Tree rewriting and enumeration
Samuele Giraudo

LIGM, Université Paris-Est Marne-la-Vallée

GT Combinatoire Enumérative et Algébrique, LaBRI

September 17, 2018



Outline

Trees, patterns, and rewrite systems

Tree series and pattern avoidance

Operads and enumeration

2/51



Outline

Trees, patterns, and rewrite systems

3/51



Syntax trees

A set of letters is a graded set

6= | | 6(n)

n>1

such that each &(n) is finite.



Syntax trees

A set of letters is a graded set

6= | | 6(n)

such that each &(n) is finite.

A syntax tree on & (called &-tree) is a planar rooted tree t such that each
internal node of arity n is labeled by a letter of &(n).



Syntax trees

A set of letters is a graded set

6= | | 6(n)

n>1
such that each &(n) is finite.
A syntax tree on & (called &-tree) is a planar rooted tree t such that each
internal node of arity n is labeled by a letter of &(n).
Example

Let & := &(2) U &(3) such that &(2) = {a,b} and &(3) = {c}.

Here is a G-tree:
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Sets of syntax trees

Let & be a set of letters.

The set of all B-trees is denoted by F(®).

Forany t € F(®), let
> |t| be the arity of t, that is its number of leaves;
» deg(t) be the degree of t, that is the number of internal nodes of t;

> a(t) be the number of edges of t (satisfying a(t) = [t| + deg(t)).

We set F(®)(n) as the set of the ®-trees of arity n.

Therefore,

F(®) = | | F(®)(n).

n>=1

Remark: since each &(n) is finite, if if &(1) = (, then all F(&)(n) are
finite.



Partial composition

Let t,s € F(®).

For each i € [|t|], to; 5 is the tree obtained by grafting the root of a copy of
s onto the ¢th leaf of t.

Example
‘ c
/C\ : /C, \b
c b o5 N = AN /N
NN a c b b
a b 7\ AR /\ /N 7\
/ \ N a c



Partial composition

Let t,s € F(®).

For each i € [|t|], to; 5 is the tree obtained by grafting the root of a copy of
s onto the ¢th leaf of t.

Example
c
/g\ : /C, \b
c b o5 N = AN /N
ZON /N a c b
a b 7\ AR /\ /N 7\
/ \ N a c

Therefore, o; is a map
o; : F(®)(n) x F(&)(m) —» F(B)(n+m —1)

where i € [n] and 1 < m, called partial composition map.



Complete composition

Lett,61,...,51¢ € F(®).

The to [51, e ,5“‘} is obtained by grafting simultaneously the roots of
copies of the 5; onto the ith leaves of t.

Example

C
a a VAR 7\ /N



Complete composition

Lett,61,...,51¢ € F(®).

The to [51, e ,sm is obtained by grafting simultaneously the roots of
copies of the 5; onto the ith leaves of t.

Example

Therefore, o is a map
o:F(B)(n) x F(&) (my) x --- x F(&) (my,) = F(&) (my + --- +my,)

where 1 <nand1 < myq,...,my,, called complete composition map.
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Patterns and occurrences

Let t,5s € F(®). A ®-tree t admits an occurrence of a &-tree s if one can
put s onto t by superimposing the root of 5 and a node of t and leaves of s
with leaves of nodes of t.

This property is denoted by s < t.

Example
I
b
| RN
c © b
/1N ES VAR VRN
b a b a c
/N /\ b’\ /N /N

This relation < endows F(&) with the structure of a poset.

More formally, 5 < t holds if there exist t,t1,...,t)5 € F(®) and i € [|t[]
such that
t=ro; (50 [rl,...,r‘ﬂ]).
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Pattern avoidance

Given a set P C F(&), let A(P) be the set of all B-trees avoiding all
patterns of P.

Counting the elements of A(P) w.r.t. the arity is a usual question.

Examples

» For P := { AT PR S } , A(P) is enumerated by
1,2,4,8,16,32,64,128, . .. ;
» For P := { S Np 20y a/(\\ , T } , A(P) is enumerated by
/ m
1,1,2,4,9,21,51,127, .. . ;

> ForP:

/\ /\ b

: . 2
{ T PN },A(P) is enumerated by

1,2,5,13,35,96, 167,750, ... .



Rewrite rules

A rewrite rule is a binary relation — on F(&) such that s — 5" implies
|s] = s"].
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Rewrite rules

A rewrite rule is a binary relation — on F(&) such that s — s’ implies
|s] = s"].

The rewrite relation induced by — is the binary relation = on F(®)
satisfying

to; (50 [tr,...,ts]) =voi (5" 0 [t1,... 1))

if s — s, wheretand vy, ..., t|5| are any ®-trees.

Example
5 . . . /é é\
If — is the rewrite rule satisfying v~ ° — v, one has
a a
- —— 7N
a —a a a
RN _— N N\ N
a b~ a a a b —
AN 22 S /N = /N /N \\\\b
/N7 TN N
a a a
7\ 7\ /N
a a
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Rewrite systems
Let — a rewrite rule on &-trees and = be the rewrite relation induced
by —.

Let us define

» = as the reflexive and transitive closure of =;

> & as the reflexive, symmetric, and transitive closure of =
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Let us define
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Rewrite systems

Let — a rewrite rule on &-trees and = be the rewrite relation induced
by —.

Let us define

» = as the reflexive and transitive closure of =;

> & as the reflexive, symmetric, and transitive closure of =.
A tree t rewrites into a tree t/ if t= t’.

Two trees t and ' are linked if t & t'. Let F(®)/ s be the set of all

* .
&-equivalence classes.

A normal form for = is a tree t such that t = ' implies t = . Let A'_, be
the set of all normal forms.

mn

51



Termination and confluence

When there is no infinite chain tg = t; =t = - - - | the rewrite relation =
is terminating.
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Termination and confluence

When there is no infinite chain tg = t; =t = - - - | the rewrite relation =
is terminating.

When t= 5, and t = s, implies the existence of t’ such that 5, = ' and
59 = t/, = is confluent.

When t= 5, and t= s, implies the existence of t' such that s; = t’ and
Go =t/ = is locally confluent.

Theorem (Diamond property)

If = is terminating and locally confluent, then = is confluent.

Proposition

Let — be a rewrite rule on F(®). If = is terminating and confluent, then
N:> is
> the set of all &-trees avoiding the left members of —;

P in a one-to-one correspondence respecting the arities with F(&)/ .
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Tamari lattices

Let — be the rewrite rule on F({a}) defined by * — .

First graphs (F({a})(n),=):

(i[2]s ] 1« ] = ‘

Properties:
» = is terminating and confluent;

> A isthe set of the trees avoiding _.°., that are right comb trees;

» The sequence (F({a})/é(n))n>1 is1,1,1,1,... .
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A variant of Tamari lattices
Let — be the rewrite rule on F({a}) defined by .* — -

First graphs (F({a})(n),=):
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» N - can be described as the set of the {a}-trees avoiding 11 patterns;
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A variant of Tamari lattices
Let — be the rewrite rule on F({a}) defined by .* — -

First graphs (F({a})(n),=):

Theorem [Chenavier, Cordero, G., 2018]

» = is terminating but not confluent;

» N - can be described as the set of the {a}-trees avoiding 11 patterns;

» The sequence <F({a})/<§> (n)) o1 is

1,1,2,4,8,14, 20,19, 16, 14, 14, 15, 16, 17, . . .
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A variant of Tamari lattices
Let — be the rewrite rule on F({a}) defined by .* — -

First graphs (F({a})(n),=):

Theorem [Chenavier, Cordero, G., 2018]

» = is terminating but not confluent;

» N - can be described as the set of the {a}-trees avoiding 11 patterns;
> Th (¢ L) i
e sequence ({a})/c> (n) o1 is
1,1,2,4,8,14,20, 19, 16, 14, 14, 15, 16, 17, . . .

and its generating function is

t
(1—02

(1 —t+2+ 3+ 2% + 265 — 7¢7 — 268 +1° + 2610 411

14
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Space of tree series
Let K be the field Q (g0, g1, g2, - - . ) and & be a set of letters.

A F(®)-series (tree series) is a map

f:F(®) > K
The coefficient f(t) of t € F(®) in f is denoted by (¢, f).
The set of all F(®)-series is K ((F(®))).

Endowed with the pointwise addition
(tLf+g):=(tf) +(tg)
and the pointwise multiplication by a scalar
(t, Af) == A (4, f),
the set K ((F(®))) is a vector space.

The sum notation of f is

16/51



Some tree series

Example

For z € &, let f,, be the F(®)-series wherein (t, f;) is the number of occurrences
of z in t. For instance,

f, = /;\ +2 a/a\ 4L )/a\ + /a\) +2/3\a +3 a/a\a A ooo
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Some tree series

Example

For z € &, let f,, be the F(®)-series wherein (t, f;) is the number of occurrences
of z in t. For instance,

|
a
fo= a +2 A+ A+ S 427 43 0 4.
’ a b b a a a

7\ /N AN

Example

Let f, be the F(&)-series wherein (t, f,) := |t|. Hence,
S 4 f\b Ay F Ao

7\ S /S 7\

fi=1+2 . +2 5 +3 ¢ +3 V43 )
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Some tree series

Example

For z € &, let £, be the F(&)-series wherein (t, ;) is the number of occurrences

of z in t. For instance,

‘
fa= 2 +2 A+ A+ S 420 +3 0+
’ a b b a
/\ /N I\

Example

Let f, be the F(&)-series wherein (t, f,) := |t|. Hence,
I f\b LB L doas

/\ S /S /\

fi=1+2 . +2 5 +3 ¢ +3 A +3 )

Example

In the tree series f, + £}, + f., the coefficient of a tree is its degree.



Some tree series

Example

For z € &, let £, be the F(&)-series wherein (t, ;) is the number of occurrences

of z in t. For instance,

‘
fa= 2 +2 A+ A+ S 420 +3 0+
’ a b b a
/\ /N I\

Example

Let f, be the F(&)-series wherein (t, f,) := |t|. Hence,
I f\b LB L doas

/\ S /S /\

f=1+2 . +2/é\ +3 < +3 a/a\ +3 .
Example

In the tree series f, + £}, + f., the coefficient of a tree is its degree.

In the tree series f, 4+ f, + 1, 4 fc, the coefficient of a tree is its number of edges.



Evaluation and generating series
Let S be a set of B-trees.

The characteristic series of S is the F(®)-série

fs = Zf.

tes
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Evaluation and generating series
Let S be a set of B-trees.

The characteristic series of S is the F(®)-série

fg = Zf.

tes
The evaluation map
ev: K((F(®))) = K({))
is the linear map satisfying
ev(t) =t
One has
ev(fs) = tM=> "#{teS:|t|=n}t"=Gs(t)

tesS nz1
where Gs(t) is the generating series of S, enumerating its elements w.r.t.
the arity.

18/51



Composition of tree series
The composition of the F(®)-series f and g1, ..., g, is the series

f5(g1,...,gn] = Z (t, £) H (si,8:) | tolst,...,5,].
teF(B)(n) i€[n]
51,..0,50, EF(B)

Observe that this product is linear in all its arguments.
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f5(g1,...,gn] = Z (t, £) H (si,8:) | tolst,...,5,].
teF(B)(n) i€[n]
51,..0,50, EF(B)

Observe that this product is linear in all its arguments.

Example

| b b : ‘
g b ' = . g 5 AN VAN c c
~ o = b b (BN BN
(’a\ + b T AR b T N Lo N, Y,
N
M
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Composition of tree series
The composition of the F(®)-series f and g1, ..., g, is the series

f5(g1,...,gn] = Z (t, £) H (si,8:) | tolst,...,5,].
teF(8)(n) i€[n]
5150550 €F(8)

Observe that this product is linear in all its arguments.

Example
‘ b P | |
o B A U N ) ; :
st b T oa)e |:‘7 Mo A + N boT L L S
I\ 3 a c b VAAVAN VAAVARN
ANV /N 7N

For all t € F(®)(n) and all F(&)-series g1, ..., Zn,

v (3 [21,. -, 8n]) Hev (g:) -
i€[n]

19/51



Tree series avoiding patterns
Let P C F(®) and set

f(P) := fA('p) = Z t
teF(®)
VseP, st

as the series of the &-trees avoiding all patterns of P.
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Tree series avoiding patterns

Let P C F(®) and set

f(P) := f[\('p) = Z t
teF(®)
VseP, st

as the series of the &-trees avoiding all patterns of P.

When &(1) = (), each F(&)(n) is finite and thus, there is a finite number
of &-trees of arity n avoiding P. Therefore, the series

ev(f(P)) = G (1)

is well-defined.
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Tree series avoiding patterns

Let P C F(®) and set

f(P) := f[\('p) = Z t
teF(®)
VseP, st

as the series of the &-trees avoiding all patterns of P.

When &(1) = (), each F(&)(n) is finite and thus, there is a finite number
of &-trees of arity n avoiding P. Therefore, the series

ev(f(P)) = Gap) (1)
is well-defined.

Goal
Given & and P C F(®), provide an expression for £(P).



Occurrences at root

A B-tree t admits an occurrence of a B-tree s at root if there exists
t1,..., 1 € F(&)and i € [|t[] such that

tZSO[‘Cl,...,‘CM].

This property is denoted by s <. t.
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Example

B / O
/ \ c b
[ #r VAN /N
VA a b a c
b IN N NN
b
/\
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Occurrences at root

A B-tree t admits an occurrence of a B-tree s at root if there exists
t1,..., 1 € F(&)and i € [|t[] such that

tZSO[‘Cl,...,‘CM].

This property is denoted by s <. t.

Example
|
‘ /b\
/b\ c b
[ %r VAN /N
/1N a b a €
/\ N /NN
/ N\ b
I\
Assume that t =ao[ty,..., ;] ands = ao[s1,...,5;] where a € &(k).
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Occurrences at root

A B-tree t admits an occurrence of a B-tree s at root if there exists
t1,..., 1 € F(&)and i € [|t[] such that

tZSO[‘Cl,...,‘qs‘].

This property is denoted by s <. t.

Example
|
‘ /b\
/b\ c b
© <5 VAN VN
/1N a b a €
/\ N /NN
/ N\ b
I\
Assume that t =ao[ty,..., ;] ands = ao[s1,...,5;] where a € &(k).

Then, s 7't if and only if there exists an ¢ € [k] such that 5; ={'t;.
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Admissible words
Let P C F(®) and a € (k). Let

P.i={scP:ax,s}.
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Let P C F(®) and a € (k). Let

P,:={seP:ax,s}.

A B-treet = ao[ty,..., 1] avoids at root all patterns of P if for all
patterns s = a o [sq,...,5,] € P, thereis an ¢ € [k] such that 5; %{'t;.

A word (S1,...,Sk) where letters are sets of &-trees different from | is
Pa-admissible if for any s € P,, there is an @ € [k] such that 5; € .S;.

Example

Let P := { a/:“\ s h/T\a . ,‘c\/ Ca } . In terms of Pc-admissibility, the word

g ({ }Q{ : }) i > ({b }@0) is;
(-
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Minimal admissible words

The union of two words (S1,...,S%) and (S1,...,5},) of sets of trees is
defined by

(S1,... Sk @ (S}, ..., SL) = (S1US,,..., S8, USL).
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Minimal admissible words

The union of two words (S1,...,S%) and (S1,...,5},) of sets of trees is
defined by

(517,Sk)@(5177s;€) = (51USE,...,S]@US]/€).

A P,-admissible word w is minimal if any decomposition © = v & v’ where
v is a P,-admissible word and v’ is a word of sets of trees implies u = v.

The set of all minimal P,-admissible words is denoted by M (P,).
Example

0 | c
Let P := { a/f\ s N‘(\a 5 g } . In terms of minimality, as a Pc-admissible word,
c

{:}of:])m < ({ } 0. }) oo
{ %\T },w,w) s > ({ »}{.}{ }) _



Back to tree series
Let P,R C F(®).

Let the tree series

f(P,R):= > ¢
teF ()
VseP,s X't

VSER,s X t

of the &-trees avoiding P and avoiding R at root.
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Back to tree series
Let P, R C F(&).

Let the tree series

f(P,R):= > ¢
teF(®)
VseP,s Kt

VSER,s X t
of the &-trees avoiding P and avoiding R at root.

If (S1,...,S5k)isa (P UTR),-admissible word, as [f (P, S1),...,f (P, Sk)]
is the characteristic series of all the ®-trees t = ao[ty,.. ., t;] such that all
t; avoid P and avoid S; at root.

Moreover, the support of the tree series
> as[f(P,S1),...,f(P,5Sk)

(S1,-..,8K)EM((PUR),)

is the set of all &-trees with root labeled by a and avoiding P and avoiding
‘R at root.



System of equations

Observe that for any R, R’ C F (&), the characteristic series of the
®-trees avoiding P, and avoiding R or R’ at root is

f(P,R)+f(P,R")—f(P,RUR).

Therefore, the description of f(P, R) uses the inclusion-exclusion
principle.
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System of equations

Observe that for any R, R’ C F (&), the characteristic series of the
®-trees avoiding P, and avoiding R or R’ at root is

f(P,R)+f(P,R")—f(P,RUR).

Therefore, the description of f(P, R) uses the inclusion-exclusion
principle.

Theorem [G., 2017—]
For any set & of letters and P, R C F(&),

f(P,R) =1+ ) > (-1 a5 [f (P, S1),.... £ (P, Sk)].

k>1 £>1
a€B(k) {uy,...,up}CM((PUR),)
(S1,---,5k):=u1® - Quy

Since in particular £(P) = f(P, 0) this provides a system of equations
describing f(P).
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Main equation for the previous example
Example

Let771={ Ty TN, S

One has M (P.) = M (Py) = {(0,0)} and

M(pc):{({z},@,{, )({ 3 }M)}

Therefore,

£(P,0) =

v\
—
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Main equation for the previous example
Example

Let'P;:{ a,,f , b/T\a , f\/“a }

One has M (P,) = M (Py) = {(0,0)} and

O e

Therefore,

£(P,0) = 1+ a5 [f(P,0),£(P,0)] + bs [£(P,0), £(P,0)]



Main equation for the previous example

Example

Let P _{ iy Vi T }

One has M (P.) = M (Py) = {((E )} and

£(P,0) =1+ 2o [£(P,0), £(P,0)] + bs [£(P,0), £(P,0)]

{:3)£@ 0.5 (7. {3 })]
+co |:f (73 { o }) £(P,0), (P,(Z))}
QO )

—|—co[ P,

c{f"P
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Example

|
| | | b
a b b s
Let P := AY R AY N AN b .
a a a S
/N /N /N b
A

One has
£(P,0) = +as [t (P,{: }) £(P,0)]

(SHE QRN
(w{:])e(={s 4 )]

+ bo

£(P,{:})=1+bs
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A

One has




Example: directed animals

Example

By evaluating each member of the previous system, one obtains the system

Gs(t) =t+Gs, (£)Gs(t) + Gs, (t)Gs, (1),
Gs, (t) =t + Gs, (£)Gs, (¢),
Gs,(t) =t+Gs, (t)Gs, (1),
)=t

for the generating series Gs(t) of directed animals.

This leads to
t+ (3t —1)Gs(t) + (3t — 1)Gs(t)*> =0,

an algebraic equation satisfied by G ().



Some remarks

The previous result includes, as special cases:

» pattern avoidance of factors in words [Goulden, Jackson, 1979] when
& = 6(1);
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Some remarks

The previous result includes, as special cases:

» pattern avoidance of factors in words [Goulden, Jackson, 1979] when
& = 6(1);

> pattern avoidance of edges in trees [Parker, 1993], [Loday, 2005] when P
contains only trees of degree 2;

> pattern avoidance in binary trees [Rowland, 2010] when
& =6(2) ={a}.

Other systems of equations have been described for enumerating trees
avoiding patterns in [Khoroshkin, Piontkovski, 2012].
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Computing admissible words

Given a ®-treet = ao [ty,...,t], let the element
t) == ir, 0.
o(t) Z (9, 0, {t:}, 9 0)
Zle'ifw] i—1 k—i

of the free module B <(2F(®))k> on the Boolean semiring B.
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Given a ®-treet = ao [ty,...,t], let the element
t) == ir, 0.

o(t) Z (97 0, {t}, 9 @)
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of the free module B <(2F(®))k> on the Boolean semiring B.

Let the linear combination

=P o),
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containing all P,-admissible words (and other P,-admissible words).

Example

Let P := { T a/i\b },One hasep, = ep, = (0,0) and
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Computing admissible words

Given a ®-treet=ao[ty,..., tx], let the element
t) == ir, 0.
o(t) Z (97 0, {t}, 9 @)
Zti[f‘] i—1 k—i

of the free module B <(2F(®))k> on the Boolean semiring B.

Let the linear combination

ep, = @ ¢(t)7

tEP,
containing all P,-admissible words (and other P,-admissible words).

Example

Let P := { T a/i\b },One hasep, = ep, = (0,0) and

er.=(({:}.0.0)+(0,..0)) @ (({:}.0.0)+ (0, ..0)+(0.0,,))
=({s b+ ({1 b+ ({0 })
(e p{sh o)+ {0 {1 {i})



Outline

Operads and enumeration
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Operators

An operator is an entity having n > 1 inputs and a single output:

/\

1 n

Its arity is its number n of inputs.
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Its arity is its number n of inputs.

Composing two operators x and y consists in
1. selecting an input of x specified by its position i;

2. grafting the output of y onto this input.
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Operators

An operator is an entity having n > 1 inputs and a single output:

/\

1 n

Its arity is its number n of inputs.

Composing two operators x and y consists in
1. selecting an input of x specified by its position i;
2. grafting the output of y onto this input.

This produces a new operator x o; y of arity n +m — 1:

32/51
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Operads

Operads are algebraic structures formalizing the notion of operators and
their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, o;, 1) where
1. Ois a graded set

0= |_| O(n);

n>1

2. o; is a map, called partial composition map,
0, : O(n) x O(m) = O(n+m—1), 1<i<n, 1<m
3. 1is an element of O(1) called unit.

This data has to satisfy some axioms.
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Operad axioms
Associativity:

(zo;y) 0ipj—12=z0; (yoj2)

I1<i< |z, 1 <5< |y
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(z0;y) 0ipj—12=20; (yoj2)

I<i<le[,1<7 <yl

Commutativity:

(xoiy) ojpy—12= (wo;2) 0;y

0
o
ﬂ /A /A ﬂ
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Free operads
Let & be a set of letters.

The free operad on & is the operad F(®) wherein
> elements of arity n are the &-trees of arity n;
> the partial composition map o; is the one of the G-trees;

» the unit is I.

Let ¢ : & — F(®) be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property.

For any set & of letters, any operad O, f

and any map f : & — O respecting the ® T o
arities, there exists a unique operad Rl
morphism ¢ : F(®) — O such that ¢ R
f=¢oc. 7
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An operad on paths
Let Paths be the operad wherein:

» Paths(n) is the set of all paths with n points, that are words
Uy . ..Uy, of elements of N.

Example

O/O\O/O%/OO/O is the path 1212232100112 of arity 13,
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An operad on paths
Let Paths be the operad wherein:

» Paths(n) is the set of all paths with n points, that are words
Uy . ..Uy, of elements of N.

Example

O/O\O/O%/OO/O is the path 1212232100112 of arity 13,

» The partial composition u o; v is computed by replacing the ith point
of u by a copy of v.

i -

011232101 04 11224 = 0113344632101

Example
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An operad on paths
Let Paths be the operad wherein:

» Paths(n) is the set of all paths with n points, that are words
Uy . ..Uy, of elements of N.

Example

O/O\O/O%pdo is the path 1212232100112 of arity 13.

» The partial composition u o; v is computed by replacing the ith point
of u by a copy of v.

i -

011232101 04 11224 = 0113344632101

Example

» The unit is the path 0, depicted as o, having arity 1.
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Suboperad on m-Dyck paths
Let for any m > 0 the suboperad mDyck of Paths generated by
6TnDyck = ®mDyck(m + 2) = {gm} where
i
Om:=0m(m—1)...10= 0?’ o

m+1
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Suboperad on m-Dyck paths
Let for any m > 0 the suboperad mDyck of Paths generated by
@mDka = @mDka(m + 2) = {gm} where
i
g m(m — 1) od oy

m+1

Example

The elements of 2Dyck are, by definition, the paths obtained by composing g,, with itself.
> 2Dyck(1) = {o}; » 2Dyck(5) = 2Dyck(6) = 0;
> — _ 0 i
2Dyck(2) = 2Dyck(s) = 0: > 2Dyck(7) = { papy, g, B )5
Cl ° ¢ e}

» 2Dyck(4) = {oﬁo‘o} > 2Dyck(8) = 2Dyck(9) = 0.
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Suboperad on m-Dyck paths
Let for any m > 0 the suboperad mDyck of Paths generated by
Q5mDyck = @mDka(m + 2) = {gm} where

gm:=0m(m—-1)...10= Ob

Example
The elements of 2Dyck are, by definition, the paths obtained by composing g,, with itself.
> 2Dyck(1) = {o}; » 2Dyck(5) = 2Dyck(6) = 0;
» 2Dyck(2) = 2Dyck(3) = 0;

> 2Dyck(4) = {op%} g

> 2Dyck(7) :{ pegs, [98%, [T };

e}

» 2Dyck(8) = 2Dyck(9) = 0.

Proposition

For any m > 0 and n > 1, mDyck(n) is the set of all m-Dyck paths of
length n — 1.



Presentations

Let O be an operad.

A presentation of O is a pair (&, =) where
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» = is an operad congruence of F(®), that is an equivalence relation on
the ®-trees such that if t=t and s =5, then to; s =t o; 5/;
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> & is a set of letters, called generating set;
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such that
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The presentation (&, =) is
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Presentations

Let O be an operad.

A presentation of O is a pair (&, =) where

> & is a set of letters, called generating set;

» = is an operad congruence of F(®), that is an equivalence relation on
the ®-trees such that if t=t and s =5, then to; s =t o; 5/;

such that
O~F(®)/=.
The presentation (&, =) is
» binary when & = &(2);

» quadratic when = is generated as an operad congruence by an
equivalence relation on trees concentrated in degree 2.

38/51



Presentation of mDyck

To find a presentation of mDyck, we list all the nontrivial relations made
of expressions involving the generator g,, and the o;. We find for instance
in 2Dyck,

g2 01 g2 = @294 g2

01 o = o 01 fog = Fods
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Presentation of mDyck

To find a presentation of mDyck, we list all the nontrivial relations made
of expressions involving the generator g,, and the o;. We find for instance
in 2Dyck,

g2 01 92 = 02 94 92
01 o = o 01 fog = Fods
Proposition

For any m > 0, mDyck admits the presentation (&, Dyck, =mDyck)
where
®mDyck = {gm}

and =,,,pyck is the smallest congruence of F (&,,,pyck) satisfying

Im ©°1 Ym =mDyck 9m Om+2 Om-



Presentation of mDyck

To find a presentation of mDyck, we list all the nontrivial relations made
of expressions involving the generator g,, and the o;. We find for instance
in 2Dyck,

g2 01 g2 = @294 g2

01 o = o 01 fog = Fods

Proposition

For any m > 0, mDyck admits the presentation (&, Dyck, =mDyck)
where
®mDyck = {gm}

and =,,,pyck is the smallest congruence of F (&,,,pyck) satisfying

Im ©°1 Ym =mDyck 9m Om+2 Om-

This says that all relations in higher degrees are consequence of this single
one and the operad axioms.



An operad on Motzkin paths
Let Motz be an operad wherein:

» Motz(n) is the set of all Motzkin paths with n points.

Example

Q.
dodjf % is a Motzkin path of arity 16.
O
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An operad on Motzkin paths
Let Motz be an operad wherein:

» Motz(n) is the set of all Motzkin paths with n points.

Example

Q.
dodjf % is a Motzkin path of arity 16.
O

» The partial composition in Motz is the one of Paths.

Example

(oG] o ey - dodopp %%
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An operad on Motzkin paths
Let Motz be an operad wherein:

» Motz(n) is the set of all Motzkin paths with n points.

Example

Q.
dodjf % is a Motzkin path of arity 16.
O

» The partial composition in Motz is the one of Paths.

Example

Q
_ O
Opo% 04 O,o’oo‘oqO = 0 O,o’do %O\O‘dob
» The unit is o.

40/51



Properties of Motz

Motz is a suboperad of Paths.
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Properties of Motz

Proposition

Motz is a suboperad of Paths.

Proposition

The operad Motz admits the presentation (&niotz, =Motz) Where
SMotz = {o'oa(ﬂo}

and = is the smallest operad congruence satisfying

0001 00 =Motz OO0 OO,

f‘o 01 00 =Motz OO 02 dob7
0001 O,% =Motz dob 03 00,

Po01 6% Smot 59 Po

41/51



Poincaré-Birkhoff-Witt bases

Let O be an operad with presentation (&, =).

42/51



Poincaré-Birkhoff-Witt bases

Let O be an operad with presentation (&, =).

A Poincaré-Birkhoff-Witt basis (PBW basis) of O w.r.t. (&, =) is a set 3 of
®-trees such that for each [t|= € F(®)/=, there exists a unique s € 3
such that s € [t|=.
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Poincaré-Birkhoff-Witt bases

Let O be an operad with presentation (&, =).

A Poincaré-Birkhoff-Witt basis (PBW basis) of O w.r.t. (&, =) is a set 3 of
®-trees such that for each [t|= € F(®)/=, there exists a unique s € 3
such that s € [t]=.

Proposition

Let O be an operad admitting a presentation (&, =). If
1. — is a rewrite rule on F(&) generating = as an operad congruence;
2. the rewrite relation = induced by — is terminating and confluent;

then the set of the normal forms for = is a PBW basis of O.
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Poincaré-Birkhoff-Witt bases

Let O be an operad with presentation (&, =).

A Poincaré-Birkhoff-Witt basis (PBW basis) of O w.r.t. (&, =) is a set 3 of
®-trees such that for each [t|= € F(®)/=, there exists a unique s € 3
such that s € [t]=.

Proposition

Let O be an operad admitting a presentation (&, =). If
1. — is a rewrite rule on F(&) generating = as an operad congruence;
2. the rewrite relation = induced by — is terminating and confluent;

then the set of the normal forms for = is a PBW basis of O.

Such a PBW basis of O can be described as the set of the trees avoiding
the trees appearing as left members for —.

42/5



PBW basis of Motz

Let — be the rewrite rule on F (®Bpgot5) defined by
00 01 00— 00 03 0O, 0001 §2%— &R 03 00,

& 01 000002 P, %o °1 6% 6% 23 o

This rewrite rule can be seen as an orientation of =potz-
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PBW basis of Motz
Let — be the rewrite rule on F (®Bpgot5) defined by
00 01 00— 00 03 00, 00 01 &2 — §R 03 00,
&R °01 00— 00 09 FRAY, &R 01 &R = &2 03 §Rb-
This rewrite rule can be seen as an orientation of =potz-

The induced rewrite relation = is terminating, confluent, and its normal

forms are in one-to-one correspondence with Motzkin paths.
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PBW basis of Motz

Let — be the rewrite rule on F (®Bpgot5) defined by
00 01 00— 00 03 0O, 0001 §2%— &R 03 00,

& 01 000002 P, %o °1 6% 6% 23 -

This rewrite rule can be seen as an orientation of =potz-

The induced rewrite relation = is terminating, confluent, and its normal
forms are in one-to-one correspondence with Motzkin paths.

Example

A normal form for = and the Motzkin path in correspondence with it:

Fo_
N
?o}% /i\ = PRy

//‘\ /‘\

\ VAN
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An operad on cyclic paths
For any ¢ > 1, let /CPaths be the operad wherein:

» (CPaths(n) is the set of all paths with n points having height
smaller than ¢, that are words u .. . u, of elements of {0,...,¢ — 1}.
Example

is the path 1212202100112 of 3CPaths.

3

Oopvow

o~ |l
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An operad on cyclic paths
For any ¢ > 1, let /CPaths be the operad wherein:
» (CPaths(n) is the set of all paths with n points having height

smaller than ¢, that are words u .. . u, of elements of {0,...,¢ — 1}.
Example
B=0
? O/O\O/O-W is the path 1212202100112 of 3CPaths.
0

» The partial composition u o; v is computed by replacing the ith point
of u by a copy of v, and by fitting the obtained path on the cylinder.

Example
In 3CPaths,
i O\c{qo‘cfo o o‘O/OO\o N 0';; T \OP%'O - doqdosoo‘of P

011202101 o4 10221 = 011(32443)%302101 = 0110211002101
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An operad on cyclic paths
For any ¢ > 1, let /CPaths be the operad wherein:
» (CPaths(n) is the set of all paths with n points having height

smaller than ¢, that are words u .. . u, of elements of {0,...,¢ — 1}.
Example
B=0
? O/O\O/O-W is the path 1212202100112 of 3CPaths.
0

» The partial composition u o; v is computed by replacing the ith point
of u by a copy of v, and by fitting the obtained path on the cylinder.

Example
In 3CPaths,
QQ Ol — jﬁoi : - o
FIGRP M YT T T N0 T P SSISIEN
011202101 o4 10221 = 011(32443)%302101 = 0110211002101

» The unitiso.

44
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A suboperad on directed animals

Let DA be the suboperad of 3CPaths generated by

Gpa = {o} O;}.
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A suboperad on directed animals

Let DA be the suboperad of 3CPaths generated by
Bpa = {Oo, Op}.

Example

The elements of DA (4) are
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A suboperad on directed animals

Let DA be the suboperad of 3CPaths generated by
Bpa = {Oo, Op}.

Example

The elements of DA (4) are

Proposition

For any n > 1, DA(n) is in one-to-one correspondence with the set of
directed animals of size n.

45/51



Presentation and PBW basis of DA

Proposition

DA admits the presentation (6pa, =) where =pa is the smallest
congruence of F (6pa ) satisfying

o = o [¢] = 707 7075 70
Se1 b =pa Hozl, [po1f =Spa [Hozfp %1 =pa 302

(o1 2) o p =pa (o2 [3) s o
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Presentation and PBW basis of DA

Proposition

DA admits the presentation (6pa, =) where =pa is the smallest
congruence of F (6pa ) satisfying

o = o [¢] = 707 7075 70
14 =pa [Ho2l, [po1f Spa [Hoz [ %1 =pa %2 1

(o1 2) o p =pa (o2 [3) s o

Let — be the orientation of =pa satisfying

o | — 1o o1 | — o9 Loy 1= So1 o
o0 16 6o 260 Floo T 2P P26 L

(0;02 ;o) 03 O;—> (0001 O;) 09 ;o
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Presentation and PBW basis of DA

Proposition

DA admits the presentation (6pa, =) where =pa is the smallest
congruence of F (&p4 ) satisfying

o = o [¢] = 707 7075 70
14 =pa [Ho2l, [po1f Spa [Hoz [ %1 =pa %2 1

[ele]

(o1 2) o p =pa (o2 [3) s o

Let — be the orientation of =pa satisfying

o o o o
00 (ee) oo 00 0’0100_>0020p’ o’O2oo_>o’01op’

(o0 3o oo (oo )0 &
The rewrite relation = induced by — is terminating and confluent. The
®pa-trees avoiding the left members of — form a PBW basis of DA.

46/5



Overview of the considered operads

Paths
3CPaths Motz
DA 2CPaths 2Dyck 1Dyck

Sy Y

1CPaths <——> 0Dyck

Dimensions:
n |1 2 3 4 5 6 7 8 9 10
Paths o)
oDyck |1 1 1 1 1 1 1 1 1
Dyck |1 0 1 o0 2 0 5 0 14 0
2Dyck |1 0 0 1 0 0 3 0 0 12
Motz |1 1 2 4 9 21 51 127 323 835
2CPaths | 2 4 8 16 32 64 128 256 512 1024
3CPaths | 3 9 27 81 243 720 2187 6561 19683 59049
DA 1 2 5 13 35 96 267 750 2123 6046
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Application to enumeration

Let S be a combinatorial set we are searching a generating series.
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Let S be a combinatorial set we are searching a generating series.
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Application to enumeration

Let S be a combinatorial set we are searching a generating series.

Then, we successively

1.

endow S with an operad structure O;
establish a presentation (&, =) of O;

deduce a PBW of O w.r.t. (&, =), described as the trees avoiding a
certain set P of patterns;

compute f(P) by using tree series and their operations.
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Application to enumeration

Let S be a combinatorial set we are searching a generating series.
Then, we successively

1. endow S with an operad structure O;

2. establish a presentation (&, =) of O;

3. deduce a PBW of O w.r.t. (8, =), described as the trees avoiding a
certain set P of patterns;

4. compute f(P) by using tree series and their operations.

Finally, ev(f(P)) is the Hilbert series of O and the generating series of S.

48/5



Hilbert series of mDyck

The set 53 of the &,,,pyck-trees avoiding

P = {Gm o1 gm}

is a PBW basis of mDyck.

The characteristic series of 5 is f (P, ()) where

f(P,0) =1+ gmo |f(P,{gm}).f(P,0),....£(P,0)|,

m—+1

£(P,{am}) =
By setting #(¢) := ev(f (P, ()), the Hilbert series () of mDyck satisfies

t—H(t) + tHEH)™ T = 0.
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Hilbert series of Motz

The set I3 of the & ot -trees avoiding

P :={000100, 0001 ¢, o100, %012}

is a PBW basis of Motz.

The characteristic series of 5 is f (P, ()) where

f(P,0) =1+ 000 [f (P,{00,5%}) . (P,0)]
+ &8 [f (P, {00, 2s}) . £ (P,0),f(P,0)]
f(P,{o0,6%}) =1

By setting H(t) := ev(f (P, 0)), the Hilbert series 7(t) of Motz satisfies

t—(t—1)H(t) + tH(t)* = 0.
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Hilbert series of DA

The set 3 of the &pa-trees avoiding

P = { o5}
[ele]
is a PBW basis of DA.
The characteristic series of 53 is f (P, () where

£(P,0) =1 + O;a [f (P{;OD ,f(P,(Z))]

r o f(P{o}) (P {a e o))
(r{eh) = r (L)) (P {l oo )]
Pl op o )

o0’ ;ooloo’ 2 5 (0;020;>03;0}

By setting H(t) := ev(f (P, 0)), the Hilbert series H(t) of DA satisfies
t— (3t — 1)H(t) + (3t — 1)H(t)* = 0.



