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Splitting an operation
Let

· : V ⊗ V → V

be an associative binary operation, acting on a K-vector space V.

Splitting · means expressing · as a sum

· = ≺+�

where ≺ (left) and � (right) are two binary operations.

The product of two elements x , y ∈ V expresses as

x · y = (x ≺ y) + (x � y).

In our context, the operations ≺ and � have to satisfy some precise
relations.
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Example: the shuffle algebra
Consider the vector space Q〈a, b〉 of noncommutative polynomials.

Example
a + 6aa− 2aaba ∈ Q〈a, b〉

Let us endow this space with the shuffle product �.

Example
ab� ba = abba + abba + abab + baba + baab + baab

= 2abba + abab + baba + 2baab

� splits into two parts ≺ and � according to the origin of the last letter
of the words.

Example
ab≺ ba = abab + baab + baab

ab� ba = abba + abba + baba
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Dendriform algebras

A dendriform algebra [Loday, 2001] is a K-vector space V endowed with
two operations

≺ : V ⊗ V → V and � : V ⊗ V → V

satisfying, for all x , y , z ∈ V, the relations

(x ≺ y)≺ z = x ≺ (y ≺ z) + x ≺ (y � z),

(x � y)≺ z = x � (y ≺ z),

(x ≺ y)� z + (x � y)� z = x � (y � z).

Proposition [Loday, 2001]

Let (V,≺,�) be a dendriform algebra. Then, the operation ≺+� is
associative.
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Example: the dendriform shuffle algebra

In the shuffle algebra, ≺ and � satisfy

ua≺ v = (u� v)a and u� vb = (u� v)b.

These operations form a dendriform algebra.

Moreover, since
ua� vb = ua≺ vb + ua� vb,

we can write
ua� vb = (u� vb)a + (ua� v)b,

with
ua� ε = ua = ε� ua.

This is the Ree recursive definition of the shuffle product [Ree, 1957],
[Schützenberger, 1958].
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Some facts about dendriform algebras

Splitting an associative operation can bring out some of its properties
[Foissy, 2005].

Several generalizations of the shuffle product (on trees, permutations, set
partitions, etc.) are defined by left and right operations [Loday, 2001],
[Foissy, 2005], [Novelli, Thibon, 2007].

Many connections between dendriform algebras, combinatorial Hopf
algebra theory, and computer science (binary search tree insertion)
[Hivert, Novelli, Thibon, 2005].

The dendriform operad [Loday, 2001] describes all the dendriform algebras.
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Operators
An operator is an object with n > 1 inputs and one output.

x

1 n. . .

Its arity is its number n of inputs.

Given two operators x and y , the composition of x and y consists in

1. choosing an input of x , identified by its position i ;
2. grafting the output of y onto this input.

We then obtain a new operator x ◦i y of arity n + m − 1:

x

1 ni. . . . . .
◦i

y

1 m. . .
=

x

y1 n+m−1. . . . . .

i m+i−1

i

. . .

.
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Operads
Operads are algebraic structures formalizing the notion of operators and
their composition.

An operad is a triple (O, ◦i ,1) where

1. O is a graded K-vector space

O :=
⊕
n>1
O(n);

2. ◦i is a linear map, called partial composition map,

◦i : O(n)⊗O(m)→ O(n + m − 1), n,m > 1, i ∈ [n];

3. 1 is an element of O(1), called unit.

This data has to satisfy some coherence axioms.
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Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y

x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y)

◦i+j−1 z = x ◦i (y ◦j z)

x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y

x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z

= x ◦i (y ◦j z)

x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y

x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z

= x ◦i

(y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

=

y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y

x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z

=

x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

=

y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y

x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y

x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y
x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y)

◦j+m−1 z = (x ◦j z) ◦i y

x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . . . . .

. . .

. . .
z

. . .

. . . =

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z

= (x ◦j z) ◦i y

x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z

=

(x ◦j z)

◦i y

x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z

=

(x ◦j z) ◦i y
x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y
x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . . =

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y
x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . . =

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y
x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . . =

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x

= x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y
x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . . =

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x

=

x

= x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

=

x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y
x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . . =

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x

=

x

=

x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

=

x
. . .

=

x

1
. . . . . .

13 / 64



Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y. . . . . .

. . . . . .z
. . .

= y
. . . . . .z

. . .

x
. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y
x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . . =

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x
. . .

= x
. . .

=

x

1
. . . . . .

13 / 64



Example: the operad of Motzkin paths
The operad Motz is defined in the following way:

I Motz(n) is the linear span of the Motzkin paths consisting in n − 1
steps;

I the partial composition x ◦i y of two Motzkin paths consists in
replacing the ith point of x by y ;

I the unit is the Motzkin path consisting in 0 step.

Example

◦4 =

Exercice
Prove that Motz is an operad.
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Studying an operad

Given an operad O, one can ask about:

1. its dimensions, encoded by its Hilbert series

HO(t) :=
∑
n>1

dimO(n) tn;

2. its minimal generating set, that is a smallest subset G of O such
that the smallest sub-operad of O containing G is O;

3. the nontrivial relations between its generators, that are equalities
involving partial compositions of elements of G that cannot be
expressed by operad axioms.
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Example: properties of Motz
1. Hilbert series :

HMotz(t) = t + t2 + 2t3 + 4t4 + 9t5 + 21t6 + 51t7 + 127t8 + · · ·

(these coefficients form Sequence A001006).

2. Minimal generating set: {
,

}
.

3. Nontrivial relations:

◦1 = ◦2 ,

◦1 = ◦2 ,

◦1 = ◦3 ,

◦1 = ◦3 .

16 / 64
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Free operads
Let G := tn>1G(n) be a graded set.

The free operad over G is the operad Free(G) such that:
I Free(G)(n) is the linear span of the syntax trees on G with n leaves;
I the partial composition is a tree grafting;
I the unit is the tree consisting in one leaf.

Example
Let G := G(2) t G(3) with G(2) := {a, b} and G(3) := {c}.

The syntax trees of Free(G)(3) are
a

a ,
a

b , a
a
, b

a
, c ,

b
a ,

b
b , a

b
, b

b
.

A partial composition in Free(G):
c

ba

c b ◦5 a
b

c =

c

b
c

b
ba

c

a

.
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Quotients of free operads
A subspace V of Free(G) is an operad ideal of Free(G) if

x ∈ Free(G) and y ∈ V implies x ◦i y ∈ V and y ◦j x ∈ V.

The quotient operad Free(G)/V is then naturally defined.

Example
Let G := G(2) with G(2) := {a}.

Free(G) is an operad on binary trees.

Let V be the operad ideal of Free(G) generated by
a ◦1 a− a ◦2 a.

Since in Free(G)/V , the syntax trees a ◦1 a and a ◦2 a are equivalent,
Free(G)/V is an operad on left comb trees.

This is the associative operad As.
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Presentations of operads
Let O be an operad.

A presentation of O is a pair (GO,RO) where

I GO is a graded set, called set of generators;

I RO is subspace of Free(GO), called space of relations;

such that
O ' Free(GO)/〈RO〉,

where 〈RO〉 denotes the operad ideal generated by RO.

The presentation (GO,RO) is

I binary when all elements of GO are of arity two;

I quadratic when all relations of RO involve syntax trees with two
internal nodes.
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Presentations of operads: examples
Example
Motz admits the presentation (GMotz,RMotz) where
GMotz := GMotz(2) tGMotz(3) := {a} t {b} and RMotz is the space
generated by

a ◦1 a− a ◦2 a, b ◦1 a− a ◦2 b, a ◦1 b− b ◦3 a, b ◦1 b− b ◦3 b.

This presentation is not binary (b is of arity 3) but is quadratic.

Example
The operad DA of directed animals is the operad admitting the
presentation (GDA,RDA) where GDA := GDA(2) := {a, b} and RDA is the
space generated by

a◦1a−a◦1a, b◦1a−a◦2b, b◦1b−b◦2a, (a◦1b)◦2b−(b◦2b)◦3b.

This presentation is binary but not quadratic (last relation involves
syntax trees with three internal nodes).
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Koszul operads
O is a Koszul operad if its Koszul complex is acyclic.

Implied if there is an orientation → of RO so that → is a convergent
rewrite rule on the syntax trees of Free(GO) [Hoffbeck, 2010].

Example
Recall that Motz admits the presentation (GMotz,RMotz) where
GMotz := GMotz(2) t GMotz(3) := {a} t {b} and RMotz is the space generated by

a ◦1 a− a ◦2 a, b ◦1 a− a ◦2 b, a ◦1 b− b ◦3 a, b ◦1 b− b ◦3 b.

To prove that Motz is a Koszul operad, consider the rewrite rule defined by

a ◦1 a→ a ◦2 a, b ◦1 a→ a ◦2 b, a ◦1 b→ b ◦3 a, b ◦1 b→ b ◦3 b.

Here are some →-rewritings:

a

ab

b

a

a a

b
b

a a

ab
b

a

a

a

b

b a

a

a

b
b a

.
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Koszul dual of an operad

Let O be a binary and quadratic operad with presentation (GO,RO).

The Koszul dual [Ginzburg, Kapranov, 1994] of O is the operad O!

admitting the presentation (GO,R
⊥
O) where R⊥O is the annihilator of RO

with respect to the scalar product

〈−,−〉 : Free(GO)(3)⊗ Free(GO)(3)→ K

linearly defined, for all x , x ′, y , y ′ ∈ GO(2), by

〈x ◦i y , x ′ ◦i′ y ′〉 :=


1 if x = x ′, y = y ′, and i = i ′ = 1,
−1 if x = x ′, y = y ′, and i = i ′ = 2,
0 otherwise.

Then, with knowledge of a presentation of O, one can compute a
presentation of O!.
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Properties of Koszul duality
Theorem [Ginzburg, Kapranov, 1994]

For any operad O admitting a binary and quadratic presentation,

O!! = O.

Theorem [Ginzburg, Kapranov, 1994]

When O is a Koszul operad admitting a binary and quadratic
presentation, the Hilbert series of O and O! are related by

HO(−HO!(−t)) = t.

Then, given a Koszul operad O admitting a binary and quadratic
presentation,

presentation of O  presentation of O!,

Hilbert series of O  Hilbert series of O!.
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Dendriform operad
The dendriform operad Dendr is the operad admitting the presentation
(GDendr,RDendr) where

GDendr := GDendr(2) := {≺,�},

and RDendr is the space generated by

≺ ◦1 �−� ◦2 ≺,

≺ ◦1 ≺−≺ ◦2 ≺−≺ ◦2 �,

� ◦1 ≺+� ◦1 �−� ◦2 �.

This presentation is binary and quadratic.

Theorem [Loday, 2001]

Dendr is a Koszul operad.
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Free dendriform algebra
The free dendriform algebra over one generator is the vector space FDendr
of binary trees with at least one internal node endowed with the linear
operations

≺,� : FDendr ⊗FDendr → FDendr,

recursively defined, for any binary tree s with at least one internal node,
and binary trees t1 and t2 by

s≺ := s =: � s,

≺ s := 0 =: s� ,

t1 t2
≺ s :=

t1 t2≺ s
+

t1 t2� s
,

s�
t1 t2

:=
s� t1 t2

+
s≺ t1 t2

.

Neither ≺ nor � are defined.
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Free dendriform algebra

Example

≺ = + +

Example

� = + +
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Diassociative operad
The diassociative operad Dias [Loday, 2001] is the operad admitting the
presentation (GDias,RDias) where

GDias := GDias(2) := {a,`},

and RDias is the space generated by

a ◦1 ` − ` ◦2 a,

a ◦1 a − a ◦2 a, a ◦1 a − a ◦2 `,

` ◦1 a − ` ◦2 `, ` ◦1 ` − ` ◦2 `.

This presentation is binary and quadratic.

Theorem [Loday, 2001]

Dias is a Koszul operad.
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Realization of Dias
Dias admits the following realization [G, 2012]:

I Dias(n) is the linear span of the words of length n on {0, 1} with
exactly one occurrence of 0;

I the partial composition of Dias satisfies

u ◦i v := u1 . . . ui−1 (ui ↑ v1) . . . (ui ↑ vm) ui+1 . . . un,

where ↑ is the operation max on integers;
I the unit of Dias is the word 0.

Example
1101111 ◦3 11101 = 11111011111

1101111 ◦6 11101 = 11011111111

Proposition
Dias is generated by the set {01, 10}.
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Koszul dual of Dias
Theorem [Loday, 2001]

Dendr is the Koszul dual of Dias.

Indeed, by definition of Koszul duality,
R⊥Dias = Vect (y ∈ Free(GDias)(3) : 〈x , y〉 = 0 for all x ∈ RDias) .

Let
y :=

∑
t∈Free(GDias)(3)

λtt ∈ R⊥Dias.

Then, since
a ◦1 ` − ` ◦2 a ∈ RDias implies λa◦1` + λ`◦2a = 0,
a ◦1 a − a ◦2 a ∈ RDias implies λa◦1a + λa◦2a = 0,
a ◦1 a − a ◦2 ` ∈ RDias implies λa◦1a + λa◦2` = 0,
` ◦1 a − ` ◦2 ` ∈ RDias implies λ`◦1a + λ`◦2` = 0,
` ◦1 ` − ` ◦2 ` ∈ RDias implies λ`◦1` + λ`◦2` = 0,

y is of the form
y = λ1(a ◦1 `− ` ◦2 a) + λ2(a ◦1 a− a ◦2 a− a ◦2 `) + λ3(` ◦1 a+ ` ◦1 `− ` ◦2 `).

Therefore, R⊥Dias is generated by
a ◦1 ` − ` ◦2 a, a ◦1 a − a ◦2 a − a ◦2 `, ` ◦1 a+ ` ◦1 ` − ` ◦2 `,

and we recognize dendriform relations.
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Dimensions

Since Dias is Koszul and Dias! = Dendr,

HDias(−HDendr(−t)) = t.

From the realization of Dias, we obtain that its Hilbert series is

HDias(t) =
t

(1− t)2
= t + 2t2 + 3t3 + 4t4 + 5t5 + · · · .

Hence, the Hilbert series of Dendr is

HDendr(t) =
1−
√
1− 4t − 2t
2t = t + 2t2 + 5t3 + 14t4 + 42t5 + · · · .
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Motivations and goals
I Define a generalization Dendrγ , γ ∈ N, of Dendr.

There are already plenty such generalizations:
I tridendriform operad [Loday, Ronco, 2004];
I quadridendriform operad [Aguiar, Loday, 2004];
I enneadendriform operad [Leroux, 2004];
I m-dendriform operads [Leroux, 2007];
I m-dendriform operads [Novelli, 2014] (same name but different from

previous ones).

I Study the way that Dendrγ-algebras allow to split associative
products.

I Study Dendrγ from a combinatorial point of view (realization,
dimensions, definition of bases).

Strategy
Propose a generalization Diasγ of Dias and then, by Koszul duality,
deduce a generalization Dendrγ of Dendr.
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Outline

Polydendriform operads
Pluriassociative operad
Polydendriform operad and algebra
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A generalization of Dias
Let γ ∈ N and let Diasγ be the operad admitting the following
realization:

I Diasγ(n) is the linear span of the words of length n on {0, 1, . . . , γ}
with exactly one occurrence of 0;

I the partial composition of Diasγ satisfies

u ◦i v := u1 . . . ui−1 (ui ↑ v1) . . . (ui ↑ vm) ui+1 . . . un,

I the unit of Diasγ is the word 0.

Example
211201 ◦4 31103 = 2113222301

111101 ◦3 20 = 1121101

Proposition
Diasγ is an operad.
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First properties of Diasγ
Proposition
Diasγ is generated by the set {0a, a0 : a ∈ [γ]}.

By definition of Diasγ ,

HDiasγ (t) =
t

(1− γt)2
and dimDiasγ(n) = nγn−1.

γ Dimensions of Diasγ
0 1, 0, 0, . . .
1 1, 2, 3, 4, 5, 6, 7, 8, . . .
2 1, 4, 12, 32, 80, 192, 448, 1024, . . .
3 1, 6, 27, 108, 405, 1458, 5103, 17496, . . .
4 1, 8, 48, 256, 1280, 6144, 28672, 131072, . . .

Since Dias1 = Dias and Diasγ is a suboperad of Diasγ+1, Diasγ is a
generalization of Dias.
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Presentation of Diasγ
Theorem
Diasγ admits the presentation (GDiasγ ,RDiasγ ) where

GDiasγ := GDiasγ (2) := {aa,`a : a ∈ [γ]}

and RDiasγ is generated by
aa ◦1 `a′ − `a′ ◦2 aa, a, a′ ∈ [γ],

aa ◦1 ab − aa ◦2 `b , a < b ∈ [γ],

`a ◦1 ab − `a ◦2 `b , a < b ∈ [γ],

ab ◦1 aa − aa ◦2 ab , a < b ∈ [γ],

`a ◦1 `b − `b ◦2 `a, a < b ∈ [γ],

ad ◦1 ad − ad ◦2 ac , ad ◦1 ad − ad ◦2 `c , c 6 d ∈ [γ],

`d ◦1 ac − `d ◦2 `d , `d ◦1 `c − `d ◦2 `d , c 6 d ∈ [γ].

In a more concise way, RDiasγ is the space generated by
aa ◦1 `a′ − `a′ ◦2 aa, a, a′ ∈ [γ],

aa ◦1 aa↑a′ − aa ◦2 `a′ , `a ◦1 aa′ − `a ◦2 `a↑a′ , a, a′ ∈ [γ],

aa↑a′ ◦1 aa − aa ◦2 aa′ , `a ◦1 `a′ − `a↑a′ ◦2 `a, a, a′ ∈ [γ].
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Presentation of Diasγ
The proof is based upon the existence of a map

word : Free
(
GDiasγ

)
→ Diasγ

inducing an isomorphism of operads
¯word : Free

(
GDiasγ

)
/〈RDiasγ 〉 → Diasγ .

Exemple
In Free (GDias5),

t :=
a4

`2

`1

`3

`2

a1

`4

`3

a1

a2

a2

3 4 0

1 2

2

3 3

2 2 4 2

word(t) = 340122332242.
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Koszulity of Diasγ
Proposition
Diasγ is a Koszul operad.

The proof relies on the orientation → of RDiasγ satisfying

`a′ ◦2 aa → aa ◦1 `a′ , a, a′ ∈ [γ],

aa ◦2 `b → aa ◦1 ab, a < b ∈ [γ],

`a ◦1 ab → `a ◦2 `b, a < b ∈ [γ],

aa ◦2 ab → ab ◦1 aa, a < b ∈ [γ],

`a ◦1 `b → `b ◦2 `a, a < b ∈ [γ],

ad ◦2 ac → ad ◦1 ad , c 6 d ∈ [γ],

ad ◦2 `c → ad ◦1 ad , c 6 d ∈ [γ],

`d ◦1 ac → `d ◦2 `d , c 6 d ∈ [γ],

`d ◦1 `c → `d ◦2 `d , c 6 d ∈ [γ],

defining a convergent rewrite rule on Free(GDiasγ ).
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Alternative basis of Diasγ
Let 4γ be the order relation on the set of words of Diasγ where x 4γ y if
x i 6 y i for all i ∈ [|x |].

Example
210231 44 220432

Let
K(γ)

x :=
∑
x4γy

µγ(x , y)y

where µγ is the Möbius function of the poset defined by 4γ .

Exemple
K(2)
102 = 102− 202

K(3)
102 = 102− 103− 202+ 203

K(3)
23102 = 23102− 23103− 23202+ 23203− 33102+ 33103+ 33202− 33203

By triangularity, the K(γ)
x form a basis of Diasγ .
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Alternative basis of Diasγ
Proposition
On the K-basis, the partial composition map of Diasγ satisfies

K(γ)
x ◦i K(γ)

y =


K(γ)

x◦i y if min(y) > x i ,∑
a∈[x i ,γ]

K(γ)
x◦a,i y if min(y) = x i ,

0 otherwise (min(y) < x i).

where x ◦a,i y is the word x ◦i y in which the 0 coming from y is replaced
by a.

Exemple
K(5)
20413 ◦1 K

(5)
304 = K(5)

3240413

K(5)
20413 ◦2 K

(5)
304 = K(5)

2304413

K(5)
20413 ◦3 K

(5)
304 = 0

K(5)
20413 ◦5 K

(5)
304 = K(5)

2041334 + K(5)
2041344 + K(5)

2041354
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(5)
304 = K(5)

2041334 + K(5)
2041344 + K(5)
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Alternative presentation of Diasγ
Proposition
Diasγ admits the presentation (G′Diasγ ,R

′
Diasγ ) where

G′Diasγ := G′Diasγ (2) := { 
a,
a : a ∈ [γ]}

and R′Diasγ is generated by




a ◦1 
a′ − 
a′ ◦2




a, a, a′ ∈ [γ],


b ◦1 
a,




b ◦2




a, 
b ◦1




a,




b ◦2 
a, a < b ∈ [γ],


a ◦1 
b − 
b ◦2 
a,



b ◦1



a −



a ◦2



b , a < b ∈ [γ],


a ◦1




b − 
a ◦2 
b ,




a ◦1




b −




a ◦2 
b , a < b ∈ [γ],


a ◦1 
a −
∑

a6b∈[γ]

(
a ◦2 
b),
∑

a6b∈[γ]

(




a ◦1




b)−




a ◦2




a, a ∈ [γ],


a ◦1




a −
∑

a6b∈[γ]

(
b ◦2 
a),
∑

a6b∈[γ]

(




b ◦1




a)−




a ◦2 
a, a ∈ [γ].

Its proof uses the identification of 
a with K(γ)
0a and of 
a with K(γ)

a0
together with the previous partial composition rules.
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Outline

Polydendriform operads
Pluriassociative operad
Polydendriform operad and algebra
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A generalization of Dendr
Diasγ admits a binary and quadratic presentation, and thus, has a Koszul
dual.

Let Dendrγ := Dias!γ be the γ-polydendriform operad.

Theorem
Dendrγ admits the presentation (GDendrγ ,RDendrγ ) where

GDendrγ := GDendrγ (2) := {↼a,⇀a : a ∈ [γ]}

and RDendrγ is generated by
↼a ◦1 ⇀a′ −⇀a′ ◦2 ↼a, a, a′ ∈ [γ],

↼a ◦1 ↼b −↼a ◦2 ⇀b , ⇀a ◦1 ↼b −⇀a ◦2 ⇀b , a < b ∈ [γ],

↼a ◦1 ↼b −↼a ◦2 ↼b , ⇀a ◦1 ⇀b −⇀a ◦2 ⇀b , a < b ∈ [γ],

↼d ◦1 ↼d −
∑
c∈[d]

(↼d ◦2 ↼c +↼d ◦2 ⇀c), d ∈ [γ],

∑
c∈[d]

(⇀d ◦1 ⇀c +⇀d ◦1 ↼c)−⇀d ◦2 ⇀d , d ∈ [γ].
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Dimensions of Dendrγ
Since Diasγ is Koszul, we can compute the dimensions of Dendrγ from
the ones of Diasγ because

HDiasγ (−HDendrγ (−t)) = t.

We obtain
Proposition

HDendrγ (t) = t + 2γtHDendrγ (t) + γ2tHDendrγ (t)2

Proof.
This is a consequence of

t =
−HDendrγ (−t)

(1 + γHDendrγ (−t))2

and the fact that
HDiasγ (t) =

t
(1− γt)2 .
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Dimensions and elements of Dendrγ
We deduce, from the expression of HDendrγ (t), that

dimDendrγ(n) = γn−1 1
n + 1

(
2n
n

)
.

Hence, Dendrγ(n) is the linear span of γ-edge valued binary trees of size
n, that are binary trees with n internal nodes wherein its n − 1 edges
connecting two internal nodes are labeled on [γ].

Example

3

3

1

3

4

13

4

4

is a 4-edge valued binary tree and a basis element of Dendr6(10).
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Polydendriform algebras
A Dendrγ-algebra, called γ-polydendriform algebra is a vector space V
endowed with 2γ binary operations

↼a : V ⊗ V → V and ⇀a : V ⊗ V → V, a ∈ [γ],

satisfying, for all x , y , z ∈ V, the relations

(x ⇀a′ y)↼a z = x ⇀a′ (y ↼a z), a, a′ ∈ [γ],

(x ↼b y)↼a z = x ↼a (y ⇀b z), a < b ∈ [γ],

(x ↼b y)⇀a z = x ⇀a (y ⇀b z), a < b ∈ [γ],

(x ↼a y)↼b z = x ↼a (y ↼b z), a < b ∈ [γ],

(x ⇀b y)⇀a z = x ⇀b (y ⇀a z), a < b ∈ [γ],

(x ↼d y)↼d z =
∑
c∈[d]

x ↼d (y ↼c z) + x ↼d (y ⇀c z), d ∈ [γ],

∑
c∈[d]

(x ⇀c y)⇀d z + (x ↼c y)⇀d z = x ⇀d (y ⇀d z), d ∈ [γ].
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γ-split of an associative operation
A binary element x of an operad O is associative if

x ◦1 x = x ◦2 x .

Proposition
In Dendrγ , the element

•b :=
∑
a∈[b]

(↼a +⇀a)

is associative.

Then, γ-polydendriform algebras are adapted to split an associative
product · into 2γ parts by

· = ↼1 +⇀1 +↼2 +⇀2 + · · ·+↼γ +⇀γ ,

with the partial sums condition, that is
↼1 +⇀1,

↼1 +⇀1 +↼2 +⇀2,

↼1 +⇀1 +↼2 +⇀2 +↼3 +⇀3,

. . . ,

are associative.
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Alternative presentation of Dendrγ
The computation of the Koszul dual of Diasγ expressed on its
presentation (G′Diasγ ,R

′
Diasγ ) leads to an alternative presentation for

Dendrγ .

Proposition
Dendrγ admits the presentation (G′Dendrγ ,R

′
Dendrγ ) where

G′Dendrγ := G′Dendrγ (2) := {≺a,�a : a ∈ [γ]}

and R′Dendrγ is generated by
≺a ◦1 �a′ −�a′ ◦2 ≺a, a, a′ ∈ [γ],

≺a ◦1 ≺a′ −≺a↓a′ ◦2 ≺a −≺a↓a′ ◦2 �a′ , a, a′ ∈ [γ],

�a↓a′ ◦1 ≺a′ +�a↓a′ ◦1 �a −�a ◦2 �a′ , a, a′ ∈ [γ],

where ↓ denotes the operation min on integers.

Fact: this presentation of Dendrγ can also be obtained through the
change of basis

≺b =
∑
a∈[b]

↼a, and �b =
∑
a∈[b]

⇀a, b ∈ [γ].
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Free γ-dendriform algebras
We endow the space FDendrγ of γ-edge valued binary trees with linear
operations

≺a,�a : FDendrγ ⊗FDendrγ → FDendrγ , a ∈ [γ],

recursively defined, for any γ-edge valued binary tree s and any γ-edge
valued binary trees or leaves t1 and t2 by

s≺a := s =: �a s,

≺a s := 0 =: s�a ,

t1 t2

x y ≺a s :=

t1 t2≺a s

x z +

t1 t2�y s

x z , z := a ↓ y ,

s�a

t1 t2

x y :=

s�a t1 t2

z y +

s≺x t1 t2

z y , z := a ↓ x .

Note that neither ≺a nor �a are defined.
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Free γ-dendriform algebras
Theorem
FDendrγ is the free γ-polydendriform algebra over one generator.

Example

1 3

1 ≺2 1 2 =
1

2

2

2

1

1

+
1

1

2

2

1

1

+
1

1

2

2

1

1

+
1 2

21

1

1

+
1 2

21

1

1 +
1 2

2

3

1

1

1 3

1 �2 1 2 =
1

21

1

1

1

+
1

21

1

1

1 +
1

21

3

1

1

+ 1

2

2

3

1

1
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Example: the polynomial product
Let A := {a0, a1, . . . } be a totally ordered alphabet by ai 6 aj if i 6 j .

The space of noncommutative polynomials Q〈A〉 is endowed with its
usual product ·.

Example
a0a2a0 · a1a2 = a0a2a0a1a2

· splits into two parts ≺ and � according to the origin of the greatest
letter:

u≺ v :=

{
uv if max(u) > max(v),
0 otherwise, u� v :=

{
uv if max(u) 6 max(v),
0 otherwise.

Example
a0a2≺ a1a0 = a0a2a1a0
a0a2� a1a0 = 0

a0a2a0≺ a1a2 = 0
a0a2a0� a1a2 = a0a2a0a1a2
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Example: the associative operad

The associative operad As is defined in the following way:

I As(n) is the one-dimensional space spanned by the abstract operator
an of arity n;

I the partial composition is linearly defined by an ◦i am := an+m−1;

I the unit is a1.

Example
a4 ◦2 a3 = a6

a1 ◦1 a1 = a1

a4 ◦4 a1 = a4
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Example: properties of As

1. Hilbert series:

HAs(t) = t + t2 + t3 + t4 + t5 + · · · =
t

1− t .

2. Minimal generating set: {a2}.

Indeed,

a3 = a2 ◦1 a2, a4 = a3 ◦1 a2, a5 = a4 ◦1 a2, etc.

3. Nontrivial relations:
a2 ◦1 a2 = a2 ◦2 a2.
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Algebras over an operad

Let O be an operad.

An O-algebra is a vector space V where any x ∈ O of arity n endows V
with a linear map

x : V⊗n → V.

The relation

(x◦i y)(e1, . . . , en+m−1) = x(e1, ei−1, y(ei , . . . , ei+m−1), ei+m, . . . , en+m−1)

must be satisfied, for all x ∈ O(n), y ∈ O(m), and i ∈ [n].

Therefore, any operad O describes a category of algebras: the class of all
O-algebras with obvious morphisms as arrows.

Moreover, if φ : O1 → O2 is a morphism of operads, φ gives rises to a
functor from the category of O2-algebras to the category of O1-algebras.
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Example: algebras over As
Recall that As admits the presentation (GAs,RAs) where
GAs = GAs(2) = {a} and RAs is generated by a ◦1 a− a ◦2 a.

Then, any As-algebra is a vector space V endowed with a linear operation

a : V ⊗ V → V,

satisfying, for all x , y , z ∈ V,

(a ◦1 a)(x , y , z) = a(a(x , y), z)

‖ ‖
(a ◦2 a)(x , y , z) = a(x , a(y , z)).

Using infix notation for the binary operator a, we obtain the relation

(x a y) a z = x a (y a z),

so that As-algebras are associative algebras.
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Realization of Dendr

Dendr admits the following realization (i.e., a description of the spaces
Dendr(n) and of its partial composition):

I Dendr(n) is the linear span of binary trees with n internal nodes;

I its partial composition (at the root of index i) satisfies

t1 s1
◦i

t2 s2
=

∑
t∈[t1�t2,t1�t2]

∑
s∈[s2�s1,s2�s1]

t s
,

where intervals are intervals for Tamari order [Tamari, 1962],
s�t consists in grafting the root of s onto the first leaf of t,
and s�t consists in grafting the root of t onto the last leaf of s;

I the unit of Dendr is the binary tree .
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From monoids to operads
From any monoid (M, •), define

I the vector space
TM :=

⊕
n>1

TM(n)

where
TM(n) := Vect (u1 . . . un : ui ∈M for all i ∈ [n]) ;

I the partial compositions maps
◦i : TM(n)× TM(m)→ TM(n + m − 1),

defined for all u ∈ TM(n), v ∈ TM(m), and i ∈ [n] by
u ◦i v := u1 . . . ui−1 (ui • v1) . . . (ui • vm) ui+1 . . . un.

Theorem [G, 2012]

For any monoidM, TM is an operad.
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