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1. Terms and rewrite systems
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A signature is a graded set & := | | -, &(n) wherein each a € ®(n) is an constant of arity n.

A &-term is
m either a variable x from the set X := {xy, x2,...};

m either a pair (a, (t;,...,t,)) where a € &(n) and each t; is a B-term.
The set of all &-terms is denoted by T(&).

- Example -

This is the tree representation of the &-term

b b (av((bv (X1,xz)),(b,((a, (xl,X1)),X3))))
/\ where & := &(2) := {a,b}.
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More on terms

The frontier of a &-term t is the sequence of the variables appearing in t.

The ground arity of t is the greatest integer n such that x, is a variable appearing in {, its arity is
the length of its frontier, and its degree is its number of its internal nodes.

- Example -
I
c
/ \I The frontier of this term is (xz, x3, X1, x3, X5, X3).
a b c
Xz/ \x3 a 4 \d x3/' x!s\m Its ground arity is 5, its arity is 6, and its degree is 7.
/\
d %
The term ¢ is

m planar if its frontier is (xq,. .., x,);

m standard if its frontier is a permutation of (x1, ..., x,);

m linear if there are no multiple occurrences of the same variable in the frontier of {;
=

closed if its arity is 0.
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Rewrite systems on terms

A rewrite relation on T(®) is a binary relation — on T(®) such that if s — &', then all variables of
s’ appear in s.

The context closure of — is the binary relation = satisfying t = t’ whenever t’ is obtained by
replacing in t a factor s by s’ provided that s — &'
- Example -

For & := &(2) := {a}, let the rewrite relation — defined by

a — | and /N = /N
/ \ X1 a X3 a a
X1 X1 1\ 1\ I\
X1 X2 X1 X1 X3 X3
We have
1 0 |
a S a
T~ T~ T~
X 5 A N I P
I\ \ I\ \
X2 Xz <I/ X5 => X2 X2 a a = X2 X2 a X5 °
/N VRN A\ /N
a a a a X5 X5 a a
N\ AN /\ /N I\ I\
X2 X1 X3 X3 X2 X1 X2 X1 X2 X1 X2 X1

A term rewrite system (TRS) is such a pair (&, —).
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More on rewrite systems

Let S := (6, —) be a TRS.
We define
m < as the reflexive and transitive closure of =;
m = as the reflexive, symmetric, and transitive closure of =;
m G(T) as the digraph on the set {t' € T(&) : t < t' forat € T} of vertices and the set = of
edges, where T is any subset of T(®).
Atermt € T(B)is
m a normal form for S if there is no edge of source t in G({t});
m weakly normalizing in S if there is at least one normal form in G({t});
m is strongly normalizing in S if G({t}) is finite and acyclic.
When all &-terms are strongly normalizing, S is terminating.

If for any G-term ¢, t < 5; and t < 5, implies the existence of t' such that 5; < t' and 5, < t/, then
S is confluent.
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Let § := (&, —) be a TRS.

One has the following properties (see for instance [Baader, Nipkow, 1998]).

- Proposition -

If S is terminating and confluent, then the set of normal forms of S is a set of representatives of T(&)/=.

- Proposition -

If S is terminating and confluent, then to decide if t = t’ in &, compute s and & as, respectively, the
unique formal forms in the =-equivalence classes of t and t’ and check if s = s'.

- Proposition -

The set of normal forms of S is the set of all ®-terms avoiding each &-term t where t is on the left of a
rule of S.
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Let & := &(2) := {a} and — be the rewrite relation on T(®) defined by

| |
a a
7\ _) 7N\
a X3 X1 a
1\ 1\
X1 X X2 X3

Here are the first graphs T(k) of planar &-terms of degrees k > 0:

| 1 l | /i\ /a\,*\/‘\ J' . A ’t’;{. g

' S
a N
N A
/N \
AN
i
A

|10 | 1) | 102) | (3) | ()
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The Tamari rewrite system

m The binary relation — is the right rotation operation, an important operation on binary search
trees appearing in algorithms handling balanced binary trees [Adelson-Velsky, Landis, 1962].

m This TRS is terminating and confluent.
As consequence, < is a partial order relation.

This order endows each set T(k) with the structure of a lattice, known as Tamari lattice

[Huang, Tamari, 1962].

m The set of normal forms of this TRS contains all right comb trees, that are the trees avoiding

a
VR
a x3 °
1\
X1 X2

There is exactly one planar normal form of degree k for any k > 0.
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Let & := &(2) := {a} and — be the rewrite relation on T(®) defined by

I\ I\

oI N N RN
I ; , ] /‘ A
ESIERIEI TS Ty(4)

11/41



A variant of the Tamari rewrite system

This TRS is terminating but not confluent.

The Buchberger completion algorithm [Knuth, Bendix, 1970], [Dotsenko, Khoroshkin, 2010] is a

semi-algorithm taking as input a terminating but not confluent TRS (&, —) and outputting a new
rewrite relation —' such that

m (&, —') is terminating and confluent; m the preorders < and <’ are equal.

The normal forms of a completion of the previous TRS can be described as the ®-terms avoiding 11
planar &-terms of degrees from 3 to 7.

The generating series of the planar normal forms of this TRS, enumerated w.r.t. their arities, is

F(1)

. t
T -y

(1—t+2 472 +2t' +20° =77 — 26 + 7 + 20 +41).

The first coefficients of this generating series are

1,1,2,4,8,14, 20, 19, 16, 14, 14, 15, 16, 17, 18, 19, 20.
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Enumeration of planar terms avoiding factors

Let & be a signature, and P be a set of planar &-terms. The generating series enumerating the planar
&-terms avoiding P w.r.t. the arity (parameter ) and the degree (parameter q) is F(P, () where, for any
set Q of planar G-terms,

F(P,Q)=t+q ). > ) I FP,S).
k>1 £>1 i€ [k]
2€0() RO, RO YCM(PUQ,2)

(St S)=RD 4.+ R®

- Example -
For P := { . i . }, we obtain the algebraic system of equations

F(P,0) =t + q F(P,{a}) F(P,0) + q F(P,0) F(P,{b}) — q F(P,{a}) F(P,{b}) + q F(P,0) F(P, D),
F(P,{a}) =t+ qF(P,0) F(P,0),
F(P,{b}) = t + q F(P,{a}) F(P,0) + q F(P,0) F(P,{b}) — ¢ F(P,{a}) F(P, {b}).
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2. Combinatory logic



Applicative terms

An applicative signature is a signature & satisfying & = &(0) Ll &(2) where (2) = {a}.
An applicative term is a term on an applicative signature.

Each applicative term can be expressed as a bracketed infix expression on &(0) U X wherein the
symbol a is made implicit and the bracketing is implicit from left to right.

— Example -
On the applicative signature & where (0) = {A, B, C},

|
P / ( \ P
/“\ /“\ < (Aa(x1aA))a((Baxz)axi)) « (A(x1A)((Bxz)x1)) < A(x1 A)(Bxzxi).
A

a a X1
VANEVAY
X1 A B x2
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Combinatory logic systems

A combinatory logic system (CLS) is a pair (¢, —) where
m C is a finite set;

m — is a rewrite relation on the applicative signature ®» where & (0) = €, and for any X € €,
there is exactly one rule of the form

Xxp...xp >t
such that t is an {a}-term.

- Example -

Let the CLS (¢, —) [Schonfinkel, 1924] [Curry, 1930] where ¢ := {I, K, S} and — satisfies

m Ix; — xq, m Kxjxp — x1, m Sxyxax3 — x1x3(x2x3).

This CLS is Turing complete: there are algorithms to faithfully translate any A-term into a term of
this CLS. These are abstraction algorithms [Resser, 1955], [Curry, Feys, 1958].
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In To Mock a Mockingbird: and Other Logic Puzzles [Smullyan, 1985], a large number of rules are listed.

Here is a sublist:

m Identity bird: Tx; — x; m Owl: O x3x2 — xa(x1x3)

m Mockingbird: M x; — x1x; m Turing bird: U x;x; — x2(x1x1%2)
m Kestrel: Kxyx; — x3 m Cardinal: C x1x3x3 — X1X3X2

m Thrush: T x;x; — x2x1 m Vireo: V x1xX3X3 —> X3X1Xy

m Mockingbird 1: Mj x1x; — x1%1%3 m Bluebird: B x;xzx3 — x1(x2x3)

m Warbler: W x;x, — x1x2%2 m Starling: 8 x;xpx3 —> xx3(%23)

m Lark: Lxyx; — x1(xpxz) Jay: J x1x9x3x4 — x1%2(%1X43)
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Let C := (¢, —) be a CLS.

— Word problem -

Is there an algorithm to decide, given two terms t and t’ of C, if t = t'? (See [Baader, Nipkow, 1998],
[Statman, 2000].)

m Yes for the CLS on L [Statman, 1989], [Sprenger, Wymann-Béni, 1993].
m Yes for the CLS on W [Sprenger, Wymann-Béni, 1993].

m Yes for the CLS on My [Sprenger, Wymann-Béni, 1993].

m Open for the CLS on S [RTA Problem #97, 1975].

- Strong normalization problem -

Is there an algorithm to decide, given a term t of C, if t is strongly normalizing?

m Yes for the CLS on S [Waldmann, 2000].
m Yes for the CLS on J [Probst, Studer, 2000].
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Combinatorial questions

Let C := (¢, —) be a CLS.

— Structure of the rewriting graphs -

1. Are all the connected components of the graph G(T(&¢)) of C finite?
2. Understand when G({t}) and G({t'}) are isomorphic graphs.

3. Is the preorder < an order relation on ¥ (&¢)?
4

. If so, are all intervals [t, t'] lattices?

— Enumerative issues —

1. In the graph G(T(®¢)) of C, count w.r.t. their degrees the closed terms that are
1.1 minimal;
1.2 maximal (which are thus normal forms);
1.3 both minimal and maximal (which are thus isolated vertices).

2. Count the =-equivalence classes of closed terms w.r.t. their degrees.

3. Count the connected components of G(T(®¢)) w.r.t. the minimal degrees of their closed terms.
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First properties: termination

A CLS C can be non-terminating.

There are several possible causes:

m The set G({t}) is infinite for a term t of C.

- Example -
In the CLS on S, the terms
m S(SS)(SS)(S(SS)(SS)) [Zachos, 1978];
m SSS(SSS)(SSS) [Barendregt, 1984]

have this property.
m There is a cycle, that is two terms t and t’ of C such that t = t'  t.
- Example -
In the CLS on F x1x2 — xpx2, onehast = t/ = twith t := FF(FFF) andt' := FFF(FFF).
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Any CLS is confluent.

This is a consequence of the orthogonality [Rosen, 1973] of any CLS.
A rewrite relation — is orthogonal if

m t — t' implies that t is linear;

mt—t,5— ¢, and t and 5 overlap, implies t = s5.

Some terminating (and confluent) CLS have intervals that are not lattices.
- Example -
TI(11T)

In the CLS on Ix; — xi, the interval [II(ITT),11] L) 11(11)

admits the Hasse diagram I (I\I”I) l><) 4
N W

111

11
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3. Mockingbird lattices



Let us focus on the CLS on M x; — x7x3.

Here is the graph G(T(&¢)) restrained to closed terms of degrees 3 or less:

¢ D) )

M(M(MMD

M(MMMD MMMD M(MM)I\D MMMI\D

MM(MMD M(MM)(M(M%MMM(MM@ MM(MM)@

M(MM(MM))

M(MM)(MM(I\@

MM(MM)(MM(@

MM(MM)(M(@

=
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Let —' the rewrite relation defined by M(x;x3) —' (x132) (x12).

— Lemma -

The preorders < and < are equal.

— Lemma -

If t = ¢/, then ht(t) = ht(t') and deg(t) < deg(t’).

As a consequence, < is an order relation.

- Proposition

The relation < is an order relation on terms on M. Moreover, each connected component of the Hasse
diagram of this poset is finite.
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Order relation on black and white trees

A black and white tree (BWT) is a planar rooted tree such that each internal node is either black or
white. Let Ty, be the set of such trees.

Let =% be the binary relation on Ty, such that p =% q if ¢ can - Example -
be obtained from p by selecting a white node u of p, by turning
it into black, and by duplicating its sequence of descendants.

If p =% ¢, then there are more black nodes in ¢ than in p. Hence, z =
the reflexive and transitive closure < of =% is a partial order.

— Lemma —
One has p < p’ iff
m either p = o(py, ..., 0.), 0 =0(p],--.,0p), and p; < p} forall i € [£];
morp=0(p;,..., )P =0(p],...,0p),and p; K p! foralli € [£];
morp=0(p;,.--,00), P =0(p%, .-, 05,07, .., p7), and p; < piand p, < pf forall i € [€].

25/41



Let A and V be the two partial binary, commutative, and associative operations on Ty, defined by

o(py ADY, ... P A DY),
o(py APy, ..., De APY),
o(py APy AT, P APy A DY),

o(Py, - -+, Pe) APy, - -, Pp) :
o(Py, .-+, Pe) NPy, - -, Pp)
O(pl?"'7pe)/\.(pll7"'7p27p/1,,""p2,):

and

0(]31\/]3/1,--.,]34\/]32),
.(plvplla"'apévpé)a
(P VPLs ooy PV Ry PV DY,V PE).

O(plv"'apé)Vo(plla"wpz) :
O(py;- -, Pe) Volpy, ..., pp) :
O(Pu---,pe)V'(P’u---,PZP/{,---,PIZI) :

Given a BTW p, the set {p’ € Tpw : p < p'} is a lattice for the operations A and V.
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Given a closed term t on M, let ¢(t) be the BWT ob- - Example -
tained by
1. by adding a root o to t; !
a / \ a
2. by replacing each internal node of t having a left = N
child M and a right child different from M by a o; N A A 2 ﬁ\o
/ /\ "\
3. by connecting these new nodes following the Bf}w Nf\a MM MM
paths in t. o

— Lemma -

Let t and t’ be two closed terms on M. One has t = t' iff ¢(t) = ¢(t').

For any closed term t on M, the poset (G({t}), <) is a finite lattice.
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Maximal and minimal terms

A closed term on M is maximal iff it avoids the pattern M(x;x;).

The formal sum F of these trees enumerated w.r.t. their degrees satisfies the equation
F=M+FM+(F —M)(F — M).

Therefore, the generating series F of these terms satisfies F = 1 + (F + (F — 1)%. Its first
coefficients are 1,1, 1, 2,4, 9, 21,51, 127, 323, 835 and are Motzkin numbers (Seq. A001006).

A closed term on M is minimal iff it avoids the pattern (x;x;)(x;x7).

This leads to the recurrence for the number a(d) of such trees of degree d:
a(0) =a(1) =1, a(d+1) = b(d) if d is odd, a(d + 1) = b(d) — a(d/2) otherwise,

where b(d) := > a(k)a(d — k). The fist numbers are 1, 1, 2, 4, 12, 34, 108, 344, 1136, 3796, 12920.
0<k<d
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The Mockingbird lattice of order k > 0 is the lattice M(k) on G({t}) where t is the term
M(M(...(MM)...)) of degree k.

Here are the Hasse diagrams of these first lattices:

| om0 | Mo | me | M(3) | M(4) |

— Theorem -

For any BWT p, {p’ € Thy : p < p’} is isomorphic to a maximal interval of a Mockingbird lattice.
y 1%
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Let p be a BWT.

Let w(p) be the integer defined recursively as - Example -
W(O(P1,~-~,pe)) = 1+22W(pi), 15
i€[€] 0 7
W(.(pl,"'ape)) = Zw(pz) 2 !
i€[f] 01 1
- Proposition =

Let t be a closed term on M and P be the lattice (G({t}), <).
m A shorted path from t to the maximal element of P has as length the number of 0 in ¢(t).
m A longest path from t to the maximal element of P has length w(¢(t)).

Therefore, a longest path in M(k) for k > 1 as length 25! — 1.
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Let p be a BWT.

Let s(p) be the integer defined recursively as

— Example -
s(0(Py,- -+, Py)) = (H s(pi)) (1 +11 s(pi)>, ot
i€[k] i€[k] ! . 72 )
s(@(py;---,Pe)) = H s(p;)-
i€[k] 12 2

— Proposition =
Let t be a closed term on M and P be the lattice. (G({t}), ). Then, #P = s(¢(t)).

The numbers a(k) of initial intervals in M(k) satisfies a(0) = a(1) = 1, and for k > 2,
a(k) = a(k — 1)(1 + a(k — 1)). The first numbers are

1,1,2,6,42,1806,3263442,10650056950806, 113423713055421844361000442.

31/41



4. Conclusion and future work
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Other CLS: L

When #¢ = 1, one gets already some interesting CLS. Here are experimental data some of these.

For L x;x; — x1(223):
m Minimal terms: 1, 1, 1, 2, 5, 13, 34, 94, 265, 765, 2237, 6632;
® Maximal terms: 1, 1, ...;
m Isolated terms: 1,1, 0,0, ...;
m Equivalence classes: 1, 1, 1, 2, 5, 12, 31, 83;
m Connected components: 1, 1, 1, 2, 4, 9, 22, 60;
® — is not terminating;
m < is an order relation;

m Intervals seem lattices.
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Other CLS: L

The rewriting graph of terms on L from closed terms of degrees up to 5 and up to 4 rewritings:

LI
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Other CLS: S

For S x1x3x3 — x1%3(%2x3):
® Minimal terms: 1, 1, 2, 4, 10, 26, 76, 224, 690, 2158, 63882, 22208;
m Maximal terms: 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798 (Motzkin numbers);
m Isolated terms: 1, 1, 2, 3, 7, 15, 37, 87, 218, 546, 1393, 3583;
m Equivalence classes: 1, 1, 2, 4, 10, 27, 78, 234, 722, 2271,
m Connected components: 1, 1, 2, 4, 10, 26, 74, 217, 660, 2053;
® — is not terminating;
m < is an order relation [Bergstra, Klop, 1979];

m Intervals seem lattices.
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Other CLS: S

The rewriting graph of terms on S from closed terms of degrees up to 6 and up to 11 rewritings:
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For T x1x5 — x9x1:
® Minimal terms: 1,0, 0, ...;
m Maximal terms: 1, 1, ...;
m Isolated terms: 1, 0,0, ...;
m Equivalence classes: 1, 1, 2, 3, 4, 5, 6;
m Connected components: 1, 1, ...;
®m — is terminating;
m < is an order relation;

m Interval seem lattices.
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The rewriting graph of terms on T from closed terms of degrees up to 6 and up to 1 rewriting:
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Other CLS: C

For C xqx9x3 — Xx1X3X3:
® Minimal terms: 1, 1, ...;
m Maximal terms: 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798 (Motzkin numbers);
m Isolated terms: 1,1, ...;
m Equivalence classes: 1, 1, 2, 5, 13, 33, 83, 209, 531, 1365;
m Connected components : 1, 1, 2, 4, 9, 21, 51, 127, 323, 835 (Motzkin numbers);
®m — is terminating;
m < is an order relation;

m Interval seem lattices.
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The rewriting graph of terms on C from closed terms of degrees up to 6 and up to 1 rewriting:

............... V WV VW/H V\V”V



— Connections with order theory -

Given a CLS C, obtain (necessary/sufficient) conditions for the fact that

1. C is terminating;

2. when < is an order relation, all the <-intervals of C are lattices;

— Normalization -

Provide a generic way to describe all the strongly normalizing terms of a CLS.

- Connection with clone theory -
Realize a CLS as a clone.

Indeed, each CLS C := (&, —) gives rise to a clone defined as the quotient of the free clone generated
by ®¢ by the clone congruence generated by —. A combinatorial realization of this algebraic structure
would provide an encoding of the =-equivalence classes of terms of C compatible with term composition.
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