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Splitting an operation

Let
VRV =V

be an associative binary operation, acting on a K-vector space V.

Splitting - means expressing - as a sum
=<4

where < (left) and >~ (right) are two binary operations.

The product of two elements x, y € }V expresses as

x-y=(x=<y)+(x=y).

In our context, the operations < and > have to satisfy some precise
relations.
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Consider the vector space Q(a,b) of noncommutative polynomials.

a + 6aa — 2aaba € Q(a, b)
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Example: the shuffle algebra

Consider the vector space Q(a,b) of noncommutative polynomials.

a + 6aa — 2aaba € Q(a, b)

Let us endow this space with the shuffle product L.

ab LI ba = abba + abba + abab + baba + baab + baab
= 2abba + abab + baba + 2baab

LU splits into two parts < and > according to the origin of the last letter
of the words.

ab < ba = abab 4+ baab + baab
ab > ba = abba + abba + baba
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Dendriform algebras

A dendriform algebra [Loday, 2001] is a K-vector space ) endowed with
two operations
< VRV =YV and VeV =V

satisfying, for all x,y,z € V, the relations

(x=<y)<z=x=<(y<2z)+x=<(y~2),
(x=y)<z=x+(y=<2),
(x=<y)-z4+(x=y)=z=x(y = 2).
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Dendriform algebras

A dendriform algebra [Loday, 2001] is a K-vector space ) endowed with
two operations

< VeV =YV and VeV =V
satisfying, for all x,y,z € V, the relations

(x=<y)<z=x=<(y<2z)+x=<(y~2),
(x=y)<z=x+(y=<2z2),
(x=<y)-z4+(x=y)=z=x(y = 2).

Let (VV, <, =) be a dendriform algebra. Then, the operation < + > is
associative.
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Example: the dendriform shuffle algebra

In the shuffle algebra, < and > satisfy
va<v=(ulWv)a  and uvb = (uLllv)b.

These operations form a dendriform algebra.

Moreover, since
vallvb=uwvua<vb+ ua>vb,

we can write
vall vb = (u LW vb)a + (va LU v)b,
with
vallle = va = € LW va.

This is the Ree recursive definition of the shuffle product [Ree, 1957],
[Schiitzenberger, 1958].
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algebra theory, and computer science (binary search tree insertion)
[Hivert, Novelli, Thibon, 2005].
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Some facts about dendriform algebras

Splitting an associative operation can bring out some of its properties
[Foissy, 2005].

Several generalizations of the shuffle product (on trees, permutations, set
partitions, etc.) are defined by left and right operations [Loday, 2001],
[Foissy, 2005], [Novelli, Thibon, 2007].

Many connections between dendriform algebras, combinatorial Hopf
algebra theory, and computer science (binary search tree insertion)
[Hivert, Novelli, Thibon, 2005].

The dendriform operad [Loday, 2001] describes all the dendriform algebras.
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Operators
An operator is an object with n > 1 inputs and one output.

1 n

Its arity is its number n of inputs.
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Operators
An operator is an object with n > 1 inputs and one output.

1 n

Its arity is its number n of inputs.

Given two operators x and y, the composition of x and y consists in
1. choosing an input of x, identified by its position i;
2. grafting the output of y onto this input.

We then obtain a new operator x o; y of arity n4+ m — 1:

% -1
17 j ---"n 1 m

i
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Operads

Operads are algebraic structures formalizing the notion of operators and
their composition.

An operad is a triple (O, 0;,1) where

1. O is a graded K-vector space

0= @ O(n);
n>1
2. o; is a linear map, called partial composition map,

0;: O(n) @ O(m) - O(n+ m—1), n,mz=1i¢€|[n];

3. 1 is an element of O(1), called unit.

This data has to satisfy some coherence axioms.
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Operad axioms
Associativity:

(x0jy)oitj—1z=x0;(yojz)
x € O(n),y € O(m),z€ O
i€[n],j€[m
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Operad axioms
Associativity:

(x0jy)oitj—1z=x0;(yojz)
x € O(n),y € O(m),ze€ O
i€[n],j€[m

Commutativity:

(x0iy)ojtm—12z=(x0;2z)0iy
x € O(n),y € O(m),z€ O
1<i<j<n

Unitality:

Toix x xo;1
x € O(n)
i€ [n]

10,0
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Example: the operad of Motzkin paths
The operad Motz is defined in the following way:

» Motz(n) is the linear span of the Motzkin paths consisting in n — 1
steps;

» the partial composition x o; y of two Motzkin paths consists in
replacing the ith point of x by y;

» the unit is the Motzkin path O consisting in 0 step.
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Example: the operad of Motzkin paths
The operad Motz is defined in the following way:

» Motz(n) is the linear span of the Motzkin paths consisting in n — 1
steps;

» the partial composition x o; y of two Motzkin paths consists in
replacing the ith point of x by y;

» the unit is the Motzkin path O consisting in O step.

TR 1
gﬁ%ﬁ”‘mzﬁ’f %%‘mg

Prove that Motz is an operad.
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Studying an operad

Given an operad O, one can ask about:

1. its dimensions, encoded by its Hilbert series

Ho(t) =Y dimO(n)t";

n>1
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Studying an operad

Given an operad O, one can ask about:

1. its dimensions, encoded by its Hilbert series

Ho(t) =Y dimO(n)t";

n>1

2. its minimal generating set, that is a smallest subset G of O such
that the smallest sub-operad of O containing G is O;

3. the nontrivial relations between its generators, that are equalities
involving partial compositions of elements of G that cannot be
expressed by operad axioms.
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Example: properties of Motz

1. Hilbert series :
Hitor(t) = t + 12 + 263 + 4t 4 9% + 21° 4 517 412748 + ...
(these coefficients form Sequence A001006).
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Example: properties of Motz

1. Hilbert series :

Hitor(t) = t + 12 + 263 + 4t 4 9% + 21° 4 517 412748 + ...

(these coefficients form Sequence A001006).

2. Minimal generating set:

(60,62}
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Example: properties of Motz

1. Hilbert series :

Hitor(t) = t + 12 + 263 + 4t 4 9% + 21° 4 517 412748 + ...

(these coefficients form Sequence A001006).

2. Minimal generating set:

{00 %o}
3. Nontrivial relations:
660,00,
600 &0,
o 0100,
oo &2

o1

&6
Moo

8 3

01

00
&Roo

—

s
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Free operads
Let G := Up>1G(n) be a graded set.
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Free operads
Let G := Up>1G(n) be a graded set.

The free operad over G is the operad Free(G) such that:
> Free(G)(n) is the linear span of the syntax trees on G with n leaves;
» the partial composition is a tree grafting;
» the unit is the tree consisting in one leaf.

Example
Let G := G(2) U G(3) with G(2) := {a,b} and G(3) := {c}.
The syntax trees of Free(G)(3) are

A partial composition in Free(G):
|

C
© | /\
/\\ b /C .
c b o5 /N = /\\ /N
ZON 700N a © a b b
a b / N\ VAR 7/ \ 7N /N
/ N\ /A = <

18
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Quotients of free operads

A subspace V of Free(G) is an operad ideal of Free(G) if

x € Free(G) and y € V' implies xo;y €V and yo;x € V.
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Quotients of free operads

A subspace V of Free(G) is an operad ideal of Free(G) if
x € Free(G) and y € V  implies xo;y €V and yojx € V.

The quotient operad Free(G)/y is then naturally defined.

Example
Let G := G(2) with G(2) := {a}.
Free(G) is an operad on binary trees.

Let V be the operad ideal of Free(G) generated by
aoja—aoja.

Since in Free(G)/y), the syntax trees a o; a and a o, a are equivalent,
Free(G)/y is an operad on left comb trees.

This is the associative operad As.

19 /64



Presentations of operads

Let O be an operad.
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Presentations of operads

Let O be an operad.

A presentation of O is a pair (&0, %) where
> B is a graded set, called set of generators;

> 9ip is subspace of Free(&), called space of relations;

such that
O ~ Free($0)/(910)

where (1) denotes the operad ideal generated by 9ip.
The presentation (&p,Rp) is
» binary when all elements of & are of arity two;

» quadratic when all relations of 91 involve syntax trees with two
internal nodes.
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Presentations of operads: examples

Example

Motz admits the presentation (Swiotz, Riorz) Where
Sniotz = Botz(2) U Bporz(3) := {a} U {b} and Ryiot, is the space
generated by

aoja—aojpa, boja—aopsb, ao;b—boza, bo;b-—-bozb.

This presentation is not binary (b is of arity 3) but is quadratic.



Presentations of operads: examples

Example

Motz admits the presentation (Swiotz, Riorz) Where
Brotz = Bnorz(2) U Bnorz(3) := {a} U {b} and Ryt is the space
generated by

aoja—aopa, boja—aoyb, aojb—-—boza, bo;b—-bozb.

This presentation is not binary (b is of arity 3) but is quadratic.

Example

The operad DA of directed animals is the operad admitting the
presentation (&pa, %ipa) where BGpa := Gpa(2) := {a,b} and Fipa is the
space generated by

aocja—aoja, boja—aoyb, bojb—boya, (ao;b)oyb—(boyb)osb.

This presentation is binary but not quadratic (last relation involves
syntax trees with three internal nodes).
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Koszul operads
O is a Koszul operad if its Koszul complex is acyclic.
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Koszul dual of an operad

Let O be a binary and quadratic operad with presentation (&0, 9i0).

The Koszul dual [Ginzburg, Kapranov, 1994] of () is the operad O'
admitting the presentation (&0, ERJ@) where E)%é-) is the annihilator of iy
with respect to the scalar product

(—,—) : Free(®0)(3) @ Free($0)(3) = K
linearly defined, for all x,x’,y,y’ € &»(2), by

1 fx=x',y=y,andi=i =1,
(xojy,x'opy"y =X -1 ifx=x",y=y, andi=i =2,

0 otherwise.

Then, with knowledge of a presentation of O, one can compute a
presentation of O'.



Properties of Koszul duality

For any operad O admitting a binary and quadratic presentation,

o' = o.
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Properties of Koszul duality

Theorem [Ginzburg, Kapranov, 1994]
For any operad O admitting a binary and quadratic presentation,

o' =o.

Theorem [Ginzburg, Kapranov, 1994]

When O is a Koszul operad admitting a binary and quadratic
presentation, the Hilbert series of © and ' are related by

Ho(=Ho (1)) = t.

Then, given a Koszul operad O admitting a binary and quadratic
presentation,

presentation of () ~» presentation of (',

Hilbert series of () ~ Hilbert series of ',
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Dendriform operad

The dendriform operad Dendr is the operad admitting the presentation
(Bpendrs Rpendr) Where

6Dendr = 6Dendr(2) = {<a >}7
and PRpendr is the space generated by
<01 > — > 02 =,

<01 <— <0y <— <09 >,

=01 <4 =01 = — >0 ~.
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Dendriform operad

The dendriform operad Dendr is the operad admitting the presentation
(Bpendr, Ripendr) where

6Dendr = 05Dendr(2) = {<a >'}7
and PRpendr is the space generated by
<01 > — > 02 =,

<0 < —<0y~<— <03,

=01 <+ >07 > —>0p .

This presentation is binary and quadratic.

Dendr is a Koszul operad.
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Free dendriform algebra

The free dendriform algebra over one generator is the vector space Fpendr
of binary trees with at least one internal node endowed with the linear
operations

=, fDendr & ]:Dendr — -FDendra
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Free dendriform algebra

The free dendriform algebra over one generator is the vector space Fpendr
of binary trees with at least one internal node endowed with the linear
operations

=, fDendr & ]:Dendr — -FDendra

recursively defined, for any binary tree s with at least one internal node,
and binary trees t; and t; by

s<b:=5=:b~3,

h<s:=0=:5~1

A<5::A +A

)

t t t1 th<s th th-s
e A - A L A
t1 t s>t t s<t; b

Neither &< nor &4 are defined.
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Free dendriform algebra
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Outline

Dendriform operad

Diassociative operad
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Diassociative operad

The diassociative operad Dias [Loday, 2001] is the operad admitting the
presentation (®pias, Rpias) Where

6Dias = 6Dias(z) = {47 F}a
and Apias is the space generated by
_1 o1 F - F Oo _|,

o3 4 — oy, —o; 41— Aoy,
F01_|—F02F, l*O].F—FO2F.
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Diassociative operad

The diassociative operad Dias [Loday, 2001] is the operad admitting the
presentation (®pias, Rpias) Where

Bpias 1= ®Dias(2) = {_|7 F}7
and Apias is the space generated by
_| o1 '_ — " Oo _|,

_|01_|—_|02_|, —|01_|—_|02F,
|_01_|—|_02|_, I_O]_l_—'_Oz'_.

This presentation is binary and quadratic.

Dias is a Koszul operad.
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Realization of Dias
Dias admits the following realization [G, 2012]:

» Dias(n) is the linear span of the words of length n on {0, 1} with
exactly one occurrence of 0;

» the partial composition of Dias satisfies
uojvi=uy ... vy (Ui tve) oo (Uit vm) Uis1 .. Up,
where 7 is the operation max on integers;

» the unit of Dias is the word 0.
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» Dias(n) is the linear span of the words of length n on {0, 1} with
exactly one occurrence of 0;

» the partial composition of Dias satisfies
uojvi=uy ... vy (Ui tve) oo (Uit vm) Uis1 .. Up,
where 7 is the operation max on integers;

» the unit of Dias is the word 0.

Example
1101111 03 11101 = 11111011111

1101111 0 11101 = 11011111111
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Realization of Dias
Dias admits the following realization [G, 2012]:

» Dias(n) is the linear span of the words of length n on {0,1} with
exactly one occurrence of 0;

» the partial composition of Dias satisfies
vojv:i=uy .. Ui—y (Ui Tvy) oo (Ui T vm) Uiyt -.. Un,
where 7 is the operation max on integers;

» the unit of Dias is the word 0.

1101111 0311101 = 11111011111

1101111 0 11101 = 11011111111

Dias is generated by the set {01,10}.
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Dendriform operad

Koszul duality
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Koszul dual of Dias

Dendr is the Koszul dual of Dias.
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Dendr is the Koszul dual of Dias.

Indeed, by definition of Koszul duality,
%é_ias = Vect (y € Free(6pias)(3) : (x,y) = 0 for all x € Rpi,e).

y = Z At € Eﬁé‘ias.
tEFree(Gpiys)(3)

Let

Then, since
do1t —FoxH € MNpias implies Aqo;r + Ao+ =0,
o1 4 =02+ € 9pjas implies Ao, 4 + Ago,4 =0,
do1A4— o2t € NRpjas implies Ao, 4 + Ao, =0,
Ford—Foat € Npias implies Aoy + Ao =0,
Foibk —Foal €9pjas implies Aok + Ao, =0,
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Koszul dual of Dias

Dendr is the Koszul dual of Dias.

Indeed, by definition of Koszul duality,

ERJD‘iaS = Vect (y € Free(6pias)(3) : (x,y) = 0 for all x € Rpi,e).

Let
y = Z At € D%é‘ias.
tE€Free(®piys)(3)

Then, since
o1 —FoxH € 9pjas implies Ao, + Apo,4 =0,
oy 4 — oy € Npjas implies Ao, 4 + Ajo,4 =0,
—op 4 —Hox b € Npjas implies Ao, 4 + Ao, =0,
oy d—Foxk €9pjas implies Ao, 4+ Ao, =0,
Foibk —Foal €9pjas implies Aok + Ao, =0,

y is of the form

y=Al("Ol'——}—02—0-}-)\2(_'01_|——|02—|——|02|—)+A3(}_01—|+'—01|——|—02|—).
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Koszul dual of Dias

Dendr is the Koszul dual of Dias.

Indeed, by definition of Koszul duality,
ERJD_ias = Vect (y € Free(6pias)(3) : (x,y) = 0 for all x € Rpi,e).

y = Z At € 9%5}35.

te€Free(Bpis)(3)

Let

Then, since
o1 —FoxH € 9pjas implies Ao, + Apo,4 =0,
oy 4 — oy € Npjas implies Ao, 4 + Ajo,4 =0,
—op 4 —Hox b € Npjas implies Ao, 4 + Ao, =0,
oy d—Foxk €9pjas implies Ao, 4+ Ao, =0,
Foibk —Foal €9pjas implies Aok + Ao, =0,
y is of the form
y=XM(HorF—Fox=)+ Aa(dor 4 ——og"4—Hoak)+A3(Fo1 4+ Fo1 - —Foxk).

Therefore, %JD-ias is generated by
Ho1F—FoxHd, Hoyd—-dopd—Hoxk, Fogd4+Fork—Foxk,

and we recognize dendriform relations.
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Dimensions

Since Dias is Koszul and Dias' = Dendr,

HDias(_HDendr(_t)) =t
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From the realization of Dias, we obtain that its Hilbert series is
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Dimensions

Since Dias is Koszul and Dias' = Dendr,

HDias(_HDendr(_t)) =t

From the realization of Dias, we obtain that its Hilbert series is

t
Hpias(t) = =t 4224383 44t 585 ..

FEnc

Hence, the Hilbert series of Dendr is

1—+1—-4t-2t

Hoenar(t) = =t 4+ 262 4563 4 14¢% 44215 4 ...

2t

36
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> Define a generalization Dendr,, v € N, of Dendr.
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Motivations and goals

> Define a generalization Dendr,, v € N, of Dendr.

There are already plenty such generalizations:

>

vvyyvyy

tridendriform operad [Loday, Ronco, 2004];

quadridendriform operad [Aguiar, Loday, 2004];

enneadendriform operad [Leroux, 2004];

m-dendriform operads [Leroux, 2007];

m-dendriform operads [Novelli, 2014] (same name but different from
previous ones).

» Study the way that Dendr,-algebras allow to split associative
products.

» Study Dendr, from a combinatorial point of view (realization,
dimensions, definition of bases).

Strategy

Propose a generalization Dias, of Dias and then, by Koszul duality,
deduce a generalization Dendr, of Dendr.
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Outline

Polydendriform operads
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Outline

Polydendriform operads
Pluriassociative operad
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A generalization of Dias

Let v € N and let Dias, be the operad admitting the following
realization:
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Let v € N and let Dias, be the operad admitting the following
realization:

» Dias,(n) is the linear span of the words of length non {0,1,...,~}
with exactly one occurrence of 0;

> the partial composition of Dias,, satisfies
uojvi=uy ... ui—g (uptve) oon (Uit vm) Uist ... up,

» the unit of Dias, is the word 0.

Example

211201 o4 31103 = 2113222301

111101 03 20 = 1121101
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A generalization of Dias

Let v € N and let Dias, be the operad admitting the following
realization:

» Dias,(n) is the linear span of the words of length non {0,1,...,~}
with exactly one occurrence of 0;

» the partial composition of Dias, satisfies
vojv:i=uy ... Ui—y (UiTvy) oo (Ui T vm) Uiyt -.. Un,
» the unit of Dias, is the word 0.

211201 o4 31103 = 2113222301

111101 03 20 = 1121101

Dias,, is an operad.

40/64



First properties of Dias,

Dias, is generated by the set {0a, a0 : a € []}.
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First properties of Dias,

Dias, is generated by the set {0a, a0 : a € []}.

By definition of Dias,,

t . . n—
Hoias, (1) = 1——7t)2 and dim Dias,(n) = ny 1

Dimensions of Dias,

,0,0,.

2,3,45,6,7,8,

4, 12, 32, 80, 192, 448 1024,
6,

8

27, 108, 405, 1458, 5103, 17496
, 48, 256, 1280, 6144, 28672, 131072

B W N R OfR

1
1
1,
1,
1

1
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First properties of Dias,

Proposition

Dias, is generated by the set {0a, a0 : a € []}.

By definition of Dias,,

t . .
HDias,y(t) = m and dim D|as,y(n) = ny 1.

imensions of Dias,

0,0,...

. 2,3,4,5,6,7,8, ...

4,12, 32, 80, 192, 448, 1024, ...

. 6, 27, 108, 405, 1458, 5103, 17496, . ..

, 8, 48, 256, 1280, 6144, 28672, 131072, ...

el el ]

Y
0
1
2
3
4

Since Dias; = Dias and Dias, is a suboperad of Dias,41, Dias, is a
generalization of Dias.
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Presentation of Dias,

Theorem

Dias, admits the presentation (Spi. , 9ipias, ) Where
®Dias,Y = 6Dias,y(2) = {%aaFa tae [’7]}

and RApias,, IS generated by

H201 by — Fa 02, a,a’ €[],

Hy01dp — Hao0o by, a< belyl,

Fao1-dp — Faooby, a<bell,

dpo1Ha — —aoop, a<belyl,

Faoi1bp — Fponta, a<bel,
dg014g — Hgo2 e, dg014g — Hgo2tbe, c<de]
Fgo1-c — Fgo2ky, Fao1lbe — Fgoalg, c<del



Presentation of Dias,

Theorem

Dias, admits the presentation (Spi. , 9ipias, ) Where
®Dias,Y = ®Dias,y(2) = {%a,Fa tae [7]}

and RApias,, IS generated by

=, 01 Fa’ — g 02 =i, a,a' € [’Y],
‘43 o1 4|b = "a 0o }*b, a<be ["/],
Fao1-p — Fao02kyp, a<be [’}’],
dpo1Ha — Ha02p, a<bel
Fao1bp — Fpoakba, a<bel
dg01 g — g o2-e, dgo1dq — Hdgo2te, c<de]
Fqg01 e — Fg02kg, Fgo1fc — Fgo02ky, c<dey]
In a more concise way, Rpias, IS the space generated by
—a01 Fa/ - Fa’ 02 437 a, a/ € [7]7
-2 01 4aTa’ — .02 Fa’, 201 ‘{a’ — ka0 FaTa’v a, a/ € [’7]7

Aarar 01 Ha — Ha 02 Ay, Fa01by —Fapar 024, a, ae [’7]



Presentation of Dias,
The proof is based upon the existence of a map

word : Free (QiDiasw) — Dias,
inducing an isomorphism of operads

word : Free (Bpias,) /(

RDias )

— Dias,.
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Presentation of Dias,

The proof is based upon the existence of a map
word : Free (®D;asy) — Dias,

inducing an isomorphism of operads
word : Free (QSDiasv) /<

Rpras ) — Dias,.

In Free (®Dia55)y
|
-2

}—3/ \|—2
/N / S~
g =i 3
t= /NN L \41
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o Fa
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Presentation of Dias,

The proof is based upon the existence of a map
word : Free (®D;asy) — Dias,

inducing an isomorphism of operads
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o Fa
/ \ / \
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Presentation of Dias,

The proof is based upon the existence of a map
word : Free (®D;asy) — Dias,

inducing an isomorphism of operads
word : Free (QSDiasv) /<

Rpras ) — Dias,.

In Free (®Dia55)y
|
-2

3 / b 2
7N /T
—a 1 3 \
t:= N 2 e
/N / ) F1 !
3 0 /N
4 / \ / \ Y e
1 2 3 3 / \ / \

2 2 4 2
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Presentation of Dias,

The proof is based upon the existence of a map
word : Free (®D;asy) — Dias,

inducing an isomorphism of operads
word : Free (QSDiasv) /<

Roiasy ) — Dias,.

In Free (Gpias; ),
I
—

| / . )
/N / \\\\\\
g -1 F3 ~_
= AN 2 s
/N / 2 F1 !
3 0 s N
4 / \ / \ - Y
1 2 3 3 / \ / \

2 2 4 2

word(t) = 340122332242.
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Koszulity of Dias,

Dias,, is a Koszul operad.
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Koszulity of Dias,

Dias,, is a Koszul operad.

The proof relies on the orientation — of Rbias, satisfying

Foorda = ao1bu, a,a €[],
—Ha02Fp — Hj01 b, a<bely,
Faor - — Fao0nbp, a<be[l,
Ha00 4 — po1 s, a<bel,
FaoiFp — Fpoaby, a<belyl,
g 02 4c — g 014, c<de],
Hg02c — Hgo1 4, c<de],
Faor - — Fago2ka, c<de],
Faoibe — Fgo2tg, c<del,

defining a convergent rewrite

rule on Free(®pas. ).
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Alternative basis of Dias,,

Let <, be the order relation on the set of words of Dias,, where x <, y if
x; < yjforall i €[|x]].

210231 <4 220432

Let
KO .= Z ey (5, ¥)y

XS~y

where p., is the Mobius function of the poset defined by <.
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Alternative basis of Dias,,

Let <, be the order relation on the set of words of Dias,, where x <, y if
x; <y forall i € [|x]].

210231 <4 220432

Let
KO .= Z ey (5, ¥)y
XS~y

where p., is the Mobius function of the poset defined by <.

2
K@) =102 — 202
K, = 102 — 103 — 202 + 203

K 4o = 23102 — 23103 — 23202 + 23203 — 33102 + 33103 + 33202 — 33203
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Alternative basis of Dias,,

Let <, be the order relation on the set of words of Dias,, where x <, y if
x; < yjforall i €[|x]].

210231 <4 220432

Let
KO .= Z ey (5, ¥)y

XS~y

where p., is the Mobius function of the poset defined by <.

2
K@) =102 — 202
K, = 102 — 103 — 202 + 203

K 4o = 23102 — 23103 — 23202 + 23203 — 33102 + 33103 + 33202 — 33203

By triangularity, the K" form a basis of Dias,.
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Alternative basis of Dias,

Proposition

On the K-basis, the partial composition map of Dias., satisfies

K(X:Qy if min(y) > x;,
KO o, KO = § 57 o KBy if min(y) = x;,
0 otherwise ( min(y) < x;).

where x o, ; y is the word x o; y in which the 0 coming from y is replaced
by a.

46
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Alternative basis of Dias,

Proposition

On the K-basis, the partial composition map of Dias., satisfies

KE:Q}, if min(y) > x;,
KO o, KO = § 57 o KBy if min(y) = x;,
0 otherwise ( min(y) < x;).

where x o, ; y is the word x o; y in which the 0 coming from y is replaced
by a.

Exemple
Kg50)413 °1 Kg%)tl = KZ(552210413
Kg?))cu?, ©2 Kg%)‘t = Kg{)4413
Kg)zm o3 Kg%)‘l =0

(5) (5)

(5) (6) _ k)
K 05 K304 = Kooa1334 + Ko0a1340 + K3041354

20413
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Alternative presentation of Dias,

Proposition
Dias, admits the presentation (&f,,,. , %5, ) where

{)ias.Y = 6{)ias.y(z) = {4\3,‘Fa sac [Py]}
and 7p,,. is generated by

Hlz 01 Iy — Ik 02 Hla, a,a’ €[],
IFp 071 IFa, Hlp 02 2, IFp 01 la, Hlp 02 IF2, a<bel,
IFa 01 lkp — IFp 02 IFa, Hlp 01 Hla — Iz 0z lp, a<bel],
lFg 01 dlp — I3 02 IFp, iz 01 dlp — Iz 02 IFp, a<be [’Y],
Faoilra— D (Faozlrs), > (aordb) = Haoz s, a€hl,
a<be[] a<be[y]
Faorda— D (Fpozla), > (borda)=Haozlta,  a€hl.
a<bel] a<bE[Y]
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Alternative presentation of Dias,

Proposition
Dias, admits the presentation (&f,,,. , %5, ) where

{)i357 = Dlas ( ) - {4‘3’ a:dc€ [7]}
and D“Dlas is generated by

Hlz 01 Iy — Ik 02 Hla, a,a’ €[],
IFp o1 IFa, Hlp 02 la, IFp o1 la, Hlp 02 IFa, a<bell,
IFa 01 lkp — IFp 02 IFa, Hlp 01 Hla — Iz 0z lp, a<bel],
IFa 01 Hlp — I3 02 I, Iz 01 lp — l; 02 IFp, a<bel

baoplka — Z (IF2 0z IFp), Z (o1 lp) — a0z 4,  a€ ],

a<be[v] a<be[v]

baop ls — Z (IFp 02 IFa), Z (lp o1 la) — a0z IFa,  a€ ]

a<be[v] a<be[v]

Its proof uses the identification of I, with ng) and of -, with K(V)
together with the previous partial composition rules.

47
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Outline

Polydendriform operads

Polydendriform operad and algebra
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A generalization of Dendr

Diasy admits a binary and quadratic presentation, and thus, has a Koszul
dual.
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Diasy admits a binary and quadratic presentation, and thus, has a Koszul
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Let Dendr,, := Dias!,y be the ~-polydendriform operad.
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A generalization of Dendr
Diasy admits a binary and quadratic presentation, and thus, has a Koszul
dual.

Let Dendr,, := Diasﬂy be the y-polydendriform operad.

Theorem
Dendr,, admits the presentation (®pendr.,» Spendr., ) where

®Dendr,Y = ®Dendr7(2) = {l_ —a:d€ [7]}

and Rpendr,, S generated by

/
“—a 01 —5 — —5/ 02 “a, a,a € [’Y],
4301 “—p — 4302 —p, —a01“p— —a02 —p, a<bely],
4501 “—p — <=3 02 “p, —a01 —p— —a02 —p, a<bely],

=g 01 “—¢ — Z(’_d 02 ¢ + =4 02 —¢), d €[],
c€ld]

Z(éd 01 —¢+ —¢014c)— —d02 g, d € [7].
c€ld]
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Dimensions of Dendr7

Since Dias,, is Koszul, we can compute the dimensions of Dendr., from
the ones of Dias, because

,HDiasn, (*,HDendry (=) =1t
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Dimensions of Dendr,

Since Dias,, is Koszul, we can compute the dimensions of Dendr., from
the ones of Dias, because

’HDiasw(_’HDener(_t)) =t
We obtain

7'lDendr.,(f-') =t+ 2'Yt ’HDendr.Y (t) + 'thHDendr.,(t)z
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Dimensions of Dendr,

Since Dias,, is Koszul, we can compute the dimensions of Dendr., from
the ones of Dias, because

’HDiasw (_’HDendry (_t)) =t
We obtain

7'lDendr.,(f-') =t+ 2'Yt ’HDendr.Y (t) + 'th,HDendr.,(t)z

This is a consequence of

_’It'LDendr,Y (_ t)

t= (1 aF ’YHDendr.y(_t))z
and the fact that
Horas. (£) = .
Dias~ (1 — 7t)2

50 /64



Dimensions and elements of Dendr,
We deduce, from the expression of Hpenar. (), that

1 2
dim Dendr., (n) = "1 nil ( nn>.
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Dimensions and elements of Dendr,
We deduce, from the expression of Hpenar. (), that

1 2
dim Dendr., (n) = "1 nil ( :).

Hence, Dendr,(n) is the linear span of y-edge valued binary trees of size
n, that are binary trees with n internal nodes wherein its n — 1 edges
connecting two internal nodes are labeled on [7].

Example

is a 4-edge valued binary tree and a basis element of Dendrg(10).
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Polydendriform algebras

A Dendr,-algebra, called y-polydendriform algebra is a vector space V
endowed with 2+ binary operations

— VRV =V and —,: VRV =V, ael,
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Polydendriform algebras

A Dendr,-algebra, called y-polydendriform algebra is a vector space V
endowed with 2+ binary operations

— VRV =V and —,: VRV =V, ael,

satisfying, for all x,y,z € V, the relations

(x—2y)—az=x—u(y+a22), a,a e ],
(x=py)—az=x+—5(y —b2), a< bely],
(x=by)—az=x—a(y —b2z), a<bel],
(x—ay)=bz=xa(y+b2), a<bel,
(x=py) —az=x—p(y —a2), a<be[y],

(x—ay)—az=Y x—gly—c2)+x—aly—=cz), dehl,
c€ld]

S ey) cazt (xiey) Saz=x—aly ~a2).  debl
celd]
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~v-split of an associative operation
A binary element x of an operad O is associative if

X 01 X = X 0p X.
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~-split of an associative operation
A binary element x of an operad O is associative if

X 01 X = X 0p X.

In Dendr,, the element
oy = Z(‘—a aF _\a)

ac[b]
is associative.
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~v-split of an associative operation
A binary element x of an operad O is associative if

X 01 X = X O X.

Proposition
In Dendr,, the element
®p = Z(;a +—a)
ac|b]
is associative.

Then, ~-polydendriform algebras are adapted to split an associative
product - into 27 parts by

.:g1+4\1+1;2+42+...+g7+4’w
with the partial sums condition, that is
—1+—1,
—1+ -1+ 2+ —2,
—1+—1+—2+—2++3+—3,

ey

are associative.
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Alternative presentation of Dendr,
The computation of the Koszul dual of Dias, expressed on its
presentation (&(,,, , 9, ) leads to an alternative presentation for
Dendr,.
Proposition

!

Dendr, admits the presentation (&p.,q,. » Rpenar,

) where

i . / I o
Dendr, - Dendr,y(z) T {_<3’ ~a:adc [7]}
and 7p,, . is generated by
<201 =g — a4 O3 <2, a,a €[],
<a 01 =g — <apa 02 <a — <alaf 02 ~ o, a, 3, € [’7]’
>a¢a’ 01 <y = >a,],a’ O17a— 7202 >a’7 a, a/ € [’Y]a

where | denotes the operation min on integers.

54 /64



Alternative presentation of Dendr,
The computation of the Koszul dual of Dias, expressed on its
presentation (&(,,, , 9, ) leads to an alternative presentation for
Dendr,.
Proposition

Dendr, admits the presentation (&, %ip.nq,, ) Where

fDendr,Y = IIDendr_y(z) = {_<3’ ~a:ac [7]}

and 7p,, . is generated by

<301 74 — 74 02 =g, a, al € [’7]7
<a 01 =g — <apa 02 <a — <alaf 02 ~ o, a, a, € [’Y]’
~ala’ O1 <o + ~ala’ O1 =a — 7a 02 =4, a, a/ € [’YL

where | denotes the operation min on integers.

Fact: this presentation of Dendr, can also be obtained through the
change of basis

.<b:Zf—a, and >b:ZAa, b € [].

a€[b] a€[b]



Free ~-dendriform algebras

We endow the space Fbendr,, of y-edge valued binary trees with linear
operations

<ay7a’ ]:Dendr,Y ® ]:Dendr.y — ]:De”d"'y’ ac [’y],
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Free ~-dendriform algebras

We endow the space Fbendr,, of y-edge valued binary trees with linear
operations

<ay7a’ ]:Dendr,Y ® ]:Dendr.y — ]:Dendr.w ac [’y],

recursively defined, for any ~-edge valued binary tree s and any y-edge
valued binary trees or leaves t; and t, by

5—<a|£::s::|£>as,

|£<aq =0= f>a|£,
}g{%{ <a5 = }g{%{ + ﬁé}z{ ) z:=aly,
t t t1 th <as t1 -y s
53 }E&K = ﬁ{é%z( + }E&K s z:=alx.
t1 t s>at1 t 5<xt1 t

Note that neither & <, & nor &, 4 are defined.
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Free v-dendriform algebras

FDendr., is the free y-polydendriform algebra over one generator.
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Free v-dendriform algebras

Fbendr,, is the free y-polydendriform algebra over one generator.
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Outline

Annex
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Example: the polynomial product
Let A:= {ag,a1,...} be a totally ordered alphabet by a; < a; if i <.
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Example: the polynomial product
Let A:= {ag,as,...} be a totally ordered alphabet by a; < a; if i < j.

The space of noncommutative polynomials Q(A) is endowed with its
usual product -.

dpaz3dp - aja = apazapajiaz
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Example: the polynomial product
Let A:= {ag,a1,...} be a totally ordered alphabet by a; < a; if i <.

The space of noncommutative polynomials Q(A) is endowed with its
usual product -.

Example
dpazagp - ajaz = apazapaiap

- splits into two parts < and >~ according to the origin of the greatest
letter:

DI if max.(u) > max(v), Uy = duY if max.(u) < max(v),
0 otherwise, 0 otherwise.
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Example: the polynomial product
Let A:= {ag,as,...} be a totally ordered alphabet by a; < a; if i < j.

The space of noncommutative polynomials Q(A) is endowed with its
usual product -.

dpaz3dp - aja = apazapajiaz

- splits into two parts < and > according to the origin of the greatest
letter:

U<y JuY if max.(u) > max(v), R L if max.(u) < max(v),
0 otherwise, 0 otherwise.

apap <ajag = apgazaiag agarag <aza, =0

agap >~ ajag =0 apapag ~ ajap = apgazapgaiap

58 /64



Example: the associative operad

The associative operad As is defined in the following way:

» As(n) is the one-dimensional space spanned by the abstract operator
a, of arity n;

> the partial composition is linearly defined by a, o; ap := apym—1;

» the unit is ay.
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Example: the associative operad

The associative operad As is defined in the following way:

» As(n) is the one-dimensional space spanned by the abstract operator
a, of arity n;

> the partial composition is linearly defined by a, o; ap := apym—1;

» the unit is ay.

Example
(4 O3 A3 = Qg
10101 =01

(4 O4 01 = Oy
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Example: properties of As

1. Hilbert series:

Has(t) =t + 2+ 53+ t4 45+ = ——.
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Example: properties of As

1. Hilbert series:

Has(t) =t + 2+ 53+ t4 45+ = ——.

2. Minimal generating set: {ay}.
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Example: properties of As

1. Hilbert series:

Has(t) =t + 2+ 53+ t4 45+ = ——.

2. Minimal generating set: {a>}. Indeed,

a3 = a2 01 dp,
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Example: properties of As

1. Hilbert series:

Has(t) =t + 2+ 53+ t4 45+ = ——.

2. Minimal generating set: {a>}. Indeed,

a3 = a2 01 dp, (4 = a3 01 a2,
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Example: properties of As

1. Hilbert series:

Has(t) =t + 2+ 53+ t4 45+ = ——.

2. Minimal generating set: {a>}. Indeed,

az = az og dag, as = az o dap, a5 = a4 01 ag, etc.
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Example: properties of As

1. Hilbert series:

t
Has(t) = t+t2+t3+t4+t5+-~-=§.
2. Minimal generating set: {a>}. Indeed,
az = az og dag, as = az o dap, a5 = a4 01 ag, etc.

3. Nontrivial relations:
G 01 Az = dz O Ap.

60 /64



Algebras over an operad

Let O be an operad.

An O-algebra is a vector space V where any x € O of arity n endows V
with a linear map
x: V" 5P,
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Algebras over an operad

Let O be an operad.

An O-algebra is a vector space V where any x € O of arity n endows V

with a linear map
x: V" 5P,

The relation
(xoiy)(ers- .-, entm—1) = x(er, €i—1,Y(€i, -, €itm=1), €itm>---»Entm—1)

must be satisfied, for all x € O(n), y € O(m), and i € [n].
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Algebras over an operad

Let O be an operad.

An O-algebra is a vector space V where any x € O of arity n endows V
with a linear map
x: V" 5P,

The relation
(xoiy)(ers- .-, entm—1) = x(er, €i—1,Y(€i, -, €itm=1), €itm>---»Entm—1)

must be satisfied, for all x € O(n), y € O(m), and i € [n].

Therefore, any operad O describes a category of algebras: the class of all
(-algebras with obvious morphisms as arrows.
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Algebras over an operad

Let O be an operad.

An O-algebra is a vector space V where any x € O of arity n endows V

with a linear map
x: V" 5P,

The relation
(xoiy)(ers- .-, entm—1) = x(er, €i—1,Y(€i, -, €itm=1), €itm>---»Entm—1)

must be satisfied, for all x € O(n), y € O(m), and i € [n].
Therefore, any operad O describes a category of algebras: the class of all
(-algebras with obvious morphisms as arrows.

Moreover, if ¢ : O1 — O, is a morphism of operads, ¢ gives rises to a
functor from the category of (,-algebras to the category of (J;-algebras.
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Example: algebras over As

Recall that As admits the presentation (®as, 9ias) where
Bps = Bas(2) = {a} and Nxs is generated by a0y a — ao; a.
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Example: algebras over As

Recall that As admits the presentation (®as, 9ias) where
Bps = Bas(2) = {a} and Nxs is generated by a0y a — ao; a.

Then, any As-algebra is a vector space ) endowed with a linear operation

a: VeV —=V,
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Example: algebras over As

Recall that As admits the presentation (®as, 9ias) where
Bps = Bas(2) = {a} and Nxs is generated by a0y a — ao; a.

Then, any As-algebra is a vector space ) endowed with a linear operation
a: VeV -V,
satisfying, for all x,y,z € V,

(ae1a)(x,y,2) = a(alx,y), 2)
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Example: algebras over As

Recall that As admits the presentation (®as, 9ias) where
Bps = Bas(2) = {a} and Nxs is generated by a0y a — ao; a.

Then, any As-algebra is a vector space ) endowed with a linear operation
a: VeV -V,
satisfying, for all x,y,z € V,

(ae1a)(x,y,2) = a(alx,y), 2)
I

(a 02 a)(X7y72)
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Example: algebras over As

Recall that As admits the presentation (®as, 9ias) where
Bps = Bas(2) = {a} and Nxs is generated by a0y a — ao; a.

Then, any As-algebra is a vector space ) endowed with a linear operation
a: VeV -V,
satisfying, for all x,y,z € V,

(ae1a)(x,y,2) = a(alx,y), 2)
I

(a 02 a)(X7y72) = a(X7 a(y,z)).
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Example: algebras over As

Recall that As admits the presentation (®as, 9ias) where
Bps = Bas(2) = {a} and Nxs is generated by a0y a — ao; a.

Then, any As-algebra is a vector space ) endowed with a linear operation
a: VeV -V,
satisfying, for all x,y,z € V,

(ae1a)(x,y,2) = a(alx,y), 2)
I I

(a 02 a)(X7y72) = a(X7 a(y,z)).
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Example: algebras over As

Recall that As admits the presentation (®as, 9ias) where
Bps = Bas(2) = {a} and Nxs is generated by a0y a — ao; a.

Then, any As-algebra is a vector space ) endowed with a linear operation
a: VeV -V,
satisfying, for all x,y,z € V,

(ae1a)(x,y,2) = a(alx,y), 2)
I I

(a 02 a)(X7y7 Z) = a(X7 a(y7 Z))
Using infix notation for the binary operator a, we obtain the relation
(xay)az=xa(yaz),

so that As-algebras are associative algebras.
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Realization of Dendr

Dendr admits the following realization (i.e., a description of the spaces
Dendr(n) and of its partial composition):
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Realization of Dendr

Dendr admits the following realization (i.e., a description of the spaces
Dendr(n) and of its partial composition):

» Dendr(n) is the linear span of binary trees with n internal nodes;
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Realization of Dendr

Dendr admits the following realization (i.e., a description of the spaces
Dendr(n) and of its partial composition):

» Dendr(n) is the linear span of binary trees with n internal nodes;
> its partial composition (at the root of index /) satisfies

z S AL

t 5 t S 5
! ! 2 2 te[ty,/t2,t1\ o] s€[s2,/ 51,52\ 51] t

o
o

where intervals are intervals for Tamari order [Tamari, 1962],
s/t consists in grafting the root of s onto the first leaf of ¢,
and s\t consists in grafting the root of t onto the last leaf of s;
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Realization of Dendr

Dendr admits the following realization (i.e., a description of the spaces
Dendr(n) and of its partial composition):

» Dendr(n) is the linear span of binary trees with n internal nodes;
> its partial composition (at the root of index /) satisfies

z S AL

te[ty,/t2,t1\ o] s€[s2,/ 51,52\ 51] t s

o
o

t1 51 to 52

where intervals are intervals for Tamari order [Tamari, 1962],
s/t consists in grafting the root of s onto the first leaf of ¢,
and s\t consists in grafting the root of t onto the last leaf of s;

» the unit of Dendr is the binary tree P\
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From monoids to operads
From any monoid (M, e), define
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From monoids to operads
From any monoid (M, e), define

» the vector space
TM =P TM(n)
n>1
where

TM(n) :=Vect (uy...u,: u; € M forall i € [n]);
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From monoids to operads
From any monoid (M, e), define

» the vector space
TM =P TM(n)
n>1
where

TM(n) :=Vect (uy...u,: u; € M forall i € [n]);

» the partial compositions maps
oi : TM(n) x TM(m) - TM(n+ m—1),
defined for all u € TM(n), v € TM(m), and i € [n] by

vojvi=uy ... ui—1 (uievy) ... (ui®vy) Uit ... Up.
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From monoids to operads
From any monoid (M, e), define

» the vector space
TM = P TM(n)
n>1
where

TM(n) := Vect (uy...u,: u; € M forall i € [n]);

» the partial compositions maps
oi : TM(n) x TM(m) - TM(n+ m—1),
defined for all u € TM(n), v e TM(m), and i € [n] by

vojv:=uy ... Uiy (ujevy) ... (uj®vy) Uit ... Up.

For any monoid M, TM is an operad.
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