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Syntax trees
A set of le�ers is a graded set

G :=
⊔
n>1

G(n)

such that each G(n) is finite.

A syntax tree on G (called G-tree) is a planar rooted tree t such that each
internal node of arity n is labeled by a le�er of G(n).

Example

Let G := G(2) tG(3) such that G(2) = {a, b} and G(3) = {c}.

Here is a G-tree:
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Sets of syntax trees

Let G be a set of le�ers.

The set of all G-trees is denoted by F(G).

For any t ∈ F(G), let

I |t| be the arity of t, that is its number of leaves;

I deg(t) be the degree of t, that is the number of internal nodes of t;

I a(t) be the number of edges of t (satisfying a(t) = |t|+ deg(t)).

We set F(G)(n) as the set of the G-trees of arity n.

Therefore,
F(G) =

⊔
n>1

F(G)(n).

Remark: since each G(n) is finite, if if G(1) = ∅, then all F(G)(n) are
finite.
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Partial composition

Let t, s ∈ F(G).

For each i ∈ [|t|], t ◦i s is the tree obtained by gra�ing the root of a copy of
s onto the ith leaf of t.

Example

c

ba

c b ◦5
a

b

c
=

c

b

c

b

ba

c

a

Therefore, ◦i is a map

◦i : F(G)(n)× F(G)(m)→ F(G)(n+m− 1)

where i ∈ [n] and 1 6 m, called partial composition map.
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Complete composition

Let t, s1, . . . , s|t| ∈ F(G).

The t ◦
[
s1, . . . , s|t|

]
is obtained by gra�ing simultaneously the roots of

copies of the si onto the ith leaves of t.

Example

b

a
◦


a

a
, p, c

 =
a

a

b

a

c

Therefore, ◦ is a map

◦ : F(G)(n)× F(G) (m1)× · · · × F(G) (mn)→ F(G) (m1 + · · ·+mn)

where 1 6 n and 1 6 m1, . . . ,mn, called complete composition map.
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Pa�erns and occurrences
Let t, s ∈ F(G). A G-tree t admits an occurrence of a G-tree s if one can
put s onto t by superimposing the root of s and a node of t and leaves of s
with leaves of nodes of t.

This property is denoted by s4 t.

Example

c

b
4

a

b

a

b

c

c

b

b

This relation 4 endows F(G) with the structure of a poset.

More formally, s4 t holds if there exist r, r1, . . . , r|s| ∈ F(G) and i ∈ [|r|]
such that

t = r ◦i
(
s ◦
[
r1, . . . , r|s|

])
.
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Pa�ern avoidance
Given a set P ⊆ F(G), let A(P) be the set of all G-trees avoiding all
pa�erns of P .

Counting the elements of A(P) w.r.t. the arity is a usual question.

Examples

I For P :=

{
a

a
,

b

a
,

a

b ,
b

b

}
, A(P) is enumerated by

1, 2, 4, 8, 16, 32, 64, 128, . . . ;

I For P :=

{
a

a
,

c

a
,

a

c
,

c

c

}
, A(P) is enumerated by

1, 1, 2, 4, 9, 21, 51, 127, . . . ;

I For P :=

 a

a
,

a

b , b

a
,

b

b

b

 , A(P) is enumerated by

1, 2, 5, 13, 35, 96, 167, 750, . . . .
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Rewrite rules
A rewrite rule is a binary relation→ on F(G) such that s→ s′ implies
|s| = |s′|.

The rewrite relation induced by→ is the binary relation⇒ on F(G)

satisfying

r ◦i
(
s ◦
[
r1, . . . , r|s|

])
⇒ r ◦i

(
s′ ◦

[
r1, . . . , r|s|

])
if s→ s′, where r and r1, . . . , r|s| are any G-trees.

Example

If→ is the rewrite rule satisfying b
a

a

→
a

b

b
, one has

a

a

a

a

a

a

a

a

a

b ⇒ a b

a

a

b

a

a

a

a

a

.
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Rewrite systems

Let→ a rewrite rule on G-trees and⇒ be the rewrite relation induced
by→.

Let us define

I ∗⇒ as the reflexive and transitive closure of⇒;

I ∗⇔ as the reflexive, symmetric, and transitive closure of⇒.

A tree t rewrites into a tree t′ if t ∗⇒ t′.

Two trees t and t′ are linked if t ∗⇔ t′. Let F(G)/ ∗⇔ be the set of all
∗⇔-equivalence classes.

A normal form for⇒ is a tree t such that t ∗⇒ t′ implies t = t′. Let N⇒ be
the set of all normal forms.
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Termination and confluence
When there is no infinite chain t0⇒ t1⇒ t2⇒· · · , the rewrite relation⇒
is terminating.

When t
∗⇒ s1 and t

∗⇒ s2 implies the existence of t′ such that s1
∗⇒ t′ and

s2
∗⇒ t′,⇒ is confluent.

When t⇒ s1 and t⇒ s2 implies the existence of t′ such that s1
∗⇒ t′ and

s2
∗⇒ t′,⇒ is locally confluent.

Theorem (Diamond property)

If⇒ is terminating and locally confluent, then⇒ is confluent.

Proposition

Let→ be a rewrite rule on F(G). If⇒ is terminating and confluent, then
N⇒ is

I the set of all G-trees avoiding the le� members of→;

I in a one-to-one correspondence respecting the arities with F(G)/ ∗⇔.
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Tamari la�ices
Let→ be the rewrite rule on F({a}) defined by

a

a → a

a
.

First graphs (F({a})(n),⇒):
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a

a
a
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a
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a
a

a
a

a

a
a

a
a

a
a

a

a

a
a

a
a

a

a
a

a
a

a
a

1 2 3 4 5

Properties:

I ⇒ is terminating and confluent;

I N⇒ is the set of the trees avoiding
a

a , that are right comb trees;

I The sequence
(
F({a})/ ∗⇔(n)

)
n>1

is 1, 1, 1, 1, . . . .
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Theorem [Chenavier, Cordero, G., 2018]
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Outline

Tree series and pa�ern avoidance
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Space of tree series
Let K be the field Q (q0, q1, q2, . . . ) and G be a set of le�ers.

A F(G)-series (tree series) is a map

f : F(G)→ K.

The coe�icient f(t) of t ∈ F(G) in f is denoted by 〈t, f〉.

The set of all F(G)-series is K 〈〈F(G)〉〉.

Endowed with the pointwise addition

〈t, f + g〉 := 〈t, f〉+ 〈t,g〉

and the pointwise multiplication by a scalar

〈t, λf〉 := λ 〈t, f〉 ,

the set K 〈〈F(G)〉〉 is a vector space.

The sum notation of f is

f =
∑

t∈F(G)

〈t, f〉 t.
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Some tree series

Example

For x ∈ G, let fx be the F(G)-series wherein 〈t, fx〉 is the number of occurrences
of x in t. For instance,

f a = a + 2
a

a
+

b

a
+

a

b
+ 2

a

a
+ 3

a

a

a
+ · · · .

Example

Let f p be the F(G)-series wherein 〈t, f p〉 := |t|. Hence,

f p = p + 2 a + 2 b + 3 c + 3
a

a
+ 3

b

a
+ 3

a

b
+ 3

a

a
+ · · · .

Example

In the tree series f a + f b + f c, the coe�icient of a tree is its degree.

In the tree series f p + f a + f b + f c, the coe�icient of a tree is its number of edges.
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Evaluation and generating series
Let S be a set of G-trees.

The characteristic series of S is the F(G)-série

fS :=
∑
t∈S

t.

The evaluation map

ev : K 〈〈F(G)〉〉 → K 〈〈t〉〉

is the linear map satisfying

ev(t) = t|t|.

One has

ev (fS) =
∑
t∈S

t|t| =
∑
n>1

# {t ∈ S : |t| = n} tn = GS(t)

where GS(t) is the generating series of S , enumerating its elements w.r.t.
the arity.
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Composition of tree series
The composition of the F(G)-series f and g1, . . . , gn is the series

f ◦̄ [g1, . . . ,gn] :=
∑

t∈F(G)(n)
s1,...,sn∈F(G)

〈t, f〉 ∏
i∈[n]

〈si,gi〉

 t ◦ [s1, . . . , sn] .

Observe that this product is linear in all its arguments.

Example
a +

b

b
+ c

 ◦̄ [p, c , a + b

]
=

b

c

b

a

+
b

c

b

b

+
c

c a
+

c

c b

For all t ∈ F(G)(n) and all F(G)-series g1, . . . , gn,

ev (t◦̄ [g1, . . . ,gn]) =
∏
i∈[n]

ev (gi) .
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Tree series avoiding pa�erns

Let P ⊆ F(G) and set

f(P) := fA(P) =
∑

t∈F(G)
∀s∈P,s�4t

t

as the series of the G-trees avoiding all pa�erns of P .

When G(1) = ∅, each F(G)(n) is finite and thus, there is a finite number
of G-trees of arity n avoiding P . Therefore, the series

ev(f(P)) = GA(P)(t)

is well-defined.

Goal
Given G and P ⊆ F(G), provide an expression for f(P).
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Occurrences at root

A G-tree t admits an occurrence of a G-tree s at root if there exists
r1, . . . , r|s| ∈ F(G) and i ∈ [|r|] such that

t = s ◦
[
r1, . . . , r|s|

]
.

This property is denoted by s4r t.

Example

c

b

b

4r
a

b

a

b

c

c

b

b

Assume that t = a ◦ [t1, . . . , tk] and s = a ◦ [s1, . . . , sk] where a ∈ G(k).

Then, s��4r t if and only if there exists an i ∈ [k] such that si��4r ti.
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Admissible words
Let P ⊆ F(G) and a ∈ G(k). Let

Pa := {s ∈ P : a4r s} .

A G-tree t = a ◦ [t1, . . . , tk] avoids at root all pa�erns of P if for all
pa�erns s = a ◦ [s1, . . . , sk] ∈ Pa, there is an i ∈ [k] such that si��4r ti.

A word (S1, . . . , Sk) where le�ers are sets of G-trees di�erent from p is
Pa-admissible if for any s ∈ Pa, there is an i ∈ [k] such that si ∈ Si.

Example

Let P :=

 a

c ,
b

c

a
, c a

c

c

 . In terms of Pc-admissibility, the word

I
({

a

}
, ∅,
{

a

})
is;

I

 a ,
c

c

 , ∅,
{

a

} is;

I

 a , b ,
c

c

 , ∅, ∅

 is;

I

 c

c

 ,

{
b

}
,

{
a

} is not.
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Minimal admissible words
The union of two words (S1, . . . , Sk) and (S′1, . . . , S

′
k) of sets of trees is

defined by

(S1, . . . , Sk)⊕ (S′1, . . . , S
′
k) := (S1 ∪ S′1, . . . , Sk ∪ S′k) .

A Pa-admissible word u is minimal if any decomposition u = v ⊕ v′ where
v is a Pa-admissible word and v′ is a word of sets of trees implies u = v.

The set of all minimal Pa-admissible words is denoted by M (Pa).

Example

Let P :=

 a

c ,
b

c

a
, c a

c

c

 . In terms of minimality, as a Pc-admissible word,

I
({

a

}
, ∅,
{

a

})
is;

I

 a , b ,
c

c

 , ∅, ∅

 is;

I

 a ,
c

c

 , ∅,
{

a

} is not;

I
({

a , b

}
,

{
b

}
,

{
a

})
is not.
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Back to tree series
Let P,R ⊆ F(G).

Let the tree series
f(P,R) :=

∑
t∈F(G)
∀s∈P,s�4 t
∀s∈R,s��4r t

t

of the G-trees avoiding P and avoidingR at root.

If (S1, . . . , Sk) is a (P ∪R)a-admissible word, a◦̄ [f (P, S1) , . . . , f (P, Sk)]

is the characteristic series of all the G-trees t = a ◦ [t1, . . . , tk] such that all
ti avoid P and avoid Si at root.

Moreover, the support of the tree series∑
(S1,...,Sk)∈M((P∪R)a)

a◦̄ [f (P, S1) , . . . , f (P, Sk)]

is the set of all G-trees with root labeled by a and avoiding P and avoiding
R at root.
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System of equations

Observe that for anyR,R′ ⊆ F(G), the characteristic series of the
G-trees avoiding P , and avoidingR orR′ at root is

f(P,R) + f (P,R′)− f (P,R∪R′) .

Therefore, the description of f(P,R) uses the inclusion-exclusion
principle.

Theorem [G., 2017—]

For any set G of le�ers and P,R ⊆ F(G),

f(P,R) = p+
∑
k>1

a∈G(k)

∑
`>1

{u1,...,u`}⊆M((P∪R)a)
(S1,...,Sk):=u1⊕···⊕u`

(−1)1+` a◦̄ [f (P, S1) , . . . , f (P, Sk)] .

Since in particular f(P) = f(P, ∅) this provides a system of equations
describing f(P).
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Main equation for the previous example

Example

Let P :=

{
a

c ,
b

c

a
, c a

c

c

}
.

One has M (Pa) = M (Pb) = {(∅, ∅)} and

M (Pc) =

{({
a

}
, ∅,
{

a

})
,

({
a , b ,

c

c

}
, ∅, ∅

)}
.

Therefore,

f(P, ∅) = p + a◦̄ [f(P, ∅), f(P, ∅)] + b◦̄ [f(P, ∅), f(P, ∅)]

+ c◦̄
[
f
(
P,
{

a

})
, f(P, ∅), f

(
P,
{

a

})]
+ c◦̄

[
f

(
P,
{

a , b ,
c

c

})
, f(P, ∅), f(P, ∅)

]

− c◦̄
[
f

(
P,
{

a , b ,
c

c

})
, f(P, ∅), f

(
P,
{

a

})]
.
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Example: directed animals

Example

Let P :=

 a

a
,

a

b , b

a
,

b

b

b

 .

One has

f(P, ∅) = p + a◦̄
[
f
(
P,
{

a

})
, f (P, ∅)

]
+ b◦̄

[
f
(
P,
{

a

})
, f

(
P,
{

a ,
b

b

})]
,

f
(
P,
{

a

})
= p + b◦̄

[
f
(
P,
{

a

})
, f

(
P,
{

a ,
b

b

})]
,

f

(
P,
{

a ,
b

b

})
= p + b◦̄

[
f
(
P,
{

a

})
, f

(
P,
{

a , b ,
b

b

})]
,

f

(
P,
{

a , b ,
b

b

})
= p.
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Example: directed animals

Example

By evaluating each member of the previous system, one obtains the system

GS(t) = t+ GS1
(t)GS(t) + GS1

(t)GS2
(t),

GS1(t) = t+ GS1(t)GS2(t),

GS2
(t) = t+ GS1

(t)GS3
(t),

GS3(t) = t

for the generating series GS(t) of directed animals.

This leads to

t+ (3t− 1)GS(t) + (3t− 1)GS(t)2 = 0,

an algebraic equation satisfied by GS(t).
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Some remarks

The previous result includes, as special cases:

I pa�ern avoidance of factors in words [Goulden, Jackson, 1979] when
G = G(1);

I pa�ern avoidance of edges in trees [Parker, 1993], [Loday, 2005] when P
contains only trees of degree 2;

I pa�ern avoidance in binary trees [Rowland, 2010] when
G = G(2) = {a}.

Other systems of equations have been described for enumerating trees
avoiding pa�erns in [Khoroshkin, Piontkovski, 2012].
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Computing admissible words
Given a G-tree t = a ◦ [t1, . . . , tk], let the element

φ(t) :=
∑
i∈[k]
ti 6=p

∅, . . . , ∅︸ ︷︷ ︸
i−1

, {ti} , ∅, . . . , ∅︸ ︷︷ ︸
k−i


of the free module B

〈(
2F(G)

)k〉
on the Boolean semiring B.

Let the linear combination
ePa :=

⊕
t∈Pa

φ(t),

containing all Pa-admissible words (and other Pa-admissible words).

Example

Let P :=

{
a

c

a
,

a

c

b b

}
. One has ePa = ePb

= (∅, ∅) and

ePc =
(({

a

}
, ∅, ∅

)
+
(
∅, a , ∅

))
⊕
(({

a

}
, ∅, ∅

)
+
(
∅, b , ∅

)
+
(
∅, ∅, b

))
=
({

a

}
, ∅, ∅

)
+
({

a

}
,
{

b

}
, ∅
)

+
({

a

}
, ∅,
{

b

})
+
({

a

}
,
{

a

}
, ∅
)

+
(
∅,
{

a , b

}
, ∅
)

+
(
∅,
{

a

}
,
{

b

})
.
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Outline

Operads and enumeration
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Operators
An operator is an entity having n > 1 inputs and a single output:

x

1 n. . .

.

Its arity is its number n of inputs.

Composing two operators x and y consists in

1. selecting an input of x specified by its position i;

2. gra�ing the output of y onto this input.

This produces a new operator x ◦i y of arity n+m− 1:

x

1 ni. . . . . .

◦i y

1 m. . .

=

x

1 n + m− 1. . . . . .y

i i + m− 1. . .

.
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Operads

Operads are algebraic structures formalizing the notion of operators and
their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set
O :=

⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.
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Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
1 6 i 6 |x|, 1 6 j 6 |y|

x

y
. . . . . .

. . . . . .
z

. . .

= y

. . . . . .
z

. . .

x

. . . . . .

Commutativity:

(x ◦i y) ◦j+|y|−1 z = (x ◦j z) ◦i y

1 6 i < j 6 |x|

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

1 6 i 6 |x|

1

x

. . .

= x

. . .

=
x

1
. . . . . .
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Free operads
Let G be a set of le�ers.

The free operad on G is the operad F(G) wherein

I elements of arity n are the G-trees of arity n;

I the partial composition map ◦i is the one of the G-trees;

I the unit is p.

Let c : G→ F(G) be the natural injection (made implicit in the sequel).

Free operads satisfy the following universality property.

For any set G of le�ers, any operad O,
and any map f : G→ O respecting the
arities, there exists a unique operad
morphism φ : F(G)→ O such that
f = φ ◦ c.

G O

F(G)

f

c φ
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An operad on paths
Let Paths be the operad wherein:
I Paths(n) is the set of all paths with n points, that are words
u1 . . . un of elements of N.

Example

is the path 1212232100112 of arity 13.

I The partial composition u ◦i v is computed by replacing the ith point
of u by a copy of v.

Example

◦4 =

011232101 ◦4 11224 = 0113344632101

I The unit is the path 0, depicted as , having arity 1.
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Suboperad on m-Dyck paths
Let for any m > 0 the suboperad mDyck of Paths generated by
GmDyck := GmDyck(m+ 2) := {gm} where

gm := 0m (m− 1) . . . 1 0 =
0

m

0 m+1

.

Example
The elements of 2Dyck are, by definition, the paths obtained by composing gm with itself.

I 2Dyck(1) = { };

I 2Dyck(2) = 2Dyck(3) = ∅;

I 2Dyck(4) =
{ }

;

I 2Dyck(5) = 2Dyck(6) = ∅;

I 2Dyck(7) =
{

, ,
}

;

I 2Dyck(8) = 2Dyck(9) = ∅.

Proposition

For any m > 0 and n > 1, mDyck(n) is the set of all m-Dyck paths of
length n− 1.
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Presentations

Let O be an operad.

A presentation of O is a pair (G,≡) where

I G is a set of le�ers, called generating set;

I ≡ is an operad congruence of F(G), that is an equivalence relation on
the G-trees such that if t≡ t′ and s≡ s′, then t ◦i s≡ t′ ◦i s′;

such that
O ' F(G)/≡.

The presentation (G,≡) is

I binary when G = G(2);

I quadratic when ≡ is generated as an operad congruence by an
equivalence relation on trees concentrated in degree 2.
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Presentation of mDyck
To find a presentation of mDyck, we list all the nontrivial relations made
of expressions involving the generator gm and the ◦i. We find for instance
in 2Dyck,

g2 ◦1 g2 = g2 ◦4 g2

◦1 = ◦4 =

Proposition

For any m > 0, mDyck admits the presentation (GmDyck,≡mDyck)

where
GmDyck := {gm}

and ≡mDyck is the smallest congruence of F (GmDyck) satisfying

gm ◦1 gm ≡mDyck gm ◦m+2 gm.

This says that all relations in higher degrees are consequence of this single
one and the operad axioms.
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An operad on Motzkin paths

Let Motz be an operad wherein:

I Motz(n) is the set of all Motzkin paths with n points.

Example

is a Motzkin path of arity 16.

I The partial composition in Motz is the one of Paths.

Example

◦4 =

I The unit is .
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Properties of Motz

Proposition

Motz is a suboperad of Paths.

Proposition

The operad Motz admits the presentation (GMotz,≡Motz) where

GMotz :=
{

,
}

and ≡ is the smallest operad congruence satisfying

◦1 ≡Motz ◦2 ,

◦1 ≡Motz ◦2 ,

◦1 ≡Motz ◦3 ,

◦1 ≡Motz ◦3 .
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Poincaré-Birkho�-Wi� bases

Let O be an operad with presentation (G,≡).

A Poincaré-Birkho�-Wi� basis (PBW basis) of O w.r.t. (G,≡) is a set B of
G-trees such that for each [t]≡ ∈ F(G)/≡, there exists a unique s ∈ B
such that s ∈ [t]≡.

Proposition

Let O be an operad admi�ing a presentation (G,≡). If

1. → is a rewrite rule on F(G) generating ≡ as an operad congruence;

2. the rewrite relation⇒ induced by→ is terminating and confluent;

then the set of the normal forms for⇒ is a PBW basis of O.

Such a PBW basis of O can be described as the set of the trees avoiding
the trees appearing as le� members for→.
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PBW basis of Motz

Let→ be the rewrite rule on F (GMotz) defined by

◦1 → ◦2 ,

◦1 → ◦2 ,

◦1 → ◦3 ,

◦1 → ◦3 .

This rewrite rule can be seen as an orientation of ≡Motz.

The induced rewrite relation⇒ is terminating, confluent, and its normal
forms are in one-to-one correspondence with Motzkin paths.

Example

A normal form for⇒ and the Motzkin path in correspondence with it:

←→ .
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An operad on cyclic paths
For any ` > 1, let `CPaths be the operad wherein:
I `CPaths(n) is the set of all paths with n points having height

smaller than `, that are words u1 . . . un of elements of {0, . . . , `− 1}.

Example

0
1
2

3 = 0

is the path 1212202100112 of 3CPaths.

I The partial composition u ◦i v is computed by replacing the ith point
of u by a copy of v, and by fi�ing the obtained path on the cylinder.

Example

In 3CPaths,

◦4 = =

011202101 ◦4 10221 = 011(32443)%302101 = 0110211002101

I The unit is .
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A suboperad on directed animals

Let DA be the suboperad of 3CPaths generated by

GDA :=
{

,
}
.

Example

The elements of DA(4) are

, , , , , , , , , , , , .

Proposition

For any n > 1, DA(n) is in one-to-one correspondence with the set of
directed animals of size n.
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Presentation and PBW basis of DA

Proposition

DA admits the presentation (GDA,≡) where ≡DA is the smallest
congruence of F (GDA) satisfying

◦1 ≡DA ◦2 , ◦1 ≡DA ◦2 , ◦1 ≡DA ◦2 ,

(
◦1

)
◦2 ≡DA

(
◦2

)
◦3 .

Let→ be the orientation of ≡DA satisfying

◦1 → ◦2 , ◦1 → ◦2 , ◦2 → ◦1 ,(
◦2

)
◦3 →

(
◦1

)
◦2 .

The rewrite relation⇒ induced by→ is terminating and confluent. The
GDA-trees avoiding the le� members of→ form a PBW basis of DA.
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Overview of the considered operads

Paths

3CPaths

2CPaths

1CPaths 0Dyck

1Dyck2Dyck

Motz

DA

Dimensions:
n 1 2 3 4 5 6 7 8 9 10

Paths ∞
0Dyck 1 1 1 1 1 1 1 1 1 1

1Dyck 1 0 1 0 2 0 5 0 14 0

2Dyck 1 0 0 1 0 0 3 0 0 12

Motz 1 1 2 4 9 21 51 127 323 835

2CPaths 2 4 8 16 32 64 128 256 512 1024

3CPaths 3 9 27 81 243 729 2187 6561 19683 59049

DA 1 2 5 13 35 96 267 750 2123 6046
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Application to enumeration

Let S be a combinatorial set we are searching a generating series.

Then, we successively

1. endow S with an operad structure O;

2. establish a presentation (G,≡) of O;

3. deduce a PBW of O w.r.t. (G,≡), described as the trees avoiding a
certain set P of pa�erns;

4. compute f(P) by using tree series and their operations.

Finally, ev(f(P)) is the Hilbert series of O and the generating series of S .
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Hilbert series of mDyck

The set B of the GmDyck-trees avoiding

P := {gm ◦1 gm}

is a PBW basis of mDyck.

The characteristic series of B is f (P, ∅) where

f (P, ∅) = p + gm◦̄

f (P, {gm}) , f (P, ∅) , . . . , f (P, ∅)︸ ︷︷ ︸
m+1

 ,
f (P, {gm}) = p.

By se�ingH(t) := ev(f (P, ∅)), the Hilbert seriesH(t) ofmDyck satisfies

t−H(t) + tH(t)
m+1

= 0.
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Hilbert series of Motz

The set B of the GMotz-trees avoiding

P :=
{
◦1 , ◦1 , ◦1 , ◦1

}
is a PBW basis of Motz.

The characteristic series of B is f (P, ∅) where

f (P, ∅) = p + ◦̄
[
f
(
P,
{

,
})
, f (P, ∅)

]
+ ◦̄

[
f
(
P,
{

,
})
, f (P, ∅) , f (P, ∅)

]
f
(
P,
{

,
})

= p.

By se�ingH(t) := ev(f (P, ∅)), the Hilbert seriesH(t) of Motz satisfies

t− (t− 1)H(t) + tH(t)
2

= 0.
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Hilbert series of DA
The set B of the GDA-trees avoiding

P :=
{
◦1 , ◦1 , ◦2 ,

(
◦2

)
◦3

}
is a PBW basis of DA.

The characteristic series of B is f (P, ∅) where

f(P, ∅) = p + ◦̄
[
f

(
P,

{ })
, f (P, ∅)

]
+ ◦̄

[
f

(
P,

{ })
, f

(
P,

{
, ◦2

})]
,

f

(
P,

{ })
= p + ◦̄

[
f

(
P,

{ })
, f

(
P,

{
, ◦2

})]
,

f

(
P,

{
, ◦2

})
= p + ◦̄

[
f

(
P,

{ })
, f

(
P,

{
, , ◦2

})]
,

f

(
P,

{
, , ◦2

})
= p.

By se�ingH(t) := ev(f (P, ∅)), the Hilbert seriesH(t) of DA satisfies

t− (3t− 1)H(t) + (3t− 1)H(t)
2

= 0.
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