Series on colored operads and combinatorial generation

Samuele Giraudo

LIGM, Université Paris-Est Marne-la-Vallée

Workshop Category, Homotopy and Rewriting

January 27, 2016

Introduction: generating systems

Context-free grammars Regular tree grammars Motivations

Bud generating systems

Bud operads Generating systems Properties

Series and bud generating systems

Series on colored operads Series of bud generating systems Series of colors

Annexes

Introduction: generating systems

Context-free grammars Regular tree grammars Motivations

Introduction: generating systems
Context-free grammars
Regular tree grammars
Motivations

Let A be a finite alphabet partitioned into two sets

- ► V, a set of variables;
- ► T, a set of terminal symbols.

Let A be a finite alphabet partitioned into two sets

- ▶ *V*, a set of variables;
- ► T, a set of terminal symbols.

A production rule is an element (\mathbf{a}, u) of $V \times A^*$.

Let A be a finite alphabet partitioned into two sets

- ▶ V, a set of variables;
- ► *T*, a set of terminal symbols.

A production rule is an element (a, u) of $V \times A^*$.

A set of production rules P behaves as rewrite rules on words of A^* . If $v, w \in A^*$ and $(\mathbf{a}, u) \in P$,

 $vaw \rightarrow vuw$.

Let A be a finite alphabet partitioned into two sets

- ▶ V, a set of variables;
- ► T, a set of terminal symbols.

A production rule is an element (a, u) of $V \times A^*$.

A set of production rules P behaves as rewrite rules on words of A^* . If $v, w \in A^*$ and $(\mathbf{a}, u) \in P$,

 $vaw \rightarrow vuw$.

The reflexive and transitive closure of \rightarrow is the derivation relation.

Let A be a finite alphabet partitioned into two sets

- ▶ *V*, a set of variables;
- ► T, a set of terminal symbols.

A production rule is an element (\mathbf{a}, u) of $V \times A^*$.

A set of production rules P behaves as rewrite rules on words of A^* . If $v, w \in A^*$ and $(\mathbf{a}, u) \in P$,

$$vaw \rightarrow vuw$$
.

The reflexive and transitive closure of \rightarrow is the derivation relation.

Example

Let
$$V := \{a, b\}$$
, $T := \{a, b, c\}$, and $P := \{(a, b), (a, aab), (b, ac)\}$. Since

$$baa \rightarrow baaba \rightarrow bbaba \rightarrow bbaaca$$
,

the word bbaaca is derivable from baa.

Context-free grammars

A context-free grammar G is a tuple (V, T, P, \mathbf{s}) where

- ► *V* is a finite set of variables;
- T is a finite set of terminal symbols;
- ► *P* is a set of production rules;
- **s** is the starting variable.

Context-free grammars

A context-free grammar G is a tuple (V, T, P, \mathbf{s}) where

- ▶ V is a finite set of variables;
- T is a finite set of terminal symbols;
- ▶ *P* is a set of production rules;
- **s** is the starting variable.

A word $u \in (V \sqcup T)^*$ is generated by G if

$$\mathbf{s} \to \cdots \to u$$

and u has no occurrence of any variable.

Context-free grammars

A context-free grammar G is a tuple (V, T, P, \mathbf{s}) where

- ► *V* is a finite set of variables;
- ▶ T is a finite set of terminal symbols;
- ▶ *P* is a set of production rules;
- ▶ s is the starting variable.

A word $u \in (V \sqcup T)^*$ is generated by G if

$$\mathbf{s} \to \cdots \to u$$

and u has no occurrence of any variable.

Example

Let *G* be the context-free grammar with $V := \{a, b\}$, $T := \{a, b, c\}$, $P := \{(a, b), (a, aab), (b, ac)\}$, and s := a. Since

$$\mathbf{a} \rightarrow \mathbf{a}\mathbf{a}\mathbf{b} \rightarrow b\mathbf{a}\mathbf{b} \rightarrow b\mathbf{a}\mathbf{a}c$$
,

the word baac is generated by G.

Introduction: generating systems

Context-free grammars

Regular tree grammars

Motivations

A-trees

Let A be a finite graded alphabet partitioned into two sets

- ▶ V, a set of variables, where $|\mathbf{a}| = 0$ for all $\mathbf{a} \in V$;
- ▶ T, a set of terminal symbols, where $|a| \in \mathbb{N}$ for all $a \in T$.

A-trees

Let A be a finite graded alphabet partitioned into two sets

- ▶ V, a set of variables, where $|\mathbf{a}| = 0$ for all $\mathbf{a} \in V$;
- ▶ T, a set of terminal symbols, where $|a| \in \mathbb{N}$ for all $a \in T$.

An A-tree is a planar rooted tree where internal nodes are labeled on \mathcal{T} and leaves are labeled on A, respecting the ranks of the symbols.

A-trees

Let A be a finite graded alphabet partitioned into two sets

- ▶ V, a set of variables, where $|\mathbf{a}| = 0$ for all $\mathbf{a} \in V$;
- ▶ T, a set of terminal symbols, where $|a| \in \mathbb{N}$ for all $a \in T$.

An A-tree is a planar rooted tree where internal nodes are labeled on T and leaves are labeled on A, respecting the ranks of the symbols.

Example

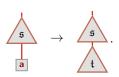
Let $V := \{\mathbf{a}, \mathbf{b}\}$ and $T := \{a, b, c\}$ where |a| := 1, |b| := 2, and |c| := 0. The planar rooted tree

is an A-tree.

A production rule is an element (\mathbf{a} , \mathbf{t}) of $V \times A^*$, where A^* is the set of all A-trees.

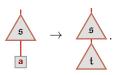
A production rule is an element $(\mathbf{a}, \mathfrak{t})$ of $V \times A^*$, where A^* is the set of all A-trees.

A set of production rules P behaves as rewrite rules on A-trees. If $\mathfrak s$ is an A-tree with a leaf labeled by $\mathbf a$ and $(\mathbf a,\mathfrak t)\in P$,



A production rule is an element (\mathbf{a}, \mathbf{t}) of $\mathbf{V} \times A^*$, where A^* is the set of all A-trees.

A set of production rules P behaves as rewrite rules on A-trees. If $\mathfrak s$ is an A-tree with a leaf labeled by $\mathbf a$ and $(\mathbf a,\mathfrak t)\in P$,



The reflexive and transitive closure of \rightarrow is the derivation relation.

Example

Let $V := \{a, b\}$, $T := \{a, b, c\}$ where |a| := 1, |b| := 2, and |c| := 0, and

$$P := \left\{ \left(\mathbf{a}, \mathbf{c}\right), \left(\mathbf{b}, \mathbf{a}\right) \right\}.$$

One has the derivation

Regular tree grammars

A regular tree grammar G is a tuple (V, T, P, \mathbf{s}) where

- ► *V* is a finite set of variables;
- ► *T* is a finite set of terminal symbols;
- ► *P* is a set of production rules;
- **s** is the starting variable.

Regular tree grammars

A regular tree grammar G is a tuple (V, T, P, \mathbf{s}) where

- V is a finite set of variables;
- T is a finite set of terminal symbols;
- ► *P* is a set of production rules;
- **s** is the starting variable.

An A-tree \mathfrak{t} is generated by G if

$$\xrightarrow{\mathbf{t}} \rightarrow \cdots \rightarrow \mathfrak{t}$$

and \mathfrak{t} has no occurrence of any variable (*i.e.*, all leaves of \mathfrak{t} are labeled on \mathcal{T}).

Regular tree grammars

A regular tree grammar G is a tuple (V, T, P, \mathbf{s}) where

- V is a finite set of variables;
- ► *T* is a finite set of terminal symbols;
- ▶ *P* is a set of production rules;
- ▶ s is the starting variable.

An A-tree \mathfrak{t} is generated by G if

$$\stackrel{\textbf{1}}{|\hspace{-0.1em}|\hspace{-0.1em}|} \rightarrow \cdots \rightarrow \mathfrak{t}$$

and \mathfrak{t} has no occurrence of any variable (*i.e.*, all leaves of \mathfrak{t} are labeled on \mathcal{T}).

Example

Let G be the regular tree grammar with $V := \{\mathbf{a}, \mathbf{b}\}$, $\mathcal{T} := \{a, b, c\}$ where |a| := 2, |b| := 1, and |c| := 0,

$$P := \left\{ \left(\mathbf{a}, \mathbf{c} \right), \left(\mathbf{a}, \mathbf{b}, \mathbf{b} \right), \left(\mathbf{b}, \mathbf{c} \right), \left(\mathbf{b}, \mathbf{b}, \mathbf{c} \right) \right\},$$

and $\mathbf{s} := \mathbf{a}$. This grammar generates all alternating unary-binary trees with a nonunary root

Introduction: generating systems

Context-free grammars Regular tree grammars

Motivations

Objectives

Objective

Develop grammars generating any kind of combinatorial objects such as

- words:
- various species of trees;
- ▶ integer compositions;
- various species of paths;
- etc.

For this, we shall

- rely on colored operad theory;
- develop the notion of formal power series on colored operads.

Bud generating systems

Bud operads Generating systems Properties

Bud generating systems
Bud operads

Generating systems Properties

In this work any operad C is

- nonsymmetric;
- set-theoretical:

$$\mathcal{C}=\bigsqcup_{n\geqslant 0}\mathcal{C}(n);$$

- ▶ such that C(0) is empty;
- ▶ such that all C(n), $n \ge 1$, are finite;

In this work any operad C is

- nonsymmetric;
- set-theoretical:

$$\mathcal{C}=\bigsqcup_{n\geqslant 0}\mathcal{C}(n);$$

- ▶ such that C(0) is empty;
- ▶ such that all C(n), $n \ge 1$, are finite;
- ▶ endowed with a composition map

$$\circ: \mathcal{C}(n) \times \mathcal{C}(m_1) \times \cdots \times \mathcal{C}(m_n) \to \mathcal{C}(m_1 + \cdots + m_n)$$

and equivalent partial composition maps

$$\circ_i: \mathcal{C}(n) \times \mathcal{C}(m) \to \mathcal{C}(n+m-1), \qquad i \in [n].$$

In this work any operad C is

 \blacktriangleright is colored on a set $\mathscr C$ of colors. Color maps are

out:
$$C(n) \rightarrow \mathscr{C}$$
, $n \geqslant 1$,

and

$$\mathrm{in}:\mathcal{C}(n)\to\mathscr{C}^n,\qquad n\geqslant 1.$$

A partial composition $x \circ_i y$ is defined if and only if $\operatorname{out}(y) = \operatorname{in}_i(x)$;

In this work any operad C is

lacktriangle is colored on a set $\mathscr C$ of colors. Color maps are

out:
$$C(n) \rightarrow \mathscr{C}$$
, $n \geqslant 1$,

and

in:
$$C(n) \to \mathscr{C}^n$$
, $n \geqslant 1$.

A partial composition $x \circ_i y$ is defined if and only if $out(y) = in_i(x)$;

ightharpoonup colored units are denoted by $\mathbf{1}_c$, $c \in \mathscr{C}$, and satisfy

$$\operatorname{in}(\mathbf{1}_{c})=c=\operatorname{out}(\mathbf{1}_{c}).$$

In this work any operad C is

 \blacktriangleright is colored on a set $\mathscr C$ of colors. Color maps are

out:
$$C(n) \rightarrow \mathscr{C}$$
, $n \geqslant 1$,

and

in:
$$C(n) \to \mathscr{C}^n$$
, $n \geqslant 1$.

A partial composition $x \circ_i y$ is defined if and only if $out(y) = in_i(x)$;

ightharpoonup colored units are denoted by $\mathbf{1}_c$, $c \in \mathscr{C}$, and satisfy

$$\operatorname{in}(\mathbf{1}_c) = c = \operatorname{out}(\mathbf{1}_c).$$

Any noncolored operad can be seen as a colored operad on a singleton as set of colors.

Bud operads

Let \mathcal{O} be a noncolored operad and \mathscr{C} be a finite set.

Let $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$, the bud operad of \mathcal{O} , be the colored operad defined by

$$\underline{\mathrm{Bud}_{\mathscr{C}}}(\mathcal{O})(n) := \mathscr{C} \times \mathcal{O}(n) \times \mathscr{C}^n, \qquad n \geqslant 1,$$

Bud operads

Let $\mathcal O$ be a noncolored operad and $\mathscr C$ be a finite set.

Let $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$, the bud operad of \mathcal{O} , be the colored operad defined by

$$\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})(n) := \mathscr{C} \times \mathcal{O}(n) \times \mathscr{C}^n, \qquad n \geqslant 1,$$

wherein

$$\operatorname{out}((a, x, u)) := a,$$

$$\operatorname{in}((a, x, u)) := u,$$

and

$$(a, x, u) \circ_i (b, y, v) := (a, x \circ_i y, u \leftarrow_i v),$$

where $u \leftarrow_i v$ is the word obtained by replacing the *i*-th letter of u by v.

Bud operads

Let \mathcal{O} be a noncolored operad and \mathscr{C} be a finite set.

Let $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$, the bud operad of \mathcal{O} , be the colored operad defined by

$$\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})(n) := \mathscr{C} \times \mathcal{O}(n) \times \mathscr{C}^n, \qquad n \geqslant 1,$$

wherein

$$\operatorname{out}((a, x, u)) := a,$$

$$\operatorname{in}((a, x, u)) := u,$$

and

$$(a, x, u) \circ_i (b, y, v) := (a, x \circ_i y, u \leftarrow_i v),$$

where $u \leftarrow_i v$ is the word obtained by replacing the *i*-th letter of u by v.

Proposition

The construction $\mathcal{O} \mapsto \operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ is a functor from the category of noncolored operads to the category of \mathscr{C} -colored operads.

The bud operad of the associative operad

The associative operad As is defined by

- $\blacktriangleright \mathsf{As}(n) := \{\star_n\}, n \geqslant 1;$
- \blacktriangleright $\star_n \circ_i \star_m := \star_{n+m-1}$.

The bud operad of the associative operad

The associative operad As is defined by

- $\blacktriangleright \mathsf{As}(n) := \{\star_n\}, n \geqslant 1;$
- \blacktriangleright $\star_n \circ_i \star_m := \star_{n+m-1}$.

For any set of colors \mathscr{C} ,

$$\mathrm{Bud}_{\mathscr{C}}(\mathsf{As}) = \bigsqcup_{n \geq 1} \left\{ (a, \star_n, u_1 \dots u_n) : a, u_1, \dots, u_n \in \mathscr{C} \right\}.$$

The bud operad of the associative operad

The associative operad As is defined by

$$\blacktriangleright \mathsf{As}(n) := \{\star_n\}, n \geqslant 1;$$

$$\blacktriangleright$$
 $\star_n \circ_i \star_m := \star_{n+m-1}$.

For any set of colors \mathscr{C} ,

$$\mathrm{Bud}_{\mathscr{C}}(\mathsf{As}) = \bigsqcup_{n \geq 1} \left\{ (a, \star_n, u_1 \dots u_n) : a, u_1, \dots, u_n \in \mathscr{C} \right\}.$$

Example

In
$$Bud_{\{1,2,3\}}(As)$$
,

$$(2, \star_4, 3112) \circ_2 (1, \star_3, 233) = (2, \star_6, 323312).$$

The operad of Motzkin paths and its bud operad The operad of Motzkin paths Motz is defined by

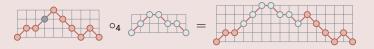
- ▶ Motz(n) is the set of the Motzkin paths consisting in n-1 steps;
- ▶ the partial composition $x \circ_i y$ of two Motzkin paths consists in replacing the *i*-th point of x by y.

The operad of Motzkin paths and its bud operad

The operad of Motzkin paths Motz is defined by

- ▶ Motz(n) is the set of the Motzkin paths consisting in n-1 steps;
- ▶ the partial composition $x \circ_i y$ of two Motzkin paths consists in replacing the i-th point of x by y.

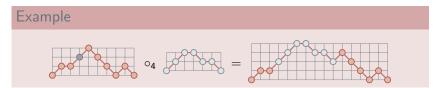
Example



The operad of Motzkin paths and its bud operad

The operad of Motzkin paths Motz is defined by

- ▶ Motz(n) is the set of the Motzkin paths consisting in n-1 steps;
- ▶ the partial composition $x \circ_i y$ of two Motzkin paths consists in replacing the i-th point of x by y.



For any set of colors \mathscr{C} , any element of $\operatorname{Bud}_{\mathscr{C}}(\operatorname{Motz})$ has one color for each of its steps and one color for its output.

The operad of Motzkin paths and its bud operad

The operad of Motzkin paths Motz is defined by

- ▶ Motz(n) is the set of the Motzkin paths consisting in n-1 steps;
- ▶ the partial composition $x \circ_i y$ of two Motzkin paths consists in replacing the i-th point of x by y.

Example

For any set of colors \mathscr{C} , any element of $\operatorname{Bud}_{\mathscr{C}}(\operatorname{Motz})$ has one color for each of its steps and one color for its output.

Example

is an element of $Bud_{\{1,2,3\}}(Motz)$ with 2 as output color and 2213221 as input colors.

Outline

Bud generating systems

Bud operads

Generating systems

Properties

Bud generating systems

A bud generating system \mathcal{B} is a tuple $(\mathcal{O}, \mathscr{C}, \mathfrak{R}, I, T)$ where

- \triangleright \mathcal{O} is a noncolored operad;
- ▶ % is a finite set of colors:
- ▶ \mathfrak{R} is a finite subset of $\mathrm{Bud}_{\mathscr{C}}(\mathcal{O})$ of rules;
- ▶ I is a subset of initial colors of €;
- ightharpoonup T is a subset of terminal colors of \mathscr{C} .

Production rules

A production rule is an element of $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$.

Production rules

A production rule is an element of $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$.

A set of production rules \mathfrak{R} behaves as a rewrite rule on $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$. For any $x_1, x_2 \in \operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$, we have

$$x_1 \rightarrow x_2$$

provided that there exist $i \in \mathbb{N}$ and $r \in \mathfrak{R}$ such that

$$x_2 = x_1 \circ_i r$$
.

Production rules

A production rule is an element of $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$.

A set of production rules \mathfrak{R} behaves as a rewrite rule on $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$. For any $x_1, x_2 \in \operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$, we have

$$x_1 \rightarrow x_2$$

provided that there exist $i \in \mathbb{N}$ and $r \in \mathfrak{R}$ such that

$$x_2 = x_1 \circ_i r$$
.

The reflexive and transitive closure of \rightarrow is the derivation relation.

Generation

A element $x \in \operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ is generated by \mathcal{B} if

$$\mathbf{1}_{c} \rightarrow \cdots \rightarrow x$$

where $c \in I$ and all colors of in(x) are in T.

Generation

A element $x \in \underline{\operatorname{Bud}_{\mathscr{C}}}(\mathcal{O})$ is generated by \mathcal{B} if

$$\mathbf{1}_{c} \rightarrow \cdots \rightarrow x$$

where $c \in I$ and all colors of in(x) are in T.

Then, x is generated by \mathcal{B} iff there exist $c \in \mathcal{C}$, $r_1, \ldots, r_k \in \mathcal{R}$, and $i_2, \ldots, i_k \in \mathbb{N}$ such that

$$x = (\ldots((\mathbf{1}_c \circ_1 r_1) \circ_{i_2} r_2) \ldots) \circ_{i_k} r_k$$

and $in(x) \in T^*$.

Generation

A element $x \in \underline{\operatorname{Bud}_{\mathscr{C}}}(\mathcal{O})$ is generated by \mathcal{B} if

$$\mathbf{1}_{c} \rightarrow \cdots \rightarrow x$$

where $c \in I$ and all colors of in(x) are in T.

Then, x is generated by \mathcal{B} iff there exist $c \in \mathcal{C}$, $r_1, \ldots, r_k \in \mathcal{R}$, and $i_2, \ldots, i_k \in \mathbb{N}$ such that

$$x = (\ldots((\mathbf{1}_c \circ_1 r_1) \circ_{i_2} r_2) \ldots) \circ_{i_k} r_k$$

and $in(x) \in T^*$.

The language of \mathcal{B} is the set $L(\mathcal{B})$ of all elements generated by \mathcal{B} .

Bud generating systems and Motzkin paths

Let the bud generating system $\mathcal{B}:=\big(\text{Motz},\{1,2\},\mathfrak{R},\{1\},\{1,2\}\big)$ where

$$\mathfrak{R}:=\left\{ \left(1, \textcolor{red}{\bullet \bullet}, 22\right), \left(1, \textcolor{red}{\nearrow \bullet}, 111\right) \right\}.$$

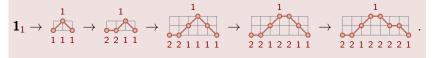
Bud generating systems and Motzkin paths

Let the bud generating system $\mathcal{B}:=\big(\text{Motz},\{1,2\},\mathfrak{R},\{1\},\{1,2\}\big)$ where

$$\mathfrak{R} := \{(1, \bullet \bullet, 22), (1, A, 111)\}.$$

Example

There is in \mathcal{B} the sequence of derivations



Bud generating systems and Motzkin paths

Let the bud generating system $\mathcal{B}:=\big(\text{Motz},\{1,2\},\mathfrak{R},\{1\},\{1,2\}\big)$ where

$$\mathfrak{R} := \{(1, \bullet \bullet, 22), (1, \nearrow \bullet, 111)\}.$$

Example

There is in ${\cal B}$ the sequence of derivations

$$\mathbf{1}_{1} \to \bigcap_{1 \ 1 \ 1}^{1} \to \bigcap_{2 \ 2 \ 1 \ 1}^{1} \to \bigcap_{2 \ 2 \ 1 \ 1 \ 1}^{1} \to \bigcap_{2 \ 2 \ 1 \ 2 \ 2 \ 1}^{1} \to \bigcap_{2 \ 2 \ 1 \ 2 \ 2 \ 2 \ 1}^{1}$$

Proposition

 $L(\mathcal{B})$ is in bijection with the set of Motzkin paths with no consecutive horizontal steps.

These Motzkin paths are enumerated by Sequence A104545:

Synchronous production rules

A synchronous production rule is an element of $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$.

Synchronous production rules

A synchronous production rule is an element of $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$.

A set of synchronous production rules \mathfrak{R} behaves as a rewrite rule on $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$. For any $x_1, x_2 \in \operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$, we have

$$x_1 \rightsquigarrow x_2$$

provided that there exist $r_1, \ldots, r_{|x_1|} \in \mathfrak{R}$ such that

$$x_2=x_1\circ \left[r_1,\ldots,r_{|x_1|}\right].$$

Synchronous production rules

A synchronous production rule is an element of $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$.

A set of synchronous production rules \mathfrak{R} behaves as a rewrite rule on $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$. For any $x_1, x_2 \in \operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$, we have

$$x_1 \rightsquigarrow x_2$$

provided that there exist $r_1, \ldots, r_{|x_1|} \in \mathfrak{R}$ such that

$$x_2=x_1\circ \left[r_1,\ldots,r_{|x_1|}\right].$$

The reflexive and transitive closure of \rightsquigarrow is the synchronous derivation relation.

Synchronous generation

A element $x \in \text{Bud}_{\mathscr{C}}(\mathcal{O})$ is synchronously generated by \mathcal{B} if

$$1_c \rightsquigarrow \cdots \rightsquigarrow x$$

where $c \in I$ and all colors of in(x) are in T.

Synchronous generation

A element $x \in \operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ is synchronously generated by \mathcal{B} if

$$1_c \rightsquigarrow \cdots \rightsquigarrow x$$

where $c \in I$ and all colors of in(x) are in T.

Then, x is generated by \mathcal{B} iff there exist $c \in \mathscr{C}$, $r_{1,1}, r_{2,1}, \ldots, r_{2,j_2}, \ldots r_{k,1}, \ldots, r_{k,j_k} \in \Re$ such that

$$x = (\ldots((\mathbf{1}_c \circ [r_{1,1}]) \circ [r_{2,1},\ldots,r_{2,j_2}])\ldots) \circ [r_{k,1},\ldots,r_{k,j_k}]$$

and $in(x) \in T^*$.

Synchronous generation

A element $x \in \operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ is synchronously generated by \mathcal{B} if

$$1_c \rightsquigarrow \cdots \rightsquigarrow x$$

where $c \in I$ and all colors of in(x) are in T.

Then, x is generated by \mathcal{B} iff there exist $c \in \mathscr{C}$, $r_{1,1}, r_{2,1}, \ldots, r_{2,j_2}, \ldots r_{k,1}, \ldots, r_{k,j_k} \in \Re$ such that

$$x = (\dots((\mathbf{1}_c \circ [r_{1,1}]) \circ [r_{2,1}, \dots, r_{2,j_2}]) \dots) \circ [r_{k,1}, \dots, r_{k,j_k}]$$

and $in(x) \in T^*$.

The synchronous language of $\mathcal B$ is the set $\mathrm{SL}(\mathcal B)$ of all elements synchronously generated by $\mathcal B$.

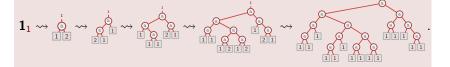
Bud generating systems and balanced binary trees

Let the bud generating system $\mathcal{B}:=$ (Mag, $\{1,2\}$, \mathfrak{R} , $\{1\}$, $\{1\}$) where Mag := Free($\{a\}$), |a|:=2, and

$$\mathfrak{R}:=\left\{\left(1,\ \textcircled{0},11\right),\left(1,\ \textcircled{0},12\right),\left(1,\ \textcircled{0},21\right),\left(2,\boldsymbol{1},1\right)\right\}.$$

Example

There is in ${\cal B}$ the sequence of derivations



Bud generating systems and balanced binary trees

Let the bud generating system $\mathcal{B}:=(\mathsf{Mag},\{1,2\},\mathfrak{R},\{1\},\{1\})$ where $\mathsf{Mag}:=\mathbf{Free}(\{a\})$, |a|:=2, and

$$\mathfrak{R}:=\left\{\left(1,\ \textcircled{0},11\right),\left(1,\ \textcircled{0},12\right),\left(1,\ \textcircled{0},21\right),\left(2,\boldsymbol{1},1\right)\right\}.$$

Example

There is in ${\cal B}$ the sequence of derivations

$$\mathbf{1}_1 \leadsto \overset{\circ}{0} \leadsto \overset{\circ}{0} \Longrightarrow \overset{\circ}{$$

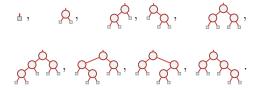
Proposition

 $SL(\mathcal{B})$ is in bijection with the set of balanced binary trees.

Balanced binary trees

A balanced binary tree is a binary tree $\mathfrak t$ such that, for each internal node x of $\mathfrak t$, the height of the left and of the right subtrees of x differ by at most 1.

First balanced binary trees are



Balanced binary trees

A balanced binary tree is a binary tree $\mathfrak t$ such that, for each internal node x of $\mathfrak t$, the height of the left and of the right subtrees of x differ by at most 1.

First balanced binary trees are

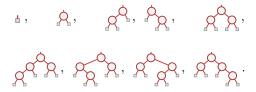


These trees are enumerated by Sequence A006265:

Balanced binary trees

A balanced binary tree is a binary tree $\mathfrak t$ such that, for each internal node x of $\mathfrak t$, the height of the left and of the right subtrees of x differ by at most 1.

First balanced binary trees are



These trees are enumerated by Sequence A006265:

Their generating series is F(x,0) where

$$F(x, y) = x + F(x^2 + 2xy, x).$$

Outline

Bud generating systems

Bud operads Generating systems

Properties

Languages of bud generating systems

Proposition

If $\mathcal{B} := (\mathcal{O}, \mathscr{C}, \mathfrak{R}, I, T)$ is a bud generating system,

$$L(\mathcal{B}) = \{ x \in \underline{Bud}_{\mathscr{C}}(\mathcal{O}) : x \in \mathcal{C}, \operatorname{out}(x) \in I, \operatorname{in}(x) \in T^* \},$$

where \mathcal{C} is suboperad of $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ generated by \mathfrak{R} .

Languages of bud generating systems

Proposition

If $\mathcal{B} := (\mathcal{O}, \mathscr{C}, \mathfrak{R}, I, T)$ is a bud generating system,

$$L(\mathcal{B}) = \{ x \in \underline{Bud}_{\mathscr{C}}(\mathcal{O}) : x \in \mathcal{C}, \operatorname{out}(x) \in I, \operatorname{in}(x) \in T^* \},$$

where \mathcal{C} is suboperad of $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ generated by \mathfrak{R} .

Proposition

If \mathcal{B} is a bud generating system, $SL(\mathcal{B}) \subseteq L(\mathcal{B})$.

Let G := (V, T, P, s) be a proper context-free grammar, *i.e.*, for all $(\mathbf{a}, \mathbf{u}) \in P$, $|\mathbf{u}| \geqslant 1$.

Let G := (V, T, P, s) be a proper context-free grammar, *i.e.*, for all $(\mathbf{a}, \mathbf{u}) \in P$, $|\mathbf{u}| \geqslant 1$.

Let the bud generating system

$$\mathcal{B} := (\mathsf{As}, V \sqcup T, \mathfrak{R}, \{\mathbf{s}\}, T)$$

where

$$\mathfrak{R}:=\left\{\left(\mathbf{a},\star_{|\mathbf{u}|},\mathbf{u}
ight):\left(\mathbf{a},\mathbf{u}
ight)\in P
ight\}.$$

Let G := (V, T, P, s) be a proper context-free grammar, *i.e.*, for all $(\mathbf{a}, \mathbf{u}) \in P$, $|\mathbf{u}| \geqslant 1$.

Let the bud generating system

$$\mathcal{B} := (\mathsf{As}, \mathsf{V} \sqcup \mathsf{T}, \mathfrak{R}, \{\mathbf{s}\}, \mathsf{T})$$

where

$$\mathfrak{R}:=\left\{\left(\mathbf{a},\star_{|\mathbf{u}|},\mathbf{u}
ight):\left(\mathbf{a},\mathbf{u}
ight)\in P
ight\}.$$

Proposition

The map in : $L(\mathcal{B}) \to W$, where W is the set of words generated by G, is a bijection.

Hence, any proper context-free grammar can be simulated by a bud generating system based on the associative operad.

Example

Let $G := (\{\mathbf{a}, \mathbf{b}\}, \{a, b\}, P, \mathbf{a})$ be the proper context-free grammar where

$$P := \{(\mathbf{a}, \mathbf{a}), (\mathbf{a}, b\mathbf{b}), (\mathbf{b}, b), (\mathbf{b}, \mathbf{ab})\}.$$

The bud generating system $\mathcal{B}:=(\mathsf{As},\{\mathbf{a},\mathbf{b},a,b\},\mathfrak{R},\{\mathbf{a}\},\{a,b\})$ where

$$\mathfrak{R} := \{(\mathbf{a}, \star_1, a), (\mathbf{a}, \star_2, b\mathbf{b}), (\mathbf{b}, \star_1, b), (\mathbf{b}, \star_2, \mathbf{ab})\}$$

simulates G.

Example

The sequence of derivations

$$\mathbf{a} \to b\mathbf{b} \to b\mathbf{a}\mathbf{b} \to bb\mathbf{b} \to bbb\mathbf{b} \to bbb\mathbf{a}\mathbf{b} \to bbb\mathbf{a}\mathbf{b} \to bbba\mathbf{b}$$

in G is interpreted into the sequence of derivations

$$\mathbf{1_a} \rightarrow (\mathbf{a}, \star_2, b\mathbf{b}) \rightarrow (\mathbf{a}, \star_3, b\mathbf{ab}) \rightarrow (\mathbf{a}, \star_4, bbb\mathbf{b}) \rightarrow (\mathbf{a}, \star_4, bbb\mathbf{b})$$
$$\rightarrow (\mathbf{a}, \star_5, bbb\mathbf{ab}) \rightarrow (\mathbf{a}, \star_5, bbb\mathbf{ab}) \rightarrow (\mathbf{a}, \star_5, bbb\mathbf{ab})$$

in \mathcal{B} .

Let G := (V, T, P, s) be a regular tree grammar.

Let the bud generating system

$$\mathcal{B} := (\underline{\operatorname{Free}}(T \setminus T(0)), \underline{V} \sqcup T(0), \mathfrak{R}, \{\mathbf{s}\}, T(0))$$

where

$$\mathfrak{R} := \{(\mathbf{a}, \operatorname{tr}(\mathfrak{t}), \operatorname{fr}(\mathfrak{t})) : (\mathbf{a}, \mathfrak{t}) \in P\},$$

 ${\rm tr}(\mathfrak{t})$ denoting the tree obtained by forgetting the labels of the leaves of \mathfrak{t} and ${\rm fr}(\mathfrak{t})$ denoting the word obtained by reading the labels of the leaves of \mathfrak{t} .

Let $G := (V, T, P, \mathbf{s})$ be a regular tree grammar.

Let the bud generating system

$$\mathcal{B} := (\overline{\Gamma}(T \setminus T(0)), V \sqcup T(0), \mathfrak{R}, \{\mathbf{s}\}, T(0))$$

where

$$\mathfrak{R} := \{(\mathbf{a}, \operatorname{tr}(\mathfrak{t}), \operatorname{fr}(\mathfrak{t})) : (\mathbf{a}, \mathfrak{t}) \in P\},$$

 ${\rm tr}(\mathfrak{t})$ denoting the tree obtained by forgetting the labels of the leaves of \mathfrak{t} and ${\rm fr}(\mathfrak{t})$ denoting the word obtained by reading the labels of the leaves of \mathfrak{t} .

Proposition

The map $\phi: L(\mathcal{B}) \to W$ defined by $\phi((\mathbf{a}, \mathfrak{t}, \mathbf{u})) := \mathfrak{t}_{\mathbf{u}}$, where $\mathfrak{t}_{\mathbf{u}}$ is the tree obtained by labeling the leaves of \mathfrak{t} by the letters of \mathbf{u} and where W is the set of trees generated by G, is a bijection.

Hence, any regular tree grammar can be simulated by a bud generating system based on free operads.

Example

Let $G := (\{a, b\}, \{a, b, c, d\}, P, a)$ be the regular tree grammar where |a| := 0, |b| := 0, |c| := 1, |d| := 2, and

$$P := \left\{ \left(\mathbf{a}, \frac{\mathbf{b}}{\mathbf{b}} \right), \left(\mathbf{a}, \frac{\mathbf{b}}{\mathbf{a}} \right), \left(\mathbf{a}, \frac{\mathbf{d}}{\mathbf{a}} \right), \left(\mathbf{b}, \frac{\mathbf{b}}{\mathbf{a}} \right), \left(\mathbf{b}, \frac{\mathbf{b}}{\mathbf{b}} \right) \right\}.$$

The bud generating system

$$\mathcal{B} := (Free(\{c, d\}, \{a, b, a, b\}, \Re, \{a\}, \{a, b\}))$$
 where

$$\mathfrak{R} := \left\{ \left(\mathbf{a}, \mathbf{b}, \mathbf{b}\right), \left(\mathbf{a}, \mathbf{b}, \mathbf{a}\right), \left(\mathbf{a}, \mathbf{b}, \mathbf{a}\right), \left(\mathbf{b}, \mathbf{b}, \mathbf{b}\right) \right\}$$

simulates G.

Example

The sequence of derivations

$$a \rightarrow a \rightarrow a \rightarrow c \rightarrow c \rightarrow a \rightarrow c \rightarrow b$$

in G is interpreted into the sequence of derivations

in \mathcal{B} .

Outline

Series and bud generating systems

Series on colored operads Series of bud generating systems Series of colors

Outline

Series and bud generating systems Series on colored operads

Series of bud generating systems Series of colors

Let $\mathcal C$ be a colored operad and $\mathbb K$ be a field $(\mathbb K:=\mathbb Q(q_0,q_1,\dots)).$

A C-series is a map

$$\mathbf{f}: \mathcal{C} \to \mathbb{K}$$
.

The set of all such series is denoted by $\mathbb{K}\langle\langle\mathcal{C}\rangle\rangle$.

Let $\mathcal C$ be a colored operad and $\mathbb K$ be a field $(\mathbb K:=\mathbb Q(q_0,q_1,\dots)).$

A C-series is a map

$$\mathbf{f}:\mathcal{C}\to\mathbb{K}.$$

The set of all such series is denoted by $\mathbb{K}\langle\langle\mathcal{C}\rangle\rangle$.

The coefficient f(x) of $x \in C$ in f is denoted by $\langle x, f \rangle$.

Let $\mathcal C$ be a colored operad and $\mathbb K$ be a field $(\mathbb K:=\mathbb Q(q_0,q_1,\dots)).$

A C-series is a map

$$\mathbf{f}:\mathcal{C}\to\mathbb{K}.$$

The set of all such series is denoted by $\mathbb{K}\langle\langle\mathcal{C}\rangle\rangle$.

The coefficient f(x) of $x \in C$ in f is denoted by $\langle x, f \rangle$.

The support of **f** is the set

$$\operatorname{Supp}(\mathbf{f}) := \{ x \in \mathcal{C} : \langle x, \mathbf{f} \rangle \neq 0 \}.$$

The set $\mathbb{K}\langle\langle\mathcal{C}\rangle\rangle$ is endowed with the pointwise addition and the multiplication by a scalar, forming a vector space.

The set $\mathbb{K}\langle\langle\mathcal{C}\rangle\rangle$ is endowed with the pointwise addition and the multiplication by a scalar, forming a vector space.

The extended notation of a C-series f is

$$\mathbf{f} = \sum_{\mathbf{x} \in \mathcal{C}} \langle \mathbf{x}, \mathbf{f} \rangle \, \mathbf{x}.$$

The set $\mathbb{K}\langle\langle\mathcal{C}\rangle\rangle$ is endowed with the pointwise addition and the multiplication by a scalar, forming a vector space.

The extended notation of a C-series f is

$$\mathbf{f} = \sum_{\mathbf{x} \in \mathcal{C}} \langle \mathbf{x}, \mathbf{f} \rangle \, \mathbf{x}.$$

The series of colored units is

$$\mathbf{u} := \sum_{c \in \mathscr{C}} \mathbf{1}_c,$$

where \mathscr{C} is the set of colors of \mathcal{C} .

Generating series and operads

C-series form generalizations of usual generating series.

There are other ones:

- ▶ series on monoids [Salomaa, Soittola, 1978];
- ▶ series on trees [Berstel, Reutenauer, 1982];
- ► series on operads [Chapoton, 2002].

Generating series and operads

C-series form generalizations of usual generating series.

There are other ones:

- series on monoids [Salomaa, Soittola, 1978];
- series on trees [Berstel, Reutenauer, 1982];
- ► series on operads [Chapoton, 2002].

Several definitions of series have been considered on various sorts of operads:

- ▶ algebraic (and symmetric) operads [Chapoton, 2002, 2009];
- ▶ nonsymmetric algebraic operads [van der Laan, 2004];
- ▶ nonsymmetric set-operads \mathcal{O} with $\mathcal{O}(1) := \{1\}$ [Frabetti, 2008];
- ▶ algebraic (and symmetric) operads [Loday, Nikolov, 2013].

Pre-Lie product

The pre-Lie product $\mathbf{f} \curvearrowright \mathbf{g}$ of two \mathcal{C} -series \mathbf{f} and \mathbf{g} is defined by

$$\langle x, \mathbf{f} \curvearrowleft \mathbf{g} \rangle := \sum_{\substack{y, z \in \mathcal{C} \\ i \in [|y|] \\ x = y \circ_i z}} \langle y, \mathbf{f} \rangle \langle z, \mathbf{g} \rangle.$$

Pre-Lie product

The pre-Lie product $\mathbf{f} \curvearrowright \mathbf{g}$ of two \mathcal{C} -series \mathbf{f} and \mathbf{g} is defined by

$$\langle x, \mathbf{f} \curvearrowleft \mathbf{g} \rangle := \sum_{\substack{y, z \in \mathcal{C} \\ i \in [|y|] \\ x = y \circ_i z}} \langle y, \mathbf{f} \rangle \langle z, \mathbf{g} \rangle.$$

The product is

- bilinear;
- ▶ totally defined (because all C(n) are finite);
- admits u as a left (but not right) unit.

Pre-Lie product

The pre-Lie product $\mathbf{f} \curvearrowright \mathbf{g}$ of two \mathcal{C} -series \mathbf{f} and \mathbf{g} is defined by

$$\langle x, \mathbf{f} \curvearrowright \mathbf{g} \rangle := \sum_{\substack{y, z \in \mathcal{C} \\ i \in [|y|] \\ x = y \circ_i z}} \langle y, \mathbf{f} \rangle \langle z, \mathbf{g} \rangle.$$

The product is

- bilinear:
- ▶ totally defined (because all C(n) are finite);
- ▶ admits **u** as a left (but not right) unit.

Proposition

The pre-Lie product satisfies

$$(f \land g) \land h - f \land (g \land h) = (f \land h) \land g - f \land (h \land g).$$

Hence, $(\mathbb{K}\langle\langle\mathcal{C}\rangle\rangle, \curvearrowleft)$ is a pre-Lie algebra.

For any $\ell \geqslant 0$, let

$$\mathbf{f}^{\frown_{\ell}} := egin{cases} \mathbf{u} & \text{if } \ell = 0, \\ \mathbf{f}^{\frown_{\ell-1}} \curvearrowleft \mathbf{f} & \text{otherwise.} \end{cases}$$

The \curvearrowleft -star of **f** is the \mathscr{C} -series

For any $\ell \geqslant 0$, let

$$\mathbf{f}^{\frown_{\ell}} := egin{cases} \mathbf{u} & \text{if } \ell = 0, \\ \mathbf{f}^{\frown_{\ell-1}} \curvearrowleft \mathbf{f} & \text{otherwise.} \end{cases}$$

The \curvearrowleft -star of **f** is the \mathscr{C} -series

Lemma

If $\operatorname{Supp}(f)(1)$ is $\mathcal C$ -finitely factorizing, $f^{\frown *}$ is a well-defined series.

For any $\ell \geqslant 0$, let

$$\mathbf{f}^{\frown_{\ell}} := egin{cases} \mathbf{u} & \text{if } \ell = 0, \\ \mathbf{f}^{\frown_{\ell-1}} \curvearrowleft \mathbf{f} & \text{otherwise.} \end{cases}$$

The \bigcirc -star of **f** is the C-series

A subset S of C(1) is C-finitely factorizing if all $x \in C(1)$ admits finitely many factorizations on S.

Lemma

If Supp(f)(1) is C-finitely factorizing, f^{*} is a well-defined series.

Proposition

If **f** is a C-series such that $Supp(\mathbf{f})(1)$ is C-finitely factorizing,

$$\langle x, \mathbf{f}^{\hat{}} \rangle = \delta_{x, \mathbf{1}_{out(x)}} + \sum_{\substack{y, z \in \mathcal{C} \\ i \in [|y|] \\ x = v_{0}; z}} \langle y, \mathbf{f}^{\hat{}} \rangle \langle z, \mathbf{f} \rangle.$$

Proposition

If **f** is a C-series such that $Supp(\mathbf{f})(1)$ is C-finitely factorizing,

$$\langle x, \mathbf{f}^{\hat{}} \rangle = \delta_{x, \mathbf{1}_{out(x)}} + \sum_{\substack{y, z \in \mathcal{C} \\ i \in [|y|] \\ x = vo_i z}} \langle y, \mathbf{f}^{\hat{}} \rangle \langle z, \mathbf{f} \rangle.$$

Proposition

If f is a C-series such that $\mathrm{Supp}(f)(1)$ is C-finitely factorizing, the equation

$$x - x \wedge f = u$$

admits the unique solution $\mathbf{x} = \mathbf{f}^{\mathbf{x}}$.

Composition product

The composition product $\mathbf{f} \odot \mathbf{g}$ of two \mathcal{C} -series \mathbf{f} and \mathbf{g} is defined by

$$\langle x, \mathbf{f} \odot \mathbf{g} \rangle := \sum_{\substack{y, z_1, \dots, z_{|y|} \in \mathcal{C} \\ x = y \circ \left[z_1, \dots, z_{|y|}\right]}} \langle y, \mathbf{f} \rangle \prod_{i \in [|y|]} \langle z_i, \mathbf{g} \rangle \,.$$

Composition product

The composition product $\mathbf{f} \odot \mathbf{g}$ of two \mathcal{C} -series \mathbf{f} and \mathbf{g} is defined by

$$\langle x, \mathbf{f} \odot \mathbf{g} \rangle := \sum_{\substack{y, z_1, \dots, z_{|y|} \in \mathcal{C} \\ x = y \circ [z_1, \dots, z_{|y|}]}} \langle y, \mathbf{f} \rangle \prod_{i \in [|y|]} \langle z_i, \mathbf{g} \rangle .$$

The product ⊙ is

- ▶ linear of the left (but not on the right);
- ▶ totally defined (because all C(n) are finite);
- ▶ admits **u** as a left and right unit.

Composition product

The composition product $\mathbf{f} \odot \mathbf{g}$ of two \mathcal{C} -series \mathbf{f} and \mathbf{g} is defined by

$$\langle x, \mathbf{f} \odot \mathbf{g} \rangle := \sum_{\substack{y, z_1, \dots, z_{|y|} \in \mathcal{C} \\ x = y \circ [z_1, \dots, z_{|y|}]}} \langle y, \mathbf{f} \rangle \prod_{i \in [|y|]} \langle z_i, \mathbf{g} \rangle.$$

The product ⊙ is

- ▶ linear of the left (but not on the right);
- ▶ totally defined (because all C(n) are finite);
- ▶ admits **u** as a left and right unit.

Proposition

The composition product is associative and hence, $(\mathbb{K}\langle\langle\mathcal{C}\rangle\rangle,\odot)$ is a monoid.

For any $\ell \geqslant 0$, let

$$\mathbf{f}^{\odot_\ell} := \begin{cases} \mathbf{u} & \text{if } \ell = 0, \\ \mathbf{f}^{\odot_{\ell-1}} \odot \mathbf{f} & \text{otherwise}. \end{cases}$$

The \odot -star of **f** is the \mathcal{C} -series

$$\mathbf{f}^{\odot_*} := \sum_{\ell \geqslant 0} \mathbf{f}^{\odot_\ell}.$$

For any $\ell \geqslant 0$, let

$$\mathbf{f}^{\odot_\ell} := \begin{cases} \mathbf{u} & \text{if } \ell = 0, \\ \mathbf{f}^{\odot_{\ell-1}} \odot \mathbf{f} & \text{otherwise.} \end{cases}$$

The \odot -star of **f** is the \mathcal{C} -series

$$\mathbf{f}^{\odot_*} := \sum_{\ell \geqslant 0} \mathbf{f}^{\odot_\ell}.$$

Lemma

If Supp(f)(1) is C-finitely factorizing, f^{\odot_*} is a well-defined series.

Proposition

If **f** is a C-series such that $Supp(\mathbf{f})(1)$ is C-finitely factorizing,

$$\begin{split} \left\langle x, \boldsymbol{f}^{\odot_*} \right\rangle &= \delta_{x, \boldsymbol{1}_{\mathrm{out}(x)}} + \sum_{\substack{y, z_1, \dots, z_{|y|} \in \mathcal{C} \\ x = y \circ \left[z_1, \dots, z_{|y|} \right]}} \left\langle y, \boldsymbol{f}^{\odot_*} \right\rangle \prod_{i \in [|y|]} \left\langle z_i, \boldsymbol{f} \right\rangle. \end{split}$$

Proposition

If **f** is a C-series such that $Supp(\mathbf{f})(1)$ is C-finitely factorizing,

$$\begin{split} \left\langle x, \boldsymbol{f}^{\odot_*} \right\rangle &= \delta_{x, \boldsymbol{1}_{\mathrm{out}(x)}} + \sum_{\substack{y, z_1, \dots, z_{|y|} \in \mathcal{C} \\ x = y \circ \left[z_1, \dots, z_{|y|} \right]}} \left\langle y, \boldsymbol{f}^{\odot_*} \right\rangle \prod_{i \in [|y|]} \left\langle z_i, \boldsymbol{f} \right\rangle. \end{split}$$

Proposition

If f is a C-series such that $\mathrm{Supp}(f)(1)$ is C-finitely factorizing, the equation

$$x - x \odot f = u$$

admits the unique solution $\mathbf{x} = \mathbf{f}^{\odot_*}$.

Outline

Series and bud generating systems

Series on colored operads

Series of bud generating systems

Series of colors

Hook generating series

The hook generating series of \mathcal{B} is

$$\operatorname{hook}(\mathcal{B}) := i \odot r^{\curvearrowleft_*} \odot t,$$

where \mathbf{r} (resp. \mathbf{i} , \mathbf{t}) is the characteristic series of \mathfrak{R} (resp. $\{\mathbf{1}_c : c \in I\}$, $\{\mathbf{1}_c : c \in T\}$).

Hook generating series

The hook generating series of \mathcal{B} is

$$\operatorname{hook}(\mathcal{B}) := i \odot r^{\widehat{}^*} \odot t,$$

where **r** (resp. **i**, **t**) is the characteristic series of \mathfrak{R} (resp. $\{\mathbf{1}_c : c \in I\}$, $\{\mathbf{1}_c : c \in T\}$).

Example

Hook generating series

The hook generating series of $\mathcal B$ is

$$\operatorname{hook}(\mathcal{B}) := \mathbf{i} \odot \mathbf{r}^{\widehat{}*} \odot \mathbf{t},$$

where **r** (resp. **i**, **t**) is the characteristic series of \mathfrak{R} (resp. $\{\mathbf{1}_c : c \in I\}$, $\{\mathbf{1}_c : c \in T\}$).

Example

This example explains the name of $hook(\mathcal{B})$: the coefficients of the above series can be obtained by a hook formula on binary trees [Knuth, 1973].

Analogs of the hook statistic

Let \mathcal{O} be an operad, G be a generating set of \mathcal{O} , and consider the bud generating system $\mathcal{B}_{\mathcal{O},G}:=(\mathcal{O},\{1\},G,\{1\},\{1\})$.

The coefficients $\langle x, \text{hook}(\mathcal{B}) \rangle$ define a statistic on the objects of \mathcal{O} , analogs to the hook statistic on trees.

Analogs of the hook statistic

Let \mathcal{O} be an operad, G be a generating set of \mathcal{O} , and consider the bud generating system $\mathcal{B}_{\mathcal{O},G} := (\mathcal{O}, \{1\}, G, \{1\}, \{1\})$.

The coefficients $\langle x, \operatorname{hook}(\mathcal{B}) \rangle$ define a statistic on the objects of \mathcal{O} , analogs to the hook statistic on trees.

Example

From $\mathcal{B}_{\text{Motz},G}$ with $G := \{ \bullet \bullet, \nearrow \}$, we have an analog of the hook statistic for Motzkin paths:

Derivation graphs

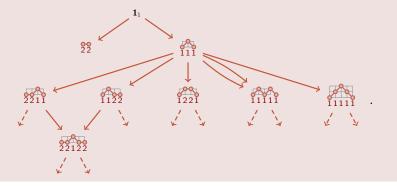
There is a combinatorial interpretation of $hook(\mathcal{B})$.

The derivation graph of $\mathcal B$ is the oriented multigraph $\mathrm{DG}(\mathcal B)$ with

- ▶ the set of elements derivable from $\mathbf{1}_c$, $c \in I$, as set of vertices;
- ▶ there is a edge from x_1 to x_2 if $x_1 \rightarrow x_2$.

Example

The derivation graph of $\mathcal{B} := (\text{Motz}, \{1, 2\}, \mathfrak{R}, \{1\}, \{1, 2\})$ where $\mathfrak{R} := \{(1, \bullet \bullet, 22), (1, \bullet \bullet, 111)\}$ is



Derivation graphs and hook generating series

Proposition

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing, for all $x \in L(\mathcal{B})$, the coefficient $\langle x, \operatorname{hook}(\mathcal{B}) \rangle$ is the number of paths in $\operatorname{DG}(\mathcal{B})$ from a $\mathbf{1}_c$, $c \in I$, to x.

Derivation graphs and hook generating series

Proposition

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing, for all $x \in L(\mathcal{B})$, the coefficient $\langle x, \operatorname{hook}(\mathcal{B}) \rangle$ is the number of paths in $\operatorname{DG}(\mathcal{B})$ from a $\mathbf{1}_c$, $c \in I$, to x.

Theorem

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing,

$$\operatorname{hook}(\mathcal{B}) = \sum_{\substack{\mathfrak{t} \in \operatorname{Free}(\mathfrak{R}) \\ \operatorname{out}(\mathfrak{t}) \in I \\ \operatorname{in}(\mathfrak{t}) \in \mathcal{T}^*}} \frac{\operatorname{\mathsf{deg}}(\mathfrak{t})!}{\prod\limits_{v \in \operatorname{N}(\mathfrak{t})} \operatorname{\mathsf{deg}}(\mathfrak{t}_v)} \operatorname{eval}_{\operatorname{\mathsf{Bud}}_{\mathscr{C}}(\mathcal{O})}(\mathfrak{t}).$$

Derivation graphs and hook generating series

Proposition

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing, for all $x \in L(\mathcal{B})$, the coefficient $\langle x, \operatorname{hook}(\mathcal{B}) \rangle$ is the number of paths in $\operatorname{DG}(\mathcal{B})$ from a $\mathbf{1}_c$, $c \in I$, to x.

Theorem

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing,

$$\operatorname{hook}(\mathcal{B}) = \sum_{\substack{\mathfrak{t} \in \operatorname{Free}(\mathfrak{R}) \\ \operatorname{out}(\mathfrak{t}) \in I \\ \operatorname{in}(\mathfrak{t}) \in \mathcal{T}^*}} \frac{\operatorname{\mathsf{deg}}(\mathfrak{t})!}{\prod\limits_{v \in \operatorname{N}(\mathfrak{t})} \operatorname{\mathsf{deg}}(\mathfrak{t}_v)} \operatorname{eval}_{\operatorname{\mathsf{Bud}}_{\mathscr{C}}(\mathcal{O})}(\mathfrak{t}).$$

Proposition

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing,

$$Supp(hook(\mathcal{B})) = L(\mathcal{B}).$$

The synchronous generating series of ${\cal B}$ is

$$\operatorname{sync}(\mathcal{B}):=\textbf{i}\odot\textbf{r}^{\odot_*}\odot\textbf{t}.$$

The synchronous generating series of ${\cal B}$ is

$$\operatorname{sync}(\mathcal{B}):=i\odot r^{\odot_*}\odot t.$$

Theorem

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing,

$$\operatorname{sync}(\mathcal{B}) = \sum_{\substack{\mathfrak{t} \in \operatorname{Free}_{\operatorname{perf}}(\mathfrak{R}) \\ \operatorname{out}(\mathfrak{t}) \in I \\ \operatorname{in}(\mathfrak{t}) \in \mathcal{T}^*}} \operatorname{eval}_{\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})}(\mathfrak{t}).$$

The synchronous generating series of ${\cal B}$ is

$$\operatorname{sync}(\mathcal{B}) := i \odot r^{\odot_*} \odot t.$$

Theorem

If $\Re(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing,

$$\operatorname{sync}(\mathcal{B}) = \sum_{\substack{\mathfrak{t} \in \operatorname{Free}_{\operatorname{perf}}(\mathfrak{R}) \\ \operatorname{out}(\mathfrak{t}) \in I \\ \operatorname{in}(\mathfrak{t}) \in \mathcal{T}^*}} \operatorname{eval}_{\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})}(\mathfrak{t}).$$

Proposition

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing,

$$\operatorname{Supp}(\operatorname{sync}(\mathcal{B})) = \operatorname{SL}(\mathcal{B}).$$

Outline

Series and bud generating systems

Series on colored operads Series of bud generating systems

Series of colors

Series of colors

Let **f** be a $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -series.

Let

$$\mathfrak{col}: \mathbb{K} \langle \langle \operatorname{Bud}_{\mathscr{C}}(\mathcal{O}) \rangle \rangle \to \mathbb{K} \langle \langle \operatorname{Bud}_{\mathscr{C}}(\operatorname{As}) \rangle \rangle$$

be the map defined by

$$\langle (\textbf{a}, \star_n, \textbf{u}), \mathfrak{col}(\textbf{f}) \rangle := \sum_{(\textbf{a}, \textbf{x}, \textbf{u}) \in \underline{\mathtt{Bud}}_{\mathscr{C}}(\mathcal{O})} \langle (\textbf{a}, \textbf{x}, \textbf{u}), \textbf{f} \rangle \,.$$

Series of colors

Let **f** be a $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -series.

Let

$$\mathfrak{col}: \mathbb{K} \langle \langle \operatorname{Bud}_{\mathscr{C}}(\mathcal{O}) \rangle \rangle \to \mathbb{K} \langle \langle \operatorname{Bud}_{\mathscr{C}}(\operatorname{As}) \rangle \rangle$$

be the map defined by

$$\langle (\textbf{a}, \star_n, \textbf{u}), \mathfrak{col}(\textbf{f}) \rangle := \sum_{(\textbf{a}, \textbf{x}, \textbf{u}) \in \underline{\mathtt{Bud}}_{\mathscr{C}}(\mathcal{O})} \langle (\textbf{a}, \textbf{x}, \textbf{u}), \textbf{f} \rangle \,.$$

This series is the series of colors of \mathbf{f} .

The series col(f) is a version of f wherein only the colors of the elements of its support are taken into account.

Series of color types

Let

$$\mathfrak{colt}: \mathbb{K} \left\langle \left\langle \mathrm{Bud}_{\mathscr{C}}(\mathcal{O}) \right\rangle \right\rangle \to \mathbb{K}[[\mathscr{C}]] \otimes \mathbb{K}[[\mathscr{C}]]$$

be the map defined by

$$\langle \mathbf{a} \otimes \mathbf{u}, \mathfrak{colt}(\mathbf{f}) \rangle := \sum_{\substack{(\mathbf{a}, \mathbf{x}, \mathbf{v}) \in \operatorname{\mathbf{Bud}}_{\mathscr{C}}(\operatorname{As}) \\ \operatorname{type}(\mathbf{v}) = \mathbf{u}}} \langle (\mathbf{a}, \mathbf{x}, \mathbf{v}), \mathfrak{col}(\mathbf{f}) \rangle,$$

where type(v) is the commutative image of v.

Series of color types

Let

$$\mathfrak{colt}: \mathbb{K} \left\langle \left\langle \mathrm{Bud}_{\mathscr{C}}(\mathcal{O}) \right\rangle \right\rangle \to \mathbb{K}[[\mathscr{C}]] \otimes \mathbb{K}[[\mathscr{C}]]$$

be the map defined by

$$\langle a \otimes u, \operatorname{colt}(\mathbf{f}) \rangle := \sum_{\substack{(a,x,v) \in \operatorname{\mathbf{Bud}}_{\mathscr{C}}(\operatorname{As}) \\ \operatorname{type}(v) = u}} \langle (a,x,v), \operatorname{col}(\mathbf{f}) \rangle,$$

where type(v) is the commutative image of v.

This series is the series of color types of f.

The series cole(f) is a version of f wherein only the output colors and the commutative images of the input colors of the elements of its support are taken into account.

Series of color types

Let

$$\mathfrak{colt}: \mathbb{K} \left\langle \left\langle \mathrm{Bud}_{\mathscr{C}}(\mathcal{O}) \right\rangle \right\rangle \to \mathbb{K}[[\mathscr{C}]] \otimes \mathbb{K}[[\mathscr{C}]]$$

be the map defined by

$$\langle a \otimes u, \operatorname{colt}(\mathbf{f}) \rangle := \sum_{\substack{(a,x,v) \in \operatorname{\mathbf{Bud}}_{\mathscr{C}}(\operatorname{As}) \\ \operatorname{type}(v) = u}} \langle (a,x,v), \operatorname{col}(\mathbf{f}) \rangle,$$

where type(v) is the commutative image of v.

This series is the series of color types of **f**.

The series colt(f) is a version of f wherein only the output colors and the commutative images of the input colors of the elements of its support are taken into account.

Goal

Obtain a expression for $\mathfrak{colt}(\operatorname{sync}(\mathcal{B}))$, counting the elements synchronously generated by \mathcal{B} with respect to their number input colors.

We consider that $\mathscr{C} := \{c_1, \dots, c_k\}$ and $\mathfrak{R} := \{r_1, \dots, r_\ell\}$.

Let $\mathcal{M}^{\mathrm{in}}$ be the $\ell \times k$ -matrix defined by

$$\mathcal{M}_{i,j}^{\mathrm{in}} := |\mathrm{in}(r_i)|_{c_j}.$$

We consider that $\mathscr{C} := \{c_1, \dots, c_k\}$ and $\mathfrak{R} := \{r_1, \dots, r_\ell\}$.

Let $\mathcal{M}^{\mathrm{in}}$ be the $\ell imes k$ -matrix defined by

$$\mathcal{M}_{i,j}^{\mathrm{in}} := |\mathrm{in}(r_i)|_{c_j}.$$

Let $\mathcal{M}^{\mathrm{out}}$ be the $\ell \times k$ matrix defined by

$$\mathcal{M}_{i,j}^{ ext{out}} := egin{cases} 1 & ext{if } \operatorname{out}(r_i) = c_j, \ 0 & ext{otherwise}. \end{cases}$$

We consider that $\mathscr{C} := \{c_1, \dots, c_k\}$ and $\mathfrak{R} := \{r_1, \dots, r_\ell\}$.

Let \mathcal{M}^{in} be the $\ell \times k$ -matrix defined by

$$\mathcal{M}_{i,j}^{\mathrm{in}} := |\mathrm{in}(r_i)|_{c_j}.$$

Let \mathcal{M}^{out} be the $\ell \times k$ matrix defined by

$$\mathcal{M}_{i,j}^{\mathrm{out}} := egin{cases} 1 & ext{if } \mathrm{out}(r_i) = c_j, \\ 0 & ext{otherwise.} \end{cases}$$

Example

For $\mathcal{B} := (Mag, \{1, 2\}, \Re, \{1\}, \{1\})$ where

$$\mathfrak{R}:=\left\{\left(1,\ \diamondsuit,11\right),\left(1,\ \diamondsuit,12\right),\left(1,\ \diamondsuit,21\right),\left(2,\boldsymbol{1},1\right)\right\},$$

we have

$$\mathcal{M}^{\mathrm{in}} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad \mathcal{M}^{\mathrm{out}} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

For any $1 \times k$ matrix α , \mathscr{C}^{α} denotes the monomial $c_1^{\alpha_1} \dots c_k^{\alpha_k}$.

For any set $S:=\{s_1,\ldots,s_n\}$ of nonnegative integers, S! denotes the multinomial coefficient $\binom{s_1+\cdots+s_n}{s_1,\ldots,s_n}$.

For any $1 \times k$ matrix α , \mathscr{C}^{α} denotes the monomial $c_1^{\alpha_1} \dots c_k^{\alpha_k}$.

For any set $S := \{s_1, \ldots, s_n\}$ of nonnegative integers, S! denotes the multinomial coefficient $\binom{s_1+\cdots+s_n}{s_1,\ldots,s_n}$.

Theorem

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing, for all $a \in \mathcal{C}$ and $\alpha \in \operatorname{Mat}(1, k)$,

$$egin{aligned} \left\langle oldsymbol{a} \otimes \mathscr{C}^{lpha}, \operatorname{colt}\left(\mathbf{r}^{\odot_*}
ight)
ight
angle &= \delta_{lpha, \operatorname{type}(oldsymbol{a})} \ &+ \sum_{\zeta \in \operatorname{Mat}(1,\ell)} \left(\prod_{j \in [k]} \left\{ \zeta_i : \mathcal{M}_{i,j}^{\operatorname{out}} = 1
ight\}!
ight) \left\langle oldsymbol{a} \otimes \mathscr{C}^{\zeta \mathcal{M}^{\operatorname{out}}}, \operatorname{colt}\left(\mathbf{r}^{\odot_*}
ight)
ight
angle. \end{aligned}$$

The synchronous language of the bud generating system $\mathcal{B}:=\big(\text{Mag},\{1,2\},\mathfrak{R},\{1\},\{1\}\big)$ where

is the set of all balanced binary trees.

The synchronous language of the bud generating system $\mathcal{B}:=\left(\text{Mag},\{1,2\},\mathfrak{R},\{1\},\{1\}\right)$ where

$$\mathfrak{R} := \left\{ \left(1, \ \ \bigcirc, 11\right), \left(1, \ \ \bigcirc, 12\right), \left(1, \ \ \bigcirc, 21\right), (2, \mathbf{1}, 1) \right\},$$

is the set of all balanced binary trees.

Since

$$\mathcal{M}^{\mathrm{in}} = egin{bmatrix} 2 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad \mathcal{M}^{\mathrm{out}} = egin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix},$$

the series $colt(\mathbf{r}^{\odot*})$ satisfies

$$\begin{split} \left\langle 1 \otimes 1^{\alpha_1} 2^{\alpha_2}, \operatorname{colt}\left(\mathbf{r}^{\odot_*}\right) \right\rangle &= \delta_{(\alpha_1,\alpha_2),(1,0)} \\ &+ \sum_{\substack{2\zeta_1 + \zeta_2 + \zeta_3 + \zeta_4 = \alpha_1 \\ \zeta_2 + \zeta_3 = \alpha_2}} \binom{\zeta_1 + \zeta_2 + \zeta_3}{\zeta_1, \zeta_2, \zeta_3} \left\langle 1 \otimes 1^{\zeta_1 + \zeta_2 + \zeta_3} 2^{\zeta_4}, \operatorname{colt}\left(\mathbf{r}^{\odot_*}\right) \right\rangle. \end{split}$$

This leads to the definition of the map

$$f_{\alpha_1,\alpha_2}:\mathbb{N}^2\setminus\{(0,0)\}\to\mathbb{N}$$

satisfying $f_{1,0}=1$ and the recurrence formula

$$f_{\alpha_1,\alpha_2} = \sum_{2\zeta_1+\alpha_2+\zeta_4=\alpha_1} {\zeta_1+\alpha_2 \choose \zeta_1} 2^{\alpha_2} f_{\zeta_1+\alpha_2,\zeta_4}.$$

This leads to the definition of the map

$$f_{\alpha_1,\alpha_2}:\mathbb{N}^2\setminus\{(0,0)\}\to\mathbb{N}$$

satisfying $f_{1,0}=1$ and the recurrence formula

$$f_{\alpha_1,\alpha_2} = \sum_{2\zeta_1 + \alpha_2 + \zeta_4 = \alpha_1} {\zeta_1 + \alpha_2 \choose \zeta_1} 2^{\alpha_2} f_{\zeta_1 + \alpha_2,\zeta_4}.$$

The coefficient f_{α_1,α_2} is the coefficient of $1 \otimes 1^{\alpha_1} 2^{\alpha_2}$ in $coll(sync(\mathcal{B}))$.

This leads to the definition of the map

$$f_{\alpha_1,\alpha_2}:\mathbb{N}^2\setminus\{(0,0)\}\to\mathbb{N}$$

satisfying $f_{1,0}=1$ and the recurrence formula

$$f_{\alpha_1,\alpha_2} = \sum_{2\zeta_1 + \alpha_2 + \zeta_4 = \alpha_1} {\zeta_1 + \alpha_2 \choose \zeta_1} 2^{\alpha_2} f_{\zeta_1 + \alpha_2,\zeta_4}.$$

The coefficient f_{α_1,α_2} is the coefficient of $1 \otimes 1^{\alpha_1}2^{\alpha_2}$ in $coll(sync(\mathcal{B}))$.

Moreover, since $I=\{1\}$ and $T=\{1\}$, the number of balanced binary trees with α_1 leaves is

$$\left\langle \mathbf{1} \otimes \mathbf{1}^{\alpha_1} \mathbf{2}^{\mathbf{0}}, \mathfrak{colt}(\mathrm{sync}(\mathcal{B})) \right\rangle = \left\langle \mathbf{1} \otimes \mathbf{1}^{\alpha_1} \mathbf{2}^{\mathbf{0}}, \mathfrak{colt}\left(\mathbf{r}^{\odot_*}\right) \right\rangle = \mathit{f}_{\alpha_1,0}.$$

Outline

Annexes

The free operad Free(G) over G, where G is a graded set, is defined by

- ▶ Free(G)(n) is the set of the planar rooted trees with n leaves and where internal nodes are labeled on G, respecting the arities of the labels;
- \blacktriangleright $\mathfrak{s} \circ_i \mathfrak{t}$ is tree obtained by grafting the root of \mathfrak{t} to the *i*-th leaf of \mathfrak{s} .

The free operad Free(G) over G, where G is a graded set, is defined by

- ▶ Free(G)(n) is the set of the planar rooted trees with n leaves and where internal nodes are labeled on G, respecting the arities of the labels;
- \blacktriangleright $\mathfrak{s} \circ_i \mathfrak{t}$ is tree obtained by grafting the root of \mathfrak{t} to the *i*-th leaf of \mathfrak{s} .

For any set of colors \mathscr{C} ,

$$\operatorname{Bud}_{\mathscr{C}}(\operatorname{Free}(G)) = \bigsqcup_{n \geqslant 1} \left\{ (a, \mathfrak{t}, u_1 \dots u_n) : a, u_1, \dots, u_n \in \mathscr{C}, \mathfrak{t} \in \operatorname{Free}(G)(n) \right\}.$$

The free operad Free(G) over G, where G is a graded set, is defined by

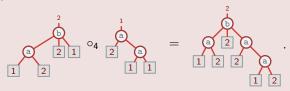
- ▶ Free(G)(n) is the set of the planar rooted trees with n leaves and where internal nodes are labeled on G, respecting the arities of the labels;
- ▶ $\mathfrak{s} \circ_i \mathfrak{t}$ is tree obtained by grafting the root of \mathfrak{t} to the *i*-th leaf of \mathfrak{s} .

For any set of colors \mathscr{C} ,

$$\operatorname{Bud}_{\mathscr{C}}(\operatorname{Free}(G)) = \bigsqcup_{n \geqslant 1} \left\{ (a, \mathfrak{t}, u_1 \dots u_n) : a, u_1, \dots, u_n \in \mathscr{C}, \mathfrak{t} \in \operatorname{Free}(G)(n) \right\}.$$

Example

In $Bud_{\{1,2\}}(Free(G))$ where $G := \{a, b\}$, |a| :=: 2, and |b| := 3,



In general, $\operatorname{Bud}_{\mathscr{C}}(\operatorname{Free}(G))$ is not a free colored operad.

In general, $\operatorname{Bud}_{\mathscr{C}}(\operatorname{Free}(G))$ is not a free colored operad.

For instance, the colored operad $Bud_{\{1,2\}}(Free(\{a\}))$ with |a|:=2 is generated by the eight corollas

$$x, y_1, y_2 \in \{1, 2\},$$

and are subject to the nontrivial quadratic relations

Invertible elements for •

Proposition

If $\operatorname{Supp}(\mathbf{f})(1) = \{\mathbf{1}_c : c \in \mathscr{C}\} \sqcup S$ for some \mathcal{C} -finitely factorizing set S, the equations

$$\mathbf{f} \odot \mathbf{x} = \mathbf{u}$$
 and $\mathbf{x} \odot \mathbf{f} = \mathbf{u}$

admit both the unique same solution denoted by $\mathbf{x} = \mathbf{f}^{\odot_{-1}}$.

Invertible elements for ⊙

Proposition

If $\operatorname{Supp}(\mathbf{f})(1) = \{\mathbf{1}_c : c \in \mathscr{C}\} \sqcup S$ for some \mathcal{C} -finitely factorizing set S, the equations

$$\mathbf{f} \odot \mathbf{x} = \mathbf{u}$$
 and $\mathbf{x} \odot \mathbf{f} = \mathbf{u}$

admit both the unique same solution denoted by $\mathbf{x} = \mathbf{f}^{\odot_{-1}}$.

Proposition

If $\operatorname{Supp}(\mathbf{f})(1) = \{\mathbf{1}_{\mathbf{c}} : \mathbf{c} \in \mathscr{C}\} \sqcup S$ for some \mathcal{C} -finitely factorizing set S, $\mathbf{f}^{\odot -1}$ is a well-defined series satisfying

$$\left\langle x, \mathbf{f}^{\odot_{-1}} \right\rangle = \sum_{\substack{\mathfrak{t} \in \overline{Free}(\bar{\mathcal{C}}) \\ \operatorname{eval}_{\mathcal{C}}(\mathfrak{t}) = x}} (-1)^{\operatorname{deg}(\mathfrak{t})} \frac{1}{\left\langle \mathbf{1}_{\operatorname{out}(x)}, \mathbf{f} \right\rangle} \prod_{\nu \in \operatorname{N}(\mathfrak{t})} \frac{\left\langle \operatorname{lb}(\nu), \mathbf{f} \right\rangle}{\prod\limits_{j \in [|\nu|]} \left\langle \mathbf{1}_{\operatorname{in}_{j}(\nu)}, \mathbf{f} \right\rangle}.$$

Therefore, the monoid $(\mathbb{K}\langle\langle\mathcal{C}\rangle\rangle,\odot)$ contains a (large) group formed by the series with a support satisfying the above description.

Let $\mathcal{B} := (\mathcal{O}, \mathscr{C}, \mathfrak{R}, I, T)$ be a bud generating system.

The syntactic generating series of ${\cal B}$ is

$$\operatorname{synt}(\mathcal{B}) := \mathbf{i} \odot (\mathbf{u} - \mathbf{r})^{\odot_{-1}} \odot \mathbf{t}.$$

Let $\mathcal{B} := (\mathcal{O}, \mathscr{C}, \mathfrak{R}, I, T)$ be a bud generating system.

The syntactic generating series of ${\cal B}$ is

$$\operatorname{synt}(\mathcal{B}) := \mathbf{i} \odot (\mathbf{u} - \mathbf{r})^{\odot_{-1}} \odot \mathbf{t}.$$

Lemma

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing, $\operatorname{synt}(\mathcal{B})$ is a well-defined series.

Let $\mathcal{B} := (\mathcal{O}, \mathscr{C}, \mathfrak{R}, I, T)$ be a bud generating system.

The syntactic generating series of ${\cal B}$ is

$$\operatorname{synt}(\mathcal{B}) := \mathbf{i} \odot (\mathbf{u} - \mathbf{r})^{\odot_{-1}} \odot \mathbf{t}.$$

Lemma

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing, $\operatorname{synt}(\mathcal{B})$ is a well-defined series.

We say that \mathcal{B} is unambiguous if all coefficients of $synt(\mathcal{B})$ are 0 or 1.

Theorem

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing,

$$\operatorname{synt}(\mathcal{B}) = \sum_{\substack{\mathfrak{t} \in \overline{\operatorname{Pree}}(\mathfrak{R}) \\ \operatorname{out}(\mathfrak{t}) \in I \\ \operatorname{in}(\mathfrak{t}) \in \mathcal{T}^*}} \operatorname{eval}_{\operatorname{Bud}_{\mathfrak{C}}(\mathcal{O})}(\mathfrak{t}).$$

Theorem

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing,

$$\operatorname{synt}(\mathcal{B}) = \sum_{\substack{\mathfrak{t} \in \operatorname{Free}(\mathfrak{R}) \\ \operatorname{out}(\mathfrak{t}) \in I \\ \operatorname{in}(\mathfrak{t}) \in T^*}} \operatorname{eval}_{\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})}(\mathfrak{t}).$$

Proposition

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing,

$$Supp(synt(\mathcal{B})) = L(\mathcal{B}).$$

Theorem

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing,

$$\operatorname{synt}(\mathcal{B}) = \sum_{\substack{\mathfrak{t} \in \operatorname{Free}(\mathfrak{R}) \\ \operatorname{out}(\mathfrak{t}) \in I \\ \operatorname{in}(\mathfrak{t}) \in T^*}} \operatorname{eval}_{\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})}(\mathfrak{t}).$$

Proposition

If $\mathfrak{R}(1)$ is $\operatorname{Bud}_{\mathscr{C}}(\mathcal{O})$ -finitely factorizing,

$$Supp(synt(\mathcal{B})) = L(\mathcal{B}).$$

If ${\cal B}$ is unambiguous, each element generated by ${\cal B}$ admits exactly one treelike expression.