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1. Algebraic combinatorics
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Combinatorial collections

A combinatorial collection is a set C endowed with a map

| − | : C → N

such that for any n ∈ N, C(n) := {x ∈ C : |x| = n} is �nite.

For any x ∈ C, we call |x| the size of x.

– Classical questions –
1. Enumerate the objects of C of size n.

2. Generate all the objects of C of size n.

3. Randomly generate an object of C of size n.

4. Establish transformations between C and other combinatorial collections D.
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Operations and algebraic structures

– Main idea –
Endow C with operations to form an algebraic structure.

The algebraic study of C helps to discover combinatorial properties.

In particular,

1. minimal generating families of C
; highlighting of elementary pieces of assembly;

2. morphisms involving C
; transformation algorithms and revelation of symmetries.

Some algebraic structures arising in this context are
monoids;
groups;
lattices;

associative alg.;
Hopf bialg.;
Lie alg.;

pre-Lie alg.;
dendriform alg.;
duplicial alg.
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Some connected �elds

(A) Enumerative combinatorics:
Pattern avoidance in trees;

Colored operads and generation;

Generalized formal power series.

(B) Constructions of algebraic structures:
Operads, clones?, and pros ;

Posets and lattices;

Universal algebra?.

(C) Algorithms and complexity:
Detection of square permutations;

Statistics on permutations;

Random generation.

(D) Term rewrite systems:
Free clones?;

Combinatory logic;

Models of computation.

?: intervenes in the sequel.
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Universal algebra

Universal algebra is a formalism to work with algebraic structures.

A signature is a graded set G :=
⊔

k>0 G(k) wherein each a ∈ G(k) is an operation of arity k.

A G-term is
either a variable x from the set X := {x1, x2, . . .};
either a pair (a, (t1, . . . , tk)) where a ∈ G(k) and each ti is a G-term.

The set of all G-terms is denoted by T(G).

– Example –

x2 x3

x1 x1

x3

+

×

×

+

This is the tree representation of the G-term

(×, ((+, (x1, x2)), (+, ((×, (x1, x1)), x3))))

where G := G(2) := {+,×}.
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More on terms

Let t be a G-term.

The frontier of t is the sequence of all variables appearing in t.

– Example –

x2 x3 x6x3

x1 x1

x3 x3

a c

c

a

b
The frontier of this term is
(x2, x3, x1, x1, x3, x3, x3, x6) and its ground ar-
ity is 6.

The ground arity of t is the greatest integer n such that xn is a variable appearing in t.

The term t is
planar if its frontier is (x1, . . . , xn);
standard if its frontier is a permutation of (x1, . . . , xn);
linear if there are no multiple occurrences of the same variable in the frontier of t.
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Varieties

A G-equation is a pair (t, t′) where t and t′ are both G-terms.

A variety is a pair (G,R) where G is a signature and R is a set of G-equations. We denote by
t R t′ the fact that (t, t′) ∈ R.

– Example –
The variety of groups is the pair (G,R) where G := G(0) t G(1) t G(2) with G(0) := {1}, G(1) := {i}, and
G(2) := {?}, and R is the set of G-equations satisfying

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 1

? R
x1

R
1 x1

? ,

x1

x1i

?

R
1
R x1

x1

?

i .

– Example –
The variety of semilattices is the pair (G,R) where G := G(2) := {∧}, and R is the set of G-equations satisfying

x1 x2

x3∧

∧
R x1

x2 x3

∧

∧ ,
x1 x2

∧ R
x2 x1

∧ ,
x1 x1

∧ R
x1
.
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Algebras of a variety

Let A be a nonempty set. An A-substitution is a map σ : X→ A.
An A-interpretation of a signature G is a set GA :=

{
aA : Ak → A : a ∈ G(k) for a k > 0

}
.

The evaluation of a G-term t under an A-substitution σ and an A-interpretation GA is de�ned by
induction as

evσA(t) :=

{
σ(x) if t = x is a variable,
aA(evσA(t1), . . . , evσA(tk)) otherwise, where t = (a, (t1, . . . , tk)).

– Example –

t :=
x2 x3

x1 x1

x3

+

×

×

+ ;
2 0

1 1

0

+

×

×

+
WithA := N, GA de�ned naturally, and σ satisfying σ(x1) := 1,
σ(x2) := 2, and σ(x3) := 0, one obtains evσA(t) = 2.

An algebra of a variety (G,R) is a pair (A,GA) where for any (t, t′) ∈ R and A-substitution σ,
evσA(t) = evσA(t′).
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3. Equivalence of terms and rewrite systems
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Equivalent terms

Two G-terms t and t′ are R-equivalent if for all algebras (A,GA) of (G,R) and for all
A-substitutions σ, one has evσA(t) = evσA(t′). This property is denoted by t ≡R t′.

– Example –
In the variety of groups,

x1 x2

i

?
≡R

x2 x1

i

?

i
.

– Some usual questions –
1. Design an algorithm to decide if two G-terms are ≡R-equivalent. This is known as the word

problem [Baader, Nipkow, 1998].

2. Construct a system of representatives C of the ≡R-equivalence classes. The set C is a partial
combinatorial realization of the variety.

3. Enumerate the ≡R-equivalence classes of (planar/standard/linear) G-terms w.r.t. their ground arity.
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Rewrite systems on terms

Rewrite systems on terms are tools to tackle these questions.

A rewrite relation on T(G) is a binary relation→ on T(G) such that if s→ s′, then all variables of
s′ appear in s.

The context closure of→ is the binary relation⇒ satisfying t⇒ t′ whenever t′ is obtained by
replacing in t a factor s by s′ provided that s→ s′.

– Example –
For G := G(2) := {a}, let the rewrite relation→ de�ned by

x1 x1

a →
x1

and
x1 x2

x3a

a
→

x1 x1 x3 x3

a

a

a .

We have

x2

x3

x5x2

x2 x1 x3

a a

a

a

a

a

⇒ x2

x1

x5 x5

x2

x2 x1 x2

a a

a

a

a

a

a

⇒ x2

x1

x5x2

x2 x1 x2

a a

a

a

a

a

.
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Rewrite systems on terms and varieties

Let (G,R) be a variety. A rewrite relation→ of T(G) is an orientation of R if the re�exive,
symmetric, and transitive closure of→ is R.

– Proposition [Straightforward, –] –
Let→ be an orientation of R.

For any two G-terms t and t′, t ≡R t′ i� t
∗⇔ t′.

When there is no in�nite chain t0 ⇒ t1 ⇒ t2 ⇒ · · · , the rewrite relation→ is terminating.
If t ∗⇒ s1 and t

∗⇒ s2 implies the existence of t′ such that s1
∗⇒ t′ and s2

∗⇒ t′, then→ is con�uent.
A normal form for→ is a G-term t such that t ∗⇒ t′ implies t = t′.

– Proposition [Straightforward, –] –
Let→ be an orientation of R.

If→ is terminating and con�uent, then t ≡R t′ i� there is a normal form s such that t ∗⇒ s and t′
∗⇒ s.

In this context, completion algorithms are important [Knuth, Bendix, 1970].
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Duplicial algebras

A duplicial algebra [Brouder, Frabetti, 2003] is a set A endowed with two binary operations

�,�: A2 → A

satisfying the three relations

(x1 � x2)� x3 = x1 � (x2 � x3),

(x1 � x2)� x3 = x1 � (x2 � x3),

(x1 � x2)� x3 = x1 � (x2 � x3).

– Example –
On N+, let� and� be the operations de�ned by

u� v := u
(
v ↑max(u)

)
, u� v := u

(
v ↑|u|

)
.

Then, for instance,
0211� 14 = 021136, 0211� 14 = 021158.

This structure is a duplicial algebra [Novelli, Thibon, 2013].
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Equivalence of duplicial operations

Let us describe an algorithm to test if two planar duplicial operations are equivalent.

By the duplicial relations, we have

x1 x2

x3�

�
R x1

x2 x3

�

� ,

x1 x2

x3�

�
R x1

x2 x3

�

� ,

x1 x2

x3�

�
R x1

x2 x3

�

� .

Let the orientation→ of R de�ned by

x1 x2

x3�

�

→x1

x2 x3

�

� ,

x1 x2

x3�

�
→ x1

x2 x3

�

� ,

x1 x2

x3�

�

→x1

x2 x3

�

� .
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Testing equivalence of duplicial operations

We have for instance the sequence

x1 x6 x7x2

x3

x4 x5

� �

�

�

�

� ⇒

x1

x6 x7

x2

x3 x4 x5�

�

�

�

�

�

⇒

x1

x6 x7

x2 x3

x4 x5

�

�

�

�

�

�

of rewritings.

– Proposition [Loday, 2008] –
The rewrite relation→ is terminating and con�uent.

Therefore, two duplicial operations t and t′ are R-equivalent i� the procedure consisting in rewriting t

and t′ as far as possible produces in both cases the same term.
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Encoding duplicial operations

– Proposition [Loday, 2008] –
The set of normal forms for→ of duplicial operations with n > 0 inputs is in one-to-one correspondence
with the set of all binary trees with n internal nodes where internal nodes are labeled on X.

A possible bijection puts the following two trees in correspondence:

x2

x5 x2

x4

x4

x1 x1 x5

�

�

�

�

�

�

� ←→
x2

x5

x2

x4

x4

x1

x1

x5 .

Therefore, there are
1

n + 1

(
2n
n

)
kn

pairwise nonequivalent duplicial operations with n inputs on variables of {x1, . . . , xk}.
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Distributive lattices

A distributive lattice is a set A endowed with two binary operations

∧,∨ : A2 → A

satisfying the relations

(x1 ∧ x2) ∧ x3 = x1 ∧ (x2 ∧ x3), (x1 ∨ x2) ∨ x3 = x1 ∨ (x2 ∨ x3),

x1 ∧ x2 = x2 ∧ x1, x1 ∨ x2 = x2 ∨ x1,

x1 ∧ (x1 ∨ x2) = x1, x1 ∨ (x1 ∧ x2) = x1,

x1 ∨ (x2 ∧ x3) = (x1 ∨ x2) ∧ (x1 ∨ x3), x1 ∧ (x2 ∨ x3) = (x1 ∧ x2) ∨ (x1 ∧ x3).

– Examples –
On the subsets of [n], ∨ de�ned as the union and ∧ as the intersection of sets is a �nite distributive lattice.

The set of all Young diagrams is an in�nite distributive lattice for the intersection and the union of Young
diagrams [Kreweras, 1965] [Stanley, 1988].
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Encoding distributive lattice operations

A normal term is a term t expressing as

t = s1 ∨ . . . ∨ sm, m > 0, where si = xfi,1 ∧ . . . ∧ xfi,ki , ki > 1,

for any i, i′ ∈ [k], xfi,r = xfi,r′ implies r = r ′, and {fi,1, . . . , fi,ki} ⊆
{
fi′,1, . . . , fi′,ki′

}
implies i = i′.

– Examples –
(x2 ∧ x3 ∧ x5) ∨ (x3 ∧ x7) ∨ (x3 ∧ x4) ∨ x6 is a normal term —as polynomial: x2x3x5 + x3x7 + x3x4 + x6;

(x2 ∧ x3 ∧ x5) ∨ (x2 ∧ x5) is not —as polynomial: x2x3x5 + x2x5.

– Proposition [Peterson, Stickel, 1977] –

The set of all normal terms is a partial combinatorial realization of the variety of distributive lattices.

Pairwise nonequivalent distributive lattice operations with n inputs are enumerated by the
Dedekind numbers whose sequence begins with (only these few terms are known today)

1, 2, 5, 19, 167, 7580, 7828353, 2414682040997, 56130437228687557907787.
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Abstract operations

To have a complete combinatorial realization of a variety, we need to describe an algorithm to
compute the composition of the representations of two operations.
An G-term t on the variables {x1, . . . , xn} can be seen as an abstract operation

(x1, . . . , xn) 7→ ft(x1, . . . , xn)

depicted as

ft
1 k

x1 xn

. . .

. . .

where k is the length of the frontier of t.

– Example –
For the signature G of the variety of semi-
lattices, here is a G-term seen on the set
{x1, . . . , x4} of variables and the abstract op-
eration it denotes:

t :=
x1 x2

x1 x3

x1

∧

∧

∧

∧ ,

ft

x1 x2 x3 x4

.
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Composition of abstract operations

If f is an abstract operation of arity n and g1, . . . , gn are abstract operations all of arity m, then
f } [g1, . . . , gn] is the operation satisfying

(x1, . . . , xm) 7→ f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)).

This is the abstract operation depicted as

f

1 k

1 n

. . .

. . .

g1

1 k1

1 m

. . .

. . .

gn

1 kn

1 m

. . .

. . .

x1 xm

. . .

. . .

. . .

.
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Clones

Abstract clones [Cohn, 1965] provide a formalization of general operations with their composition.

An abstract clone is a triple (C,},1i,n) where

C is a graded set
C =

⊔
n>0

C(n);

} is a map
} : C(n)× C(m)n → C(m)

called superposition map;

for each n > 0 and i ∈ [n], 1i,n is an element of C(n) called projection.

This data has to satisfy some axioms.
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Clone axioms

The following relations have to be satis�ed:

For all x i ∈ C(m),
1i,n } [x1, . . . , xn] = x i.

This says that 1i,n is the operation returning its i-th input.

For all x ∈ C(n),
x } [11,n, . . . ,1n,n] = x.

This says that each 1j,n, put as j-th input, is an identity operation.

For all x ∈ C(n), yi ∈ C(m), and zj ∈ C(k),

(x } [y1, . . . , yn]) } [z1, . . . , zm] = x } [y1 } [z1, . . . , zm], . . . , yn } [z1, . . . , zm]].

This says that the two ways to compose elements to form an operation having three layers (by
starting from top or by starting from bottom) give the same operation.
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Free clones

Let G be a signature.

The free clone on G is the clone (T(G),},1i,n) where
T(G) is the set of all G-terms. Each G-term t is endowed with an integer equal as or greater
than its ground arity and called arity;

} is de�ned as follows. The G-term t} [s1, . . . , sn] is obtained by replacing each occurrence
of a variable x i of t by the root of si;

1i,n is the term
x i

of arity n.

– Example –
By setting G := G(2) t G(3) where G(2) := {a, b} and G(3) := {c}, in the free clone T(G), one has

x3 x1

x3 x1

c

a }


x1 x2

x2a

a
,

x2 x2

b ,
x2 x1

b

 = x2

x1

x1 x2

x2

x1

x1 x2

x2

x2

b

b

a

a

a

c

a

a
.
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5. Clones of colored words
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A variety from a monoid

Let (M, ·, ε) be a monoid.

– De�nition [G., 2015] –
Let (GM,RM) be the variety such that

GM := GM(1) tGM(2) where GM(1) :=M and GM(2) := {a};

RM s the set of GM-equations satisfying

x1 x2

x3a

a
RM x1

x2 x3

a

a ,

x1 x2

α

a

α
RM

x1 x2

α

a ,

x1

α1

α2
RM

x1

α1 · α2 ,
x1

ε RM x1
,

for any α, α1, α2 ∈M.

Any algebra of this variety is a semigroup (A, a) endowed with semigroup endomorphisms
φα : A → A with α ∈M such that φε is the identity map and

φα1 ◦ φα2 = φα1·α2 , α1, α2 ∈M.
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Orientation of the equations

Let the orientation→ of RM satisfying

x1 x2

x3a

a → x1

x2 x3

a

a ,

x1 x2

α

a

α

→

x1 x2

α

a ,

x1

α1

α2
→

x1

α1 · α2 ,
x1

ε →
x1
.

– Proposition [G., 2020–] –

For any monoidM, the orientation→ of RM is terminating and con�uent.

The set of normal forms for→ of planar GM-terms is the set of the terms avoiding the left
members of→. These are the terms of the form

s1

s2

sn−1 sn

a

a

a
where si ∈

{
xki
,

xki

αki

}
, αki ∈M \ {ε}.
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Colored words

Let (M, ·, ε) be a monoid.

Let WM be the graded set of allM-colored words de�ned, for any n > 0, by

WM(n) :=
⊔
n>0

{(
u
c

)
: u ∈ [n]`, c ∈M`, ` > 0

}
.

– Example –(
1 2 1 6
0 0 1 0

)
is a Z/2Z-colored word of arity 6 (or greater).

Let } be the superposition map de�ned by(
u
c

)
}

[(
v1
d1

)
, . . . ,

(
vn
dn

)]
:=

(
vu(1) . . . vu(`)(

c(1) ·̄ du(1)
)
. . .
(
c(`) ·̄ du(`)

))
where for any α ∈M and w ∈M∗, α ·̄ w := (α · w(1)) . . . (α · w(|w|)).

Let also 1i,n :=

(
i
ε

)
.
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Clone of colored words

– Example –
In W(N,+, 0), (

2 2 3
0 1 0

)
}

[(
2 1
1 1

)
,

(
1 1 2
3 0 0

)
,

(
2 2
1 0

)]
=

(
1 1 2 1 1 2 2 2
3 0 0 4 1 1 1 0

)
.

– Theorem [G., 2020–] –

For any monoidM, (WM,},1i,n) is a clone and is a combinatorial realization of the variety (GM,RM).

– Example –

Here is a normal for→ of the variety (GM,RM)

whereM is the monoid (N,+, 0) and theM-colored
word in correspondence:

x2

x4

x3

x2 x4

a

1

1

a

3

a

a
←→

(
2 3 2 4 4
0 1 3 0 1

)
.
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Clone of words and congruences

Let us focus on the case whereM is the trivial monoid {ε}.

Let Word := W{ε}. We can forget about the colors of the elements of Word without any loss of
information.

Let ≡s be the equivalence relation on Word wherein u ≡s v if u and v have both the same
sorted version.
Let ≡l (resp. ≡r) be the equivalence relation on Word wherein u ≡l v (resp. u ≡r v) if the
versions of u and v obtained by keeping only the leftmost (resp. rightmost) among the
multiple occurrences of a same letter are equal.

– Examples –

We have 311322 ≡s 131232, 223111352 ≡l 2333315, 5142144 ≡r 552214.

– Proposition [G., 2020–] –

The equivalence relations ≡s, ≡l, and ≡r are clone congruences of Word.
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Quotients of Word

Clone Combinatorial objects Realized variety

MSet := Word/≡s Multisets Commutative semigroups

Arrl := Word/≡l Arrangements Left-regular bands

Set := Word/≡s◦≡l Sets Semilattices

ArrBl := Word/≡s∩≡l Arrangements of blocks Ass. and x1x2x1 = x1x1x2

PArr = Word/≡l∩≡r Pairs of compatible arr. Regular bands

PArrB := Word/≡s∩≡l∩≡r Pairs of comp. arr. of blocks Ass. and x1x1x2x3x1 = x1x2x1x3x1 = x1x2x3x1x1

The congruence ≡s ∩ ≡l is the stalactic congruence [Hivert, Novelli, Thibon, 2007].

The superposition maps of these clones can be described by simple algorithms.

All this provides combinatorial realizations of some varieties of semigroups.
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Conclusion and future work
The previous clones on noncolored words �t in
the diagram (squared clones are combinatorial):

Word

PArrB

ArrBl PArr ArrBr

Arrl MSet Arrr

Set

.

Some open questions:

1. Enrich this diagram with quotients
of Word by other congruences.

2. Describe the analogous hierarchy
whenM is one of the two �nite
monoids on two elements.

3. Construct other combinatorial
realizations of varieties as clones
ofM-colored words for suitable
monoidsM.

4. Describe the subclones of a clone
ofM-colored words generated by
�nite sets of generators.
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Multisets

Let MSet := Word/≡s .

The elements of MSet can be seen as multisets of positive integers. By encoding any such multiset
u = *1a(1), . . . , na(n)+ by the tuple a = (a(1), . . . , a(n)), the superposition map of MSet expresses
as a matrix multiplication

a} [b1, . . . , bn] =
(
a(1) . . . a(n)

)b1(1) . . . b1(m)

... . . .
...

bn(1) . . . bn(m)

 .

– Proposition [G., 2020–] –
The clone MSet admits the presentation (G,R) where G := G(2) := {a} and R satis�es

x1 x2

x3a

a
R x1

x2 x3

a

a ,
x1 x2

a R
x2 x1

a .

Therefore, MSet is a combinatorial realization of the variety of commutative semigroups.
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Arrangements

Let Arrl := Word/≡l .
The elements of Arrl(n) can be seen as arrangements (words without repetitions) on [n]. For any
n > 0,

#Arrl(n) =
∑

06k6n

n!

k!

and this sequence starts by 1, 2, 5, 16, 65, 326, 1957, 13700, 109601.

– Proposition [G., 2020–] –
The clone Arrl admits the presentation (G,R) where G := G(2) := {a} and R satis�es

x1 x2

x3a

a
R x1

x2 x3

a

a ,
x1 x1

a R
x1
,

x1 x2

x1a

a
R

x1 x2

a .

The algebra of this variety are left-regular bands, that are idempotent semigroups wherein the
operation a satis�es the relation x1 a x2 a x1 = x1 a x2.
Analog properties hold for the quotient Arrr := Word/≡r , leading to right-regular bands.
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Sets

– Lemma [G., 2020–] –
≡s ◦ ≡l = ≡l ◦ ≡s

Therefore, this composition is a clone congruence of Word.
Let us set it as ≡i and let Set := Word/≡i .

The elements of Set can be seen as sets of positive integers. On such objects, the superposition map
of Set expresses as

U } [V1, . . . ,Vn] =
⋃
j∈U

Vj.

Moreover, for any n > 0, #Set(n) = 2n.

– Proposition [G., 2020–] –
The clone Set admits the presentation (G,R) where G := G(2) := {a} and R satis�es

x1 x2

x3a

a
R x1

x2 x3

a

a ,
x1 x2

a R
x2 x1

a ,
x1 x1

a R
x1
.

Therefore, Set is a combinatorial realization of the variety of semilattices.
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Arrangements of blocks

Let us consider some intersections involving the congruences ≡s, ≡l, and ≡r.

Let ≡sl := ≡s ∩ ≡l and ArrBl := Word/≡sl .

The elements of ArrBl(n) can be seen as arrangements of possibly empty blocks of repeated letters
of [n].

– Examples –

The word 3311115526 is such an element of ArrBl(9). The word 22222333112 is not an element of ArrBl.

– Proposition [G., 2020–] –
The clone ArrBl admits the presentation (G,R) where G := G(2) := {a} and R satis�es

x1 x2

x3a

a
R x1

x2 x3

a

a ,

x1 x2

x1a

a
R

x1 x1

x2a

a
.

Analog properties hold for the quotient ArrBr := Word/≡sr , where ≡sr := ≡s ∩ ≡r.
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Pairs of compatible arrangements

Let ≡lr := ≡l ∩ ≡r and PArr = Word/≡lr .

The elements of PArr(n) can be seen as pairs (u, v)

such that u and v are arrangements on [n], such that j
appears in u i� j appears in v.

– Example –

(3261, 1263) is such an element of PArr(6).

For any n > 0,
#PArr(n) =

∑
06k6n

n!k!
(n− k)!

and this sequence starts by 1, 2, 7, 52, 749, 17686, 614227, 29354312, 1844279257.

– Proposition [G., 2020–] –
The clone PArr admits the presentation (G,R) where G := G(2) := {a} and R satis�es

x1 x2

x3a

a
R x1

x2 x3

a

a ,
x1 x1

a R
x1
,

x1 x2

x1

x3

x1

a
a

a
a

R

x1 x2

x3

x1

a
a

a

.

Therefore, PArr is a combinatorial realization of the variety of regular bands.
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Pairs of compatible arrangements of blocks

Let ≡slr := ≡s ∩ ≡l ∩ ≡r and PArrB := Word/≡slr .

The elements of PArrB(n) can be seen as
pairs (u, v) such that u and v are arrange-
ments of possibly empty blocks of repeated
letters on [n], with u and v having the same
number of occurrences of any letter.

– Example –

(3222611, 22211263) is such an element of PArrB(6).

– Proposition [G., 2020–] –
The clone PArrB admits the presentation (G,R) where G := G(2) := {a} and R satis�es

x1 x2

x3a

a
R x1

x2 x3

a

a ,

x1 x1

x2

x3

x1

a
a

a
a

R

x1 x2

x1

x3

x1

a
a

a
a

R

x1 x2

x3

x1

x1

a
a

a
a

.
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