
Some combinatorial aspects of combinatory logic

Samuele Giraudo
LIGM, Université Gustave Ei�el

Séminaire LIX
Palaiseau

March 31, 2021

1 / 41



Outline

1. Terms and rewrite systems

2. Combinatory logic

3. Mockingbird lattices

4. Conclusion and future work

2 / 41



Outline

1. Terms and rewrite systems

3 / 41



Terms

A signature is a graded set G :=
⊔

n>0 G(n) wherein each a ∈ G(n) is an constant of arity n.

A G-term is
either a variable x from the set X := {x1, x2, . . .};
either a pair (a, (t1, . . . , tn)) where a ∈ G(n) and each ti is a G-term.

The set of all G-terms is denoted by T(G).

– Example –

x2 x3

x1 x1

x3

b

a

a

b

This is the tree representation of the G-term

(a, ((b, (x1, x2)), (b, ((a, (x1, x1)), x3))))

where G := G(2) := {a, b}.
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More on terms

The frontier of a G-term t is the sequence of the variables appearing in t.

The ground arity of t is the greatest integer n such that xn is a variable appearing in t, its arity is
the length of its frontier, and its degree is its number of its internal nodes.

– Example –

x2 x5 x3x3

d x1

d x3

a c

c

a

b
The frontier of this term is (x2, x3, x1, x3, x5, x3).

Its ground arity is 5, its arity is 6, and its degree is 7.

The term t is
planar if its frontier is (x1, . . . , xn);
standard if its frontier is a permutation of (x1, . . . , xn);
linear if there are no multiple occurrences of the same variable in the frontier of t;
closed if its arity is 0.
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Rewrite systems on terms

A rewrite relation on T(G) is a binary relation→ on T(G) such that if s→ s′, then all variables of
s′ appear in s.

The context closure of→ is the binary relation⇒ satisfying t⇒ t′ whenever t′ is obtained by
replacing in t a factor s by s′ provided that s→ s′.

– Example –
For G := G(2) := {a}, let the rewrite relation→ de�ned by

x1 x1

a →
x1

and
x1 x2

x3a

a
→

x1 x1 x3 x3

a

a

a .

We have

x2

x3

x5x2

x2 x1 x3

a a

a

a

a

a

⇒ x2

x1

x5 x5

x2

x2 x1 x2

a a

a

a

a

a

a

⇒ x2

x1

x5x2

x2 x1 x2

a a

a

a

a

a

.

A term rewrite system (TRS) is such a pair (G,→).
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More on rewrite systems

Let S := (G,→) be a TRS.

We de�ne
4 as the re�exive and transitive closure of⇒;
≡ as the re�exive, symmetric, and transitive closure of⇒;
G(T) as the digraph on the set {t′ ∈ T(G) : t 4 t′ for a t ∈ T} of vertices and the set⇒ of
edges, where T is any subset of T(G).

A term t ∈ T(G) is
a normal form for S if there is no edge of source t in G({t});
weakly normalizing in S if there is at least one normal form in G({t});
is strongly normalizing in S if G({t}) is �nite and acyclic.

When all G-terms are strongly normalizing, S is terminating.

If for any G-term t, t 4 s1 and t 4 s2 implies the existence of t′ such that s1 4 t′ and s2 4 t′, then
S is con�uent.
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Properties of rewrite systems

Let S := (G,→) be a TRS.

One has the following properties (see for instance [Baader, Nipkow, 1998]).

– Proposition –

If S is terminating and con�uent, then the set of normal forms of S is a set of representatives of T(G)/≡.

– Proposition –
If S is terminating and con�uent, then to decide if t ≡ t′ in S , compute s and s′ as, respectively, the
unique formal forms in the ≡-equivalence classes of t and t′ and check if s = s′.

– Proposition –
The set of normal forms of S is the set of all G-terms avoiding each G-term t where t is on the left of a
rule of S .
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The Tamari rewrite system

Let G := G(2) := {a} and→ be the rewrite relation on T(G) de�ned by

x1 x2

x3a

a
→ x1

x2 x3

a

a .

Here are the �rst graphs T(k) of planar G-terms of degrees k > 0:
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a

a
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a
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a
a

a
a

a
a

a
a

a

a

a

a
a

a

a
a

a

a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a

a
a

a
a
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a

a

a
a

a

a
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a
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a
a

a
a

T(0) T(1) T(2) T(3) T(4)
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The Tamari rewrite system

The binary relation→ is the right rotation operation, an important operation on binary search
trees appearing in algorithms handling balanced binary trees [Adelson-Velsky, Landis, 1962].

This TRS is terminating and con�uent.
As consequence, 4 is a partial order relation.
This order endows each set T(k) with the structure of a lattice, known as Tamari lattice
[Huang, Tamari, 1962].

The set of normal forms of this TRS contains all right comb trees, that are the trees avoiding

x1 x2

x3a

a
.

There is exactly one planar normal form of degree k for any k > 0.
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A variant of the Tamari rewrite system

Let G := G(2) := {a} and→ be the rewrite relation on T(G) de�ned by

x1 x2

x3

x4

a

a

a

→ x1

x2

x3 x4

a

a

a

.

Here are the �rst graphs T3(k) of planar G-terms of degrees k > 0:
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T3(0) T3(1) T3(2) T3(3) T3(4)
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A variant of the Tamari rewrite system

This TRS is terminating but not con�uent.

The Buchberger completion algorithm [Knuth, Bendix, 1970], [Dotsenko, Khoroshkin, 2010] is a
semi-algorithm taking as input a terminating but not con�uent TRS (G,→) and outputting a new
rewrite relation→′ such that

(G,→′) is terminating and con�uent; the preorders 4 and 4′ are equal.

– Theorem [Chenavier, Cordero, G., 2018] –
The normal forms of a completion of the previous TRS can be described as the G-terms avoiding 11
planar G-terms of degrees from 3 to 7.

The generating series of the planar normal forms of this TRS, enumerated w.r.t. their arities, is

F(t) =
t

(1− t)2

(
1− t + t2 + t3 + 2t4 + 2t5 − 7t7 − 2t8 + t9 + 2t10 + t11).

The �rst coe�cients of this generating series are

1, 1, 2, 4, 8, 14, 20, 19, 16, 14, 14, 15, 16, 17, 18, 19, 20.
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Enumeration of planar terms avoiding factors

– Theorem [G., 2020] –
Let G be a signature, and P be a set of planar G-terms. The generating series enumerating the planar
G-terms avoiding P w.r.t. the arity (parameter t) and the degree (parameter q) is F(P, ∅) where, for any
setQ of planar G-terms,

F(P,Q) = t + q
∑
k>1

a∈G(k)

∑
`>1

{R(1),...,R(`)}⊆M(P∪Q,a)
(S1,...,Sk)=R(1)u···uR(`)

(−1)1+`
∏
i∈[k]

F(P,Si).

– Example –

For P :=

{
a

a

b

}
, we obtain the algebraic system of equations

F(P, ∅) = t + q F(P, {a}) F(P, ∅) + q F(P, ∅) F(P, {b})− q F(P, {a}) F(P, {b}) + q F(P, ∅) F(P, ∅),
F(P, {a}) = t + q F(P, ∅) F(P, ∅),
F(P, {b}) = t + q F(P, {a}) F(P, ∅) + q F(P, ∅) F(P, {b})− q F(P, {a}) F(P, {b}).
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Applicative terms

An applicative signature is a signature G satisfying G = G(0) tG(2) where G(2) = {a}.

An applicative term is a term on an applicative signature.

Each applicative term can be expressed as a bracketed in�x expression on G(0) t X wherein the
symbol a is made implicit and the bracketing is implicit from left to right.

– Example –
On the applicative signature G where G(0) = {A,B,C},

A x1

x1 A B x2

a

a

a

a

a ↔ (A a (x1 a A)) a (((B a x2) a x1)) ↔ (A (x1 A))(((B x2) x1)) ↔ A(x1 A)(B x2x1).
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Combinatory logic systems

A combinatory logic system (CLS) is a pair (C,→) where
C is a �nite set;
→ is a rewrite relation on the applicative signature GC where GC(0) = C, and for any X ∈ C,
there is exactly one rule of the form

X x1 . . . xn → t

such that t is an {a}-term.

– Example –
Let the CLS (C,→) [Schön�nkel, 1924] [Curry, 1930] where C := {I,K, S} and→ satis�es

I x1 → x1, K x1x2 → x1, S x1x2x3 → x1x3(x2x3).

This CLS is Turing complete: there are algorithms to faithfully translate any λ-term into a term of
this CLS. These are abstraction algorithms [Rosser, 1955], [Curry, Feys, 1958].
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Some important combinators

In To Mock a Mockingbird: and Other Logic Puzzles [Smullyan, 1985], a large number of rules are listed.

Here is a sublist:

Identity bird: I x1 → x1

Mockingbird: M x1 → x1x1

Kestrel: K x1x2 → x1

Thrush: T x1x2 → x2x1

Mockingbird 1: M1 x1x2 → x1x1x2

Warbler: W x1x2 → x1x2x2

Lark: L x1x2 → x1(x2x2)

Owl: O x1x2 → x2(x1x2)

Turing bird: U x1x2 → x2(x1x1x2)

Cardinal: C x1x2x3 → x1x3x2

Vireo: V x1x2x3 → x3x1x2

Bluebird: B x1x2x3 → x1(x2x3)

Starling: S x1x2x3 → x1x3(x2x3)

Jay: J x1x2x3x4 → x1x2(x1x4x3)
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Algorithmic questions

Let C := (C,→) be a CLS.

– Word problem –
Is there an algorithm to decide, given two terms t and t′ of C, if t ≡ t′? (See [Baader, Nipkow, 1998],
[Statman, 2000].)

Yes for the CLS on L [Statman, 1989], [Sprenger, Wymann-Böni, 1993].
Yes for the CLS on W [Sprenger, Wymann-Böni, 1993].
Yes for the CLS on M1 [Sprenger, Wymann-Böni, 1993].
Open for the CLS on S [RTA Problem #97, 1975].

– Strong normalization problem –

Is there an algorithm to decide, given a term t of C, if t is strongly normalizing?

Yes for the CLS on S [Waldmann, 2000].
Yes for the CLS on J [Probst, Studer, 2000].
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Combinatorial questions

Let C := (C,→) be a CLS.

– Structure of the rewriting graphs –
1. Are all the connected components of the graph G(T(GC)) of C �nite?

2. Understand when G({t}) and G({t′}) are isomorphic graphs.

3. Is the preorder 4 an order relation on T(GC)?

4. If so, are all intervals [t, t′] lattices?

– Enumerative issues –
1. In the graph G(T(GC)) of C, count w.r.t. their degrees the closed terms that are

1.1 minimal;
1.2 maximal (which are thus normal forms);
1.3 both minimal and maximal (which are thus isolated vertices).

2. Count the ≡-equivalence classes of closed terms w.r.t. their degrees.

3. Count the connected components of G(T(GC)) w.r.t. the minimal degrees of their closed terms.
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First properties: termination

A CLS C can be non-terminating.

There are several possible causes:
The set G({t}) is in�nite for a term t of C.

– Example –
In the CLS on S, the terms

S(S S)(S S)(S(S S)(S S)) [Zachos, 1978];

S S S(S S S)(S S S) [Barendregt, 1984]

have this property.

There is a cycle, that is two terms t and t′ of C such that t⇒ t′ 4 t.

– Example –

In the CLS on F x1x2 → x2x2, one has t⇒ t′ ⇒ t with t := F F(F F F) and t′ := F F F(F F F).
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First properties: con�uence and lattices

– Proposition –

Any CLS is con�uent.

This is a consequence of the orthogonality [Rosen, 1973] of any CLS.
A rewrite relation→ is orthogonal if

t→ t′ implies that t is linear;
t→ t′, s→ s′, and t and s overlap, implies t = s.

Some terminating (and con�uent) CLS have intervals that are not lattices.

– Example –

In the CLS on I x1 → x1, the interval [I I(I I I), I I]
admits the Hasse diagram

I I(I I I)

I(I I I) I I(I I)

I(I I) I I I

I I

.
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Outline

3. Mockingbird lattices
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The Mockingbird rewrite graph

Let us focus on the CLS on M x1 → x1x1.

Here is the graph G(T(GC)) restrained to closed terms of degrees 3 or less:

M MM M(MM)

MM(MM)

M(M(MM))

M(MM(MM))

M(MM)(M(MM))

M(MMM)

MMM(MMM)

MM(MM)(MM(MM))

MMM M(MM)M

MM(MM)M

M(MM)(MM(MM)) MM(MM)(M(MM))

MMMM
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Termination

Let→′ the rewrite relation de�ned by M(x1x2)→′ (x1x2)(x1x2).

– Lemma –
The preorders 4 and 4′ are equal.

– Lemma –
If t⇒′ t′, then ht(t) = ht(t′) and deg(t) < deg(t′).

As a consequence, 4′ is an order relation.

– Proposition [G., 2021–] –
The relation 4 is an order relation on terms on M. Moreover, each connected component of the Hasse
diagram of this poset is �nite.
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Order relation on black and white trees

A black and white tree (BWT) is a planar rooted tree such that each internal node is either black or
white. Let Tbw be the set of such trees.

Let ⇒⇒ be the binary relation on Tbw such that p⇒⇒ q if q can
be obtained from p by selecting a white node u of p, by turning
it into black, and by duplicating its sequence of descendants.

If p⇒⇒ q, then there are more black nodes in q than in p. Hence,
the re�exive and transitive closure� of ⇒⇒ is a partial order.

– Example –

u ⇒⇒

– Lemma –
One has p� p′ i�

either p = (p1, . . . , p`), p
′ = (p′1, . . . , p

′
`), and pi � p′i for all i ∈ [`];

or p = (p1, . . . , p`), p
′ = (p′1, . . . , p

′
`), and pi � p′i for all i ∈ [`];

or p = (p1, . . . , p`), p
′ = (p′1, . . . , p

′
`, p
′′
1 , . . . , p

′′
` ), and pi � p′i and pi � p′′i for all i ∈ [`].
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Lattices on BWT

Let ∧ and ∨ be the two partial binary, commutative, and associative operations on Tbw de�ned by

(p1, . . . , p`) ∧ (p′1, . . . , p
′
`) := (p1 ∧ p′1, . . . , p` ∧ p′`),

(p1, . . . , p`) ∧ (p′1, . . . , p
′
`) := (p1 ∧ p′1, . . . , p` ∧ p′`),

(p1, . . . , p`) ∧ (p′1, . . . , p
′
`, p
′′
1 , . . . , p

′′
` ) := (p1 ∧ p′1 ∧ p′′1 , . . . , p` ∧ p′` ∧ p′′` ),

and

(p1, . . . , p`) ∨ (p′1, . . . , p
′
`) := (p1 ∨ p′1, . . . , p` ∨ p′`),

(p1, . . . , p`) ∨ (p′1, . . . , p
′
`) := (p1 ∨ p′1, . . . , p` ∨ p′`),

(p1, . . . , p`) ∨ (p′1, . . . , p
′
`, p
′′
1 , . . . , p

′′
` ) := (p1 ∨ p′1, . . . , p` ∨ p′`, . . . , p1 ∨ p′′1 , . . . , p` ∨ p′′` ).

– Proposition [G., 2021–] –

Given a BTW p, the set {p′ ∈ Tbw : p� p′} is a lattice for the operations ∧ and ∨.
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Lattices of closed terms on M

Given a closed term t on M, let φ(t) be the BWT ob-
tained by

1. by adding a root to t;

2. by replacing each internal node of t having a left
child M and a right child di�erent from M by a ;

3. by connecting these new nodes following the
paths in t.

– Example –

M

M

M

MM

M

M

MM

MM

MM

M

a

a

a

a

a

a

a

a

a

a

a

a

a

φ7−→

– Lemma –
Let t and t′ be two closed terms on M. One has t⇒′ t′ i� φ(t)⇒⇒φ(t′).

– Theorem [G., 2021–] –

For any closed term t on M, the poset (G({t}),4) is a �nite lattice.
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Maximal and minimal terms

A closed term on M is maximal i� it avoids the pattern M(x1x2).
The formal sum F of these trees enumerated w.r.t. their degrees satis�es the equation

F = M+FM+(F−M)(F−M).

Therefore, the generating series F of these terms satis�es F = 1 + tF + (F − 1)2. Its �rst
coe�cients are 1, 1, 1, 2, 4, 9, 21, 51, 127, 323, 835 and are Motzkin numbers (Seq. A001006).

A closed term on M is minimal i� it avoids the pattern (x1x2)(x1x2).
This leads to the recurrence for the number a(d) of such trees of degree d:

a(0) = a(1) = 1, a(d + 1) = b(d) if d is odd, a(d + 1) = b(d)− a(d/2) otherwise,

where b(d) :=
∑

06k6d
a(k)a(d − k). The �st numbers are 1, 1, 2, 4, 12, 34, 108, 344, 1136, 3796, 12920.
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Mockingbird lattices

The Mockingbird lattice of order k > 0 is the lattice M(k) on G({t}) where t is the term
M(M(. . . (MM) . . .)) of degree k.
Here are the Hasse diagrams of these �rst lattices:

M(0) M(1) M(2) M(3) M(4)

– Theorem [G., 2021–] –

For any BWT p, {p′ ∈ Tbw : p� p′} is isomorphic to a maximal interval of a Mockingbird lattice.
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Minimal and maximal paths

Let p be a BWT.

Let w(p) be the integer de�ned recursively as

w( (p1, . . . , p`)) = 1 + 2
∑
i∈[`]

w(pi),

w( (p1, . . . , p`)) =
∑
i∈[`]

w(pi).

– Example –

0
15

0

2

1 1

7
1

– Proposition [G., 2021–] –
Let t be a closed term on M and P be the lattice (G({t}),4).

A shorted path from t to the maximal element of P has as length the number of in φ(t).

A longest path from t to the maximal element of P has length w(φ(t)).

Therefore, a longest path in M(k) for k > 1 as length 2k−1 − 1.
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Number of initial intervals

Let p be a BWT.

Let s(p) be the integer de�ned recursively as

s( (p1, . . . , pk)) =

∏
i∈[k]

s(pi)

1 +
∏
i∈[k]

s(pi)

,
s( (p1, . . . , pk)) =

∏
i∈[k]

s(pi).

– Example –

1
5256

1

4

2 2

72
2

– Proposition [G., 2021–] –

Let t be a closed term on M and P be the lattice. (G({t}),4). Then, #P = s(φ(t)).

The numbers a(k) of initial intervals in M(k) satis�es a(0) = a(1) = 1, and for k > 2,
a(k) = a(k − 1)(1 + a(k − 1)). The �rst numbers are

1, 1, 2, 6, 42, 1806, 3263442, 10650056950806, 113423713055421844361000442.
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Outline

4. Conclusion and future work
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Other CLS: L

When #C = 1, one gets already some interesting CLS. Here are experimental data some of these.

For L x1x2 → x1(x2x2):
Minimal terms: 1, 1, 1, 2, 5, 13, 34, 94, 265, 765, 2237, 6632;
Maximal terms: 1, 1, . . . ;
Isolated terms: 1, 1, 0, 0, . . . ;
Equivalence classes : 1, 1, 1, 2, 5, 12, 31, 83;
Connected components: 1, 1, 1, 2, 4, 9, 22, 60;
→ is not terminating;
4 is an order relation;
Intervals seem lattices.
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Other CLS: L

The rewriting graph of terms on L from closed terms of degrees up to 5 and up to 4 rewritings:
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Other CLS: S

For S x1x2x3 → x1x3(x2x3):
Minimal terms: 1, 1, 2, 4, 10, 26, 76, 224, 690, 2158, 6882, 22208;
Maximal terms: 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798 (Motzkin numbers);
Isolated terms: 1, 1, 2, 3, 7, 15, 37, 87, 218, 546, 1393, 3583;
Equivalence classes: 1, 1, 2, 4, 10, 27, 78, 234, 722, 2271;
Connected components: 1, 1, 2, 4, 10, 26, 74, 217, 660, 2053;
→ is not terminating;
4 is an order relation [Bergstra, Klop, 1979];
Intervals seem lattices.
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Other CLS: S

The rewriting graph of terms on S from closed terms of degrees up to 6 and up to 11 rewritings:
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Other CLS: T

For T x1x2 → x2x1:
Minimal terms: 1, 0, 0, . . . ;
Maximal terms: 1, 1, . . . ;
Isolated terms: 1, 0, 0, . . . ;
Equivalence classes: 1, 1, 2, 3, 4, 5, 6;
Connected components: 1, 1, . . . ;
→ is terminating;
4 is an order relation;
Interval seem lattices.
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Other CLS: T

The rewriting graph of terms on T from closed terms of degrees up to 6 and up to 1 rewriting:
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Other CLS: C

For C x1x2x3 → x1x3x2:
Minimal terms: 1, 1, . . . ;
Maximal terms: 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798 (Motzkin numbers);
Isolated terms: 1, 1, . . . ;
Equivalence classes : 1, 1, 2, 5, 13, 33, 83, 209, 531, 1365;
Connected components : 1, 1, 2, 4, 9, 21, 51, 127, 323, 835 (Motzkin numbers);
→ is terminating;
4 is an order relation;
Interval seem lattices.
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Other CLS: C

The rewriting graph of terms on C from closed terms of degrees up to 6 and up to 1 rewriting:
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Some questions

– Connections with order theory –
Given a CLS C, obtain (necessary/su�cient) conditions for the fact that

1. C is terminating;

2. when 4 is an order relation, all the 4-intervals of C are lattices;

– Normalization –
Provide a generic way to describe all the strongly normalizing terms of a CLS.

– Connection with clone theory –
Realize a CLS as a clone.

Indeed, each CLS C := (C,→) gives rise to a clone de�ned as the quotient of the free clone generated
by GC by the clone congruence generated by→. A combinatorial realization of this algebraic structure
would provide an encoding of the ≡-equivalence classes of terms of C compatible with term composition.
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