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Production rules on words
Let A be a finite alphabet partitioned into two sets

I V , a set of variables;
I T , a set of terminal symbols.

A production rule is an element (a, u) of V × A∗.

A set of production rules P behaves as rewrite rules on words of A∗. If
v ,w ∈ A∗ and (a, u) ∈ P,

vaw → vuw .

The reflexive and transitive closure of → is the derivation relation.

Example
Let V := {a,b}, T := {a, b, c}, and P := {(a, b), (a, aab), (b, ac)}.
Since

baa→ baaba→ bbaba→ bbaaca,

the word bbaaca is derivable from baa.
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Context-free grammars
A context-free grammar G is a tuple (V ,T ,P, s) where

I V is a finite set of variables;
I T is a finite set of terminal symbols;
I P is a set of production rules;
I s is the starting variable.

A word u ∈ (V t T )∗ is generated by G if

s→ · · · → u

and u has no occurrence of any variable.

Example
Let G be the context-free grammar with V := {a,b}, T := {a, b, c},
P := {(a, b), (a, aab), (b, ac)}, and s := a. Since

a→ aab→ bab→ baac ,

the word baac is generated by G .
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A-trees
Let A be a finite graded alphabet partitioned into two sets

I V , a set of variables, where |a| = 0 for all a ∈ V ;
I T , a set of terminal symbols, where |a| ∈ N for all a ∈ T .

An A-tree is a planar rooted tree where internal nodes are labeled on T
and leaves are labeled on A, respecting the ranks of the symbols.

Example
Let V := {a,b} and T := {a, b, c} where |a| := 1, |b| := 2, and |c| := 0.
The planar rooted tree

c b

a ca

b

b

b
a

is an A-tree.
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Production rules on trees

A production rule is an element (a, t) of V × A∗, where A∗ is the set of
all A-trees.

A set of production rules P behaves as rewrite rules on A-trees. If s is an
A-tree with a leaf labeled by a and (a, t) ∈ P,

s

a

→ s

t

.

The reflexive and transitive closure of → is the derivation relation.

9 / 67



Production rules on trees

A production rule is an element (a, t) of V × A∗, where A∗ is the set of
all A-trees.

A set of production rules P behaves as rewrite rules on A-trees. If s is an
A-tree with a leaf labeled by a and (a, t) ∈ P,

s

a

→ s

t

.

The reflexive and transitive closure of → is the derivation relation.

9 / 67



Production rules on trees

A production rule is an element (a, t) of V × A∗, where A∗ is the set of
all A-trees.

A set of production rules P behaves as rewrite rules on A-trees. If s is an
A-tree with a leaf labeled by a and (a, t) ∈ P,

s

a

→ s

t

.

The reflexive and transitive closure of → is the derivation relation.

9 / 67



Production rules on trees

Example
Let V := {a,b}, T := {a, b, c} where |a| := 1, |b| := 2, and |c| := 0,
and

P :=
{(

a, c

)
,

(
b,

a c
b

)}
.

One has the derivation

b a
b →

a c
ab

b
→

a c
cb

b
.
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Regular tree grammars
A regular tree grammar G is a tuple (V ,T ,P, s) where

I V is a finite set of variables;
I T is a finite set of terminal symbols;
I P is a set of production rules;
I s is the starting variable.

An A-tree t is generated by G if

s → · · · → t

and t has no occurrence of any variable (i.e., all leaves of t are labeled
on T ).

Example
Let G be the regular tree grammar with V := {a, b}, T := {a, b, c} where
|a| := 2, |b| := 1, and |c| := 0,

P :=
{(

a, c

)
,

(
a,

b b
a

)
,
(

b, c

)
,

(
b,

a
b

)}
,

and s := a. This grammar generates all alternating unary-binary trees with a
nonunary root
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Objectives

Objective
Develop grammars generating any kind of combinatorial objects such as

I words;
I various species of trees;
I integer compositions;
I various species of paths;
I etc.

For this, we shall
I rely on colored operad theory;
I develop the notion of formal power series on colored operads.
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Colored operads
In this work any operad C is

I nonsymmetric;

I set-theoretical:
C =

⊔
n>0
C(n);

I such that C(0) is empty;

I such that all C(n), n > 1, are finite;

I endowed with a composition map

◦ : C(n)× C(m1)× · · · × C(mn)→ C(m1 + · · ·+ mn)

and equivalent partial composition maps

◦i : C(n)× C(m)→ C(n + m − 1), i ∈ [n].
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Colored operads

In this work any operad C is

I is colored on a set C of colors. Color maps are

out : C(n)→ C , n > 1,

and
in : C(n)→ C n, n > 1.

A partial composition x ◦i y is defined if and only if out(y) = ini(x);

I colored units are denoted by 1c , c ∈ C , and satisfy

in(1c) = c = out(1c).

Any noncolored operad can be seen as a colored operad on a singleton as
set of colors.
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Bud operads
Let O be a noncolored operad and C be a finite set.

Let BudC (O), the bud operad of O, be the colored operad defined by

BudC (O)(n) := C ×O(n)× C n, n > 1,

wherein
out((a, x , u)) := a,

in((a, x , u)) := u,

and
(a, x , u) ◦i (b, y , v) := (a, x ◦i y , u ← [i v),

where u ← [i v is the word obtained by replacing the i-th letter of u by v .

Proposition
The construction O 7→ BudC (O) is a functor from the category of
noncolored operads to the category of C -colored operads.
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The bud operad of the associative operad

The associative operad As is defined by

I As(n) := {?n}, n > 1;

I ?n ◦i ?m := ?n+m−1.

For any set of colors C ,

BudC (As) =
⊔
n>1
{(a, ?n, u1 . . . un) : a, u1, . . . , un ∈ C } .

Example
In Bud{1,2,3}(As),

(2, ?4, 3112) ◦2 (1, ?3, 233) = (2, ?6, 323312).

19 / 67



The bud operad of the associative operad

The associative operad As is defined by

I As(n) := {?n}, n > 1;

I ?n ◦i ?m := ?n+m−1.

For any set of colors C ,

BudC (As) =
⊔
n>1
{(a, ?n, u1 . . . un) : a, u1, . . . , un ∈ C } .

Example
In Bud{1,2,3}(As),

(2, ?4, 3112) ◦2 (1, ?3, 233) = (2, ?6, 323312).

19 / 67



The bud operad of the associative operad

The associative operad As is defined by

I As(n) := {?n}, n > 1;

I ?n ◦i ?m := ?n+m−1.

For any set of colors C ,

BudC (As) =
⊔
n>1
{(a, ?n, u1 . . . un) : a, u1, . . . , un ∈ C } .

Example
In Bud{1,2,3}(As),

(2, ?4, 3112) ◦2 (1, ?3, 233) = (2, ?6, 323312).

19 / 67



The operad of Motzkin paths and its bud operad
The operad of Motzkin paths Motz is defined by

I Motz(n) is the set of the Motzkin paths consisting in n − 1 steps;
I the partial composition x ◦i y of two Motzkin paths consists in

replacing the i-th point of x by y .

Example

◦4 =

For any set of colors C , any element of BudC (Motz) has one color for
each of its steps and one color for its output.

Example

2 2 1 3 2 2 12 2 1

2 is an element of Bud{1,2,3}(Motz)
with 2 as output color and 2213221
as input colors.
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Bud generating systems

A bud generating system B is a tuple (O,C ,R, I,T ) where

I O is a noncolored operad;

I C is a finite set of colors;

I R is a finite subset of BudC (O) of rules;

I I is a subset of initial colors of C ;

I T is a subset of terminal colors of C .

22 / 67



Production rules

A production rule is an element of BudC (O).

A set of production rules R behaves as a rewrite rule on BudC (O). For
any x1, x2 ∈ BudC (O), we have

x1 → x2

provided that there exist i ∈ N and r ∈ R such that

x2 = x1 ◦i r .

The reflexive and transitive closure of → is the derivation relation.
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Generation

A element x ∈ BudC (O) is generated by B if

1c → · · · → x

where c ∈ I and all colors of in(x) are in T .

Then, x is generated by B iff there exist c ∈ C , r1, . . . , rk ∈ R, and
i2, . . . , ik ∈ N such that

x = (. . . ((1c ◦1 r1) ◦i2 r2) . . . ) ◦ik rk

and in(x) ∈ T ∗.

The language of B is the set L(B) of all elements generated by B.
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Bud generating systems and Motzkin paths
Let the bud generating system B := (Motz, {1, 2},R, {1}, {1, 2}) where

R := {(1, , 22) , (1, , 111)} .

Example
There is in B the sequence of derivations

11 →
1 1 1

1
→

2 2 1 1

1
→

2 2 1 1 1 1

1

→
2 2 1 2 2 1 1

1

→
2 2 1 2 2 2 2 1

1

.

Proposition
L(B) is in bijection with the set of Motzkin paths with no consecutive
horizontal steps.

These Motzkin paths are enumerated by Sequence A104545:

1, 1, 1, 3, 5, 11, 25, 55, 129, 303, 721, 1743.
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Synchronous production rules

A synchronous production rule is an element of BudC (O).

A set of synchronous production rules R behaves as a rewrite rule on
BudC (O). For any x1, x2 ∈ BudC (O), we have

x1  x2

provided that there exist r1, . . . , r|x1| ∈ R such that

x2 = x1 ◦
[
r1, . . . , r|x1|

]
.

The reflexive and transitive closure of  is the synchronous derivation
relation.
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Synchronous generation

A element x ∈ BudC (O) is synchronously generated by B if

1c  · · · x

where c ∈ I and all colors of in(x) are in T .

Then, x is generated by B iff there exist c ∈ C ,
r1,1, r2,1, . . . , r2,j2 , . . . rk,1, . . . , rk,jk ∈ R such that

x = (. . . ((1c ◦ [r1,1]) ◦ [r2,1, . . . , r2,j2 ]) . . . ) ◦ [rk,1, . . . , rk,jk ]

and in(x) ∈ T ∗.

The synchronous language of B is the set SL(B) of all elements
synchronously generated by B.
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Bud generating systems and balanced binary trees
Let the bud generating system B := (Mag, {1, 2},R, {1}, {1}) where
Mag := Free({a}), |a| := 2, and

R :=
{(

1, a , 11
)
,

(
1, a , 12

)
,

(
1, a , 21

)
, (2, 1, 1)

}
.

Example
There is in B the sequence of derivations

11  
1 2

a

1

 
2 1

1a

a

1

 
1

1 1
2 1

a

a

a

a

1

 
1

2

1
2 11

1 2 1

a

a

a

a

a

a

a

a

1

 

1 1

1 1 1 1

1

1 1 1

1 1

1

1 1

a

a

a

a

a

a

a

a

a

a

a

a

a

a

1

.

Proposition
SL(B) is in bijection with the set of balanced binary trees.
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Balanced binary trees
A balanced binary tree is a binary tree t such that, for each internal node
x of t, the height of the left and of the right subtrees of x differ by at
most 1.
First balanced binary trees are

, , , , ,

, , , .

These trees are enumerated by Sequence A006265:

1, 1, 2, 1, 4, 6, 4, 17, 32, 44, 60, 70.

Their generating series is F (x , 0) where

F (x , y) = x + F (x2 + 2xy , x).
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Languages of bud generating systems

Proposition
If B := (O,C ,R, I,T ) is a bud generating system,

L(B) = {x ∈ BudC (O) : x ∈ C, out(x) ∈ I, in(x) ∈ T ∗} ,

where C is suboperad of BudC (O) generated by R.

Proposition
If B is a bud generating system, SL(B) ⊆ L(B).
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Simulation of context-free grammars

Let G := (V ,T ,P, s) be a proper context-free grammar, i.e., for all
(a, u) ∈ P, |u| > 1.

Let the bud generating system

B := (As,V t T ,R, {s},T )

where
R :=

{(
a, ?|u|, u

)
: (a, u) ∈ P

}
.

Proposition
The map in : L(B)→W , where W is the set of words generated by G , is
a bijection.

Hence, any proper context-free grammar can be simulated by a bud
generating system based on the associative operad.
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Simulation of context-free grammars

Example
Let G := ({a,b}, {a, b},P, a) be the proper context-free grammar where

P := {(a, a), (a, bb), (b, b), (b, ab)}.

The bud generating system B := (As, {a,b, a, b},R, {a}, {a, b}) where

R := {(a, ?1, a), (a, ?2, bb), (b, ?1, b), (b, ?2, ab)}

simulates G .
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Simulation of context-free grammars

Example
The sequence of derivations

a→ bb→ bab→ bbbb→ bbbb→ bbbab→ bbbab→ bbbab

in G is interpreted into the sequence of derivations

1a → (a, ?2, bb)→ (a, ?3, bab)→ (a, ?4, bbbb)→ (a, ?4, bbbb)
→ (a, ?5, bbbab)→ (a, ?5, bbbab)→ (a, ?5, bbbab)

in B.
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Simulation of regular tree grammars
Let G := (V ,T ,P, s) be a regular tree grammar.

Let the bud generating system

B := (Free(T \ T (0)),V t T (0),R, {s},T (0))

where
R := {(a, tr(t), fr(t)) : (a, t) ∈ P} ,

tr(t) denoting the tree obtained by forgetting the labels of the leaves of t
and fr(t) denoting the word obtained by reading the labels of the leaves
of t.

Proposition
The map φ : L(B)→W defined by φ((a, t, u)) := tu, where tu is the tree
obtained by labeling the leaves of t by the letters of u and where W is
the set of trees generated by G , is a bijection.

Hence, any regular tree grammar can be simulated by a bud generating
system based on free operads.
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Simulation of regular tree grammars

Example
Let G := ({a,b}, {a, b, c, d},P, a) be the regular tree grammar where
|a| := 0, |b| := 0, |c| := 1, |d | := 2, and

P :=
{(

a, b

)
,

(
a, c

a

)
,

(
a,

a a
d

)
,

(
b, a

)
,

(
b, b

)}
.

The bud generating system
B := (Free({c, d}, {a,b, a, b},R, {a}, {a, b})) where

R :=

{(
a, , b

)
,

(
a, c , a

)
,

(
a, d , aa

)
,

(
b, , a

)
,

(
b, , b

)}

simulates G .
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Simulation of regular tree grammars
Example
The sequence of derivations

a →
a a

d →
a

ac
d

→
a

ac
d

→
a

bc
d

in G is interpreted into the sequence of derivations

1a →
(

1a, d , aa
)
→

1a, c
d

, aa



→

1a, c
d

, aa

 →

1a, c
d

, ab


in B.
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Series on colored operads

Let C be a colored operad and K be a field (K := Q(q0, q1, . . . )).

A C-series is a map
f : C → K.

The set of all such series is denoted by K 〈〈C〉〉.

The coefficient f(x) of x ∈ C in f is denoted by 〈x , f〉.

The support of f is the set

Supp(f) := {x ∈ C : 〈x , f〉 6= 0} .
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Series on colored operads

The set K 〈〈C〉〉 is endowed with the pointwise addition and the
multiplication by a scalar, forming a vector space.

The extended notation of a C-series f is

f =
∑
x∈C
〈x , f〉 x .

The series of colored units is

u :=
∑
c∈C

1c ,

where C is the set of colors of C.
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Generating series and operads

C-series form generalizations of usual generating series.

There are other ones:
I series on monoids [Salomaa, Soittola, 1978];
I series on trees [Berstel, Reutenauer, 1982];
I series on operads [Chapoton, 2002].

Several definitions of series have been considered on various sorts of
operads:

I algebraic (and symmetric) operads [Chapoton, 2002, 2009];
I nonsymmetric algebraic operads [van der Laan, 2004];
I nonsymmetric set-operads O with O(1) := {1} [Frabetti, 2008];
I algebraic (and symmetric) operads [Loday, Nikolov, 2013].
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Pre-Lie product
The pre-Lie product f x g of two C-series f and g is defined by

〈x , f x g〉 :=
∑

y ,z∈C
i∈[|y |]
x=y◦i z

〈y , f〉 〈z , g〉 .

The product x is
I bilinear;
I totally defined (because all C(n) are finite);
I admits u as a left (but not right) unit.

Proposition
The pre-Lie product satisfies

(f x g) x h− f x (g x h) = (f x h) x g − f x (h x g).

Hence, (K 〈〈C〉〉 ,x) is a pre-Lie algebra.
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Pre-Lie star product
For any ` > 0, let

fx` :=
{

u if ` = 0,
fx`−1 x f otherwise.

The x-star of f is the C-series

fx∗ :=
∑
`>0

fx` .

A subset S of C(1) is C-finitely factorizing if all x ∈ C(1) admits finitely
many factorizations on S.

Lemma
If Supp(f)(1) is C-finitely factorizing, fx∗ is a well-defined series.
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Pre-Lie star product

Proposition
If f is a C-series such that Supp(f)(1) is C-finitely factorizing,

〈x , fx∗〉 = δx ,1out(x) +
∑

y ,z∈C
i∈[|y |]
x=y◦i z

〈y , fx∗〉 〈z , f〉 .

Proposition
If f is a C-series such that Supp(f)(1) is C-finitely factorizing, the
equation

x− x x f = u

admits the unique solution x = fx∗ .

45 / 67



Pre-Lie star product

Proposition
If f is a C-series such that Supp(f)(1) is C-finitely factorizing,

〈x , fx∗〉 = δx ,1out(x) +
∑

y ,z∈C
i∈[|y |]
x=y◦i z

〈y , fx∗〉 〈z , f〉 .

Proposition
If f is a C-series such that Supp(f)(1) is C-finitely factorizing, the
equation

x− x x f = u

admits the unique solution x = fx∗ .

45 / 67



Composition product

The composition product f � g of two C-series f and g is defined by

〈x , f � g〉 :=
∑

y ,z1,...,z|y|∈C
x=y◦[z1,...,z|y|]

〈y , f〉
∏

i∈[|y |]

〈zi , g〉 .

The product � is
I linear of the left (but not on the right);
I totally defined (because all C(n) are finite);
I admits u as a left and right unit.

Proposition
The composition product is associative and hence, (K 〈〈C〉〉 ,�) is a
monoid.
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Composition star product

For any ` > 0, let

f�` :=
{

u if ` = 0,
f�`−1 � f otherwise.

The �-star of f is the C-series

f�∗ :=
∑
`>0

f�` .

Lemma
If Supp(f)(1) is C-finitely factorizing, f�∗ is a well-defined series.
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Composition star product

Proposition
If f is a C-series such that Supp(f)(1) is C-finitely factorizing,〈

x , f�∗
〉
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〈
y , f�∗

〉 ∏
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Hook generating series
The hook generating series of B is

hook(B) := i� rx∗ � t,

where r (resp. i, t) is the characteristic series of R (resp. {1c : c ∈ I},
{1c : c ∈ T}).

Example
For B := (Mag, {1}, { } , {1}, {1}),
hook(B) = + + + + + 2 + + +

+ + 3 + 2 + 3 + 3 + + 3

+ + + + 2 + + + + · · · .

This example explains the name of hook(B): the coefficients of the above
series can be obtained by a hook formula on binary trees [Knuth, 1973].
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Analogs of the hook statistic

Let O be an operad, G be a generating set of O, and consider the bud
generating system BO,G := (O, {1},G , {1}, {1}).

The coefficients 〈x ,hook(B)〉 define a statistic on the objects of O,
analogs to the hook statistic on trees.

Example
From BMotz,G with G := { , }, we have an analog of the hook
statistic for Motzkin paths:

→ 1,

→ 1,

→ 2,

→ 1,

→ 6,

→ 2,

→ 2,

→ 1,

→ 24,

→ 6,

→ 6,

→ 3,

→ 6,

→ 2,

→ 3,

→ 2,

→ 1.
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Derivation graphs
There is a combinatorial interpretation of hook(B).
The derivation graph of B is the oriented multigraph DG(B) with

I the set of elements derivable from 1c , c ∈ I, as set of vertices;
I there is a edge from x1 to x2 if x1 → x2.

Example
The derivation graph of B := (Motz, {1, 2},R, {1}, {1, 2}) where
R := {(1, , 22) , (1, , 111)} is

11

2 2 1 1 1

2 2 1 1 1 1 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1

2 2 1 2 2

.
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Derivation graphs and hook generating series
Proposition
If R(1) is BudC (O)-finitely factorizing, for all x ∈ L(B), the coefficient
〈x ,hook(B)〉 is the number of paths in DG(B) from a 1c , c ∈ I, to x .

Theorem
If R(1) is BudC (O)-finitely factorizing,

hook(B) =
∑

t∈Free(R)
out(t)∈I
in(t)∈T∗

deg(t)!∏
v∈N(t)

deg(tv )evalBudC (O)(t).

Proposition
If R(1) is BudC (O)-finitely factorizing,

Supp(hook(B)) = L(B).
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Synchronous generating series
The synchronous generating series of B is

sync(B) := i� r�∗ � t.

Theorem
If R(1) is BudC (O)-finitely factorizing,

sync(B) =
∑

t∈Freeperf(R)
out(t)∈I
in(t)∈T∗

evalBudC (O)(t).

Proposition
If R(1) is BudC (O)-finitely factorizing,

Supp(sync(B)) = SL(B).
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Outline

Series and bud generating systems
Series on colored operads
Series of bud generating systems
Series of colors
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Series of colors

Let f be a BudC (O)-series.

Let
col : K 〈〈BudC (O)〉〉 → K 〈〈BudC (As)〉〉

be the map defined by

〈(a, ?n, u), col(f)〉 :=
∑

(a,x ,u)∈BudC (O)

〈(a, x , u), f〉 .

This series is the series of colors of f.

The series col(f) is a version of f wherein only the colors of the elements
of its support are taken into account.
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Series of color types
Let

colt : K 〈〈BudC (O)〉〉 → K[[C ]]⊗K[[C ]]
be the map defined by

〈a ⊗ u, colt(f)〉 :=
∑

(a,x ,v)∈BudC (As)
type(v)=u

〈(a, x , v), col(f)〉 ,

where type(v) is the commutative image of v .

This series is the series of color types of f.

The series colt(f) is a version of f wherein only the output colors and the
commutative images of the input colors of the elements of its support are
taken into account.

Goal
Obtain a expression for colt(sync(B)), counting the elements
synchronously generated by B with respect to their number input colors.
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Synchronous generating series
We consider that C := {c1, . . . , ck} and R := {r1, . . . , r`}.
LetMin be the `× k-matrix defined by

Min
i,j := |in(ri)|cj .

LetMout be the `× k matrix defined by

Mout
i,j :=

{
1 if out(ri) = cj ,

0 otherwise.

Example
For B := (Mag, {1, 2},R, {1}, {1}) where

R :=
{(

1, a , 11
)
,

(
1, a , 12

)
,

(
1, a , 21

)
, (2, 1, 1)

}
,

we have
Min =

2 0
1 1
1 1
1 0

 and Mout =

1 0
1 0
1 0
0 1

 .
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Synchronous generating series

For any 1× k matrix α, C α denotes the monomial c1
α1 . . . ck

αk .

For any set S := {s1, . . . , sn} of nonnegative integers, S! denotes the
multinomial coefficient

(s1+···+sn
s1,...,sn

)
.

Theorem
If R(1) is BudC (O)-finitely factorizing, for all a ∈ C and α ∈ Mat(1, k),〈

a ⊗ C α, colt
(
r�∗
)〉

= δα,type(a)

+
∑

ζ∈Mat(1,`)
ζMin=α

∏
j∈[k]

{
ζi :Mout

i,j = 1
}

!

〈a ⊗ C ζMout
, colt

(
r�∗
)〉
.
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Enumeration of balanced binary trees
The synchronous language of the bud generating system
B := (Mag, {1, 2},R, {1}, {1}) where

R :=
{(

1, a , 11
)
,

(
1, a , 12

)
,

(
1, a , 21

)
, (2, 1, 1)

}
,

is the set of all balanced binary trees.

Since

Min =

2 0
1 1
1 1
1 0

 and Mout =

1 0
1 0
1 0
0 1

 ,

the series colt (r�∗) satisfies〈
1⊗ 1α12α2 , colt

(
r�∗
)〉

= δ(α1,α2),(1,0)

+
∑

2ζ1+ζ2+ζ3+ζ4=α1
ζ2+ζ3=α2

(
ζ1 + ζ2 + ζ3
ζ1, ζ2, ζ3

)〈
1⊗ 1ζ1+ζ2+ζ32ζ4 , colt

(
r�∗
)〉
.
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Enumeration of balanced binary trees

This leads to the definition of the map

fα1,α2 : N2 \ {(0, 0)} → N

satisfying f1,0 = 1 and the recurrence formula

fα1,α2 =
∑

2ζ1+α2+ζ4=α1

(
ζ1 + α2
ζ1

)
2α2 fζ1+α2,ζ4 .

The coefficient fα1,α2 is the coefficient of 1⊗ 1α12α2 in colt(sync(B)).

Moreover, since I = {1} and T = {1}, the number of balanced binary
trees with α1 leaves is〈

1⊗ 1α120, colt(sync(B))
〉

=
〈
1⊗ 1α120, colt

(
r�∗
)〉

= fα1,0.
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The bud operad of free operads
The free operad Free(G) over G , where G is a graded set, is defined by

I Free(G)(n) is the set of the planar rooted trees with n leaves and
where internal nodes are labeled on G , respecting the arities of the
labels;

I s ◦i t is tree obtained by grafting the root of t to the i-th leaf of s.

For any set of colors C ,

BudC (Free(G)) =
⊔
n>1

{(a, t, u1 . . . un) : a, u1, . . . , un ∈ C , t ∈ Free(G)(n)} .

Example
In Bud{1,2}(Free(G)) where G := {a, b}, |a| :=: 2, and |b| := 3,

1 2

2 1a

b

2

◦4 2
1 1

a

a

1

=
1 2

2

2

1 2

a

b

a

a

2

.
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The bud operad of free operads
In general, BudC (Free(G)) is not a free colored operad.

For instance, the colored operad Bud{1,2}(Free({a})) with |a| := 2 is
generated by the eight corollas

y1 y2

a

x

, x , y1, y2 ∈ {1, 2},

and are subject to the nontrivial quadratic relations

y z1

a

x

◦1
z2 z3

a

y

=

z2 z3

z1a

a

x

=
u z1

a

x

◦1
z2 z3

a

u

, y 6= u,

z1 y

a

x

◦2
z2 z3

a

y

= z1

z2 z3

a

a

x

=
z1 u

a

x

◦2
z2 z3

a

u

, y 6= u.
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Invertible elements for �
Proposition
If Supp(f)(1) = {1c : c ∈ C } t S for some C-finitely factorizing set S,
the equations

f � x = u and x� f = u

admit both the unique same solution denoted by x = f�−1 .

Proposition
If Supp(f)(1) = {1c : c ∈ C } t S for some C-finitely factorizing set S,
f�−1 is a well-defined series satisfying

〈
x , f�−1

〉
=

∑
t∈Free(C̄)
evalC(t)=x

(−1)deg(t) 1〈
1out(x), f

〉 ∏
v∈N(t)

〈lb(v), f〉∏
j∈[|v |]

〈
1inj (v), f

〉 .

Therefore, the monoid (K 〈〈C〉〉 ,�) contains a (large) group formed by
the series with a support satisfying the above description.
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Syntactic generating series

Let B := (O,C ,R, I,T ) be a bud generating system.

The syntactic generating series of B is

synt(B) := i� (u− r)�−1 � t.

Lemma
If R(1) is BudC (O)-finitely factorizing, synt(B) is a well-defined series.

We say that B is unambiguous if all coefficients of synt(B) are 0 or 1.
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Syntactic generating series

Theorem
If R(1) is BudC (O)-finitely factorizing,

synt(B) =
∑

t∈Free(R)
out(t)∈I
in(t)∈T∗

evalBudC (O)(t).

Proposition
If R(1) is BudC (O)-finitely factorizing,

Supp(synt(B)) = L(B).

If B is unambiguous, each element generated by B admits exactly one
treelike expression.

67 / 67



Syntactic generating series

Theorem
If R(1) is BudC (O)-finitely factorizing,

synt(B) =
∑

t∈Free(R)
out(t)∈I
in(t)∈T∗

evalBudC (O)(t).

Proposition
If R(1) is BudC (O)-finitely factorizing,

Supp(synt(B)) = L(B).

If B is unambiguous, each element generated by B admits exactly one
treelike expression.

67 / 67



Syntactic generating series

Theorem
If R(1) is BudC (O)-finitely factorizing,

synt(B) =
∑

t∈Free(R)
out(t)∈I
in(t)∈T∗

evalBudC (O)(t).

Proposition
If R(1) is BudC (O)-finitely factorizing,

Supp(synt(B)) = L(B).

If B is unambiguous, each element generated by B admits exactly one
treelike expression.

67 / 67


	Introduction: generating systems
	Context-free grammars
	Regular tree grammars
	Motivations

	Bud generating systems
	Bud operads
	Generating systems
	Properties

	Series and bud generating systems
	Series on colored operads
	Series of bud generating systems
	Series of colors

	Annexes

