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1. Algebraic combinatorics



A combinatorial collection is a set C endowed with a map

|—]:C—N

such that for any n € N, C(n) := {x € C: |x| = n} is finite.

For any x € C, we call |x| the size of x.

— Classical questions -

1,
2.

3.

Enumerate the objects of C of size n.
Generate all the objects of C of size n.
Randomly generate an object of C of size n.

Establish transformations between C and other combinatorial collections D.
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— Main idea -

Endow C with operations to form an algebraic structure.

The algebraic study of C helps to discover combinatorial properties.
In particular,
1. minimal generating families of C

~ highlighting of elementary pieces of assembly;

2. morphisms involving C
~ transformation algorithms and revelation of symmetries.

Some algebraic structures arising in this context are
® monoids; m associative alg.; m pre-Lie alg.;
m groups; m Hopf bialg.; m dendriform alg.;
m lattices; m Lie alg; m duplicial alg.
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(A) Enumerative combinatorics:

m Pattern avoidance in trees;
m Colored operads and generation;

m Generalized formal power series.

(B) Constructions of algebraic structures:

m Operads, clones™, and pros ;
m Posets and lattices;

m Universal algebra*.

*: intervenes in the sequel.

(C) Algorithms and complexity:
m Detection of square permutations;
m Statistics on permutations;

m Random generation.

(D) Term rewrite systems:
m Free clones™;
m Combinatory logic;

m Models of computation.
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2. Universal algebra and terms



Universal algebra

Universal algebra is a formalism to work with algebraic structures.
A signature is a graded set & := | |, &(k) wherein each a € &(k) is an operation of arity k.

A B-term is
m either a variable x from the set X := {x, x2,...};

m either a pair (a, (t;,..., t;)) where a € ®(k) and each t, is a &-term.

The set of all &-terms is denoted by T(&).

- Example -
|
X This is the tree representation of the &-term
7/ \
/+\ /+\ (X,((-}—,(Xl,xz)),(+,((><,(X1,X1)),X3))))
2 X\ s where & := 6(2) := {+, x}.
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More on terms

Let t be a &-term.

The frontier of t is the sequence of all variables appearing in t.

- Example -

|
c
/ \ The frontier of this term is
a c

b
/NN N

X2 X3 a X3 X3 X3 X¢ ity is 6.
X1

(2, x3, x1, x1, X3, X3, X3, X6) and its ground ar-
X1

The ground arity of t is the greatest integer n such that x, is a variable appearing in t.
The term t is
m planar if its frontier is (xq, ..., x,);

m standard if its frontier is a permutation of (x1, ..., x,);

m linear if there are no multiple occurrences of the same variable in the frontier of t.
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Varieties
A G-equation is a pair (t, t') where t and t’ are both &-terms.

t 91 t/ the fact that (t,t') € 7.

A variety is a pair (&, 93) where & is a signature and ‘A is a set of $-equations. We denote by

- Example -
The variety of groups is the pair (&, 93) where & := &(0) U &(1) U &(2) with &(0) := {1}, &(1) := {i}, and
(2) := {x}, and A is the set of G-equations satisfying
I I . .
* * | | x
AN AN « RIR o< AROIR N
* X3 X1 * 7\ x1 VRN i X X1 i
,\1/ \x; xz/ \3(3 wo o= X1 251
- Example -
I
A

|
A

| |
R A, AR L.
/7 N\ /7 N\ /7 N\ X1
X1 £ X1 X1 X1

X2

The variety of semilattices is the pair (&, 91) where & := &(2) := {A}, and 1 is the set of $-equations satisfying
A
\ 0
A
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Algebras of a variety

Let A be a nonempty set. An A-substitution isamap o : X — A.
An A-interpretation of a signature & is a set & 4 := {aA AR 5 Aae B(k) forak > O}.
The evaluation of a -term t under an A-substitution ¢ and an A-interpretation & 4 is defined by

induction as

7 (1) o(x) if t = x is a variable,
ev =
as(evy(t),...,ev%(tx)) otherwise, where t = (a, (t1,..., t)).
— Example -
. +/X N - +/X N With A := N, & 4 defined naturally, and o satisfying o'(x1) := 1,
-4 2y S Y% 0 (x2) := 2, and o(x3) := 0, one obtains ev% (t) = 2.
Y
X1 X1 11

An algebra of a variety (&, 97) is a pair (A, & 4) where for any (t,t') € 91 and .A-substitution o,
evy (t) = evo (t).

11/42



3. Equivalence of terms and rewrite systems
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Equivalent terms

Two G-terms t and t’ are 9i-equivalent if for all algebras (A, & 4) of (&, %) and for all
A-substitutions o, one has ev7 (t) = ev (t). This property is denoted by t = t'.

- Example -
In the variety of groups,
; !
’I( =N 1/ \i
/\ [
X1 X2 X2 X1

- Some usual questions -

1. Design an algorithm to decide if two $-terms are =s;-equivalent. This is known as the word
problem [Baader, Nipkow, 1998].

2. Construct a system of representatives C of the = -equivalence classes. The set C is a partial
combinatorial realization of the variety.

Enumerate the =::-equivalence classes of (planar/standard/linear) $-terms w.r.t. their ground arity.
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Rewrite systems on terms

Rewrite systems on terms are tools to tackle these questions.

A rewrite relation on ¥(&) is a binary relation — on T(®) such that if s — s’, then all variables of
s’ appear in 5.

The context closure of — is the binary relation = satisfying t = t" whenever t’ is obtained by
replacing in t a factor s by s’ provided that s — 5.

— Example -

For & := &(2) := {a}, let the rewrite relation — defined by

— | and /N = 7N

a
/ N\ X1 a X3 e &
X o " AN
X1 Xz X1 X1 X3 X3
We have
| L |
a & a
T~ /T~ T~
a a /“\ / a \ a / a
\ \ I\ \
X2 X2 .|/ X5 = X2 X2 a a = X3 X3 a X5 °
/N /N A VAR
A a a X5 X5

a g a a a
/\ AN /\ /\ I\ /\
X2 X1 X3 X3 X2 X1 X2 x1 X2 X1 X2 X1
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Let (&, 97) be a variety. A rewrite relation — of (&) is an orientation of 1 if the reflexive,
symmetric, and transitive closure of — is 1.

Let — be an orientation of 3.

For any two ®-terms t and ,t=n tiff t &t

When there is no infinite chain t, = t; = {; = - - -, the rewrite relation — is terminating,.
Ift = 5, and t = s, implies the existence of ¢’ such that s; = t’ and s, = t, then — is confluent.
A normal form for — is a &-term t such that t = t' implies t = ¢'.

Let — be an orientation of 1.

If — is terminating and confluent, then t = t’ iff there is a normal form s such that t = sand ! = 5.

In this context, completion algorithms are important [Knuth, Bendix, 1970].
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Duplicial algebras

A duplicial algebra [Brouder, Frabetti, 2003] is a set .A endowed with two binary operations
<> A = A
satisfying the three relations
(36 € x2) € 33 = x1 < (302 K x3),
(31> x2) K 33 = x1 > (302 K x3),
(31 > x2) > x3 = x1 > (363 > x3).

— Example -
On N7, let < and >> be the operations defined by
uLv:i= u(vaax(u)), u>S>v:i= u(v T\u\)'

Then, for instance,
0211 < 14 = 021136, 0211 > 14 = 021158.

This structure is a duplicial algebra [Novelli, Thibon, 2013].
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Let us describe an algorithm to test if two planar duplicial operations are equivalent.

By the duplicial relations, we have

Ll Ll Ll Ll Ll Ll
< n < > 0 > > n >
L X3 XK ) L X3 XK ) > X X1 >

X1 X2 X2 X3 X1 X2 xal ‘x3 X1 X2 x2' ‘xs
Let the orientation — of 91 defined by

< < > > > >

<<, ‘X3 - x1, .<< , <<. ‘Xg — x1, .<< , >>. ‘x3 “ x1, .>>

X1 X2 X2 X3 X1 X2 X2 X3 X1 X2 X2 X3
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We have for instance the sequence

< <
< _ 2\
N < > < >
> < / \ /\ 7\ /\
/\ / \ = > > X6 X7 = > > X6 X7
< X3 > > /N I\ /' \ /\
< X3 X4 Xs X1 K X4 Xs
/\ AN A = N
X1 X2 X4 X5 X¢ X7 X3 X3

of rewritings.

The rewrite relation — is terminating and confluent.

Therefore, two duplicial operations t and t’ are 9i-equivalent iff the procedure consisting in rewriting t
and t’ as far as possible produces in both cases the same term.
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The set of normal forms for — of duplicial operations with n > 0 inputs is in one-to-one correspondence
with the set of all binary trees with n internal nodes where internal nodes are labeled on X.

A possible bijection puts the following two trees in correspondence:

< >
7\ /7 N\
X2 X < >
/A AN
X1 Xp X5 <
7\
> X
I\
X5 Xz

Therefore, there are

pairwise nonequivalent duplicial operations with n inputs on variables of {xy, ..., xx}.
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Distributive lattices

A distributive lattice is a set .4 endowed with two binary operations

AV AR A
satisfying the relations
(31 A xp) A xs = x1 A (2 A x3), (1 V x2) Vx3 = x1 V (32 V x3),
X1 N\ X3 = X3 N\ Xq, x1 V xy = x5 V X1,
Xl/\(Xl\/Xz):Xl, X]\/(Xl/\XZ):Xl,

X1 \Y (Xz N X3) = (X1 V X2) A\ (Xl V X3)7 X1 N (XZ \Y X3) = (Xl A\ Xz) V (Xl A\ Xg).

- Examples -

m On the subsets of [n], V defined as the union and A as the intersection of sets is a finite distributive lattice.

m The set of all Young diagrams is an infinite distributive lattice for the intersection and the union of Young
diagrams [Kreweras, 1965] [Stanley, 1988].
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Encoding distributive lattice operations

A normal term is a term t expressing as
t=5V...Vsy, m20, where s;=x5, A...Axp,, k=1,

forany i, ' € [k], xz, = x7, , impliesr =/, and {fi,1, ..., fix} C {fras - fox, } implies i = 7.

- Examples -
m (2 Ax3Axs)V (x3sAx7)V (x3 A xs)V xg is a normal term —as polynomial: x2x3x5 4 x3x7 + X34 + X6;

m (x2 A x3 Axs)V (x2 A xs) is not —as polynomial: xpx3x5 + x25.

The set of all normal terms is a partial combinatorial realization of the variety of distributive lattices.
Pairwise nonequivalent distributive lattice operations with n inputs are enumerated by the
Dedekind numbers whose sequence begins with (only these few terms are known today)

1,2,5,19,167, 7580, 7828353, 2414682040997, 56130437228687557907787.
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4. Composition and clones
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Abstract operations

To have a complete combinatorial realization of a variety, we need to describe an algorithm to
compute the composition of the representations of two operations.

An G-term t on the variables {x1, ..., x,} can be seen as an abstract operation

(%1, ey xn) = filxr, ..o, xp)

depicted as

where k is the length of the frontier of t.

— Example -
For the signature & of the variety of semi- 1
lattices, here is a ®-term seen on the set 7/
{x1, ..., x4} of variables and the abstract op- te= /A\ /A\ )

eration it denotes: 4 /\
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If f is an abstract operation of arity n and gi, ..., g, are abstract operations all of arity m, then
f©[g1,-..,gn is the operation satisfying

(1y ey xm) = fg1 (ot e ooy Xm)y oo vy 8n(a, ooy Xm))-

This is the abstract operation depicted as
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Abstract clones [Cohn, 1965] provide a formalization of general operations with their composition.

An abstract clone is a triple (C, ®, 1; ,) where

m C is a graded set

®m (© is a map

©®:C(n) x C(m)" — C(m)

called superposition map;

m foreach n > 0 and i € [n], 1, , is an element of C(n) called projection.

This data has to satisfy some axioms.
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Clone axioms

The following relations have to be satisfied:

m For all x; € C(m),

1, ® [x1,...,%xn) = x;.
This says that 1; , is the operation returning its i-th input.

m For all x € C(n),
x@[Lipy ..., 1y, =x

This says that each 1; ,, put as j-th input, is an identity operation.

m Forall x € C(n), y; € C(m), and z; € C(k),

(x@ Y1y s Vn)) © 215 s Zm| =X @ [y1 @ [Z15-« s Zm)y e -+ s Yn © [21, - -+ Zm]]-

This says that the two ways to compose elements to form an operation having three layers (by
starting from top or by starting from bottom) give the same operation.
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Free clones

Let & be a signature.

The free clone on & is the clone ((®),®,1; ,) where
m T(®) is the set of all &-terms. Each &-term t is endowed with an integer equal as or greater

than its ground arity and called arity;
m © is defined as follows. The &-term t ® [s1, . .., 5,] is obtained by replacing each occurrence

of a variable x; of t by the root of 5;;

m 1, is the term Y' of arity n.

Xi

— Example -

By setting & := ¢(2) LU &(3) where &(2) := {a,b} and (3) := {c}, in the free clone T(&), one has

|
.
c a | | b a a
AN ® 7N b b = /\ /N 7N
X3 X1 a a x9 7 s N ) 7\ X2 X1 a X2 b a
KA X2 X2 Xz X1 \ /\ /\
X3 X1 X1 X2 X1 X2 Xy X1 a X2
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5. Clones of colored words



Let (M, -, €) be a monoid.

Let (& o4, 5iaq) be the variety such that
B &= Ga(1) U S (2) where B aq(1) := M and G a4 (2) := {a};

m 91, s the set of &y -equations satisfying

1
a « [e31 | |
AR AN ! DRy oo € Ry |
S M N, M) a; M | ML
g% g (I /\ | X1 X1
X1 Xz Xz X3 X1 X X1 Xz X1

for any a, a1, iy € M.

Any algebra of this variety is a semigroup (A, a) endowed with semigroup endomorphisms
o+ A — Awith @ € M such that ¢, is the identity map and

Doy © oy = Pay-ars ayq, o € M.
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Let the orientation — of i, satisfying

'
a a a « [e31 | ]
e €
R — RN , /\ | , [ 1 Qz , — 1
a X3 X1 a a o« a a;y ] | X1
o o I I /' \ I X1 X1
X1 X2 Xz X3 X1 X2 X1 X2 X1

For any monoid M, the orientation — of 93 ¢ is terminating and confluent.

The set of normal forms for — of planar & ,-terms is the set of the terms avoiding the left
members of —. These are the terms of the form

a
/N .
PRy where s;€{ !, % o, o € M\ {e}.

59 a Xk;
/7 \
Sp—1  Sp

51
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Colored words

Let (M, -, €) be a monoid.
Let WM be the graded set of all M-colored words defined, for any n > 0, by

WM(n) := |_|{(':) cuen)fce ML > 0}.

n>0

- Example -

0010

1216
( ) is a Z/2Z~colored word of arity 6 (or greater).

Let ® be the superposition map defined by

@ Vi Vn o Vu(1) - Vu(e)
(c) © [(fh) gooag (d;;)} = <(c(1)-du(1)) -..(c(f)-du(@))
where for any « € M and w € M*, o~ w:= (a-w(1)) ... (o w(|wl])).

Letalso 1;, := (;) .
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- Example -

In W(N, +, 0),
223@ 21 112 22\] (112 112 22
010 11/>\300/)’\10/]  \300 411 10/
— Theorem -

For any monoid M, (WM, ®, 1; ») is a clone and is a combinatorial realization of the variety (& u(, 9 1).

- Example -
a
Here is a normal for — of the variety (& ¢, %iaq) X \/a
where M is the monoid (N, +, 0) and the M-colored } \/a . (2 324 4) .
word in correspondence: X3 3 o a 01301
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Clone of words and congruences

Let us focus on the case where M is the trivial monoid {€}.

Let Word := W{e}. We can forget about the colors of the elements of Word without any loss of
information.

m Let = be the equivalence relation on Word wherein u =, v if u and v have both the same
sorted version.

m Let = (resp. =;) be the equivalence relation on Word wherein u = v (resp. u =, v) if the
versions of u and v obtained by keeping only the leftmost (resp. rightmost) among the
multiple occurrences of a same letter are equal.

- Examples -

We have 311322 =, 131232, 223111352 = 2333315, 5142144 =, 552214.

The equivalence relations =, =, and =, are clone congruences of Word.
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Quotients of Word

Clone ‘ Combinatorial objects ‘ Realized variety
MSet := Word/ =, Multisets Commutative semigroups
Arr| := Word/=, Arrangements Left-regular bands
Set := Word/=,0=, Sets Semilattices
ArrB; ;= Word/;smzl Arrangements of blocks Ass. and x1x3x1 = x1x1%2
PArr = Word/= 0=, Pairs of compatible arr. Regular bands
PArrB = word/;sﬂzlﬁzr Pairs of comp. arr. of blocks | Ass. and x1x1x2X3X1 = X1X2X1X3X] = X1X2X3X1X1

The congruence =; N = is the stalactic congruence [Hivert, Novelli, Thibon, 2007].
The superposition maps of these clones can be described by simple algorithms.

All this provides combinatorial realizations of some varieties of semigroups.
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Conclusion and future work

The previous clones on noncolored words fit in g
Some open questions:

the diagram (squared clones are combinatorial):
1. Enrich this diagram with quotients

Word of Word by other congruences.

2. Describe the analogous hierarchy
PArB when M is one of the two finite
monoids on two elements.

3. Construct other combinatorial
ArtB, ArB, - -
realizations of varieties as clones
of M-colored words for suitable
monoids M.

Arr) MSet Arr,

4. Describe the subclones of a clone
of M-colored words generated by

Set finite sets of generators.
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6. Appendix



Let MSet := Word /.

The elements of MSet can be seen as multisets of positive integers. By encoding any such multiset
u=11°0 . n"T by the tuple a = (a(1),..., a(n)), the superposition map of MSet expresses
as a matrix multiplication
b(1) ... b(m)
a®[by,...,by) = (a) ... a(w)

ba(1) ... bu(m)

The clone MSet admits the presentation (&, 93) where & := &(2) := {a} and 91 satisfies

Therefore, MSet is a combinatorial realization of the variety of commutative semigroups.
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Let Arr; := Word/=,.

The elements of Arrj(n) can be seen as arrangements (words without repetitions) on [n]. For any
n=o,

n!
#Am(n) = > =
o<k<n

and this sequence starts by 1, 2, 5, 16, 65, 326, 1957, 13700, 109601.

The clone Arr| admits the presentation (&, 931) where & := &(2) := {a} and 91 satisfies

The algebra of this variety are left-regular bands, that are idempotent semigroups wherein the
operation a satisfies the relation x; a x a x; = x; a x,.

Analog properties hold for the quotient Arr, := Word/ =, leading to right-regular bands.
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— Lemma - Therefore, this composition is a clone congruence of Word.

Let us set it as =; and let Set := Word/—..

=s0=] = =] 0 =5

The elements of Set can be seen as sets of positive integers. On such objects, the superposition map

of Set expresses as
U |[Vi,..., V] = Uvj.
jeu

Moreover, for any n > 0, #Set(n) = 2".

The clone Set admits the presentation (&, 91) where & := &(2) := {a} and A satisfies

Therefore, Set is a combinatorial realization of the variety of semilattices.
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Arrangements of blocks

Let us consider some intersections involving the congruences =, =, and =,.
Let =y := =; N =) and ArrB; := Word/—,.

The elements of ArrBj(n) can be seen as arrangements of possibly empty blocks of repeated letters
of [n].

- Examples -

The word 3311115526 is such an element of ArrB;(9). The word 22222333112 is not an element of ArrB;.

The clone ArrB; admits the presentation (&, 91) where & := &(2) := {a} and 91 satisfies

Analog properties hold for the quotient ArrB, := Word/—_, where =, := =, N =,.
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Pairs of compatible arrangements

Let =, := =] N =, and PArr = Word/—, .
The elements of PArr(n) can be seen as pairs (u, v). — Example -
such that u and v are arrangements on [n], such that j
appears in u iff j appears in v. (3261, 1263) is such an element of PArr(6).
Forany n > 0,
1!
#PArr(n) = Z ﬁ

0<k<n

and this sequence starts by 1,2,7,52,749, 17686, 614227, 29354312, 1844279257.

The clone PArr admits the presentation (&, 93) where & := ¢(2) := {a} and A satisfies

X1 X

Therefore, PArr is a combinatorial realization of the variety of regular bands. e



Pairs of compatible arrangements of blocks

Let =, := =; N =] N =, and PArrB := Word/=

slr *
The elements of PArrB(n) can be seen as

pairs (u, v) such that u and v are arrange-
ments of possibly empty blocks of repeated

letters on [n], with u and v having the same (3222611, 22211263) is such an element of PArrB(6).
number of occurrences of any letter.

The clone PArrB admits the presentation (&, 91) where & := &(2) := {a} and 1 satisfies

- Example -
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