod_{i \in [n]} \langle \mathfrak{s}_i, \mathbf{g}_i \rangle \right) \mathbf{t} \circ [\mathfrak{s}_1, \dots, \mathfrak{s}_n].$$

Observe that this product is linear in all its arguments.

Example

Composition of tree series

The composition of the $\mathbf{F}(\mathfrak{G})$ -series \mathbf{f} and $\mathbf{g}_1, ..., \mathbf{g}_n$ is the series

$$\mathbf{f} \bar{\circ} \left[\mathbf{g}_1, \dots, \mathbf{g}_n \right] := \sum_{\substack{\mathbf{t} \in \mathbf{F}(\mathfrak{G})(n) \\ \mathfrak{s}_1, \dots, \mathfrak{s}_n \in \mathbf{F}(\mathfrak{G})}} \left(\langle \mathbf{t}, \mathbf{f} \rangle \prod_{i \in [n]} \langle \mathfrak{s}_i, \mathbf{g}_i \rangle \right) \mathbf{t} \circ \left[\mathfrak{s}_1, \dots, \mathfrak{s}_n \right].$$

Observe that this product is linear in all its arguments.

Example

For all $\mathfrak{t} \in \mathbf{F}(\mathfrak{G})(n)$ and all $\mathbf{F}(\mathfrak{G})$ -series $g_1, ..., g_n$,

$$\operatorname{ev}\left(\operatorname{t\bar{o}}\left[\mathbf{g}_{1},\ldots,\mathbf{g}_{n}\right]\right)=\prod_{i\in\left[n\right]}\operatorname{ev}\left(\mathbf{g}_{i}\right).$$

Tree series avoiding patterns

Let $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$ and set

$$\mathbf{f}(\mathcal{P}) := \mathbf{f}_{\mathrm{A}(\mathcal{P})} = \sum_{\substack{\mathfrak{t} \in \mathbf{F}(\mathfrak{G}) \\ \forall \mathfrak{s} \in \mathcal{P}, \mathfrak{s} \not\preccurlyeq \mathfrak{t}}} \mathfrak{t}$$

as the series of the \mathfrak{G} -trees avoiding all patterns of \mathcal{P} .

Tree series avoiding patterns

Let $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$ and set

$$\mathbf{f}(\mathcal{P}) := \mathbf{f}_{\mathbb{A}(\mathcal{P})} = \sum_{\substack{\mathfrak{t} \in \mathbf{F}(\mathfrak{G}) \\ \forall \mathfrak{s} \in \mathcal{P}, \mathfrak{s} \not\prec \mathfrak{t}}} \mathfrak{t}$$

as the series of the \mathfrak{G} -trees avoiding all patterns of \mathcal{P} .

When $\mathfrak{G}(1) = \emptyset$, each $\mathbf{F}(\mathfrak{G})(n)$ is finite and thus, there is a finite number of \mathfrak{G} -trees of arity n avoiding \mathcal{P} . Therefore, the series

$$\operatorname{ev}(\mathbf{f}(\mathcal{P})) = \mathcal{G}_{A(\mathcal{P})}(t)$$

is well-defined.

Tree series avoiding patterns

Let $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$ and set

$$\mathbf{f}(\mathcal{P}) := \mathbf{f}_{\mathbb{A}(\mathcal{P})} = \sum_{\substack{\mathfrak{t} \in \mathbf{F}(\mathfrak{G}) \\ \forall \mathfrak{s} \in \mathcal{P}, \mathfrak{s} \not\prec \mathfrak{t}}} \mathfrak{t}$$

as the series of the \mathfrak{G} -trees avoiding all patterns of \mathcal{P} .

When $\mathfrak{G}(1) = \emptyset$, each $\mathbf{F}(\mathfrak{G})(n)$ is finite and thus, there is a finite number of \mathfrak{G} -trees of arity n avoiding \mathcal{P} . Therefore, the series

$$\operatorname{ev}(\mathbf{f}(\mathcal{P})) = \mathcal{G}_{A(\mathcal{P})}(t)$$

is well-defined.

Goal

Given \mathfrak{G} and $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$, provide an expression for $\mathbf{f}(\mathcal{P})$.

Occurrences at root

A \mathfrak{G} -tree \mathfrak{t} admits an occurrence of a \mathfrak{G} -tree \mathfrak{s} at root if there exists $\mathfrak{r}_1,\ldots,\mathfrak{r}_{|\mathfrak{s}|}\in\mathbf{F}(\mathfrak{G})$ and $i\in[|\mathfrak{r}|]$ such that

$$\mathfrak{t} = \mathfrak{s} \circ [\mathfrak{r}_1, \dots, \mathfrak{r}_{|\mathfrak{s}|}]$$
.

This property is denoted by $\mathfrak{s} \preccurlyeq_{\mathrm{r}} \mathfrak{t}$.

Occurrences at root

A \mathfrak{G} -tree \mathfrak{t} admits an occurrence of a \mathfrak{G} -tree \mathfrak{s} at root if there exists $\mathfrak{r}_1,\ldots,\mathfrak{r}_{|\mathfrak{s}|}\in\mathbf{F}(\mathfrak{G})$ and $i\in[|\mathfrak{r}|]$ such that

$$\mathfrak{t}=\mathfrak{s}\circ\left[\mathfrak{r}_{1},\ldots,\mathfrak{r}_{|\mathfrak{s}|}\right].$$

This property is denoted by $\mathfrak{s} \preccurlyeq_r \mathfrak{t}$.

Occurrences at root

A \mathfrak{G} -tree \mathfrak{t} admits an occurrence of a \mathfrak{G} -tree \mathfrak{s} at root if there exists $\mathfrak{r}_1,\ldots,\mathfrak{r}_{|\mathfrak{s}|}\in\mathbf{F}(\mathfrak{G})$ and $i\in[|\mathfrak{r}|]$ such that

$$\mathfrak{t} = \mathfrak{s} \circ [\mathfrak{r}_1, \dots, \mathfrak{r}_{|\mathfrak{s}|}]$$
.

This property is denoted by $\mathfrak{s} \preccurlyeq_{\mathrm{r}} \mathfrak{t}$.

Example

Assume that $\mathfrak{t} = \mathsf{a} \circ [\mathfrak{t}_1, \dots, \mathfrak{t}_k]$ and $\mathfrak{s} = \mathsf{a} \circ [\mathfrak{s}_1, \dots, \mathfrak{s}_k]$ where $\mathsf{a} \in \mathfrak{G}(k)$.

Occurrences at root

A \mathfrak{G} -tree \mathfrak{t} admits an occurrence of a \mathfrak{G} -tree \mathfrak{s} at root if there exists $\mathfrak{r}_1,\ldots,\mathfrak{r}_{|\mathfrak{s}|}\in\mathbf{F}(\mathfrak{G})$ and $i\in[|\mathfrak{r}|]$ such that

$$\mathfrak{t} = \mathfrak{s} \circ [\mathfrak{r}_1, \dots, \mathfrak{r}_{|\mathfrak{s}|}]$$
.

This property is denoted by $\mathfrak{s} \preccurlyeq_r \mathfrak{t}$.

Example

Assume that $\mathfrak{t} = \mathsf{a} \circ [\mathfrak{t}_1, \dots, \mathfrak{t}_k]$ and $\mathfrak{s} = \mathsf{a} \circ [\mathfrak{s}_1, \dots, \mathfrak{s}_k]$ where $\mathsf{a} \in \mathfrak{G}(k)$.

Then, $\mathfrak{s} \not\ll_{\mathbf{r}} \mathbf{t}$ if and only if there exists an $i \in [k]$ such that $\mathfrak{s}_i \not\ll_{\mathbf{r}} \mathbf{t}_i$.

Let
$$\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$$
 and $\mathbf{a} \in \mathfrak{G}(k)$. Let

$$\mathcal{P}_{\mathsf{a}} := \left\{ \mathfrak{s} \in \mathcal{P} : \mathsf{a} \preccurlyeq_{\mathrm{r}} \mathfrak{s} \right\}.$$

Let
$$\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$$
 and $\mathbf{a} \in \mathfrak{G}(k)$. Let

$$\mathcal{P}_{\mathsf{a}} := \left\{ \mathfrak{s} \in \mathcal{P} : \mathsf{a} \preccurlyeq_{\mathrm{r}} \mathfrak{s} \right\}.$$

A \mathfrak{G} -tree $\mathfrak{t}=\mathsf{a}\circ [\mathfrak{t}_1,\ldots,\mathfrak{t}_k]$ avoids at root all patterns of \mathcal{P} if for all patterns $\mathfrak{s}=\mathsf{a}\circ [\mathfrak{s}_1,\ldots,\mathfrak{s}_k]\in \mathcal{P}_\mathsf{a}$, there is an $i\in [k]$ such that $\mathfrak{s}_i\not\ll_{\mathbf{r}}\mathfrak{t}_i$.

Let $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$ and $\mathbf{a} \in \mathfrak{G}(k)$. Let

$$\mathcal{P}_{\mathsf{a}} := \left\{ \mathfrak{s} \in \mathcal{P} : \mathsf{a} \preccurlyeq_{\mathrm{r}} \mathfrak{s} \right\}.$$

A \mathfrak{G} -tree $\mathfrak{t}=\mathsf{a}\circ [\mathfrak{t}_1,\ldots,\mathfrak{t}_k]$ avoids at root all patterns of \mathcal{P} if for all patterns $\mathfrak{s}=\mathsf{a}\circ [\mathfrak{s}_1,\ldots,\mathfrak{s}_k]\in \mathcal{P}_\mathsf{a}$, there is an $i\in [k]$ such that $\mathfrak{s}_i\not\ll_{\mathsf{r}}\mathfrak{t}_i$.

A word (S_1,\ldots,S_k) where letters are sets of \mathfrak{G} -trees different from ι is \mathcal{P}_{a} -admissible if for any $\mathfrak{s}\in\mathcal{P}_{\mathsf{a}}$, there is an $i\in[k]$ such that $\mathfrak{s}_i\in S_i$.

Let $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$ and $\mathbf{a} \in \mathfrak{G}(k)$. Let

$$\mathcal{P}_{\mathsf{a}} := \left\{ \mathfrak{s} \in \mathcal{P} : \mathsf{a} \preccurlyeq_{\mathrm{r}} \mathfrak{s} \right\}.$$

A \mathfrak{G} -tree $\mathfrak{t}=\mathsf{a}\circ [\mathfrak{t}_1,\ldots,\mathfrak{t}_k]$ avoids at root all patterns of $\mathcal P$ if for all patterns $\mathfrak s=\mathsf{a}\circ [\mathfrak s_1,\ldots,\mathfrak s_k]\in \mathcal P_\mathsf a$, there is an $i\in [k]$ such that $\mathfrak s_i\not\ll_r \mathfrak t_i$.

A word (S_1,\ldots,S_k) where letters are sets of \mathfrak{G} -trees different from ι is \mathcal{P}_{a} -admissible if for any $\mathfrak{s}\in\mathcal{P}_{\mathsf{a}}$, there is an $i\in[k]$ such that $\mathfrak{s}_i\in S_i$.

Let
$$\mathcal{P} := \left\{\begin{array}{ccc} \dot{c} & \dot{c} &$$

$$\blacktriangleright \left(\left\{ \left\{ \frac{1}{A_{s}} \right\}, \emptyset, \left\{ \left\{ \frac{1}{A_{s}} \right\} \right\} \right) \text{ is; }$$

Let $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$ and $\mathbf{a} \in \mathfrak{G}(k)$. Let

$$\mathcal{P}_{\mathsf{a}} := \{\mathfrak{s} \in \mathcal{P} : \mathsf{a} \preccurlyeq_{\mathrm{r}} \mathfrak{s}\}$$
 .

A \mathfrak{G} -tree $\mathfrak{t} = \mathsf{a} \circ [\mathfrak{t}_1, \dots, \mathfrak{t}_k]$ avoids at root all patterns of \mathcal{P} if for all patterns $\mathfrak{s} = \mathsf{a} \circ [\mathfrak{s}_1, \dots, \mathfrak{s}_k] \in \mathcal{P}_\mathsf{a}$, there is an $i \in [k]$ such that $\mathfrak{s}_i \not\ll_r \mathfrak{t}_i$.

A word (S_1,\ldots,S_k) where letters are sets of \mathfrak{G} -trees different from ι is \mathcal{P}_{a} -admissible if for any $\mathfrak{s}\in\mathcal{P}_{\mathsf{a}}$, there is an $i\in[k]$ such that $\mathfrak{s}_i\in S_i$.

$$\mathsf{Let}\,\mathcal{P} := \left\{ \begin{array}{c} \frac{1}{2} \left(\frac{1}{1}, \frac{1}{1} \right) & \frac{1}{2} \left(\frac{1}{1}, \frac{1}{2} \right) \\ \frac{1}{2} \left(\frac{1}{1}, \frac{1}{2} \right) & \frac{1}{2} \left(\frac{1}{2} \right) \end{array} \right\}. \text{ In terms of } \mathcal{P}_{\mathsf{c}}\text{-admissibility, the word}$$

$$\blacktriangleright \left(\left\{ \left[\begin{smallmatrix} 1 \\ A \\ A \end{smallmatrix}\right], \emptyset, \left\{\left[\begin{smallmatrix} 1 \\ A \\ A \end{smallmatrix}\right] \right\} \right) is;$$

$$\blacktriangleright \left(\left\{ \begin{smallmatrix} \frac{1}{a_{s}}, & \frac{1}{a_{s}} \\ \frac{1}{a_{s}}, & \frac{1}{a_{s}} \end{smallmatrix} \right\}, \emptyset, \left\{ \begin{smallmatrix} \frac{1}{a_{s}} \\ \frac{1}{a_{s}} \end{smallmatrix} \right\} \right) is;$$

Let $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$ and $\mathbf{a} \in \mathfrak{G}(k)$. Let

$$\mathcal{P}_{\mathsf{a}} := \{\mathfrak{s} \in \mathcal{P} : \mathsf{a} \preccurlyeq_{\mathrm{r}} \mathfrak{s}\}$$
 .

A \mathfrak{G} -tree $\mathfrak{t} = \mathsf{a} \circ [\mathfrak{t}_1, \dots, \mathfrak{t}_k]$ avoids at root all patterns of \mathcal{P} if for all patterns $\mathfrak{s} = \mathsf{a} \circ [\mathfrak{s}_1, \dots, \mathfrak{s}_k] \in \mathcal{P}_\mathsf{a}$, there is an $i \in [k]$ such that $\mathfrak{s}_i \not \ll_{\Gamma} \mathfrak{t}_i$.

A word (S_1,\ldots,S_k) where letters are sets of \mathfrak{G} -trees different from ι is \mathcal{P}_{a} -admissible if for any $\mathfrak{s}\in\mathcal{P}_{\mathsf{a}}$, there is an $i\in[k]$ such that $\mathfrak{s}_i\in S_i$.

$$\mathsf{Let}\,\mathcal{P} := \left\{ \begin{array}{c} \frac{1}{2} \left(\frac{1}{1}, \frac{1}{1} \right) & \frac{1}{2} \left(\frac{1}{1}, \frac{1}{1} \right) \\ \frac{1}{2} \left(\frac{1}{1}, \frac{1}{1} \right) & \frac{1}{2} \left(\frac{1}{1}, \frac{1}{1} \right) \end{array} \right\}. \text{ In terms of } \mathcal{P}_{\mathsf{c}}\text{-admissibility, the word}$$

$$\blacktriangleright \left(\left\{ \left[\begin{smallmatrix} i \\ a \\ a \end{smallmatrix}\right], \emptyset, \left\{\left[\begin{smallmatrix} i \\ a \\ a \end{smallmatrix}\right] \right\} \right) is;$$

$$\blacktriangleright \left(\left\{ \left[\begin{smallmatrix} i \\ A_i \end{smallmatrix}, \right.\right]_{i = 0}^{i \atop c} \right\}, \emptyset, \left\{\begin{smallmatrix} i \\ A_i \end{smallmatrix}\right\} \right) is;$$

Let $\mathcal{P} \subseteq \mathbf{F}(\mathfrak{G})$ and $\mathbf{a} \in \mathfrak{G}(k)$. Let

$$\mathcal{P}_{\mathsf{a}} := \left\{ \mathfrak{s} \in \mathcal{P} : \mathsf{a} \preccurlyeq_{\mathrm{r}} \mathfrak{s} \right\}.$$

A \mathfrak{G} -tree $\mathfrak{t} = \mathsf{a} \circ [\mathfrak{t}_1, \dots, \mathfrak{t}_k]$ avoids at root all patterns of \mathcal{P} if for all patterns $\mathfrak{s} = \mathsf{a} \circ [\mathfrak{s}_1, \dots, \mathfrak{s}_k] \in \mathcal{P}_\mathsf{a}$, there is an $i \in [k]$ such that $\mathfrak{s}_i \not \ll_{\Gamma} \mathfrak{t}_i$.

A word (S_1,\ldots,S_k) where letters are sets of \mathfrak{G} -trees different from ι is \mathcal{P}_{a} -admissible if for any $\mathfrak{s}\in\mathcal{P}_{\mathsf{a}}$, there is an $i\in[k]$ such that $\mathfrak{s}_i\in S_i$.

$$\mathsf{Let}\,\mathcal{P} := \left\{ \begin{array}{c} \frac{1}{2} \left(\frac{1}{1}, \frac{1}{1} \right) & \frac{1}{2} \left(\frac{1}{1}, \frac{1}{2} \right) \\ \frac{1}{2} \left(\frac{1}{1}, \frac{1}{2} \right) & \frac{1}{2} \left(\frac{1}{2} \right) \end{array} \right\}. \text{ In terms of } \mathcal{P}_{\mathsf{c}}\text{-admissibility, the word}$$

$$\blacktriangleright \left(\left\{ \left[\frac{1}{A_{\alpha}} \right] \right\}, \emptyset, \left\{ \left[\frac{1}{A_{\alpha}} \right] \right\} \right) \text{ is;}$$

$$\blacktriangleright \left(\left\{ \left[\begin{smallmatrix} 1 & & \frac{1}{c} \\ \frac{1}{c^{2}}, & \frac{1}{c} \\ \frac{1}{c} \\ \end{smallmatrix} \right], \emptyset, \left\{\left[\begin{smallmatrix} 1 \\ \frac{1}{c^{2}} \\ \frac{1}{c^{2}} \\ \end{smallmatrix} \right] \right) is;$$

$$\blacktriangleright \left(\left\{ \begin{array}{ccc} \frac{1}{a}, & \frac{1}{b}, & \frac{1}{b} \\ \frac{1}{a}, & \frac{1}{b}, & \frac{1}{b} \end{array} \right\}, \emptyset, \emptyset \right) is;$$

$$\blacktriangleright \left(\left\{ \begin{array}{c} \frac{1}{b} \\ \frac{1}{b} \\ \frac{1}{b} \end{array} \right\}, \left\{ \begin{array}{c} \frac{1}{a} \\ \frac{1}{a} \end{array} \right\} \right) \text{ is not.}$$

The union of two words (S_1,\dots,S_k) and (S'_1,\dots,S'_k) of sets of trees is defined by

$$(S_1,\ldots,S_k) \oplus (S_1',\ldots,S_k') := (S_1 \cup S_1',\ldots,S_k \cup S_k').$$

The union of two words (S_1,\ldots,S_k) and (S'_1,\ldots,S'_k) of sets of trees is defined by

$$(S_1,\ldots,S_k) \oplus (S'_1,\ldots,S'_k) := (S_1 \cup S'_1,\ldots,S_k \cup S'_k).$$

A \mathcal{P}_{a} -admissible word u is minimal if any decomposition $u = v \oplus v'$ where v is a \mathcal{P}_{a} -admissible word and v' is a word of sets of trees implies u = v.

The union of two words (S_1,\ldots,S_k) and (S'_1,\ldots,S'_k) of sets of trees is defined by

$$(S_1,\ldots,S_k) \oplus (S'_1,\ldots,S'_k) := (S_1 \cup S'_1,\ldots,S_k \cup S'_k).$$

A \mathcal{P}_{a} -admissible word u is minimal if any decomposition $u = v \oplus v'$ where v is a \mathcal{P}_{a} -admissible word and v' is a word of sets of trees implies u = v.

The set of all minimal \mathcal{P}_a -admissible words is denoted by $M(\mathcal{P}_a)$.

The union of two words (S_1,\ldots,S_k) and (S'_1,\ldots,S'_k) of sets of trees is defined by

$$(S_1,\ldots,S_k) \oplus (S'_1,\ldots,S'_k) := (S_1 \cup S'_1,\ldots,S_k \cup S'_k).$$

A \mathcal{P}_{a} -admissible word u is minimal if any decomposition $u = v \oplus v'$ where v is a \mathcal{P}_{a} -admissible word and v' is a word of sets of trees implies u = v.

The set of all minimal \mathcal{P}_a -admissible words is denoted by $M(\mathcal{P}_a)$.

Let
$$\mathcal{P} := \left\{ \begin{array}{c} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right\}$$
. In terms of minimality, as a \mathcal{P}_c -admissible word,

$$\blacktriangleright \left(\left\{ \frac{1}{|a|} \right\}, \emptyset, \left\{ \frac{1}{|a|} \right\} \right) \text{ is;}$$

The union of two words (S_1,\ldots,S_k) and (S'_1,\ldots,S'_k) of sets of trees is defined by

$$(S_1,\ldots,S_k) \oplus (S'_1,\ldots,S'_k) := (S_1 \cup S'_1,\ldots,S_k \cup S'_k).$$

A \mathcal{P}_{a} -admissible word u is minimal if any decomposition $u = v \oplus v'$ where v is a \mathcal{P}_{a} -admissible word and v' is a word of sets of trees implies u = v.

The set of all minimal \mathcal{P}_a -admissible words is denoted by $\mathrm{M}\left(\mathcal{P}_a\right)$.

Example

Let $\mathcal{P} := \left\{ \begin{array}{c} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right\}$. In terms of minimality, as a \mathcal{P}_c -admissible word,

$$\blacktriangleright \left(\left\{ \left[\begin{smallmatrix} 1 \\ a \\ a \end{smallmatrix}\right], \emptyset, \left\{\left[\begin{smallmatrix} 1 \\ a \\ a \end{smallmatrix}\right] \right\} \right) is;$$

$$\blacktriangleright \left(\left\{ \frac{1}{A}, \frac{1}{A}, \frac{1}{A} \right\}, \emptyset, \emptyset \right) \text{ is;}$$

The union of two words (S_1,\ldots,S_k) and (S'_1,\ldots,S'_k) of sets of trees is defined by

$$(S_1,\ldots,S_k) \oplus (S'_1,\ldots,S'_k) := (S_1 \cup S'_1,\ldots,S_k \cup S'_k).$$

A \mathcal{P}_{a} -admissible word u is minimal if any decomposition $u = v \oplus v'$ where v is a \mathcal{P}_{a} -admissible word and v' is a word of sets of trees implies u = v.

The set of all minimal \mathcal{P}_a -admissible words is denoted by $M(\mathcal{P}_a)$.

Let
$$\mathcal{P} := \left\{ \begin{array}{c} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right\}$$
. In terms of minimality, as a \mathcal{P}_c -admissible word,

$$\blacktriangleright \left(\left\{ \left[\frac{1}{A_{\lambda}} \right], \emptyset, \left\{ \left[\frac{1}{A_{\lambda}} \right] \right\} \right) \text{ is; }$$

$$\blacktriangleright \left(\left\{ \frac{1}{|a|}, \frac{1}{|a|} \right\}, \emptyset, \left\{ \frac{1}{|a|} \right\} \right) \text{ is not;}$$

$$\blacktriangleright \left(\left\{ \frac{1}{A}, \frac{1}{A}, \frac{1}{A}, \frac{1}{A} \right\}, \emptyset, \emptyset \right) \text{ is;}$$

The union of two words (S_1,\ldots,S_k) and (S'_1,\ldots,S'_k) of sets of trees is defined by

$$(S_1,\ldots,S_k) \oplus (S'_1,\ldots,S'_k) := (S_1 \cup S'_1,\ldots,S_k \cup S'_k).$$

A \mathcal{P}_{a} -admissible word u is minimal if any decomposition $u = v \oplus v'$ where v is a \mathcal{P}_{a} -admissible word and v' is a word of sets of trees implies u = v.

The set of all minimal \mathcal{P}_a -admissible words is denoted by $\mathrm{M}\left(\mathcal{P}_a\right)$.

Let
$$\mathcal{P} := \left\{ \begin{array}{c} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array}, \begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right\}$$
. In terms of minimality, as a \mathcal{P}_c -admissible word,

$$\blacktriangleright \left(\left\{ \frac{1}{a_{\lambda}} \right\}, \emptyset, \left\{ \frac{1}{a_{\lambda}} \right\} \right) \text{ is;}$$

$$\blacktriangleright \left(\left\{ \left[\frac{1}{A}, \frac{1}{A}, \frac{1}{A} \right] \right\}, \emptyset, \emptyset \right) \text{ is;}$$

$$\blacktriangleright \left(\left\{ \frac{1}{|A|}, \frac{1}{|A|} \right\}, \emptyset, \left\{ \frac{1}{|A|} \right\} \right) \text{ is not;}$$

$$\blacktriangleright \left(\left\{ \frac{1}{a_{x}}, \frac{1}{b_{x}} \right\}, \left\{ \frac{1}{b_{x}} \right\}, \left\{ \frac{1}{a_{x}} \right\} \right) \text{ is not.}$$

Back to tree series

Let
$$\mathcal{P}, \mathcal{R} \subseteq \mathbf{F}(\mathfrak{G})$$
.

Let the tree series

$$\mathbf{f}(\mathcal{P},\mathcal{R}) := \sum_{\substack{\mathfrak{t} \in \mathbf{F}(\mathfrak{G}) \\ \forall \mathfrak{s} \in \mathcal{P}, \mathfrak{s} \not \prec \mathfrak{t} \\ \forall \mathfrak{s} \in \mathcal{R}, \mathfrak{s} \not \prec \mathfrak{r}}} \mathfrak{t}$$

of the \mathfrak{G} -trees avoiding \mathcal{P} and avoiding \mathcal{R} at root.

Back to tree series

Let
$$\mathcal{P}, \mathcal{R} \subseteq \mathbf{F}(\mathfrak{G})$$
.

Let the tree series

$$\mathbf{f}(\mathcal{P},\mathcal{R}) := \sum_{\substack{\mathfrak{t} \in \mathbf{F}(\mathfrak{G}) \\ \forall \mathfrak{s} \in \mathcal{P}, \mathfrak{s} \not \prec \mathfrak{t} \\ \forall \mathfrak{s} \in \mathcal{R}, \mathfrak{s} \not \prec_{\mathfrak{t}} \mathfrak{t}}} \mathfrak{t}$$

of the \mathfrak{G} -trees avoiding \mathcal{P} and avoiding \mathcal{R} at root.

If (S_1,\ldots,S_k) is a $(\mathcal{P}\cup\mathcal{R})_{\mathsf{a}}$ -admissible word, $\mathsf{a}^{\bar{\diamond}}\left[\mathbf{f}\left(\mathcal{P},S_1\right),\ldots,\mathbf{f}\left(\mathcal{P},S_k\right)\right]$ is the characteristic series of all the \mathfrak{G} -trees $\mathsf{t}=\mathsf{a}\circ\left[\mathsf{t}_1,\ldots,\mathsf{t}_k\right]$ such that all t_i avoid \mathcal{P} and avoid S_i at root.

Back to tree series

Let $\mathcal{P}, \mathcal{R} \subseteq \mathbf{F}(\mathfrak{G})$.

Let the tree series

$$\mathbf{f}(\mathcal{P},\mathcal{R}) := \sum_{\substack{\mathfrak{t} \in \mathbf{F}(\mathfrak{G}) \\ \forall \mathfrak{s} \in \mathcal{P}, \mathfrak{s} \not\prec \mathfrak{t} \\ \forall \mathfrak{s} \in \mathcal{R}, \mathfrak{s} \not\prec \mathfrak{t}}} \mathfrak{t}$$

of the \mathfrak{G} -trees avoiding \mathcal{P} and avoiding \mathcal{R} at root.

If (S_1, \ldots, S_k) is a $(\mathcal{P} \cup \mathcal{R})_a$ -admissible word, $a \bar{\circ} [\mathbf{f} (\mathcal{P}, S_1), \ldots, \mathbf{f} (\mathcal{P}, S_k)]$ is the characteristic series of all the \mathfrak{G} -trees $\mathbf{t} = \mathbf{a} \circ [\mathbf{t}_1, \ldots, \mathbf{t}_k]$ such that all \mathbf{t}_i avoid \mathcal{P} and avoid S_i at root.

Moreover, the support of the tree series

$$\sum_{(S_{1},\ldots,S_{k})\in\mathrm{M}\left(\left(\mathcal{P}\cup\mathcal{R}\right)_{\mathsf{a}}\right)}\mathsf{a}\bar{\circ}\left[\mathbf{f}\left(\mathcal{P},S_{1}\right),\ldots,\mathbf{f}\left(\mathcal{P},S_{k}\right)\right]$$

is the set of all \mathfrak{G} -trees with root labeled by a and avoiding \mathcal{P} and avoiding \mathcal{R} at root.

System of equations

Observe that for any $\mathcal{R}, \mathcal{R}' \subseteq \mathbf{F}(\mathfrak{G})$, the characteristic series of the \mathfrak{G} -trees avoiding \mathcal{P} , and avoiding \mathcal{R} or \mathcal{R}' at root is

$$\mathbf{f}(\mathcal{P},\mathcal{R}) + \mathbf{f}(\mathcal{P},\mathcal{R}') - \mathbf{f}(\mathcal{P},\mathcal{R} \cup \mathcal{R}')$$
.

Therefore, the description of $\mathbf{f}(\mathcal{P}, \mathcal{R})$ uses the inclusion-exclusion principle.

System of equations

Observe that for any $\mathcal{R}, \mathcal{R}' \subseteq \mathbf{F}(\mathfrak{G})$, the characteristic series of the \mathfrak{G} -trees avoiding \mathcal{P} , and avoiding \mathcal{R} or \mathcal{R}' at root is

$$\mathbf{f}(\mathcal{P}, \mathcal{R}) + \mathbf{f}(\mathcal{P}, \mathcal{R}') - \mathbf{f}(\mathcal{P}, \mathcal{R} \cup \mathcal{R}')$$
.

Therefore, the description of $\mathbf{f}(\mathcal{P}, \mathcal{R})$ uses the inclusion-exclusion principle.

Theorem [G., 2017—]

For any set \mathfrak{G} of letters and $\mathcal{P}, \mathcal{R} \subseteq \mathbf{F}(\mathfrak{G})$,

$$\begin{split} \mathbf{f}(\mathcal{P},\mathcal{R}) = & :+ \sum_{\substack{k \geqslant 1 \\ \mathbf{a} \in \mathfrak{G}(k)}} \sum_{\substack{\ell \geqslant 1 \\ \{u_1, \dots, u_\ell\} \subseteq \mathbf{M} \left((\mathcal{P} \cup \mathcal{R})_{\mathbf{a}} \right) \\ (S_1, \dots, S_k) := u_1 \oplus \dots \oplus u_\ell}} \left(-1 \right)^{1+\ell} \ \mathbf{a} \bar{\mathbf{o}} \left[\mathbf{f} \left(\mathcal{P}, S_1 \right), \dots, \mathbf{f} \left(\mathcal{P}, S_k \right) \right]. \end{split}$$

System of equations

Observe that for any $\mathcal{R}, \mathcal{R}' \subseteq \mathbf{F}(\mathfrak{G})$, the characteristic series of the \mathfrak{G} -trees avoiding \mathcal{P} , and avoiding \mathcal{R} or \mathcal{R}' at root is

$$\mathbf{f}(\mathcal{P}, \mathcal{R}) + \mathbf{f}(\mathcal{P}, \mathcal{R}') - \mathbf{f}(\mathcal{P}, \mathcal{R} \cup \mathcal{R}')$$
.

Therefore, the description of $\mathbf{f}(\mathcal{P}, \mathcal{R})$ uses the inclusion-exclusion principle.

Theorem [G., 2017—]

For any set \mathfrak{G} of letters and $\mathcal{P}, \mathcal{R} \subseteq \mathbf{F}(\mathfrak{G})$,

$$\begin{split} \mathbf{f}(\mathcal{P},\mathcal{R}) = & :+ \sum_{\substack{k \geqslant 1 \\ \mathbf{a} \in \mathfrak{G}(k)}} \sum_{\substack{\ell \geqslant 1 \\ \{u_1, \dots, u_\ell\} \subseteq \mathbf{M} \left((\mathcal{P} \cup \mathcal{R})_{\mathbf{a}} \right) \\ (S_1, \dots, S_k) := u_1 \oplus \dots \oplus u_\ell}} \left(-1 \right)^{1+\ell} \ \mathbf{a} \bar{\mathbf{o}} \left[\mathbf{f} \left(\mathcal{P}, S_1 \right), \dots, \mathbf{f} \left(\mathcal{P}, S_k \right) \right]. \end{split}$$

Since in particular $\mathbf{f}(\mathcal{P}) = \mathbf{f}(\mathcal{P}, \emptyset)$ this provides a system of equations describing $\mathbf{f}(\mathcal{P})$.

Example

$$\mathsf{Let}\,\mathcal{P} := \left\{ \begin{array}{ccc} \dot{c} & \dot{c} & \dot{c} \\ \dot{a} & \dot{c} & \dot{c} \\ \dot{a} & \dot{c} & \dot{c} \\ \dot{c} \dot{c} \\ \dot{c} & \dot{c} \\ \dot{c$$

One has $\mathrm{M}\left(\mathbf{\mathcal{P}}_{a}\right) =\mathrm{M}\left(\mathbf{\mathcal{P}}_{b}\right) =\left\{ \left(\emptyset,\emptyset\right)\right\}$ and

$$\mathrm{M}\left(\mathcal{P}_{\mathsf{c}}\right) = \left\{ \left(\left\{ \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix} \right\}, \emptyset, \left\{ \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix} \right\} \right), \left(\left\{ \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}, \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}, \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}, \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix} \right\}, \emptyset, \emptyset \right) \right\}.$$

Example

Let
$$\mathcal{P} := \left\{ \begin{array}{ccc} \dot{c} & \dot{c} & \dot{c} \\ \dot{a} & \dot{c} & \dot{c} \end{array}, \begin{array}{ccc} \dot{c} & \dot{c} & \dot{c} \\ \dot{a} & \dot{c} & \dot{c} & \dot{c} \end{array} \right\}.$$

One has $\mathrm{M}\left(\mathcal{P}_{\mathsf{a}}\right)=\mathrm{M}\left(\mathcal{P}_{\mathsf{b}}\right)=\{(\emptyset,\emptyset)\}$ and

$$\mathrm{M}\left(\mathcal{P}_{\mathsf{c}}\right) = \left\{ \left(\left\{\begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}\right\}, \emptyset, \left\{\begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}\right\}\right), \left(\left\{\begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}, \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}, \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}\right\}, \emptyset, \emptyset \right) \right\}.$$

$$\mathbf{f}(\mathcal{P},\emptyset)=1$$

Example

$$\mathsf{Let}\,\mathcal{P} := \left\{ \begin{array}{ccc} \dot{c} & \dot{c} & \dot{c} \\ \dot{c$$

One has $M\left(\mathcal{P}_{\mathsf{a}}\right) = M\left(\mathcal{P}_{\mathsf{b}}\right) = \{(\emptyset, \emptyset)\}$ and

$$\mathrm{M}\left(\mathcal{P}_{\mathsf{c}}\right) = \left\{ \left(\left\{\begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}\right\}, \emptyset, \left\{\begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}\right\}\right), \left(\left\{\begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}, \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}, \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}\right\}, \emptyset, \emptyset \right) \right\}.$$

$$\mathbf{f}(\mathcal{P},\emptyset) = I + \mathsf{a} \bar{\circ} \left[\mathbf{f}(\mathcal{P},\emptyset), \mathbf{f}(\mathcal{P},\emptyset) \right]$$

Example

$$\mathsf{Let}\,\mathcal{P} := \left\{ \begin{array}{ccc} \dot{c} & \dot{c} & \dot{c} \\ \dot{a} & \dot{c} & \dot{c} \\ \dot{a} & \dot{c} & \dot{c} \\ \dot{c} \dot{c} \\ \dot{c} & \dot{c} \\ \dot{c$$

One has $M\left({{{\cal P}_a}} \right) = M\left({{{\cal P}_b}} \right) = \left\{ {\left({\emptyset ,\emptyset } \right)} \right\}$ and

$$\mathrm{M}\left(\mathcal{P}_{\mathsf{c}}\right) = \left\{ \left(\left\{\begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}\right\}, \emptyset, \left\{\begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}\right\}\right), \left(\left\{\begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}, \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}, \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}, \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}\right\}, \emptyset, \emptyset \right) \right\}.$$

$$\mathbf{f}(\mathcal{P},\emptyset) = \mathbf{1} + \mathsf{a}\bar{\circ}\left[\mathbf{f}(\mathcal{P},\emptyset),\mathbf{f}(\mathcal{P},\emptyset)\right] + \mathsf{b}\bar{\circ}\left[\mathbf{f}(\mathcal{P},\emptyset),\mathbf{f}(\mathcal{P},\emptyset)\right]$$

Example

Let
$$\mathcal{P} := \left\{ \begin{array}{ccc} \dot{c} & \dot{c} & \dot{c} & \dot{c} \\ \dot{a} & \dot{c} & \dot{c} & \dot{c} & \dot{c} \\ \dot{a} & \dot{c} & \dot{c} & \dot{c} & \dot{c} \\ \dot{a} & \dot{c} & \dot{c} & \dot{c} & \dot{c} \\ \dot{a} & \dot{c} & \dot{c} & \dot{c} & \dot{c} \\ \dot{a} & \dot{c} & \dot{c} & \dot{c} \\ \dot{c} \dot{c} & \dot{c} \\ \dot{c} & \dot{c} & \dot{c} \\ \dot{c} & \dot{c} & \dot{c} \\ \dot{c} & \dot{c} \\ \dot{c} & \dot{c} & \dot{c} \\ \dot{c} & \dot{c} & \dot{c} \\ \dot{c} & \dot{c} \\ \dot{c} & \dot{c} & \dot{c} \\ \dot{c} & \dot{c} \\$$

One has $M\left(\mathcal{P}_{\mathsf{a}}\right) = M\left(\mathcal{P}_{\mathsf{b}}\right) = \{(\emptyset, \emptyset)\}$ and

$$\mathrm{M}\left(\mathcal{P}_{\mathsf{c}}\right) = \left\{ \left(\left\{\begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}\right\}, \emptyset, \left\{\begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}\right\}\right), \left(\left\{\begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}, \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}, \begin{smallmatrix} i \\ \dot{\mathbb{A}} \end{smallmatrix}\right\}, \emptyset, \emptyset \right) \right\}.$$

$$\begin{split} \mathbf{f}(\mathcal{P},\emptyset) &= \mathbf{i} + \mathsf{a}\bar{\diamond} \left[\mathbf{f}(\mathcal{P},\emptyset), \mathbf{f}(\mathcal{P},\emptyset) \right] + \mathsf{b}\bar{\diamond} \left[\mathbf{f}(\mathcal{P},\emptyset), \mathbf{f}(\mathcal{P},\emptyset) \right] \\ &+ \mathsf{c}\bar{\diamond} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{|\mathcal{A}|} \right\} \right), \mathbf{f}(\mathcal{P},\emptyset), \mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{|\mathcal{A}|} \right\} \right) \right] \\ &+ \mathsf{c}\bar{\diamond} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{|\mathcal{A}|}, \frac{1}{|\mathcal{A}|}, \frac{1}{|\mathcal{A}|} \right\} \right), \mathbf{f}(\mathcal{P},\emptyset), \mathbf{f}(\mathcal{P},\emptyset) \right] \\ &- \mathsf{c}\bar{\diamond} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{|\mathcal{A}|}, \frac{1}{|\mathcal{A}|}, \frac{1}{|\mathcal{A}|} \right\} \right), \mathbf{f}(\mathcal{P},\emptyset), \mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{|\mathcal{A}|} \right\} \right) \right]. \end{split}$$

Example

$$\operatorname{Let} \mathcal{P} := \left\{ \begin{array}{cccc} & & & & & & \\ & \overset{1}{a} & & & & & & \\ & \overset{1}{a} & & & & & & \\ & \overset{1}{a} & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \end{array} \right\}.$$

$$\begin{split} \mathbf{f}(\mathcal{P},\emptyset) &= \mathbf{1} + \mathbf{a}\bar{\mathbf{0}}\left[\mathbf{f}\left(\mathcal{P},\left\{\frac{1}{A_{0}}\right\}\right),\mathbf{f}\left(\mathcal{P},\emptyset\right)\right] \\ &+ \mathbf{b}\bar{\mathbf{0}}\left[\mathbf{f}\left(\mathcal{P},\left\{\frac{1}{A_{0}}\right\}\right),\mathbf{f}\left(\mathcal{P},\left\{\frac{1}{A_{0}},\frac{1}{A_{0}}\right\}\right)\right], \end{split}$$

Example

$$\mathsf{Let}\,\mathcal{P} := \left\{ \begin{smallmatrix} 1 & 1 & 1 \\ \frac{1}{a} & 1 & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & 1 & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}$$

$$\begin{split} \mathbf{f}(\mathcal{P},\emptyset) &= 1 + \mathsf{a}\bar{\circ} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{|A|} \right\} \right), \mathbf{f} \left(\mathcal{P}, \emptyset \right) \right] \\ &+ \mathsf{b}\bar{\circ} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{|A|} \right\} \right), \mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{|A|}, \frac{1}{|A|} \right\} \right) \right], \\ \mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{|A|} \right\} \right) &= 1 + \mathsf{b}\bar{\circ} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{|A|} \right\} \right), \mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{|A|}, \frac{1}{|A|} \right\} \right) \right], \end{split}$$

Example

$$\mathsf{Let}\,\mathcal{P} := \left\{ \begin{array}{cccc} \begin{smallmatrix} 1 & & & & \\ & a & \\ & a & \\ & &$$

$$\begin{split} \mathbf{f}(\mathcal{P},\emptyset) &= i + a\bar{\circ} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{i}{A_i} \right\} \right), \mathbf{f} \left(\mathcal{P}, \emptyset \right) \right] \\ &+ b\bar{\circ} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{i}{A_i} \right\} \right), \mathbf{f} \left(\mathcal{P}, \left\{ \frac{i}{A_i}, \frac{i}{A_i} \right\} \right) \right], \\ \mathbf{f} \left(\mathcal{P}, \left\{ \frac{i}{A_i} \right\} \right) &= i + b\bar{\circ} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{i}{A_i} \right\} \right), \mathbf{f} \left(\mathcal{P}, \left\{ \frac{i}{A_i}, \frac{i}{A_i} \right\} \right) \right], \\ \mathbf{f} \left(\mathcal{P}, \left\{ \frac{i}{A_i}, \frac{i}{A_i} \right\} \right) &= i + b\bar{\circ} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{i}{A_i} \right\} \right), \mathbf{f} \left(\mathcal{P}, \left\{ \frac{i}{A_i}, \frac{i}{A_i} \right\} \right) \right], \end{split}$$

Example

$$\mathsf{Let}\,\mathcal{P} := \left\{ \begin{array}{cccc} \begin{smallmatrix} 1 & & & & \\ & a & \\ & a & \\ & &$$

$$\begin{split} \mathbf{f}(\mathcal{P},\emptyset) &= \mathbf{i} + \mathsf{a}\bar{\diamond} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{A_{i}} \right\} \right), \mathbf{f} \left(\mathcal{P}, \emptyset \right) \right] \\ &+ \mathsf{b}\bar{\diamond} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{A_{i}} \right\} \right), \mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{A_{i}}, \frac{1}{A_{i}} \right\} \right) \right], \\ \mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{A_{i}} \right\} \right) &= \mathbf{i} + \mathsf{b}\bar{\diamond} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{A_{i}} \right\} \right), \mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{A_{i}}, \frac{1}{A_{i}}, \frac{1}{A_{i}} \right\} \right) \right], \\ \mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{A_{i}}, \frac{1}{A_{i}}, \frac{1}{A_{i}} \right\} \right) &= \mathbf{i} + \mathsf{b}\bar{\diamond} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{A_{i}} \right\} \right), \mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{A_{i}}, \frac{1}{A_{i}}, \frac{1}{A_{i}} \right\} \right) \right], \\ \mathbf{f} \left(\mathcal{P}, \left\{ \frac{1}{A_{i}}, \frac{1}{A_{i}}, \frac{1}{A_{i}}, \frac{1}{A_{i}} \right\} \right) &= \mathbf{i}. \end{split}$$

Example

By evaluating each member of the previous system, one obtains the system

$$\begin{split} \mathcal{G}_{\mathcal{S}}(t) &= t + \mathcal{G}_{\mathcal{S}_1}(t)\mathcal{G}_{\mathcal{S}}(t) + \mathcal{G}_{\mathcal{S}_1}(t)\mathcal{G}_{\mathcal{S}_2}(t), \\ \mathcal{G}_{\mathcal{S}_1}(t) &= t + \mathcal{G}_{\mathcal{S}_1}(t)\mathcal{G}_{\mathcal{S}_2}(t), \\ \mathcal{G}_{\mathcal{S}_2}(t) &= t + \mathcal{G}_{\mathcal{S}_1}(t)\mathcal{G}_{\mathcal{S}_3}(t), \\ \mathcal{G}_{\mathcal{S}_3}(t) &= t \end{split}$$

for the generating series $\mathcal{G}_{\mathcal{S}}(t)$ of directed animals.

This leads to

$$t + (3t - 1)\mathcal{G}_{\mathcal{S}}(t) + (3t - 1)\mathcal{G}_{\mathcal{S}}(t)^2 = 0,$$

an algebraic equation satisfied by $\mathcal{G}_{\mathcal{S}}(t)$.

Some remarks

The previous result includes, as special cases:

▶ pattern avoidance of factors in words [Goulden, Jackson, 1979] when $\mathfrak{G} = \mathfrak{G}(1)$;

Some remarks

The previous result includes, as special cases:

- ▶ pattern avoidance of factors in words [Goulden, Jackson, 1979] when $\mathfrak{G} = \mathfrak{G}(1)$;
- ▶ pattern avoidance of edges in trees [Parker, 1993], [Loday, 2005] when \mathcal{P} contains only trees of degree 2;

Some remarks

The previous result includes, as special cases:

- ▶ pattern avoidance of factors in words [Goulden, Jackson, 1979] when $\mathfrak{G} = \mathfrak{G}(1)$;
- ▶ pattern avoidance of edges in trees [Parker, 1993], [Loday, 2005] when \mathcal{P} contains only trees of degree 2;
- ▶ pattern avoidance in binary trees [Rowland, 2010] when $\mathfrak{G} = \mathfrak{G}(2) = \{a\}.$

Some remarks

The previous result includes, as special cases:

- ▶ pattern avoidance of factors in words [Goulden, Jackson, 1979] when $\mathfrak{G} = \mathfrak{G}(1)$;
- ▶ pattern avoidance of edges in trees [Parker, 1993], [Loday, 2005] when \mathcal{P} contains only trees of degree 2;
- ▶ pattern avoidance in binary trees [Rowland, 2010] when $\mathfrak{G} = \mathfrak{G}(2) = \{a\}.$

Other systems of equations have been described for enumerating trees avoiding patterns in [Khoroshkin, Piontkovski, 2012].

Given a \mathfrak{G} -tree $\mathfrak{t} = \mathsf{a} \circ [\mathfrak{t}_1, \dots, \mathfrak{t}_k]$, let the element

$$\phi(\mathfrak{t}) := \sum_{\substack{i \in [k] \\ \mathfrak{t}_i \neq i}} \left(\underbrace{\emptyset, \dots, \emptyset}_{i-1}, \{\mathfrak{t}_i\}, \underbrace{\emptyset, \dots, \emptyset}_{k-i} \right)$$

of the free module $\mathbb{B}\left\langle \left(2^{\mathbf{F}(\mathfrak{G})}\right)^k\right\rangle$ on the Boolean semiring $\mathbb{B}.$

Given a \mathfrak{G} -tree $\mathfrak{t} = \mathsf{a} \circ [\mathfrak{t}_1, \dots, \mathfrak{t}_k]$, let the element

$$\phi(\mathfrak{t}) := \sum_{\substack{i \in [k] \\ \mathfrak{t}_i \neq i}} \left(\underbrace{\emptyset, \dots, \emptyset}_{i-1}, \{\mathfrak{t}_i\}, \underbrace{\emptyset, \dots, \emptyset}_{k-i} \right)$$

of the free module $\mathbb{B}\left\langle \left(2^{\mathbf{F}(\mathfrak{G})}\right)^k\right\rangle$ on the Boolean semiring $\mathbb{B}.$

Let the linear combination

$$e_{\mathcal{P}_{\mathsf{a}}} := \bigoplus_{\mathfrak{t} \in \mathcal{P}_{\mathsf{a}}} \phi(\mathfrak{t}),$$

containing all \mathcal{P}_a -admissible words (and other \mathcal{P}_a -admissible words).

Given a \mathfrak{G} -tree $\mathfrak{t} = \mathsf{a} \circ [\mathfrak{t}_1, \dots, \mathfrak{t}_k]$, let the element

$$\phi(\mathfrak{t}) := \sum_{\substack{i \in [k] \\ \mathfrak{t}_i \neq i}} \left(\underbrace{\emptyset, \dots, \emptyset}_{i-1}, \{\mathfrak{t}_i\}, \underbrace{\emptyset, \dots, \emptyset}_{k-i} \right)$$

of the free module $\mathbb{B}\left\langle \left(2^{\mathbf{F}(\mathfrak{G})}\right)^k\right\rangle$ on the Boolean semiring \mathbb{B} .

Let the linear combination

$$e_{\mathcal{P}_{\mathsf{a}}} := \bigoplus_{\mathfrak{t} \in \mathcal{P}_{\mathsf{a}}} \phi(\mathfrak{t}),$$

containing all \mathcal{P}_a -admissible words (and other \mathcal{P}_a -admissible words).

Example

Given a \mathfrak{G} -tree $\mathfrak{t} = \mathsf{a} \circ [\mathfrak{t}_1, \dots, \mathfrak{t}_k]$, let the element

$$\phi(\mathsf{t}) := \sum_{\substack{i \in [k] \\ \mathsf{t}_i \neq i}} \left(\underbrace{\emptyset, \dots, \emptyset}_{i-1}, \left\{ \mathsf{t}_i \right\}, \underbrace{\emptyset, \dots, \emptyset}_{k-i} \right)$$

of the free module $\mathbb{B}\left\langle \left(2^{\mathbf{F}(\mathfrak{G})}\right)^k\right\rangle$ on the Boolean semiring \mathbb{B} .

Let the linear combination

$$e_{\mathcal{P}_{\mathsf{a}}} := \bigoplus_{\mathfrak{t} \in \mathcal{P}_{\mathsf{a}}} \phi(\mathfrak{t}),$$

containing all \mathcal{P}_a -admissible words (and other \mathcal{P}_a -admissible words).

Example

Given a \mathfrak{G} -tree $\mathfrak{t} = \mathsf{a} \circ [\mathsf{t}_1, \dots, \mathsf{t}_k]$, let the element

$$\phi(\mathfrak{t}) := \sum_{\substack{i \in [k] \\ \mathfrak{t}_i \neq i}} \left(\underbrace{\emptyset, \dots, \emptyset}_{i-1}, \{\mathfrak{t}_i\}, \underbrace{\emptyset, \dots, \emptyset}_{k-i} \right)$$

of the free module $\mathbb{B}\left\langle \left(2^{\mathbf{F}(\mathfrak{G})}\right)^k\right\rangle$ on the Boolean semiring \mathbb{B} .

Let the linear combination

$$e_{\mathcal{P}_{\mathsf{a}}} := \bigoplus_{\mathfrak{t} \in \mathcal{P}} \phi(\mathfrak{t}),$$

containing all \mathcal{P}_a -admissible words (and other \mathcal{P}_a -admissible words).

Example

Let
$$\mathcal{P} := \left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \frac{1}{|\mathcal{A}|} \frac{1}{|\mathcal{A}|} \frac{1}{|\mathcal{A}|} \frac{1}{|\mathcal{A}|} \frac{1}{|\mathcal{A}|} \right\}$$
. One has $e_{\mathcal{P}_{\mathbf{a}}} = e_{\mathcal{P}_{\mathbf{b}}} = (\emptyset, \emptyset)$ and
$$e_{\mathcal{P}_{\mathbf{c}}} = \left(\left(\left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\}, \emptyset, \emptyset \right\} + \left(\emptyset, \frac{1}{|\mathcal{A}|}, \emptyset \right) \right) \oplus \left(\left(\left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\}, \emptyset, \emptyset \right) + \left(\emptyset, \frac{1}{|\mathcal{A}|}, \emptyset \right) + \left(\emptyset, \emptyset, \frac{1}{|\mathcal{A}|} \right) \right) \\ = \left(\left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\}, \emptyset, \emptyset \right) + \left(\left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\}, \left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\}, \emptyset \right\} + \left(\emptyset, \left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\}, \left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\}, \left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\} \right\} \right) \\ + \left(\left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\}, \left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\}, \emptyset \right) + \left(\emptyset, \left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\}, \left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\}, \left\{ \begin{array}{l} \frac{1}{|\mathcal{A}|} \right\} \right\} \right) \right\}.$$

Outline

Operads and enumeration

Operators

An operator is an entity having $n \geqslant 1$ inputs and a single output:

Its arity is its number n of inputs.

Operators

An operator is an entity having $n \ge 1$ inputs and a single output:

Its arity is its number n of inputs.

Composing two operators x and y consists in

- 1. selecting an input of x specified by its position i;
- **2.** grafting the output of y onto this input.

Operators

An operator is an entity having $n \ge 1$ inputs and a single output:

Its arity is its number n of inputs.

Composing two operators x and y consists in

- 1. selecting an input of x specified by its position i;
- **2.** grafting the output of *y* onto this input.

This produces a new operator $x \circ_i y$ of arity n + m - 1:

Operads are algebraic structures formalizing the notion of operators and their composition.

Operads are algebraic structures formalizing the notion of operators and their composition.

A (nonsymmetric set-theoretic) operad is a triple $(\mathcal{O}, \circ_i, \mathbb{1})$ where

1. \mathcal{O} is a graded set

$$\mathcal{O} := \bigsqcup_{n \geqslant 1} \mathcal{O}(n);$$

Operads are algebraic structures formalizing the notion of operators and their composition.

A (nonsymmetric set-theoretic) operad is a triple $(\mathcal{O}, \circ_i, \mathbb{1})$ where

1. \mathcal{O} is a graded set

$$\mathcal{O} := \bigsqcup_{n \geqslant 1} \mathcal{O}(n);$$

2. \circ_i is a map, called partial composition map,

$$\circ_i : \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n+m-1), \qquad 1 \leqslant i \leqslant n, \ 1 \leqslant m;$$

Operads are algebraic structures formalizing the notion of operators and their composition.

A (nonsymmetric set-theoretic) operad is a triple $(\mathcal{O}, \circ_i, \mathbb{1})$ where

1. \mathcal{O} is a graded set

$$\mathcal{O} := \bigsqcup_{n \ge 1} \mathcal{O}(n);$$

2. \circ_i is a map, called partial composition map,

$$\circ_i : \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n+m-1), \qquad 1 \leqslant i \leqslant n, \ 1 \leqslant m;$$

3. 1 is an element of $\mathcal{O}(1)$ called unit.

Operads are algebraic structures formalizing the notion of operators and their composition.

A (nonsymmetric set-theoretic) operad is a triple $(\mathcal{O}, \circ_i, \mathbb{1})$ where

1. \mathcal{O} is a graded set

$$\mathcal{O} := \bigsqcup_{n \geqslant 1} \mathcal{O}(n);$$

2. \circ_i is a map, called partial composition map,

$$\circ_i : \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n+m-1), \qquad 1 \leqslant i \leqslant n, \ 1 \leqslant m;$$

3. 1 is an element of $\mathcal{O}(1)$ called unit.

This data has to satisfy some axioms.

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

$$(x \circ_i y)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

$$(x \circ_i y) \circ_{i+j-1} z$$

 $1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$

$$(x \circ_i y) \circ_{i+j-1} z \quad x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

$$(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y$$

 $1 \le i < j \le |x|$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

$$(x \circ_i y)$$
$$1 \leqslant i < j \leqslant |x|$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

$$(\mathbf{x} \circ_i y) \circ_{j+|y|-1} z$$

$$1 \leqslant i < j \leqslant |\mathbf{x}|$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

$$(x \circ_i y) \circ_{j+|y|-1} z \qquad (x \circ_j z)$$
$$1 \le i < j \le |x|$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

$$(x \circ_i y) \circ_{j+|y|-1} z \qquad (x \circ_j z) \circ_i y$$

$$1 \leqslant i < j \leqslant |x|$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

$$(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y$$

$$1 \leqslant i < j \leqslant |x|$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

Commutativity:

$$(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y$$

$$1 \leqslant i < j \leqslant |x|$$

$$1 \circ_1 x = x = x \circ_i 1$$
$$1 \leqslant i \leqslant |x|$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

Commutativity:

$$(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y$$

$$1 \leqslant i < j \leqslant |x|$$

$$1 \circ_1 x$$
$$1 \leqslant i \leqslant |x|$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

Commutativity:

$$(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y$$

$$1 \leqslant i < j \leqslant |x|$$

$$1 \circ_1 x \quad x$$
$$1 \leqslant i \leqslant |x|$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

Commutativity:

$$(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y$$

$$1 \leqslant i < j \leqslant |x|$$

$$1 \circ_1 x \quad x \quad x \circ_i 1$$
$$1 \leqslant i \leqslant |x|$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

Commutativity:

$$(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y$$

$$1 \leqslant i < j \leqslant |x|$$

$$1 \circ_1 x = x = x \circ_i 1$$
$$1 \leqslant i \leqslant |x|$$

Free operads

Let 6 be a set of letters.

Free operads

Let \(\mathcal{G} \) be a set of letters.

The free operad on \mathfrak{G} is the operad $\mathbf{F}(\mathfrak{G})$ wherein

ightharpoonup elements of arity n are the \mathfrak{G} -trees of arity n;

Free operads

Let 6 be a set of letters.

The free operad on \mathfrak{G} is the operad $\mathbf{F}(\mathfrak{G})$ wherein

- ightharpoonup elements of arity n are the \mathfrak{G} -trees of arity n;
- ▶ the partial composition map \circ_i is the one of the \mathfrak{G} -trees;

Free operads

Let 6 be a set of letters.

The free operad on $\mathfrak G$ is the operad $\mathbf F(\mathfrak G)$ wherein

- ightharpoonup elements of arity n are the \mathfrak{G} -trees of arity n;
- ▶ the partial composition map \circ_i is the one of the \mathfrak{G} -trees;
- ► the unit is i.

Free operads

Let 6 be a set of letters.

The free operad on $\mathfrak G$ is the operad $\mathbf F(\mathfrak G)$ wherein

- ightharpoonup elements of arity n are the \mathfrak{G} -trees of arity n;
- ▶ the partial composition map \circ_i is the one of the \mathfrak{G} -trees;
- ► the unit is i.

Let $c : \mathfrak{G} \to \mathbf{F}(\mathfrak{G})$ be the natural injection (made implicit in the sequel).

Free operads

Let 6 be a set of letters.

The free operad on \mathfrak{G} is the operad $\mathbf{F}(\mathfrak{G})$ wherein

- ightharpoonup elements of arity n are the \mathfrak{G} -trees of arity n;
- ▶ the partial composition map \circ_i is the one of the \mathfrak{G} -trees;
- ► the unit is i.

Let $c: \mathfrak{G} \to \mathbf{F}(\mathfrak{G})$ be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property.

For any set $\mathfrak G$ of letters, any operad $\mathcal O$, and any map $f:\mathfrak G\to\mathcal O$ respecting the arities, there exists a unique operad morphism $\phi:\mathbf F(\mathfrak G)\to\mathcal O$ such that $f=\phi\circ c$.

An operad on paths

Let **Paths** be the operad wherein:

▶ Paths(n) is the set of all paths with n points, that are words $u_1 \dots u_n$ of elements of \mathbb{N} .

Example

is the path 1212232100112 of arity 13.

An operad on paths

Let **Paths** be the operad wherein:

▶ Paths(n) is the set of all paths with n points, that are words $u_1 \dots u_n$ of elements of \mathbb{N} .

Example

is the path 1212232100112 of arity 13.

► The partial composition $u \circ_i v$ is computed by replacing the *i*th point of u by a copy of v.

Example

An operad on paths

Let **Paths** be the operad wherein:

▶ Paths(n) is the set of all paths with n points, that are words $u_1 \dots u_n$ of elements of \mathbb{N} .

Example

is the path 1212232100112 of arity 13.

► The partial composition $u \circ_i v$ is computed by replacing the *i*th point of u by a copy of v.

Example

► The unit is the path 0, depicted as o, having arity 1.

Suboperad on m-Dyck paths

Let for any $m \geqslant 0$ the suboperad m**Dyck** of **Paths** generated by

$$\mathfrak{G}_{m\mathbf{Dyck}}:=\mathfrak{G}_{m\mathbf{Dyck}}(m+2):=\{\mathfrak{g}_m\}$$
 where

$$\mathfrak{g}_m := 0 \, m \, (m-1) \, \dots \, 1 \, 0 = \bigcap_{0 \, 0 \, m+1}^{m}$$

Suboperad on m-Dyck paths

Let for any $m \ge 0$ the suboperad m**Dyck** of **Paths** generated by \mathfrak{G}_{m **Dyck** := \mathfrak{G}_{m} **Dyck** $(m+2) := \{\mathfrak{g}_m\}$ where

$$g_m := 0 m (m-1) \dots 10 = \bigcup_{0 = m+1}^{m}$$

Example

The elements of 2**Dyck** are, by definition, the paths obtained by composing \mathfrak{g}_m with itself.

▶
$$2$$
Dyck(1) = { o};

$$ightharpoonup 2\mathbf{Dyck}(2) = 2\mathbf{Dyck}(3) = \emptyset;$$

$$\mathbf{2Dyck}(4) = \left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right\};$$

$$ightharpoonup 2\mathbf{Dyck}(5) = 2\mathbf{Dyck}(6) = \emptyset;$$

$$2Dyck(8) = 2Dyck(9) = \emptyset.$$

Suboperad on m-Dyck paths

Let for any $m \ge 0$ the suboperad m**Dyck** of **Paths** generated by \mathfrak{G}_{m **Dyck** := \mathfrak{G}_{m} **Dyck** $(m+2) := \{\mathfrak{g}_m\}$ where

$$\mathfrak{g}_m := 0 \, m \, (m-1) \, \dots \, 1 \, 0 = \bigcup_{0 \, 0 \, m+1}^{m}$$

Example

The elements of $2\mathbf{Dyck}$ are, by definition, the paths obtained by composing \mathfrak{g}_m with itself.

▶
$$2$$
Dyck $(1) = \{ o \};$

$$ightharpoonup 2\mathbf{Dyck}(2) = 2\mathbf{Dyck}(3) = \emptyset;$$

$$\mathbf{2Dyck}(4) = \left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right\};$$

$$ightharpoonup 2\mathbf{Dyck}(5) = 2\mathbf{Dyck}(6) = \emptyset;$$

Proposition

For any $m \geqslant 0$ and $n \geqslant 1$, $m\mathbf{Dyck}(n)$ is the set of all m-Dyck paths of length n-1.

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair (\mathfrak{G}, \equiv) where

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair (\mathfrak{G}, \equiv) where

▶ ७ is a set of letters, called generating set;

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair (\mathfrak{G}, \equiv) where

- ▶ ७ is a set of letters, called generating set;
- ▶ \equiv is an operad congruence of $\mathbf{F}(\mathfrak{G})$, that is an equivalence relation on the \mathfrak{G} -trees such that if $\mathbf{t} \equiv \mathbf{t}'$ and $\mathfrak{s} \equiv \mathfrak{s}'$, then $\mathbf{t} \circ_i \mathfrak{s} \equiv \mathbf{t}' \circ_i \mathfrak{s}'$;

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair (\mathfrak{G}, \equiv) where

- ▶ ७ is a set of letters, called generating set;
- ▶ \equiv is an operad congruence of $\mathbf{F}(\mathfrak{G})$, that is an equivalence relation on the \mathfrak{G} -trees such that if $\mathbf{t} \equiv \mathbf{t}'$ and $\mathfrak{s} \equiv \mathfrak{s}'$, then $\mathbf{t} \circ_i \mathfrak{s} \equiv \mathbf{t}' \circ_i \mathfrak{s}'$;

such that

$$\mathcal{O} \simeq \mathbf{F}(\mathfrak{G})/_{\equiv}$$
.

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair (\mathfrak{G}, \equiv) where

- ▶ ७ is a set of letters, called generating set;
- ▶ \equiv is an operad congruence of $\mathbf{F}(\mathfrak{G})$, that is an equivalence relation on the \mathfrak{G} -trees such that if $\mathbf{t} \equiv \mathbf{t}'$ and $\mathfrak{s} \equiv \mathfrak{s}'$, then $\mathbf{t} \circ_i \mathfrak{s} \equiv \mathbf{t}' \circ_i \mathfrak{s}'$;

such that

$$\mathcal{O} \simeq \mathbf{F}(\mathfrak{G})/_{\equiv}$$
.

The presentation (\mathfrak{G}, \equiv) is

▶ binary when $\mathfrak{G} = \mathfrak{G}(2)$;

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair (\mathfrak{G}, \equiv) where

- ▶ ७ is a set of letters, called generating set;
- ▶ \equiv is an operad congruence of $\mathbf{F}(\mathfrak{G})$, that is an equivalence relation on the \mathfrak{G} -trees such that if $\mathbf{t} \equiv \mathbf{t}'$ and $\mathfrak{s} \equiv \mathfrak{s}'$, then $\mathbf{t} \circ_i \mathfrak{s} \equiv \mathbf{t}' \circ_i \mathfrak{s}'$;

such that

$$\mathcal{O} \simeq \mathbf{F}(\mathfrak{G})/_{\equiv}$$
.

The presentation (\mathfrak{G}, \equiv) is

- ▶ binary when $\mathfrak{G} = \mathfrak{G}(2)$;
- quadratic when \equiv is generated as an operad congruence by an equivalence relation on trees concentrated in degree 2.

Presentation of m**Dyck**

To find a presentation of $m\mathbf{Dyck}$, we list all the nontrivial relations made of expressions involving the generator \mathfrak{g}_m and the \circ_i . We find for instance in $2\mathbf{Dyck}$,

$$\mathfrak{g}_2\circ_1\mathfrak{g}_2=\mathfrak{g}_2\circ_4\mathfrak{g}_2$$

$$\mathfrak{g}_1\circ_1\mathfrak{g}_2=\mathfrak{g}_2\circ_4\mathfrak$$

Presentation of m**Dyck**

To find a presentation of $m\mathbf{Dyck}$, we list all the nontrivial relations made of expressions involving the generator \mathfrak{g}_m and the \circ_i . We find for instance in $2\mathbf{Dyck}$,

$$\mathfrak{g}_2 \circ_1 \mathfrak{g}_2 = \mathfrak{g}_2 \circ_4 \mathfrak{g}_2$$

$$\mathfrak{g}_1 \circ_1 \mathfrak{g}_2 = \mathfrak{g}_2 \circ_4 \mathfrak{g}_2 = \mathfrak{g}$$

Proposition

For any $m \geqslant 0$, $m\mathbf{Dyck}$ admits the presentation $(\mathfrak{G}_{m\mathbf{Dyck}}, \equiv_{m\mathbf{Dyck}})$ where

$$\mathfrak{G}_{m\mathbf{Dyck}} := \{\mathfrak{g}_m\}$$

and $\equiv_{m\mathbf{Dyck}}$ is the smallest congruence of $\mathbf{F}\left(\mathfrak{G}_{m\mathbf{Dyck}}\right)$ satisfying

$$\mathfrak{g}_m \circ_1 \mathfrak{g}_m \equiv_{m \mathbf{Dyck}} \mathfrak{g}_m \circ_{m+2} \mathfrak{g}_m.$$

Presentation of m**Dyck**

To find a presentation of $m\mathbf{Dyck}$, we list all the nontrivial relations made of expressions involving the generator \mathfrak{g}_m and the \circ_i . We find for instance in $2\mathbf{Dyck}$,

$$\mathfrak{g}_2 \circ_1 \mathfrak{g}_2 = \mathfrak{g}_2 \circ_4 \mathfrak{g}_2$$

$$\mathfrak{g}_1 \circ_1 \mathfrak{g}_2 = \mathfrak{g}_2 \circ_4 \mathfrak{g}_2 = \mathfrak{g}$$

Proposition

For any $m \geqslant 0$, $m\mathbf{Dyck}$ admits the presentation $(\mathfrak{G}_{m\mathbf{Dyck}}, \equiv_{m\mathbf{Dyck}})$ where

$$\mathfrak{G}_{m\mathbf{Dyck}} := \{\mathfrak{g}_m\}$$

and $\equiv_{m\mathbf{Dyck}}$ is the smallest congruence of $\mathbf{F}\left(\mathfrak{G}_{m\mathbf{Dyck}}\right)$ satisfying

$$\mathfrak{g}_m \circ_1 \mathfrak{g}_m \equiv_{m \mathbf{Dyck}} \mathfrak{g}_m \circ_{m+2} \mathfrak{g}_m.$$

This says that all relations in higher degrees are consequence of this single one and the operad axioms.

An operad on Motzkin paths

Let Motz be an operad wherein:

▶ Motz(n) is the set of all Motzkin paths with n points.

An operad on Motzkin paths

Let **Motz** be an operad wherein:

▶ Motz(n) is the set of all Motzkin paths with n points.

► The partial composition in **Motz** is the one of **Paths**.

An operad on Motzkin paths

Let Motz be an operad wherein:

▶ Motz(n) is the set of all Motzkin paths with n points.

► The partial composition in **Motz** is the one of **Paths**.

► The unit is o.

Properties of Motz

Proposition

Motz is a suboperad of Paths.

Properties of Motz

Proposition

Motz is a suboperad of Paths.

Proposition

The operad \mathbf{Motz} admits the presentation $(\mathfrak{G}_{\mathbf{Motz}}, \equiv_{\mathbf{Motz}})$ where

$$\mathfrak{G}_{\mathbf{Motz}} := \{ 00, 00 \}$$

and \equiv is the smallest operad congruence satisfying

Let \mathcal{O} be an operad with presentation (\mathfrak{G}, \equiv) .

Let \mathcal{O} be an operad with presentation (\mathfrak{G}, \equiv) .

A Poincaré-Birkhoff-Witt basis (PBW basis) of $\mathcal O$ w.r.t. $(\mathfrak G,\equiv)$ is a set $\mathcal B$ of $\mathfrak G$ -trees such that for each $[\mathfrak t]_{\equiv}\in \mathbf F(\mathfrak G)/_{\equiv}$, there exists a unique $\mathfrak s\in \mathcal B$ such that $\mathfrak s\in [\mathfrak t]_{\equiv}$.

Let \mathcal{O} be an operad with presentation (\mathfrak{G}, \equiv) .

A Poincaré-Birkhoff-Witt basis (PBW basis) of $\mathcal O$ w.r.t. $(\mathfrak G,\equiv)$ is a set $\mathcal B$ of $\mathfrak G$ -trees such that for each $[\mathfrak t]_{\equiv}\in \mathbf F(\mathfrak G)/_{\equiv}$, there exists a unique $\mathfrak s\in \mathcal B$ such that $\mathfrak s\in [\mathfrak t]_{\equiv}$.

Proposition

Let \mathcal{O} be an operad admitting a presentation (\mathfrak{G}, \equiv) . If

- 1. \rightarrow is a rewrite rule on $\mathbf{F}(\mathfrak{G})$ generating \equiv as an operad congruence;
- 2. the rewrite relation \Rightarrow induced by \rightarrow is terminating and confluent; then the set of the normal forms for \Rightarrow is a PBW basis of \mathcal{O} .

Let \mathcal{O} be an operad with presentation (\mathfrak{G}, \equiv) .

A Poincaré-Birkhoff-Witt basis (PBW basis) of \mathcal{O} w.r.t. (\mathfrak{G},\equiv) is a set \mathcal{B} of \mathfrak{G} -trees such that for each $[\mathfrak{t}]_{\equiv} \in \mathbf{F}(\mathfrak{G})/_{\equiv}$, there exists a unique $\mathfrak{s} \in \mathcal{B}$ such that $\mathfrak{s} \in [\mathfrak{t}]_{\equiv}$.

Proposition

Let \mathcal{O} be an operad admitting a presentation (\mathfrak{G}, \equiv) . If

- 1. \rightarrow is a rewrite rule on $\mathbf{F}(\mathfrak{G})$ generating \equiv as an operad congruence;
- 2. the rewrite relation \Rightarrow induced by \rightarrow is terminating and confluent; then the set of the normal forms for \Rightarrow is a PBW basis of \mathcal{O} .

Such a PBW basis of \mathcal{O} can be described as the set of the trees avoiding the trees appearing as left members for \rightarrow .

PBW basis of Motz

Let ightarrow be the rewrite rule on $F\left({\mathfrak{G}_{\mathbf{Motz}}} \right)$ defined by

$$\circ \circ \circ_1 \circ \circ \to \circ \circ \circ_2 \circ \circ, \qquad \circ \circ_1 \circ \circ \to \circ \circ_3 \circ \circ,$$

$$\circ \circ \circ_1 \circ \circ \to \circ \circ \circ_2 \circ \circ, \qquad \circ \circ_1 \circ \circ \to \circ \circ \circ_3 \circ \circ.$$

This rewrite rule can be seen as an orientation of $\equiv_{\mathbf{Motz}}$.

PBW basis of Motz

Let \rightarrow be the rewrite rule on $\mathbf{F}\left(\mathfrak{G}_{\mathbf{Motz}}\right)$ defined by

This rewrite rule can be seen as an orientation of $\equiv_{\mathbf{Motz}}$.

The induced rewrite relation \Rightarrow is terminating, confluent, and its normal forms are in one-to-one correspondence with Motzkin paths.

PBW basis of Motz

Let \rightarrow be the rewrite rule on $\mathbf{F}\left(\mathfrak{G}_{\mathbf{Motz}}\right)$ defined by

This rewrite rule can be seen as an orientation of $\equiv_{\mathbf{Motz}}$.

The induced rewrite relation \Rightarrow is terminating, confluent, and its normal forms are in one-to-one correspondence with Motzkin paths.

Example

A normal form for \Rightarrow and the Motzkin path in correspondence with it:

An operad on cyclic paths

For any $\ell \geqslant 1$, let ℓ **CPaths** be the operad wherein:

▶ ℓ **CPaths**(n) is the set of all paths with n points having height smaller than ℓ , that are words $u_1 \dots u_n$ of elements of $\{0, \dots, \ell-1\}$.

Example

is the path 1212202100112 of 3**CPaths**.

An operad on cyclic paths

For any $\ell \geqslant 1$, let ℓ **CPaths** be the operad wherein:

▶ ℓ **CPaths**(n) is the set of all paths with n points having height smaller than ℓ , that are words $u_1 \dots u_n$ of elements of $\{0, \dots, \ell-1\}$.

Example

is the path 1212202100112 of 3**CPaths**.

▶ The partial composition $u \circ_i v$ is computed by replacing the ith point of u by a copy of v, and by fitting the obtained path on the cylinder.

Example

In 3CPaths.

$$011202101 \circ_4 10221 = 011(32443) \circ_3 02101 = 0110211002101$$

An operad on cyclic paths

For any $\ell \geqslant 1$, let ℓ **CPaths** be the operad wherein:

▶ ℓ **CPaths**(n) is the set of all paths with n points having height smaller than ℓ , that are words $u_1 \dots u_n$ of elements of $\{0, \dots, \ell-1\}$.

Example

is the path 1212202100112 of 3**CPaths**.

▶ The partial composition $u \circ_i v$ is computed by replacing the ith point of u by a copy of v, and by fitting the obtained path on the cylinder.

Example

In 3CPaths.

$$011202101 \circ_4 10221 = 011(32443) \circ_3 02101 = 0110211002101$$

The unit is o.

A suboperad on directed animals

Let **DA** be the suboperad of 3**CPaths** generated by

$$\mathfrak{G}_{\mathbf{DA}} := \left\{ \begin{array}{c} \square \\ \bigcirc \end{array}, \begin{array}{c} \square \\ \bigcirc \end{array} \right\}.$$

A suboperad on directed animals

Let **DA** be the suboperad of 3**CPaths** generated by

$$\mathfrak{G}_{\mathbf{DA}} := \left\{ \begin{smallmatrix} \neg \\ \wp \end{matrix}, \begin{smallmatrix} \neg \\ \wp \end{matrix} \right\}.$$

Example

The elements of $\mathbf{DA}(4)$ are

A suboperad on directed animals

Let **DA** be the suboperad of 3**CPaths** generated by

$$\mathfrak{G}_{\mathbf{DA}} := \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}.$$

Example

The elements of $\mathbf{DA}(4)$ are

Proposition

For any $n \ge 1$, $\mathbf{DA}(n)$ is in one-to-one correspondence with the set of directed animals of size n.

Presentation and PBW basis of DA

Proposition

DA admits the presentation $(\mathfrak{G}_{DA}, \equiv)$ where \equiv_{DA} is the smallest congruence of $F(\mathfrak{G}_{DA})$ satisfying

Presentation and PBW basis of DA

Proposition

DA admits the presentation $(\mathfrak{G}_{DA}, \equiv)$ where \equiv_{DA} is the smallest congruence of $F(\mathfrak{G}_{DA})$ satisfying

Let \rightarrow be the orientation of $\equiv_{\mathbf{DA}}$ satisfying

Presentation and PBW basis of DA

Proposition

DA admits the presentation $(\mathfrak{G}_{DA}, \equiv)$ where \equiv_{DA} is the smallest congruence of $F(\mathfrak{G}_{DA})$ satisfying

Let \rightarrow be the orientation of $\equiv_{\mathbf{DA}}$ satisfying

The rewrite relation \Rightarrow induced by \rightarrow is terminating and confluent. The $\mathfrak{G}_{\mathbf{DA}}$ -trees avoiding the left members of \rightarrow form a PBW basis of \mathbf{DA} .

Overview of the considered operads

Dimensions:

n	1	2	3	4	5	6	7	8	9	10
Paths	∞									
0Dyck	1	1	1	1	1	1	1	1	1	1
1Dyck	1	0	1	0	2	0	5	0	14	0
2Dyck	1	0	0	1	0	0	3	0	0	12
\mathbf{Motz}	1	1	2	4	9	21	51	127	323	835
2CPaths	2	4	8	16	32	64	128	256	512	1024
3CPaths	3	9	27	81	243	729	2187	6561	19683	59049
$\mathbf{D}\mathbf{A}$	1	2	5	13	35	96	267	750	2123	6046

Let ${\cal S}$ be a combinatorial set we are searching a generating series.

Let S be a combinatorial set we are searching a generating series.

Then, we successively

1. endow S with an operad structure O;

Let S be a combinatorial set we are searching a generating series.

Then, we successively

- 1. endow S with an operad structure O;
- **2.** establish a presentation (\mathfrak{G}, \equiv) of \mathcal{O} ;

Let S be a combinatorial set we are searching a generating series.

Then, we successively

- 1. endow S with an operad structure O;
- 2. establish a presentation (\mathfrak{G}, \equiv) of \mathcal{O} ;
- 3. deduce a PBW of \mathcal{O} w.r.t. (\mathfrak{G}, \equiv) , described as the trees avoiding a certain set \mathcal{P} of patterns;

Let S be a combinatorial set we are searching a generating series.

Then, we successively

- 1. endow S with an operad structure O;
- 2. establish a presentation (\mathfrak{G}, \equiv) of \mathcal{O} ;
- 3. deduce a PBW of \mathcal{O} w.r.t. (\mathfrak{G}, \equiv) , described as the trees avoiding a certain set \mathcal{P} of patterns;
- 4. compute f(P) by using tree series and their operations.

Let S be a combinatorial set we are searching a generating series.

Then, we successively

- 1. endow S with an operad structure O;
- 2. establish a presentation (\mathfrak{G}, \equiv) of \mathcal{O} ;
- 3. deduce a PBW of \mathcal{O} w.r.t. (\mathfrak{G}, \equiv) , described as the trees avoiding a certain set \mathcal{P} of patterns;
- 4. compute f(P) by using tree series and their operations.

Finally, $\operatorname{ev}(\mathbf{f}(\mathcal{P}))$ is the Hilbert series of \mathcal{O} and the generating series of \mathcal{S} .

Hilbert series of m**Dyck**

The set \mathcal{B} of the $\mathfrak{G}_{m\mathbf{Dyck}}$ -trees avoiding

$$\mathcal{P} := \{\mathfrak{g}_m \circ_1 \mathfrak{g}_m\}$$

is a PBW basis of m**Dyck**.

The characteristic series of \mathcal{B} is $\mathbf{f}(\mathcal{P}, \emptyset)$ where

$$\mathbf{f}\left(\mathcal{P},\emptyset\right) = \mathbf{1} + \mathfrak{g}_{m}\bar{\circ}\left[\mathbf{f}\left(\mathcal{P},\left\{\mathfrak{g}_{m}\right\}\right),\underbrace{\mathbf{f}\left(\mathcal{P},\emptyset\right),\ldots,\mathbf{f}\left(\mathcal{P},\emptyset\right)}_{m+1}\right],$$

$$\mathbf{f}\left(\mathcal{P},\left\{\mathfrak{g}_{m}\right\}\right) = \mathbf{1}.$$

By setting $\mathcal{H}(t) := \text{ev}(\mathbf{f}(\mathcal{P}, \emptyset))$, the Hilbert series $\mathcal{H}(t)$ of $m\mathbf{Dyck}$ satisfies

$$t - \mathcal{H}(t) + t\mathcal{H}(t)^{m+1} = 0.$$

Hilbert series of Motz

The set \mathcal{B} of the $\mathfrak{G}_{\mathbf{Motz}}$ -trees avoiding

$$\mathcal{P}:=\left\{ \circ\circ\circ_{1}\circ\circ,\ \circ\circ\circ_{1}\circ\circ,\ \circ\circ_{1}\circ\circ,\ \circ\circ\circ_{1}\circ\circ,\ \circ\circ\circ_{1}\circ\circ,\ \circ\circ\circ_{1}\circ\circ,\ \circ\circ\circ_{1}\circ\circ,\ \circ\circ\circ_{1}\circ\circ,\ \circ\circ\circ_{1}\circ\circ,\ \circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ,\ \circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ,\ \circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ,\ \circ\circ\circ_{1}\circ\circ_{1}\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ_{1}\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ\circ_{1}\circ\circ_{1}\circ\circ\circ_{1}$$

is a PBW basis of Motz.

The characteristic series of \mathcal{B} is $\mathbf{f}(\mathcal{P}, \emptyset)$ where

$$\begin{split} \mathbf{f}\left(\mathcal{P},\emptyset\right) &= \mathbf{i} + \mathbf{ooo}\left[\mathbf{f}\left(\mathcal{P},\left\{\mathbf{oo},\mathbf{ooo}\right\}\right),\mathbf{f}\left(\mathcal{P},\emptyset\right)\right] \\ &+ \mathbf{oooo}\left[\mathbf{f}\left(\mathcal{P},\left\{\mathbf{oo},\mathbf{ooo}\right\}\right),\mathbf{f}\left(\mathcal{P},\emptyset\right),\mathbf{f}\left(\mathcal{P},\emptyset\right)\right] \\ \mathbf{f}\left(\mathcal{P},\left\{\mathbf{oo},\mathbf{oooo}\right\}\right) &= \mathbf{i}. \end{split}$$

By setting $\mathcal{H}(t) := \operatorname{ev}(\mathbf{f}(\mathcal{P}, \emptyset))$, the Hilbert series $\mathcal{H}(t)$ of \mathbf{Motz} satisfies

$$t - (t - 1)\mathcal{H}(t) + t\mathcal{H}(t)^2 = 0.$$

Hilbert series of DA

The set \mathcal{B} of the \mathfrak{G}_{DA} -trees avoiding

$$\mathcal{P} := \left\{ \left. \bigcirc \circ_1 \right. \left. \bigcirc \circ_2 \right. \left. \bigcirc \circ_3 \right. \left. \bigcirc \right. \right\} \right\}$$

is a PBW basis of **DA**.

The characteristic series of \mathcal{B} is $\mathbf{f}(\mathcal{P}, \emptyset)$ where

$$\begin{split} \mathbf{f}(\mathcal{P},\emptyset) &= \mathbf{i} + \left\{ \begin{array}{c} \bar{o} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right) \right), \mathbf{f} \left(\mathcal{P}, \emptyset \right) \right] \\ &+ \left\{ \begin{array}{c} \bar{o} \bar{o} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \right), \mathbf{f} \left(\mathcal{P}, \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right), \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \right) \right], \\ \mathbf{f} \left(\mathcal{P}, \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right), \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \right) = \mathbf{i} + \left[\begin{array}{c} \bar{o} \bar{o} \left[\mathbf{f} \left(\mathcal{P}, \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \right), \mathbf{f} \left(\mathcal{P}, \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right), \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right), \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \right) \right], \\ \mathbf{f} \left(\mathcal{P}, \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right), \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \right) = \mathbf{i} + \left[\begin{array}{c} \bar{o} \bar{o} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right], \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] \left[\begin{array}{c} \\$$

By setting $\mathcal{H}(t) := \text{ev}(\mathbf{f}(\mathcal{P}, \emptyset))$, the Hilbert series $\mathcal{H}(t)$ of \mathbf{DA} satisfies $t - (3t - 1)\mathcal{H}(t) + (3t - 1)\mathcal{H}(t)^2 = 0$.