Polydendriform algebras

Samuele Giraudo, LIGM, Université Paris-Est Marne-la-Vallée

Séminaire du LIGM

January 13, 2015

Outline

Introduction

Operads

Operations on operators Free operads and presentations Koszul duality

Dendriform operad

Dendriform operad and algebra Diassociative operad Koszul duality

Polydendriform operads

Pluriassociative operad Polydendriform operad and algebra

Annex

Outline

Introduction

Let

$$\cdot: \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$

be an associative binary operation, acting on a \mathbb{K} -vector space \mathcal{V} .

Let

$$\cdot: \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$

be an associative binary operation, acting on a \mathbb{K} -vector space \mathcal{V} .

Splitting \cdot means expressing \cdot as a sum

$$\cdot = \, \prec \, + \, \succ$$

where \prec (left) and \succ (right) are two binary operations.

Let

$$\cdot: \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$

be an associative binary operation, acting on a \mathbb{K} -vector space \mathcal{V} .

Splitting \cdot means expressing \cdot as a sum

$$\cdot = \prec + \succ$$

where \prec (left) and \succ (right) are two binary operations.

The product of two elements $x, y \in \mathcal{V}$ expresses as

$$x \cdot y = (x \prec y) + (x \succ y).$$

Let

$$\cdot: \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$

be an associative binary operation, acting on a \mathbb{K} -vector space \mathcal{V} .

Splitting \cdot means expressing \cdot as a sum

$$\cdot = \prec + \succ$$

where \prec (left) and \succ (right) are two binary operations.

The product of two elements $x, y \in \mathcal{V}$ expresses as

$$x \cdot y = (x \prec y) + (x \succ y).$$

In our context, the operations \prec and \succ have to satisfy some precise relations.

Consider the vector space $\mathbb{Q}\langle a,b\rangle$ of noncommutative polynomials.

$$\mathtt{a} + \mathtt{6aa} - \mathtt{2aaba} \in \mathbb{Q} \langle \mathtt{a}, \mathtt{b} \rangle$$

Consider the vector space $\mathbb{Q}\langle a,b\rangle$ of noncommutative polynomials.

Example

$$a + 6aa - 2aaba \in \mathbb{Q}\langle a, b \rangle$$

Let us endow this space with the shuffle product Ⅲ.

$$ab \coprod ba = abba + abba + abab + baba + baab + baab$$

Consider the vector space $\mathbb{Q}\langle a,b\rangle$ of noncommutative polynomials.

Example

$$a + 6aa - 2aaba \in \mathbb{Q}\langle a, b \rangle$$

Let us endow this space with the shuffle product Ⅲ.

$$ab \sqcup ba = abba + abba + abab + baba + baab + baab$$

= $2abba + abab + baba + 2baab$

Consider the vector space $\mathbb{Q}\langle a,b\rangle$ of noncommutative polynomials.

Example

$$\mathtt{a} + \mathtt{6aa} - \mathtt{2aaba} \in \mathbb{Q}\langle\mathtt{a},\mathtt{b}\rangle$$

Let us endow this space with the shuffle product Ⅲ.

Example

$$ab \coprod ba = abba + abba + abab + baba + baab + baab$$

= $2abba + abab + baba + 2baab$

 \coprod splits into two parts \prec and \succ according to the origin of the last letter of the words.

$$ab \prec ba = abab + baab + baab$$

 $ab \succ ba = abba + abba + baba$

Dendriform algebras

A dendriform algebra [Loday, 2001] is a $\mathbb{K}\text{-vector}$ space $\mathcal V$ endowed with two operations

$$\prec : \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$
 and $\succ : \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$

satisfying, for all $x, y, z \in \mathcal{V}$, the relations

$$(x \prec y) \prec z = x \prec (y \prec z) + x \prec (y \succ z),$$

$$(x \succ y) \prec z = x \succ (y \prec z),$$

$$(x \prec y) \succ z + (x \succ y) \succ z = x \succ (y \succ z).$$

Dendriform algebras

A dendriform algebra [Loday, 2001] is a \mathbb{K} -vector space $\mathcal V$ endowed with two operations

$$\prec : \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$
 and $\succ : \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$

satisfying, for all $x, y, z \in \mathcal{V}$, the relations

$$(x \prec y) \prec z = x \prec (y \prec z) + x \prec (y \succ z),$$

$$(x \succ y) \prec z = x \succ (y \prec z),$$

$$(x \prec y) \succ z + (x \succ y) \succ z = x \succ (y \succ z).$$

Proposition [Loday, 2001]

Let $(\mathcal{V}, \prec, \succ)$ be a dendriform algebra. Then, the operation $\prec + \succ$ is associative.

In the shuffle algebra, \prec and \succ satisfy

$$ua \prec v = (u \sqcup v)a$$
 and $u \succ vb = (u \sqcup v)b$.

In the shuffle algebra, \prec and \succ satisfy

$$u\mathbf{a} \prec \mathbf{v} = (u \sqcup \mathbf{v})\mathbf{a}$$
 and $u \succ \mathbf{v}\mathbf{b} = (u \sqcup \mathbf{v})\mathbf{b}$.

These operations form a dendriform algebra.

In the shuffle algebra, \prec and \succ satisfy

$$ua \prec v = (u \sqcup v)a$$
 and $u \succ vb = (u \sqcup v)b$.

These operations form a dendriform algebra.

Moreover, since

$$ua \coprod vb = ua \prec vb + ua \succ vb,$$

In the shuffle algebra, \prec and \succ satisfy

$$u \mathbf{a} \prec \mathbf{v} = (u \sqcup \mathbf{v})\mathbf{a}$$
 and $u \succ \mathbf{v}\mathbf{b} = (u \sqcup \mathbf{v})\mathbf{b}$.

These operations form a dendriform algebra.

Moreover, since

$$ua \coprod vb = ua \prec vb + ua \succ vb$$
,

we can write

$$ua \coprod vb = (u \coprod vb)a + (ua \coprod v)b,$$

In the shuffle algebra, \prec and \succ satisfy

$$u \mathbf{a} \prec \mathbf{v} = (u \sqcup \mathbf{v})\mathbf{a}$$
 and $u \succ \mathbf{v}\mathbf{b} = (u \sqcup \mathbf{v})\mathbf{b}$.

These operations form a dendriform algebra.

Moreover, since

$$ua \coprod vb = ua \prec vb + ua \succ vb$$
,

we can write

$$ua \coprod vb = (u \coprod vb)a + (ua \coprod v)b,$$

with

$$ua \sqcup \iota \epsilon = ua = \epsilon \sqcup \iota \iota a.$$

In the shuffle algebra, \prec and \succ satisfy

$$u \mathbf{a} \prec \mathbf{v} = (u \sqcup \mathbf{v})\mathbf{a}$$
 and $u \succ \mathbf{v}\mathbf{b} = (u \sqcup \mathbf{v})\mathbf{b}$.

These operations form a dendriform algebra.

Moreover, since

$$ua \coprod vb = ua \prec vb + ua \succ vb$$
,

we can write

$$ua \coprod vb = (u \coprod vb)a + (ua \coprod v)b,$$

with

$$ua \sqcup \iota \epsilon = ua = \epsilon \sqcup \iota ua.$$

This is the Ree recursive definition of the shuffle product [Ree, 1957], [Schützenberger, 1958].

Splitting an associative operation can bring out some of its properties [Foissy, 2005].

Splitting an associative operation can bring out some of its properties [Foissy, 2005].

Several generalizations of the shuffle product (on trees, permutations, set partitions, *etc.*) are defined by left and right operations [Loday, 2001], [Foissy, 2005], [Novelli, Thibon, 2007].

Splitting an associative operation can bring out some of its properties [Foissy, 2005].

Several generalizations of the shuffle product (on trees, permutations, set partitions, etc.) are defined by left and right operations [Loday, 2001], [Foissy, 2005], [Novelli, Thibon, 2007].

Many connections between dendriform algebras, combinatorial Hopf algebra theory, and computer science (binary search tree insertion) [Hivert, Novelli, Thibon, 2005].

Splitting an associative operation can bring out some of its properties [Foissy, 2005].

Several generalizations of the shuffle product (on trees, permutations, set partitions, etc.) are defined by left and right operations [Loday, 2001], [Foissy, 2005], [Novelli, Thibon, 2007].

Many connections between dendriform algebras, combinatorial Hopf algebra theory, and computer science (binary search tree insertion) [Hivert, Novelli, Thibon, 2005].

The dendriform operad [Loday, 2001] describes all the dendriform algebras.

Outline

Operads

Operations on operators Free operads and presentations Koszul duality

Outline

Operads

Operations on operators

Free operads and presentations Koszul duality

An operator is an object with $n \ge 1$ inputs and one output.

Its arity is its number n of inputs.

An operator is an object with $n \ge 1$ inputs and one output.

Its arity is its number n of inputs.

Given two operators x and y, the composition of x and y consists in

An operator is an object with $n \ge 1$ inputs and one output.

Its arity is its number n of inputs.

Given two operators x and y, the composition of x and y consists in

1. choosing an input of x, identified by its position i;

An operator is an object with $n \ge 1$ inputs and one output.

Its arity is its number n of inputs.

Given two operators x and y, the composition of x and y consists in

- 1. choosing an input of x, identified by its position i;
- 2. grafting the output of *y* onto this input.

An operator is an object with $n \ge 1$ inputs and one output.

Its arity is its number n of inputs.

Given two operators x and y, the composition of x and y consists in

- 1. choosing an input of x, identified by its position i;
- 2. grafting the output of y onto this input.

We then obtain a new operator $x \circ_i y$ of arity n + m - 1:

Operads are algebraic structures formalizing the notion of operators and their composition.

Operads are algebraic structures formalizing the notion of operators and their composition.

An operad is a triple $(\mathcal{O}, \circ_i, \mathbb{1})$ where

1. \mathcal{O} is a graded \mathbb{K} -vector space

$$\mathcal{O}:=\bigoplus_{n\geqslant 1}\mathcal{O}(n)$$

Operads are algebraic structures formalizing the notion of operators and their composition.

An operad is a triple $(\mathcal{O}, \circ_i, \mathbb{1})$ where

1. \mathcal{O} is a graded \mathbb{K} -vector space

$$\mathcal{O}:=\bigoplus_{n\geqslant 1}\mathcal{O}(n);$$

2. \circ_i is a linear map, called partial composition map,

$$\circ_i: \mathcal{O}(n) \otimes \mathcal{O}(m) \to \mathcal{O}(n+m-1), \qquad n, m \geqslant 1, i \in [n];$$

Operads are algebraic structures formalizing the notion of operators and their composition.

An operad is a triple $(\mathcal{O}, \circ_i, \mathbb{1})$ where

1. \mathcal{O} is a graded \mathbb{K} -vector space

$$\mathcal{O}:=\bigoplus_{n\geqslant 1}\mathcal{O}(n);$$

2. \circ_i is a linear map, called partial composition map,

$$\circ_i : \mathcal{O}(n) \otimes \mathcal{O}(m) \to \mathcal{O}(n+m-1), \qquad n, m \geqslant 1, i \in [n];$$

3. 1 is an element of $\mathcal{O}(1)$, called unit.

Operads are algebraic structures formalizing the notion of operators and their composition.

An operad is a triple $(\mathcal{O}, \circ_i, \mathbb{1})$ where

1. \mathcal{O} is a graded \mathbb{K} -vector space

$$\mathcal{O}:=\bigoplus_{n\geqslant 1}\mathcal{O}(n);$$

2. \circ_i is a linear map, called partial composition map,

$$\circ_i : \mathcal{O}(n) \otimes \mathcal{O}(m) \to \mathcal{O}(n+m-1), \qquad n, m \geqslant 1, i \in [n];$$

3. 1 is an element of $\mathcal{O}(1)$, called unit.

This data has to satisfy some coherence axioms.

Operad axioms

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

$$(x \circ_i y)$$

 $x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$
 $i \in [n], j \in [m]$

$$(x \circ_i y) \circ_{i+j-1} z$$

 $x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$
 $i \in [n], j \in [m]$

$$(x \circ_i y) \circ_{i+j-1} z$$
 $(y \circ_j z)$
 $x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$
 $i \in [n], j \in [m]$

$$(x \circ_i y) \circ_{i+j-1} z \quad x \circ_i (y \circ_j z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

$$(x \circ_{i} y) \circ_{j+m-1} z = (x \circ_{j} z) \circ_{i} y$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$1 \leqslant i < j \leqslant n$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

$$(x \circ_i y)$$

 $x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$
 $1 \le i < j \le n$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

$$(x \circ_i y) \circ_{j+m-1} z$$

$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$

$$1 \leq i < j \leq n$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

$$(x \circ_i y) \circ_{j+m-1} z \quad (x \circ_j z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$1 \leqslant i < j \leqslant n$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

$$(x \circ_{i} y) \circ_{j+m-1} \mathbf{z} \qquad (x \circ_{j} z) \circ_{i} \mathbf{y}$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$1 \leq i < j \leq n$$

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

$$(x \circ_{i} y) \circ_{j+m-1} z = (x \circ_{j} z) \circ_{i} y$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$1 \leq i < j \leq n$$

Associativity:

$$(x \circ_{i} y) \circ_{i+j-1} z = x \circ_{i} (y \circ_{j} z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

Commutativity:

$$(x \circ_{i} y) \circ_{j+m-1} z = (x \circ_{j} z) \circ_{i} y$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$1 \leqslant i < j \leqslant n$$

$$1 \circ_1 x = x = x \circ_i 1$$
$$x \in \mathcal{O}(n)$$
$$i \in [n]$$

Associativity:

$$(x \circ_{i} y) \circ_{i+j-1} z = x \circ_{i} (y \circ_{j} z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

Commutativity:

$$(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y$$

 $x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$
 $1 \leq i < j \leq n$

$$1 \circ_1 x$$
$$x \in \mathcal{O}(n)$$
$$i \in [n]$$

Associativity:

$$(x \circ_{i} y) \circ_{i+j-1} z = x \circ_{i} (y \circ_{j} z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

Commutativity:

$$(x \circ_{i} y) \circ_{j+m-1} z = (x \circ_{j} z) \circ_{i} y$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$1 \leq i < j \leq n$$

$$1 \circ_1 x \qquad x$$
$$x \in \mathcal{O}(n)$$
$$i \in [n]$$

Associativity:

$$(x \circ_{i} y) \circ_{i+j-1} z = x \circ_{i} (y \circ_{j} z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

Commutativity:

$$(x \circ_{i} y) \circ_{j+m-1} z = (x \circ_{j} z) \circ_{i} y$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$1 \leqslant i < j \leqslant n$$

$$1 \circ_1 x \quad x \quad x \circ_i 1$$
$$x \in \mathcal{O}(n)$$
$$i \in [n]$$

Associativity:

$$(x \circ_{i} y) \circ_{i+j-1} z = x \circ_{i} (y \circ_{j} z)$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$i \in [n], j \in [m]$$

Commutativity:

$$(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y$$
$$x \in \mathcal{O}(n), y \in \mathcal{O}(m), z \in \mathcal{O}$$
$$1 \leq i < j \leq n$$

$$1 \circ_1 x = x = x \circ_i 1$$
$$x \in \mathcal{O}(n)$$
$$i \in [n]$$

Example: the operad of Motzkin paths

The operad Motz is defined in the following way:

- ▶ Motz(n) is the linear span of the Motzkin paths consisting in n-1 steps;
- ▶ the partial composition $x \circ_i y$ of two Motzkin paths consists in replacing the *i*th point of x by y;
- ▶ the unit is the Motzkin path consisting in 0 step.

Example: the operad of Motzkin paths

The operad Motz is defined in the following way:

- ▶ Motz(n) is the linear span of the Motzkin paths consisting in n-1 steps;
- ▶ the partial composition $x \circ_i y$ of two Motzkin paths consists in replacing the *i*th point of x by y;
- ▶ the unit is the Motzkin path consisting in 0 step.

Example: the operad of Motzkin paths

The operad Motz is defined in the following way:

- ▶ Motz(n) is the linear span of the Motzkin paths consisting in n-1 steps;
- ▶ the partial composition $x \circ_i y$ of two Motzkin paths consists in replacing the *i*th point of x by y;
- ▶ the unit is the Motzkin path consisting in 0 step.

Example

Exercice

Prove that Motz is an operad.

Studying an operad

Given an operad \mathcal{O} , one can ask about:

1. its dimensions, encoded by its Hilbert series

$$\mathcal{H}_{\mathcal{O}}(t) := \sum_{n\geqslant 1} \dim \mathcal{O}(n) t^n;$$

Studying an operad

Given an operad \mathcal{O} , one can ask about:

1. its dimensions, encoded by its Hilbert series

$$\mathcal{H}_{\mathcal{O}}(t) := \sum_{n \geqslant 1} \dim \mathcal{O}(n) t^n;$$

2. its minimal generating set, that is a smallest subset G of \mathcal{O} such that the smallest sub-operad of \mathcal{O} containing G is \mathcal{O} ;

Studying an operad

Given an operad \mathcal{O} , one can ask about:

1. its dimensions, encoded by its Hilbert series

$$\mathcal{H}_{\mathcal{O}}(t) := \sum_{n \geqslant 1} \dim \mathcal{O}(n) t^n;$$

- 2. its minimal generating set, that is a smallest subset G of \mathcal{O} such that the smallest sub-operad of \mathcal{O} containing G is \mathcal{O} ;
- 3. the nontrivial relations between its generators, that are equalities involving partial compositions of elements of *G* that cannot be expressed by operad axioms.

Example: properties of Motz

1. Hilbert series:

$$\mathcal{H}_{Motz}(t) = t + t^2 + 2t^3 + 4t^4 + 9t^5 + 21t^6 + 51t^7 + 127t^8 + \cdots$$
 (these coefficients form Sequence A001006).

Example: properties of Motz

1. Hilbert series:

$$\mathcal{H}_{\text{Motz}}(t) = t + t^2 + 2t^3 + 4t^4 + 9t^5 + 21t^6 + 51t^7 + 127t^8 + \cdots$$
 (these coefficients form Sequence A001006).

2. Minimal generating set:

$$\left\{ lackbox{00}, lackbox{00} \right\}$$
 .

Example: properties of Motz

1. Hilbert series:

$$\mathcal{H}_{\text{Motz}}(t) = t + t^2 + 2t^3 + 4t^4 + 9t^5 + 21t^6 + 51t^7 + 127t^8 + \cdots$$
 (these coefficients form Sequence A001006).

2. Minimal generating set:

$$\left\{ \bullet \bullet, \bullet \bullet \right\}$$
.

3. Nontrivial relations:

Outline

Operads

Operations on operators

Free operads and presentations

Koszul duality

Let $G := \sqcup_{n\geqslant 1} G(n)$ be a graded set.

Let $G := \bigsqcup_{n \geqslant 1} G(n)$ be a graded set.

The free operad over G is the operad Free(G) such that:

- ▶ Free(G)(n) is the linear span of the syntax trees on G with n leaves;
- ▶ the partial composition is a tree grafting;
- ▶ the unit is the tree consisting in one leaf.

Let $G := \bigsqcup_{n \geqslant 1} G(n)$ be a graded set.

The free operad over G is the operad Free(G) such that:

- ▶ Free(G)(n) is the linear span of the syntax trees on G with n leaves;
- ▶ the partial composition is a tree grafting;
- ▶ the unit is the tree consisting in one leaf.

Example

Let $G := G(2) \sqcup G(3)$ with $G(2) := \{a, b\}$ and $G(3) := \{c\}$.

Let $G := \bigsqcup_{n \ge 1} G(n)$ be a graded set.

The free operad over G is the operad Free(G) such that:

- ightharpoonup Free(G)(n) is the linear span of the syntax trees on G with n leaves;
- ▶ the partial composition is a tree grafting;
- ▶ the unit is the tree consisting in one leaf.

Example

Let $G := G(2) \sqcup G(3)$ with $G(2) := \{a, b\}$ and $G(3) := \{c\}$.

The syntax trees of Free(G)(3) are

Let $G := \bigsqcup_{n \geqslant 1} G(n)$ be a graded set.

The free operad over G is the operad Free(G) such that:

- ightharpoonup Free(G)(n) is the linear span of the syntax trees on G with n leaves;
- ▶ the partial composition is a tree grafting;
- ▶ the unit is the tree consisting in one leaf.

Example

Let $G := G(2) \sqcup G(3)$ with $G(2) := \{a, b\}$ and $G(3) := \{c\}$.

The syntax trees of Free(G)(3) are

A partial composition in Free(G):

A subspace ${\mathcal V}$ of $\operatorname{Free}({\mathcal G})$ is an operad ideal of $\operatorname{Free}({\mathcal G})$ if

 $x \in \text{Free}(G) \text{ and } y \in \mathcal{V} \text{ implies } x \circ_i y \in \mathcal{V} \text{ and } y \circ_i x \in \mathcal{V}.$

A subspace V of Free(G) is an operad ideal of Free(G) if

 $x \in \text{Free}(G) \text{ and } y \in \mathcal{V} \text{ implies } x \circ_i y \in \mathcal{V} \text{ and } y \circ_j x \in \mathcal{V}.$

The quotient operad $Free(G)/\nu$ is then naturally defined.

A subspace V of Free(G) is an operad ideal of Free(G) if

$$x \in \text{Free}(G) \text{ and } y \in \mathcal{V} \text{ implies } x \circ_i y \in \mathcal{V} \text{ and } y \circ_j x \in \mathcal{V}.$$

The quotient operad Free(G)/v is then naturally defined.

Example

Let G := G(2) with $G(2) := \{a\}$.

Free(G) is an operad on binary trees.

A subspace V of Free(G) is an operad ideal of Free(G) if

$$x \in \text{Free}(G) \text{ and } y \in \mathcal{V} \text{ implies } x \circ_i y \in \mathcal{V} \text{ and } y \circ_j x \in \mathcal{V}.$$

The quotient operad $Free(G)/\nu$ is then naturally defined.

Example

Let G := G(2) with $G(2) := \{a\}$.

Free(G) is an operad on binary trees.

Let $\mathcal V$ be the operad ideal of $\operatorname{Free}(G)$ generated by $a\circ_1 a-a\circ_2 a.$

A subspace V of Free(G) is an operad ideal of Free(G) if

$$x \in \text{Free}(G) \text{ and } y \in \mathcal{V} \text{ implies } x \circ_i y \in \mathcal{V} \text{ and } y \circ_j x \in \mathcal{V}.$$

The quotient operad $Free(G)/\nu$ is then naturally defined.

Example

Let G := G(2) with $G(2) := \{a\}$.

Free(G) is an operad on binary trees.

Let ${\mathcal V}$ be the operad ideal of $\operatorname{Free}(G)$ generated by

 $a \circ_1 a - a \circ_2 a$.

Since in $\operatorname{Free}(G)/\nu$, the syntax trees $a \circ_1 a$ and $a \circ_2 a$ are equivalent, $\operatorname{Free}(G)/\nu$ is an operad on left comb trees.

Quotients of free operads

A subspace V of Free(G) is an operad ideal of Free(G) if

$$x \in \text{Free}(G) \text{ and } y \in \mathcal{V} \text{ implies } x \circ_i y \in \mathcal{V} \text{ and } y \circ_j x \in \mathcal{V}.$$

The quotient operad $Free(G)/\nu$ is then naturally defined.

Example

Let G := G(2) with $G(2) := \{a\}$.

Free(G) is an operad on binary trees.

Let \mathcal{V} be the operad ideal of Free(G) generated by

$$\mathbf{a} \circ_1 \mathbf{a} - \mathbf{a} \circ_2 \mathbf{a}$$
.

Since in $Free(G)/\nu$, the syntax trees $a \circ_1 a$ and $a \circ_2 a$ are equivalent, $Free(G)/\nu$ is an operad on left comb trees.

This is the associative operad As.

Let \mathcal{O} be an operad.

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair $(\mathfrak{G}_{\mathcal{O}},\mathfrak{R}_{\mathcal{O}})$ where

▶ $\mathfrak{G}_{\mathcal{O}}$ is a graded set, called set of generators;

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair $(\mathfrak{G}_{\mathcal{O}}, \mathfrak{R}_{\mathcal{O}})$ where

- ▶ $\mathfrak{G}_{\mathcal{O}}$ is a graded set, called set of generators;
- \blacktriangleright $\mathfrak{R}_{\mathcal{O}}$ is subspace of Free($\mathfrak{G}_{\mathcal{O}}$), called space of relations;

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair $(\mathfrak{G}_{\mathcal{O}}, \mathfrak{R}_{\mathcal{O}})$ where

- ▶ $\mathfrak{G}_{\mathcal{O}}$ is a graded set, called set of generators;
- \blacktriangleright $\mathfrak{R}_{\mathcal{O}}$ is subspace of Free($\mathfrak{G}_{\mathcal{O}}$), called space of relations;

such that

$$\mathcal{O} \simeq \operatorname{Free}(\mathfrak{G}_{\mathcal{O}})/\langle \mathfrak{R}_{\mathcal{O}} \rangle,$$

where $\langle \mathfrak{R}_{\mathcal{O}} \rangle$ denotes the operad ideal generated by $\mathfrak{R}_{\mathcal{O}}$.

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair $(\mathfrak{G}_{\mathcal{O}}, \mathfrak{R}_{\mathcal{O}})$ where

- ▶ ♥_O is a graded set, called set of generators;
- \blacktriangleright $\mathfrak{R}_{\mathcal{O}}$ is subspace of Free($\mathfrak{G}_{\mathcal{O}}$), called space of relations;

such that

$$\mathcal{O} \simeq \operatorname{Free}(\mathfrak{G}_{\mathcal{O}})/\langle \mathfrak{R}_{\mathcal{O}} \rangle,$$

where $\langle \mathfrak{R}_{\mathcal{O}} \rangle$ denotes the operad ideal generated by $\mathfrak{R}_{\mathcal{O}}$.

The presentation $(\mathfrak{G}_{\mathcal{O}}, \mathfrak{R}_{\mathcal{O}})$ is

▶ binary when all elements of ♥_O are of arity two;

Let \mathcal{O} be an operad.

A presentation of \mathcal{O} is a pair $(\mathfrak{G}_{\mathcal{O}}, \mathfrak{R}_{\mathcal{O}})$ where

- ▶ $\mathfrak{G}_{\mathcal{O}}$ is a graded set, called set of generators;
- \blacktriangleright $\mathfrak{R}_{\mathcal{O}}$ is subspace of Free($\mathfrak{G}_{\mathcal{O}}$), called space of relations;

such that

$$\mathcal{O} \simeq \operatorname{Free}(\mathfrak{G}_{\mathcal{O}})/\langle \mathfrak{R}_{\mathcal{O}} \rangle,$$

where $\langle \mathfrak{R}_{\mathcal{O}} \rangle$ denotes the operad ideal generated by $\mathfrak{R}_{\mathcal{O}}$.

The presentation $(\mathfrak{G}_{\mathcal{O}}, \mathfrak{R}_{\mathcal{O}})$ is

- ▶ binary when all elements of ♥_O are of arity two;
- ► quadratic when all relations of ℜ_O involve syntax trees with two internal nodes.

Presentations of operads: examples

Example

Motz admits the presentation $(\mathfrak{G}_{Motz},\mathfrak{R}_{Motz})$ where $\mathfrak{G}_{Motz}:=\mathfrak{G}_{Motz}(2)\sqcup\mathfrak{G}_{Motz}(3):=\{a\}\sqcup\{b\}$ and \mathfrak{R}_{Motz} is the space generated by

$$\mathtt{a} \circ_1 \mathtt{a} - \mathtt{a} \circ_2 \mathtt{a}, \quad \mathtt{b} \circ_1 \mathtt{a} - \mathtt{a} \circ_2 \mathtt{b}, \quad \mathtt{a} \circ_1 \mathtt{b} - \mathtt{b} \circ_3 \mathtt{a}, \quad \mathtt{b} \circ_1 \mathtt{b} - \mathtt{b} \circ_3 \mathtt{b}.$$

This presentation is not binary (b is of arity 3) but is quadratic.

Presentations of operads: examples

Example

Motz admits the presentation $(\mathfrak{G}_{Motz},\mathfrak{R}_{Motz})$ where $\mathfrak{G}_{Motz}:=\mathfrak{G}_{Motz}(2)\sqcup\mathfrak{G}_{Motz}(3):=\{a\}\sqcup\{b\}$ and \mathfrak{R}_{Motz} is the space generated by

$$a \circ_1 a - a \circ_2 a$$
, $b \circ_1 a - a \circ_2 b$, $a \circ_1 b - b \circ_3 a$, $b \circ_1 b - b \circ_3 b$.

This presentation is not binary (b is of arity 3) but is quadratic.

Example

The operad DA of directed animals is the operad admitting the presentation $(\mathfrak{G}_{DA},\mathfrak{R}_{DA})$ where $\mathfrak{G}_{DA}:=\mathfrak{G}_{DA}(2):=\{a,b\}$ and \mathfrak{R}_{DA} is the space generated by

$$a \circ_1 a - a \circ_1 a, \quad b \circ_1 a - a \circ_2 b, \quad b \circ_1 b - b \circ_2 a, \quad (a \circ_1 b) \circ_2 b - (b \circ_2 b) \circ_3 b.$$

This presentation is binary but not quadratic (last relation involves syntax trees with three internal nodes).

Outline

Operads

Operations on operators Free operads and presentations

Koszul duality

O is a Koszul operad if its Koszul complex is acyclic.

O is a Koszul operad if its Koszul complex is acyclic.

Implied if there is an orientation \to of $\mathfrak{R}_{\mathcal{O}}$ so that \to is a convergent rewrite rule on the syntax trees of $\mathrm{Free}(\mathfrak{G}_{\mathcal{O}})$ [Hoffbeck, 2010].

O is a Koszul operad if its Koszul complex is acyclic.

Implied if there is an orientation \to of $\mathfrak{R}_{\mathcal{O}}$ so that \to is a convergent rewrite rule on the syntax trees of $\mathrm{Free}(\mathfrak{G}_{\mathcal{O}})$ [Hoffbeck, 2010].

Example

```
Recall that Motz admits the presentation (\mathfrak{G}_{Motz},\mathfrak{R}_{Motz}) where \mathfrak{G}_{Motz} := \mathfrak{G}_{Motz}(2) \sqcup \mathfrak{G}_{Motz}(3) := \{a\} \sqcup \{b\} \text{ and } \mathfrak{R}_{Motz} \text{ is the space generated by} a \circ_1 a - a \circ_2 a, \quad b \circ_1 a - a \circ_2 b, \quad a \circ_1 b - b \circ_3 a, \quad b \circ_1 b - b \circ_3 b.
```

O is a Koszul operad if its Koszul complex is acyclic.

Implied if there is an orientation \to of $\mathfrak{R}_{\mathcal{O}}$ so that \to is a convergent rewrite rule on the syntax trees of $\mathrm{Free}(\mathfrak{G}_{\mathcal{O}})$ [Hoffbeck, 2010].

Example

Recall that Motz admits the presentation $(\mathfrak{G}_{\mathsf{Motz}},\mathfrak{R}_{\mathsf{Motz}})$ where

 $\mathfrak{G}_{\mathsf{Motz}} := \mathfrak{G}_{\mathsf{Motz}}(2) \sqcup \mathfrak{G}_{\mathsf{Motz}}(3) := \{\mathtt{a}\} \sqcup \{\mathtt{b}\} \text{ and } \mathfrak{R}_{\mathsf{Motz}} \text{ is the space generated by }$

$$a \circ_1 a - a \circ_2 a$$
, $b \circ_1 a - a \circ_2 b$, $a \circ_1 b - b \circ_3 a$, $b \circ_1 b - b \circ_3 b$.

To prove that Motz is a Koszul operad, consider the rewrite rule defined by

$$\mathtt{a} \circ_1 \mathtt{a} \to \mathtt{a} \circ_2 \mathtt{a}, \quad \mathtt{b} \circ_1 \mathtt{a} \to \mathtt{a} \circ_2 \mathtt{b}, \quad \mathtt{a} \circ_1 \mathtt{b} \to \mathtt{b} \circ_3 \mathtt{a}, \quad \mathtt{b} \circ_1 \mathtt{b} \to \mathtt{b} \circ_3 \mathtt{b}.$$

O is a Koszul operad if its Koszul complex is acyclic.

Implied if there is an orientation \to of $\mathfrak{R}_{\mathcal{O}}$ so that \to is a convergent rewrite rule on the syntax trees of $\mathrm{Free}(\mathfrak{G}_{\mathcal{O}})$ [Hoffbeck, 2010].

Example

Recall that Motz admits the presentation $(\mathfrak{G}_{\mathsf{Motz}},\mathfrak{R}_{\mathsf{Motz}})$ where

 $\mathfrak{G}_{\mathsf{Motz}} := \mathfrak{G}_{\mathsf{Motz}}(2) \sqcup \mathfrak{G}_{\mathsf{Motz}}(3) := \{\mathtt{a}\} \sqcup \{\mathtt{b}\} \text{ and } \mathfrak{R}_{\mathsf{Motz}} \text{ is the space generated by }$

$$\mathbf{a} \circ_1 \mathbf{a} - \mathbf{a} \circ_2 \mathbf{a}$$
, $\mathbf{b} \circ_1 \mathbf{a} - \mathbf{a} \circ_2 \mathbf{b}$, $\mathbf{a} \circ_1 \mathbf{b} - \mathbf{b} \circ_3 \mathbf{a}$, $\mathbf{b} \circ_1 \mathbf{b} - \mathbf{b} \circ_3 \mathbf{b}$.

To prove that Motz is a Koszul operad, consider the rewrite rule defined by

$$a \circ_1 a \rightarrow a \circ_2 a$$
, $b \circ_1 a \rightarrow a \circ_2 b$, $a \circ_1 b \rightarrow b \circ_3 a$, $b \circ_1 b \rightarrow b \circ_3 b$.

O is a Koszul operad if its Koszul complex is acyclic.

Implied if there is an orientation \to of $\mathfrak{R}_{\mathcal{O}}$ so that \to is a convergent rewrite rule on the syntax trees of $\mathrm{Free}(\mathfrak{G}_{\mathcal{O}})$ [Hoffbeck, 2010].

Example

Recall that Motz admits the presentation $(\mathfrak{G}_{\mathsf{Motz}},\mathfrak{R}_{\mathsf{Motz}})$ where

$${}^{}\!\!\!\mathfrak{G}_{\mathsf{Motz}} := {}^{}\!\!\mathfrak{G}_{\mathsf{Motz}}(2) \sqcup {}^{}\!\!\mathfrak{G}_{\mathsf{Motz}}(3) := \{\mathtt{a}\} \sqcup \{\mathtt{b}\} \text{ and } \mathfrak{R}_{\mathsf{Motz}} \text{ is the space generated by}$$

$$a \circ_1 a - a \circ_2 a$$
, $b \circ_1 a - a \circ_2 b$, $a \circ_1 b - b \circ_3 a$, $b \circ_1 b - b \circ_3 b$.

To prove that Motz is a Koszul operad, consider the rewrite rule defined by

$$\mathtt{a} \circ_1 \mathtt{a} \to \mathtt{a} \circ_2 \mathtt{a}, \quad \mathtt{b} \circ_1 \mathtt{a} \to \mathtt{a} \circ_2 \mathtt{b}, \quad \mathtt{a} \circ_1 \mathtt{b} \to \mathtt{b} \circ_3 \mathtt{a}, \quad \mathtt{b} \circ_1 \mathtt{b} \to \mathtt{b} \circ_3 \mathtt{b}.$$

O is a Koszul operad if its Koszul complex is acyclic.

Implied if there is an orientation \to of $\mathfrak{R}_{\mathcal{O}}$ so that \to is a convergent rewrite rule on the syntax trees of $\mathrm{Free}(\mathfrak{G}_{\mathcal{O}})$ [Hoffbeck, 2010].

Example

Recall that Motz admits the presentation $\left(\mathfrak{G}_{\text{Motz}},\mathfrak{R}_{\text{Motz}}\right)$ where

 $\mathfrak{G}_{\mathsf{Motz}} := \mathfrak{G}_{\mathsf{Motz}}(2) \sqcup \mathfrak{G}_{\mathsf{Motz}}(3) := \{a\} \sqcup \{b\} \text{ and } \mathfrak{R}_{\mathsf{Motz}} \text{ is the space generated by }$

$$a \circ_1 a - a \circ_2 a$$
, $b \circ_1 a - a \circ_2 b$, $a \circ_1 b - b \circ_3 a$, $b \circ_1 b - b \circ_3 b$.

To prove that Motz is a Koszul operad, consider the rewrite rule defined by

$$\mathtt{a} \circ_1 \mathtt{a} \to \mathtt{a} \circ_2 \mathtt{a}, \quad \mathtt{b} \circ_1 \mathtt{a} \to \mathtt{a} \circ_2 \mathtt{b}, \quad \mathtt{a} \circ_1 \mathtt{b} \to \mathtt{b} \circ_3 \mathtt{a}, \quad \mathtt{b} \circ_1 \mathtt{b} \to \mathtt{b} \circ_3 \mathtt{b}.$$

O is a Koszul operad if its Koszul complex is acyclic.

Implied if there is an orientation \to of $\mathfrak{R}_{\mathcal{O}}$ so that \to is a convergent rewrite rule on the syntax trees of $\mathrm{Free}(\mathfrak{G}_{\mathcal{O}})$ [Hoffbeck, 2010].

Example

Recall that Motz admits the presentation ($\mathfrak{G}_{Motz}, \mathfrak{R}_{Motz}$) where $\mathfrak{G}_{Motz} := \mathfrak{G}_{Motz}(2) \sqcup \mathfrak{G}_{Motz}(3) := \{a\} \sqcup \{b\}$ and \mathfrak{R}_{Motz} is the space generated by

$$a \circ_1 a - a \circ_2 a$$
, $b \circ_1 a - a \circ_2 b$, $a \circ_1 b - b \circ_3 a$, $b \circ_1 b - b \circ_3 b$.

To prove that Motz is a Koszul operad, consider the rewrite rule defined by

$$a \circ_1 a \rightarrow a \circ_2 a$$
, $b \circ_1 a \rightarrow a \circ_2 b$, $a \circ_1 b \rightarrow b \circ_3 a$, $b \circ_1 b \rightarrow b \circ_3 b$.

O is a Koszul operad if its Koszul complex is acyclic.

Implied if there is an orientation \to of $\mathfrak{R}_{\mathcal{O}}$ so that \to is a convergent rewrite rule on the syntax trees of $\mathrm{Free}(\mathfrak{G}_{\mathcal{O}})$ [Hoffbeck, 2010].

Example

Recall that Motz admits the presentation (\mathfrak{G}_{Motz} , \mathfrak{R}_{Motz}) where $\mathfrak{G}_{Motz} := \mathfrak{G}_{Motz}(2) \sqcup \mathfrak{G}_{Motz}(3) := \{a\} \sqcup \{b\}$ and \mathfrak{R}_{Motz} is the space generated by

$$a \circ_1 a - a \circ_2 a$$
, $b \circ_1 a - a \circ_2 b$, $a \circ_1 b - b \circ_3 a$, $b \circ_1 b - b \circ_3 b$.

To prove that Motz is a Koszul operad, consider the rewrite rule defined by

$$a \circ_1 a \rightarrow a \circ_2 a$$
, $b \circ_1 a \rightarrow a \circ_2 b$, $a \circ_1 b \rightarrow b \circ_3 a$, $b \circ_1 b \rightarrow b \circ_3 b$.

Koszul dual of an operad

Let \mathcal{O} be a binary and quadratic operad with presentation $(\mathfrak{G}_{\mathcal{O}},\mathfrak{R}_{\mathcal{O}})$.

Koszul dual of an operad

Let \mathcal{O} be a binary and quadratic operad with presentation $(\mathfrak{G}_{\mathcal{O}}, \mathfrak{R}_{\mathcal{O}})$.

The Koszul dual [Ginzburg, Kapranov, 1994] of \mathcal{O} is the operad $\mathcal{O}^!$ admitting the presentation $(\mathfrak{G}_{\mathcal{O}},\mathfrak{R}_{\mathcal{O}}^{\perp})$ where $\mathfrak{R}_{\mathcal{O}}^{\perp}$ is the annihilator of $\mathfrak{R}_{\mathcal{O}}$ with respect to the scalar product

$$\langle -, - \rangle : \operatorname{Free}(\mathfrak{G}_{\mathcal{O}})(3) \otimes \operatorname{Free}(\mathfrak{G}_{\mathcal{O}})(3) \to \mathbb{K}$$

linearly defined, for all $x, x', y, y' \in \mathfrak{G}_{\mathcal{O}}(2)$, by

$$\langle x \circ_i \mathbf{y}, x' \circ_{i'} \mathbf{y'} \rangle := \begin{cases} 1 & \text{if } x = x', y = y', \text{ and } i = i' = 1, \\ -1 & \text{if } x = x', y = y', \text{ and } i = i' = 2, \\ 0 & \text{otherwise.} \end{cases}$$

Koszul dual of an operad

Let \mathcal{O} be a binary and quadratic operad with presentation $(\mathfrak{G}_{\mathcal{O}}, \mathfrak{R}_{\mathcal{O}})$.

The Koszul dual [Ginzburg, Kapranov, 1994] of \mathcal{O} is the operad $\mathcal{O}^!$ admitting the presentation $(\mathfrak{G}_{\mathcal{O}},\mathfrak{R}_{\mathcal{O}}^{\perp})$ where $\mathfrak{R}_{\mathcal{O}}^{\perp}$ is the annihilator of $\mathfrak{R}_{\mathcal{O}}$ with respect to the scalar product

$$\langle -, - \rangle : \operatorname{Free}(\mathfrak{G}_{\mathcal{O}})(3) \otimes \operatorname{Free}(\mathfrak{G}_{\mathcal{O}})(3) \to \mathbb{K}$$

linearly defined, for all $x, x', y, y' \in \mathfrak{G}_{\mathcal{O}}(2)$, by

$$\langle x \circ_i \mathbf{y}, x' \circ_{i'} \mathbf{y}' \rangle := \begin{cases} 1 & \text{if } x = x', y = y', \text{ and } i = i' = 1, \\ -1 & \text{if } x = x', y = y', \text{ and } i = i' = 2, \\ 0 & \text{otherwise.} \end{cases}$$

Then, with knowledge of a presentation of \mathcal{O} , one can compute a presentation of $\mathcal{O}^!$.

Properties of Koszul duality

Theorem [Ginzburg, Kapranov, 1994]

For any operad \mathcal{O} admitting a binary and quadratic presentation,

$$\mathcal{O}^{!} = \mathcal{O}.$$

Properties of Koszul duality

Theorem [Ginzburg, Kapranov, 1994]

For any operad \mathcal{O} admitting a binary and quadratic presentation,

$$\mathcal{O}^{!} = \mathcal{O}.$$

Theorem [Ginzburg, Kapranov, 1994]

When \mathcal{O} is a Koszul operad admitting a binary and quadratic presentation, the Hilbert series of \mathcal{O} and $\mathcal{O}^!$ are related by

$$\mathcal{H}_{\mathcal{O}}(-\mathcal{H}_{\mathcal{O}^!}(-t)) = t.$$

Properties of Koszul duality

Theorem [Ginzburg, Kapranov, 1994]

For any operad O admitting a binary and quadratic presentation,

$$\mathcal{O}^{!} = \mathcal{O}.$$

Theorem [Ginzburg, Kapranov, 1994]

When \mathcal{O} is a Koszul operad admitting a binary and quadratic presentation, the Hilbert series of \mathcal{O} and $\mathcal{O}^!$ are related by

$$\mathcal{H}_{\mathcal{O}}(-\mathcal{H}_{\mathcal{O}!}(-t)) = t.$$

Then, given a Koszul operad \mathcal{O} admitting a binary and quadratic presentation,

presentation of $\mathcal{O} \rightsquigarrow \text{presentation of } \mathcal{O}^!$,

Hilbert series of $\mathcal{O} \rightsquigarrow \text{Hilbert series of } \mathcal{O}^!$.

Outline

Dendriform operad

Dendriform operad and algebra Diassociative operad Koszul duality

Outline

Dendriform operad and algebra

Diassociative operad Koszul duality

Dendriform operad

The dendriform operad Dendr is the operad admitting the presentation ($\mathfrak{G}_{Dendr},\mathfrak{R}_{Dendr}$) where

$$\mathfrak{G}_{\mathsf{Dendr}} := \mathfrak{G}_{\mathsf{Dendr}}(2) := \{ \prec, \succ \},$$

and $\mathfrak{R}_{\mathsf{Dendr}}$ is the space generated by

$$\begin{aligned} & \prec \circ_1 \succ - \succ \circ_2 \prec, \\ \\ & \prec \circ_1 \prec - \prec \circ_2 \prec - \prec \circ_2 \succ, \\ & \succ \circ_1 \prec + \succ \circ_1 \succ - \succ \circ_2 \succ. \end{aligned}$$

Dendriform operad

The dendriform operad Dendr is the operad admitting the presentation ($\mathfrak{G}_{Dendr},\mathfrak{R}_{Dendr}$) where

$$\mathfrak{G}_{\mathsf{Dendr}} := \mathfrak{G}_{\mathsf{Dendr}}(2) := \{ \prec, \succ \},$$

and \mathfrak{R}_{Dendr} is the space generated by

$$\begin{aligned} & \prec \circ_1 \succ - \succ \circ_2 \prec, \\ \\ & \prec \circ_1 \prec - \prec \circ_2 \prec - \prec \circ_2 \succ, \\ & \succ \circ_1 \prec + \succ \circ_1 \succ - \succ \circ_2 \succ. \end{aligned}$$

This presentation is binary and quadratic.

Dendriform operad

The dendriform operad Dendr is the operad admitting the presentation $(\mathfrak{G}_{Dendr},\mathfrak{R}_{Dendr})$ where

$$\mathfrak{G}_{\mathsf{Dendr}} := \mathfrak{G}_{\mathsf{Dendr}}(2) := \{\prec, \succ\},$$

and $\mathfrak{R}_{\mathsf{Dendr}}$ is the space generated by

$$\begin{aligned} & \prec \circ_1 \succ - \succ \circ_2 \prec, \\ \\ & \prec \circ_1 \prec - \prec \circ_2 \prec - \prec \circ_2 \succ, \\ & \succ \circ_1 \prec + \succ \circ_1 \succ - \succ \circ_2 \succ. \end{aligned}$$

This presentation is binary and quadratic.

Theorem [Loday, 2001]

Dendr is a Koszul operad.

Free dendriform algebra

The free dendriform algebra over one generator is the vector space $\mathcal{F}_{\mathsf{Dendr}}$ of binary trees with at least one internal node endowed with the linear operations

$$\prec$$
, \succ : $\mathcal{F}_{\mathsf{Dendr}} \otimes \mathcal{F}_{\mathsf{Dendr}} \to \mathcal{F}_{\mathsf{Dendr}}$,

Free dendriform algebra

The free dendriform algebra over one generator is the vector space $\mathcal{F}_{\mathsf{Dendr}}$ of binary trees with at least one internal node endowed with the linear operations

$$\prec, \succ : \mathcal{F}_{\mathsf{Dendr}} \otimes \mathcal{F}_{\mathsf{Dendr}} \to \mathcal{F}_{\mathsf{Dendr}},$$

recursively defined, for any binary tree $\mathfrak s$ with at least one internal node, and binary trees $\mathfrak t_1$ and $\mathfrak t_2$ by

$$\begin{split} \mathfrak{s} \prec \stackrel{1}{\mathbf{l}} := \mathfrak{s} =: \stackrel{1}{\mathbf{l}} \succ \mathfrak{s}, \\ \stackrel{1}{\mathbf{l}} \prec \mathfrak{s} := 0 =: \mathfrak{s} \succ \stackrel{1}{\mathbf{l}}, \\ \underset{t_1}{\overset{4}{\mathbf{l}}} \quad t_2 \prec \mathfrak{s} := \underset{t_1}{\overset{4}{\mathbf{l}}} \quad t_2 \prec \mathfrak{s} + \underset{t_1}{\overset{4}{\mathbf{l}}} \quad t_2 \succ \mathfrak{s}, \\ \\ \mathfrak{s} \succ \underset{t_1}{\overset{4}{\mathbf{l}}} \quad t_2 := \underset{\mathfrak{s} \succ t_1}{\overset{4}{\mathbf{l}}} \quad t_2 + \underset{\mathfrak{s} \prec t_1}{\overset{4}{\mathbf{l}}} \quad t_2. \end{split}$$

Neither $\frac{1}{4} \prec \frac{1}{4}$ nor $\frac{1}{4} \succ \frac{1}{4}$ are defined.

Free dendriform algebra

Example

Example

Outline

Dendriform operad

Dendriform operad and algebra

Diassociative operad

Koszul duality

Diassociative operad

The diassociative operad Dias [Loday, 2001] is the operad admitting the presentation (\mathfrak{G}_{Dias} , \mathfrak{R}_{Dias}) where

$$\mathfrak{G}_{\mathsf{Dias}} := \mathfrak{G}_{\mathsf{Dias}}(2) := \{\dashv, \vdash\},$$

and $\mathfrak{R}_{\mathsf{Dias}}$ is the space generated by

$$\begin{split} & \dashv \circ_1 \vdash - \vdash \circ_2 \dashv, \\ \\ & \dashv \circ_1 \dashv - \dashv \circ_2 \dashv, \qquad \dashv \circ_1 \dashv - \dashv \circ_2 \vdash, \\ \\ & \vdash \circ_1 \dashv - \vdash \circ_2 \vdash, \qquad \vdash \circ_1 \vdash - \vdash \circ_2 \vdash. \end{split}$$

Diassociative operad

The diassociative operad Dias [Loday, 2001] is the operad admitting the presentation (\mathfrak{G}_{Dias} , \mathfrak{R}_{Dias}) where

$$\mathfrak{G}_{\mathsf{Dias}} := \mathfrak{G}_{\mathsf{Dias}}(2) := \{\dashv, \vdash\},$$

and $\mathfrak{R}_{\mathsf{Dias}}$ is the space generated by

This presentation is binary and quadratic.

Diassociative operad

The diassociative operad Dias [Loday, 2001] is the operad admitting the presentation (\mathfrak{G}_{Dias} , \mathfrak{R}_{Dias}) where

$$\mathfrak{G}_{\mathsf{Dias}} := \mathfrak{G}_{\mathsf{Dias}}(2) := \{ \dashv, \vdash \},$$

and $\mathfrak{R}_{\mathsf{Dias}}$ is the space generated by

$$\begin{split} & \dashv \circ_1 \vdash - \vdash \circ_2 \dashv, \\ & \dashv \circ_1 \dashv - \dashv \circ_2 \dashv, \qquad \dashv \circ_1 \dashv - \dashv \circ_2 \vdash, \\ & \vdash \circ_1 \dashv - \vdash \circ_2 \vdash, \qquad \vdash \circ_1 \vdash - \vdash \circ_2 \vdash. \end{split}$$

This presentation is binary and quadratic.

Theorem [Loday, 2001]

Dias is a Koszul operad.

Realization of Dias

Dias admits the following realization [G, 2012]:

- ▶ Dias(n) is the linear span of the words of length n on $\{0,1\}$ with exactly one occurrence of 0;
- ▶ the partial composition of Dias satisfies

$$u \circ_i \mathbf{v} := u_1 \ldots u_{i-1} (u_i \uparrow \mathbf{v}_1) \ldots (u_i \uparrow \mathbf{v}_m) u_{i+1} \ldots u_n,$$

where \(\ \) is the operation max on integers;

▶ the unit of Dias is the word 0.

Realization of Dias

Dias admits the following realization [G, 2012]:

- ▶ Dias(n) is the linear span of the words of length n on $\{0,1\}$ with exactly one occurrence of 0;
- ▶ the partial composition of Dias satisfies

$$u \circ_i \mathbf{v} := u_1 \ldots u_{i-1} (u_i \uparrow \mathbf{v}_1) \ldots (u_i \uparrow \mathbf{v}_m) u_{i+1} \ldots u_n,$$

where \uparrow is the operation max on integers;

▶ the unit of Dias is the word 0.

Example

$$1101111 \circ_3 11101 = 11111011111$$

$$11011111 \circ_6 111101 = 1101111111111$$

Realization of Dias

Dias admits the following realization [G, 2012]:

- ▶ Dias(n) is the linear span of the words of length n on $\{0,1\}$ with exactly one occurrence of 0;
- ▶ the partial composition of Dias satisfies

$$u \circ_i \mathbf{v} := u_1 \ldots u_{i-1} (u_i \uparrow \mathbf{v}_1) \ldots (u_i \uparrow \mathbf{v}_m) u_{i+1} \ldots u_n$$

where \(\) is the operation max on integers;

▶ the unit of Dias is the word 0.

Example

$$1101111 \circ_3 11101 = 11111011111$$

$$11011111 \circ_6 111101 = 1101111111111$$

Proposition

Dias is generated by the set $\{01, 10\}$.

Outline

Dendriform operad

Dendriform operad and algebra Diassociative operad

Koszul duality

Theorem [Loday, 2001]

Dendr is the Koszul dual of Dias.

Theorem [Loday, 2001]

Dendr is the Koszul dual of Dias.

Indeed, by definition of Koszul duality,

$$\mathfrak{R}_{\mathsf{Dias}}^{\perp} = \mathrm{Vect}\left(y \in \mathrm{Free}(\mathfrak{G}_{\mathsf{Dias}})(3) : \langle x, y \rangle = 0 \text{ for all } x \in \mathfrak{R}_{\mathsf{Dias}}\right).$$

Theorem [Loday, 2001]

Dendr is the Koszul dual of Dias.

Indeed, by definition of Koszul duality,

$$\mathfrak{R}_{\mathsf{Dias}}^{\perp} = \mathrm{Vect} \left(y \in \mathrm{Free}(\mathfrak{G}_{\mathsf{Dias}})(3) : \langle x, y \rangle = 0 \text{ for all } x \in \mathfrak{R}_{\mathsf{Dias}} \right).$$

Let

$$y := \sum_{\mathfrak{t} \in \operatorname{Free}(\mathfrak{G}_{\mathsf{Dias}})(3)} \lambda_{\mathfrak{t}} \mathfrak{t} \ \in \ \mathfrak{R}^{\perp}_{\mathsf{Dias}}.$$

Theorem [Loday, 2001]

Dendr is the Koszul dual of Dias.

Indeed, by definition of Koszul duality,

$$\mathfrak{R}^{\perp}_{\mathsf{Dias}} = \mathrm{Vect}\left(y \in \mathrm{Free}(\mathfrak{G}_{\mathsf{Dias}})(3) : \langle x, y \rangle = 0 \text{ for all } x \in \mathfrak{R}_{\mathsf{Dias}}\right).$$

Let

$$y := \sum_{\mathfrak{t} \in \operatorname{Free}(\mathfrak{G}_{\mathsf{Dias}})(3)} \lambda_{\mathfrak{t}} \mathfrak{t} \ \in \ \mathfrak{R}^{\perp}_{\mathsf{Dias}}.$$

Then, since

$$\begin{array}{lll} \dashv o_1 \vdash - \vdash o_2 \dashv \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\dashv o_1 \vdash} + \lambda_{\vdash o_2 \dashv} = 0, \\ \dashv o_1 \dashv - \dashv o_2 \dashv \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\dashv o_1 \dashv} + \lambda_{\dashv o_2 \dashv} = 0, \\ \dashv o_1 \dashv - \dashv o_2 \vdash \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\dashv o_1 \dashv} + \lambda_{\dashv o_2 \dashv} = 0, \\ \vdash o_1 \dashv - \vdash o_2 \vdash \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\vdash o_1 \dashv} + \lambda_{\vdash o_2 \vdash} = 0, \\ \vdash o_1 \vdash - \vdash o_2 \vdash \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\vdash o_1 \vdash} + \lambda_{\vdash o_2 \vdash} = 0, \end{array}$$

Theorem [Loday, 2001]

Dendr is the Koszul dual of Dias.

Indeed, by definition of Koszul duality,

$$\mathfrak{R}^{\perp}_{\mathsf{Dias}} = \mathrm{Vect}\left(y \in \mathrm{Free}(\mathfrak{G}_{\mathsf{Dias}})(3) : \langle x, y \rangle = 0 \text{ for all } x \in \mathfrak{R}_{\mathsf{Dias}}\right).$$

Let

$$y := \sum_{\mathfrak{t} \in \operatorname{Free}(\mathfrak{G}_{\mathsf{Dias}})(3)} \lambda_{\mathfrak{t}} \mathfrak{t} \ \in \ \mathfrak{R}^{\perp}_{\mathsf{Dias}}.$$

Then, since

$$\begin{array}{lll} \dashv o_1 \vdash - \vdash o_2 \dashv \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\dashv o_1 \vdash} + \lambda_{\vdash o_2 \dashv} = 0, \\ \dashv o_1 \dashv - \dashv o_2 \dashv \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\dashv o_1 \dashv} + \lambda_{\dashv o_2 \dashv} = 0, \\ \dashv o_1 \dashv - \dashv o_2 \vdash \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\dashv o_1 \dashv} + \lambda_{\dashv o_2 \vdash} = 0, \\ \vdash o_1 \dashv - \vdash o_2 \vdash \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\vdash o_1 \dashv} + \lambda_{\vdash o_2 \vdash} = 0, \\ \vdash o_1 \vdash - \vdash o_2 \vdash \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\vdash o_1 \vdash} + \lambda_{\vdash o_2 \vdash} = 0, \end{array}$$

y is of the form

$$y = \lambda_1(\neg \circ_1 \vdash \neg \vdash \circ_2 \neg) + \lambda_2(\neg \circ_1 \neg \vdash \neg \circ_2 \neg \vdash \neg \circ_2 \vdash) + \lambda_3(\vdash \circ_1 \neg \vdash \vdash \vdash \circ_1 \vdash \neg \vdash \circ_2 \vdash).$$

Theorem [Loday, 2001]

Dendr is the Koszul dual of Dias.

Indeed, by definition of Koszul duality,

$$\mathfrak{R}^{\perp}_{\mathsf{Dias}} = \mathrm{Vect}\left(y \in \mathrm{Free}(\mathfrak{G}_{\mathsf{Dias}})(3) : \langle x, y \rangle = 0 \text{ for all } x \in \mathfrak{R}_{\mathsf{Dias}}\right).$$

Let

$$y := \sum_{\mathfrak{t} \in \operatorname{Free}(\mathfrak{G}_{\mathsf{Dias}})(3)} \lambda_{\mathfrak{t}} \mathfrak{t} \ \in \ \mathfrak{R}^{\perp}_{\mathsf{Dias}}.$$

Then, since

$$\begin{array}{lll} \dashv o_1 \vdash - \vdash o_2 \dashv \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\dashv o_1 \vdash} + \lambda_{\vdash o_2 \dashv} = 0, \\ \dashv o_1 \dashv - \dashv o_2 \dashv \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\dashv o_1 \dashv} + \lambda_{\dashv o_2 \dashv} = 0, \\ \dashv o_1 \dashv - \dashv o_2 \vdash \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\dashv o_1 \dashv} + \lambda_{\dashv o_2 \vdash} = 0, \\ \vdash o_1 \dashv - \vdash o_2 \vdash \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\vdash o_1 \dashv} + \lambda_{\vdash o_2 \vdash} = 0, \\ \vdash o_1 \vdash - \vdash o_2 \vdash \in \mathfrak{R}_{\mathsf{Dias}} & \mathsf{implies} & \lambda_{\vdash o_1 \vdash} + \lambda_{\vdash o_2 \vdash} = 0, \end{array}$$

y is of the form

$$y = \lambda_1 (\dashv \circ_1 \vdash - \vdash \circ_2 \dashv) + \lambda_2 (\dashv \circ_1 \dashv - \dashv \circ_2 \dashv - \dashv \circ_2 \vdash) + \lambda_3 (\vdash \circ_1 \dashv + \vdash \circ_1 \vdash - \vdash \circ_2 \vdash).$$

Therefore, $\mathfrak{R}^{\perp}_{\mathsf{Dias}}$ is generated by

$$\exists o_1 \vdash - \vdash o_2 \dashv$$
, $\exists o_1 \dashv - \dashv o_2 \dashv - \dashv o_2 \vdash$, $\vdash o_1 \dashv + \vdash o_1 \vdash - \vdash o_2 \vdash$,

and we recognize dendriform relations.

Dimensions

Since Dias is Koszul and Dias
$$=$$
 Dendr,
$$\mathcal{H}_{\mathsf{Dias}}(-\mathcal{H}_{\mathsf{Dendr}}(-t)) = t.$$

Dimensions

Since Dias is Koszul and Dias! = Dendr,

$$\mathcal{H}_{\mathsf{Dias}}(-\mathcal{H}_{\mathsf{Dendr}}(-t)) = t.$$

From the realization of Dias, we obtain that its Hilbert series is

$$\mathcal{H}_{\text{Dias}}(t) = \frac{t}{(1-t)^2} = t + 2t^2 + 3t^3 + 4t^4 + 5t^5 + \cdots$$

Dimensions

Since Dias is Koszul and Dias! = Dendr,

$$\mathcal{H}_{\mathsf{Dias}}(-\mathcal{H}_{\mathsf{Dendr}}(-t)) = t.$$

From the realization of Dias, we obtain that its Hilbert series is

$$\mathcal{H}_{\mathsf{Dias}}(t) = \frac{t}{(1-t)^2} = t + 2t^2 + 3t^3 + 4t^4 + 5t^5 + \cdots$$

Hence, the Hilbert series of Dendr is

$$\mathcal{H}_{\mathsf{Dendr}}(t) = \frac{1 - \sqrt{1 - 4t} - 2t}{2t} = t + 2t^2 + 5t^3 + 14t^4 + 42t^5 + \cdots$$

▶ Define a generalization Dendr_{γ} , $\gamma \in \mathbb{N}$, of Dendr .

▶ Define a generalization Dendr_{γ} , $\gamma \in \mathbb{N}$, of Dendr .

There are already plenty such generalizations:

- ► tridendriform operad [Loday, Ronco, 2004];
- quadridendriform operad [Aguiar, Loday, 2004];
- enneadendriform operad [Leroux, 2004];
- ▶ m-dendriform operads [Leroux, 2007];
- m-dendriform operads [Novelli, 2014] (same name but different from previous ones).

▶ Define a generalization Dendr_{γ} , $\gamma \in \mathbb{N}$, of Dendr .

There are already plenty such generalizations:

- ▶ tridendriform operad [Loday, Ronco, 2004];
- quadridendriform operad [Aguiar, Loday, 2004];
- enneadendriform operad [Leroux, 2004];
- ▶ m-dendriform operads [Leroux, 2007];
- m-dendriform operads [Novelli, 2014] (same name but different from previous ones).
- \blacktriangleright Study the way that ${\sf Dendr}_{\gamma}\text{-algebras}$ allow to split associative products.

▶ Define a generalization Dendr_{γ} , $\gamma \in \mathbb{N}$, of Dendr .

There are already plenty such generalizations:

- ▶ tridendriform operad [Loday, Ronco, 2004];
- quadridendriform operad [Aguiar, Loday, 2004];
- enneadendriform operad [Leroux, 2004];
- ► *m*-dendriform operads [Leroux, 2007];
- m-dendriform operads [Novelli, 2014] (same name but different from previous ones).
- ▶ Study the way that $\frac{\mathsf{Dendr}_{\gamma}}{\mathsf{-algebras}}$ allow to split associative products.
- ▶ Study $\frac{Dendr_{\gamma}}{r}$ from a combinatorial point of view (realization, dimensions, definition of bases).

▶ Define a generalization $Dendr_{\gamma}$, $\gamma \in \mathbb{N}$, of Dendr.

There are already plenty such generalizations:

- ► tridendriform operad [Loday, Ronco, 2004];
- quadridendriform operad [Aguiar, Loday, 2004];
- enneadendriform operad [Leroux, 2004];
- ► *m*-dendriform operads [Leroux, 2007];
- m-dendriform operads [Novelli, 2014] (same name but different from previous ones).
- ▶ Study the way that $\frac{\mathsf{Dendr}_{\gamma}}{\mathsf{-algebras}}$ allow to split associative products.
- Study $\operatorname{Dendr}_{\gamma}$ from a combinatorial point of view (realization, dimensions, definition of bases).

Strategy

Propose a generalization Dias_{γ} of Dias and then, by Koszul duality, deduce a generalization Dendr_{γ} of Dendr .

Outline

Polydendriform operads

Pluriassociative operad Polydendriform operad and algebra

Outline

Polydendriform operads
Pluriassociative operad
Polydendriform operad and algebra

Let $\gamma\in\mathbb{N}$ and let Dias_{γ} be the operad admitting the following realization:

Let $\gamma \in \mathbb{N}$ and let Dias_{γ} be the operad admitting the following realization:

▶ $\mathsf{Dias}_{\gamma}(n)$ is the linear span of the words of length n on $\{0,1,\ldots,\gamma\}$ with exactly one occurrence of 0;

Let $\gamma \in \mathbb{N}$ and let Dias_{γ} be the operad admitting the following realization:

- ▶ $\mathsf{Dias}_{\gamma}(n)$ is the linear span of the words of length n on $\{0, 1, \dots, \gamma\}$ with exactly one occurrence of 0;
- ▶ the partial composition of Dias, satisfies

$$u \circ_i \mathbf{v} := u_1 \ldots u_{i-1} (u_i \uparrow \mathbf{v}_1) \ldots (u_i \uparrow \mathbf{v}_m) u_{i+1} \ldots u_n,$$

Let $\gamma \in \mathbb{N}$ and let Dias_{γ} be the operad admitting the following realization:

- ▶ $\mathsf{Dias}_{\gamma}(n)$ is the linear span of the words of length n on $\{0, 1, \dots, \gamma\}$ with exactly one occurrence of 0;
- \blacktriangleright the partial composition of Dias_{γ} satisfies

$$u \circ_i \mathbf{v} := u_1 \ldots u_{i-1} (u_i \uparrow \mathbf{v}_1) \ldots (u_i \uparrow \mathbf{v}_m) u_{i+1} \ldots u_n,$$

• the unit of Dias_{γ} is the word 0.

Let $\gamma \in \mathbb{N}$ and let Dias_{γ} be the operad admitting the following realization:

- ▶ $\mathsf{Dias}_{\gamma}(n)$ is the linear span of the words of length n on $\{0, 1, \dots, \gamma\}$ with exactly one occurrence of 0;
- \blacktriangleright the partial composition of Dias_{γ} satisfies

$$u \circ_i \mathbf{v} := u_1 \ldots u_{i-1} (u_i \uparrow \mathbf{v}_1) \ldots (u_i \uparrow \mathbf{v}_m) u_{i+1} \ldots u_n,$$

▶ the unit of $Dias_{\gamma}$ is the word 0.

Example

$$111101 \circ_3 20 = 1121101$$

Let $\gamma \in \mathbb{N}$ and let Dias_{γ} be the operad admitting the following realization:

- ▶ $\mathsf{Dias}_{\gamma}(n)$ is the linear span of the words of length n on $\{0, 1, \dots, \gamma\}$ with exactly one occurrence of 0;
- ▶ the partial composition of Dias, satisfies

$$u \circ_i \mathbf{v} := u_1 \ldots u_{i-1} (u_i \uparrow \mathbf{v}_1) \ldots (u_i \uparrow \mathbf{v}_m) u_{i+1} \ldots u_n,$$

▶ the unit of $Dias_{\gamma}$ is the word 0.

Example

$$111101 \circ_3 20 = 1121101$$

Proposition

 Dias_{γ} is an operad.

First properties of $Dias_{\gamma}$

Proposition

 Dias_{γ} is generated by the set $\{0a, a0 : a \in [\gamma]\}$.

First properties of $Dias_{\gamma}$

Proposition

 Dias_{γ} is generated by the set $\{0a, a0 : a \in [\gamma]\}$.

By definition of $Dias_{\gamma}$,

$$\mathcal{H}_{\mathsf{Dias}_{\gamma}}(t) = rac{t}{(1-\gamma t)^2} \qquad ext{and} \qquad \mathsf{dim}\, \mathsf{Dias}_{\gamma}(\mathit{n}) = \mathit{n}\gamma^{\mathit{n}-1}.$$

γ	Dimensions of $Dias_\gamma$
0	1, 0, 0,
1	1, 2, 3, 4, 5, 6, 7, 8,
2	1, 2, 3, 4, 5, 6, 7, 8, 1, 4, 12, 32, 80, 192, 448, 1024, 1, 6, 27, 108, 405, 1458, 5103, 17496,
3	1, 6, 27, 108, 405, 1458, 5103, 17496,
4	1, 8, 48, 256, 1280, 6144, 28672, 131072,

First properties of $Dias_{\gamma}$

Proposition

 Dias_{γ} is generated by the set $\{0a, a0 : a \in [\gamma]\}$.

By definition of $Dias_{\gamma}$,

$$\mathcal{H}_{\mathsf{Dias}_{\gamma}}(t) = rac{t}{(1-\gamma t)^2}$$
 and $\mathsf{dim}\,\mathsf{Dias}_{\gamma}(\mathit{n}) = \mathit{n}\gamma^{\mathit{n}-1}.$

	Dimensions of $Dias_\gamma$
0	1, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 4, 12, 32, 80, 192, 448, 1024, 1, 6, 27, 108, 405, 1458, 5103, 17496, 1, 8, 48, 256, 1280, 6144, 28672, 131072,
1	1, 2, 3, 4, 5, 6, 7, 8,
2	1, 4, 12, 32, 80, 192, 448, 1024,
3	1, 6, 27, 108, 405, 1458, 5103, 17496,
4	1, 8, 48, 256, 1280, 6144, 28672, 131072,

Since $\mathsf{Dias}_1 = \mathsf{Dias}$ and Dias_γ is a suboperad of $\mathsf{Dias}_{\gamma+1}$, Dias_γ is a generalization of Dias .

Presentation of Dias_{γ}

Theorem

 Dias_{γ} admits the presentation $(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}, \mathfrak{R}_{\mathsf{Dias}_{\gamma}})$ where

$$\mathfrak{G}_{\mathsf{Dias}_{\gamma}} := \mathfrak{G}_{\mathsf{Dias}_{\gamma}}(2) := \{ \dashv_{\mathsf{a}}, \vdash_{\mathsf{a}} : \mathsf{a} \in [\gamma] \}$$

and $\mathfrak{R}_{\mathsf{Dias}_{\gamma}}$ is generated by

Theorem

 Dias_{γ} admits the presentation $(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}, \mathfrak{R}_{\mathsf{Dias}_{\gamma}})$ where

$$\mathfrak{G}_{\mathsf{Dias}_{\gamma}} := \mathfrak{G}_{\mathsf{Dias}_{\gamma}}(2) := \{ \dashv_{\mathsf{a}}, \vdash_{\mathsf{a}} : \mathsf{a} \in [\gamma] \}$$

and $\mathfrak{R}_{\mathsf{Dias}_{\gamma}}$ is generated by

$$\begin{split} \neg_{a} \circ_{1} \vdash_{a'} &- \vdash_{a'} \circ_{2} \dashv_{a}, \qquad a, a' \in [\gamma], \\ \neg_{a} \circ_{1} \dashv_{b} &- \dashv_{a} \circ_{2} \vdash_{b}, \qquad a < b \in [\gamma], \\ \vdash_{a} \circ_{1} \dashv_{b} &- \vdash_{a} \circ_{2} \vdash_{b}, \qquad a < b \in [\gamma], \\ \neg_{b} \circ_{1} \dashv_{a} &- \dashv_{a} \circ_{2} \dashv_{b}, \qquad a < b \in [\gamma], \\ \vdash_{a} \circ_{1} \vdash_{b} &- \vdash_{b} \circ_{2} \vdash_{a}, \qquad a < b \in [\gamma], \\ \vdash_{d} \circ_{1} \dashv_{d} &- \dashv_{d} \circ_{2} \dashv_{c}, \qquad \dashv_{d} \circ_{1} \dashv_{d} &- \dashv_{d} \circ_{2} \vdash_{c}, \qquad c \leqslant d \in [\gamma], \\ \vdash_{d} \circ_{1} \dashv_{c} &- \vdash_{d} \circ_{2} \vdash_{d}, \qquad \vdash_{d} \circ_{1} \vdash_{c} &- \vdash_{d} \circ_{2} \vdash_{d}, \qquad c \leqslant d \in [\gamma]. \end{split}$$

In a more concise way, $\Re_{Dias_{\infty}}$ is the space generated by

$$\begin{split} \dashv_{a} \circ_{1} \vdash_{a'} - \vdash_{a'} \circ_{2} \dashv_{a}, \qquad a, a' \in [\gamma], \\ \dashv_{a} \circ_{1} \dashv_{a \uparrow a'} - \dashv_{a} \circ_{2} \vdash_{a'}, \qquad \vdash_{a} \circ_{1} \dashv_{a'} - \vdash_{a} \circ_{2} \vdash_{a \uparrow a'}, \qquad a, a' \in [\gamma], \\ \dashv_{a \uparrow a'} \circ_{1} \dashv_{a} - \dashv_{a} \circ_{2} \dashv_{a'}, \qquad \vdash_{a} \circ_{1} \vdash_{a'} - \vdash_{a \uparrow a'} \circ_{2} \vdash_{a}, \qquad a, a' \in [\gamma]. \end{split}$$

The proof is based upon the existence of a map

word : Free
$$(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}) \to \mathsf{Dias}_{\gamma}$$

inducing an isomorphism of operads

$$\operatorname{word} : \operatorname{Free} \left(\mathfrak{G}_{\mathsf{Dias}_{\gamma}} \right) /_{\left\langle \mathfrak{R}_{\mathsf{Dias}_{\gamma}} \right\rangle} \to \mathsf{Dias}_{\gamma}.$$

The proof is based upon the existence of a map

word : Free
$$(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}) \to \mathsf{Dias}_{\gamma}$$

inducing an isomorphism of operads

$$\bar{\operatorname{word}}:\operatorname{Free}\left(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}\right)/_{\left\langle\mathfrak{R}_{\mathsf{Dias}_{\gamma}}\right\rangle}\to\mathsf{Dias}_{\gamma}.$$

Exemple

In Free ($\mathfrak{G}_{\mathsf{Dias}_5}$),

The proof is based upon the existence of a map

word : Free
$$(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}) \to \mathsf{Dias}_{\gamma}$$

inducing an isomorphism of operads

$$\bar{\operatorname{word}}:\operatorname{Free}\left(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}\right)/_{\left\langle\mathfrak{R}_{\mathsf{Dias}_{\gamma}}\right\rangle}\to\mathsf{Dias}_{\gamma}.$$

Exemple

In Free ($\mathfrak{G}_{\mathsf{Dias}_5}$),

The proof is based upon the existence of a map

word : Free
$$(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}) \to \mathsf{Dias}_{\gamma}$$

inducing an isomorphism of operads

$$\bar{\operatorname{word}}:\operatorname{Free}\left(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}\right)/_{\left\langle\mathfrak{R}_{\mathsf{Dias}_{\gamma}}\right\rangle}\to\mathsf{Dias}_{\gamma}.$$

Exemple

In Free ($\mathfrak{G}_{\mathsf{Dias}_5}$),

Presentation of Dias $_{\gamma}$

The proof is based upon the existence of a map

word : Free
$$(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}) \to \mathsf{Dias}_{\gamma}$$

inducing an isomorphism of operads

$$\bar{\operatorname{word}}:\operatorname{Free}\left(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}\right)/_{\left\langle\mathfrak{R}_{\mathsf{Dias}_{\gamma}}\right\rangle}\to\mathsf{Dias}_{\gamma}.$$

Exemple

In Free ($\mathfrak{G}_{\mathsf{Dias}_5}$),

Presentation of Dias $_{\gamma}$

The proof is based upon the existence of a map

word : Free
$$(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}) \to \mathsf{Dias}_{\gamma}$$

inducing an isomorphism of operads

$$\bar{\mathrm{word}}: \mathrm{Free}\left(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}\right)/_{\left\langle \mathfrak{R}_{\mathsf{Dias}_{\gamma}}\right\rangle} \to \mathsf{Dias}_{\gamma}.$$

Exemple

In Free ($\mathfrak{G}_{\mathsf{Dias}_5}$),

Presentation of Dias $_{\gamma}$

The proof is based upon the existence of a map

word : Free
$$(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}) \to \mathsf{Dias}_{\gamma}$$

inducing an isomorphism of operads

$$\bar{\operatorname{word}}:\operatorname{Free}\left(\mathfrak{G}_{\mathsf{Dias}_{\gamma}}\right)/_{\left\langle\mathfrak{R}_{\mathsf{Dias}_{\gamma}}\right\rangle}\to\mathsf{Dias}_{\gamma}.$$

Exemple

In Free ($\mathfrak{G}_{\mathsf{Dias}_5}$),

$$word(t) = 340122332242.$$

Koszulity of Dias_γ

Proposition

 Dias_{γ} is a Koszul operad.

Koszulity of Dias $_{\gamma}$

Proposition

 Dias_{γ} is a Koszul operad.

The proof relies on the orientation \to of $\mathfrak{R}_{\mathsf{Dias}_{\gamma}}$ satisfying

$$\begin{array}{llll} \vdash_{a'} \circ_2 \dashv_a & \rightarrow & \dashv_a \circ_1 \vdash_{a'}, & a, a' \in [\gamma], \\ \\ \dashv_a \circ_2 \vdash_b & \rightarrow & \dashv_a \circ_1 \dashv_b, & a < b \in [\gamma], \\ \\ \vdash_a \circ_1 \dashv_b & \rightarrow & \vdash_a \circ_2 \vdash_b, & a < b \in [\gamma], \\ \\ \dashv_a \circ_2 \dashv_b & \rightarrow & \dashv_b \circ_1 \dashv_a, & a < b \in [\gamma], \\ \\ \vdash_a \circ_1 \vdash_b & \rightarrow & \vdash_b \circ_2 \vdash_a, & a < b \in [\gamma], \\ \\ \dashv_d \circ_2 \dashv_c & \rightarrow & \dashv_d \circ_1 \dashv_d, & c \leqslant d \in [\gamma], \\ \\ \dashv_d \circ_1 \dashv_c & \rightarrow & \vdash_d \circ_2 \vdash_d, & c \leqslant d \in [\gamma], \\ \\ \vdash_d \circ_1 \dashv_c & \rightarrow & \vdash_d \circ_2 \vdash_d, & c \leqslant d \in [\gamma], \\ \\ \vdash_d \circ_1 \vdash_c & \rightarrow & \vdash_d \circ_2 \vdash_d, & c \leqslant d \in [\gamma], \\ \\ \vdash_d \circ_1 \vdash_c & \rightarrow & \vdash_d \circ_2 \vdash_d, & c \leqslant d \in [\gamma], \\ \end{array}$$

defining a convergent rewrite rule on $Free(\mathfrak{G}_{Dias_{\gamma}})$.

Let \preccurlyeq_{γ} be the order relation on the set of words of Dias_{γ} where $x \preccurlyeq_{\gamma} y$ if $x_i \leqslant y_i$ for all $i \in [|x|]$.

Example

210231 ≼4 220432

Let

$$\mathsf{K}_{\mathsf{x}}^{(\gamma)} := \sum_{\mathsf{x} \preccurlyeq_{\gamma} \mathsf{y}} \mu_{\gamma}(\mathsf{x}, \mathsf{y}) \mathsf{y}$$

where μ_{γ} is the Möbius function of the poset defined by \leq_{γ} .

Let \preccurlyeq_{γ} be the order relation on the set of words of Dias_{γ} where $x \preccurlyeq_{\gamma} y$ if $x_i \leqslant y_i$ for all $i \in [|x|]$.

Example

210231 ≼4 220432

Let

$$\mathsf{K}_{\mathsf{x}}^{(\gamma)} := \sum_{\mathsf{x} \preccurlyeq_{\gamma} \mathbf{y}} \mu_{\gamma}(\mathsf{x}, \mathbf{y}) \mathbf{y}$$

where μ_{γ} is the Möbius function of the poset defined by \leq_{γ} .

Exemple

$$\begin{aligned} \mathsf{K}_{102}^{(2)} &= 102 - 202 \\ \mathsf{K}_{102}^{(3)} &= 102 - 103 - 202 + 203 \\ \mathsf{K}_{23102}^{(3)} &= 23102 - 23103 - 23202 + 23203 - 33102 + 33103 + 33202 - 33203 \end{aligned}$$

Let \preccurlyeq_{γ} be the order relation on the set of words of Dias_{γ} where $x \preccurlyeq_{\gamma} y$ if $x_i \leqslant y_i$ for all $i \in [|x|]$.

Example

210231 ≼4 220432

Let

$$\mathsf{K}_{\mathsf{x}}^{(\gamma)} := \sum_{\mathsf{x} \preccurlyeq_{\gamma} \mathbf{y}} \mu_{\gamma}(\mathsf{x}, \mathbf{y}) \mathbf{y}$$

where μ_{γ} is the Möbius function of the poset defined by \leq_{γ} .

Exemple

$$\begin{aligned} \textbf{K}_{102}^{(2)} &= 102 - 202 \\ \textbf{K}_{102}^{(3)} &= 102 - 103 - 202 + 203 \\ \textbf{K}_{23102}^{(3)} &= 23102 - 23103 - 23202 + 23203 - 33102 + 33103 + 33202 - 33203 \end{aligned}$$

By triangularity, the $K_x^{(\gamma)}$ form a basis of Dias_{γ}.

Proposition

On the K-basis, the partial composition map of $Dias_{\gamma}$ satisfies

$$\mathsf{K}_{\mathsf{x}}^{(\gamma)} \circ_{i} \mathsf{K}_{\mathbf{y}}^{(\gamma)} = \begin{cases}
\mathsf{K}_{\mathsf{x} \circ_{i} \mathbf{y}}^{(\gamma)} & \text{if } \min(\mathbf{y}) > x_{i}, \\
\sum_{a \in [x_{i}, \gamma]} \mathsf{K}_{\mathsf{x} \circ_{a, i} \mathbf{y}}^{(\gamma)} & \text{if } \min(\mathbf{y}) = x_{i}, \\
0 & \text{otherwise } (\min(\mathbf{y}) < x_{i}).
\end{cases}$$

where $x \circ_{a,i} y$ is the word $x \circ_i y$ in which the 0 coming from y is replaced by a.

Proposition

On the K-basis, the partial composition map of $Dias_{\gamma}$ satisfies

$$\mathsf{K}_{x}^{(\gamma)} \circ_{i} \mathsf{K}_{y}^{(\gamma)} = \begin{cases} \mathsf{K}_{x \circ_{i} y}^{(\gamma)} & \text{if } \min(y) > x_{i}, \\ \sum_{a \in [x_{i}, \gamma]} \mathsf{K}_{x \circ_{a, i} y}^{(\gamma)} & \text{if } \min(y) = x_{i}, \\ 0 & \text{otherwise } (\min(y) < x_{i}). \end{cases}$$

where $x \circ_{a,i} y$ is the word $x \circ_i y$ in which the 0 coming from y is replaced by a.

Exemple

$$\begin{split} \mathsf{K}_{20413}^{(5)} \circ_1 \, \mathsf{K}_{304}^{(5)} &= \mathsf{K}_{3240413}^{(5)} \\ \mathsf{K}_{20413}^{(5)} \circ_2 \, \mathsf{K}_{304}^{(5)} &= \mathsf{K}_{2304413}^{(5)} \\ \mathsf{K}_{20413}^{(5)} \circ_3 \, \mathsf{K}_{304}^{(5)} &= 0 \\ \mathsf{K}_{20413}^{(5)} \circ_5 \, \mathsf{K}_{304}^{(5)} &= \mathsf{K}_{2041334}^{(5)} + \mathsf{K}_{2041344}^{(5)} + \mathsf{K}_{2041354}^{(5)} \end{split}$$

Alternative presentation of Dias_γ

Proposition

 Dias_{γ} admits the presentation $(\mathfrak{G}'_{\mathsf{Dias}_{\gamma}}, \mathfrak{R}'_{\mathsf{Dias}_{\gamma}})$ where $\mathfrak{G}'_{\mathsf{Dias}_{\alpha}} := \mathfrak{G}'_{\mathsf{Dias}_{\alpha}}(2) := \{ \exists_a, \Vdash_a : a \in [\gamma] \}$ and $\mathfrak{R}'_{\mathsf{Dias}_{\alpha}}$ is generated by $\exists a \circ_1 \Vdash_{a'} - \Vdash_{a'} \circ_2 \exists a, \quad a, a' \in [\gamma],$ $\Vdash_b \circ_1 \Vdash_a$, $\dashv_b \circ_2 \dashv_a$, $\Vdash_b \circ_1 \dashv_a$, $\dashv_b \circ_2 \Vdash_a$, $a < b \in [\gamma]$, $\Vdash_{a} \circ_{1} \Vdash_{b} - \Vdash_{b} \circ_{2} \Vdash_{a}, \qquad \dashv_{b} \circ_{1} \dashv_{a} - \dashv_{a} \circ_{2} \dashv_{b}, \qquad a < b \in [\gamma],$ $\Vdash_{a} \circ_{1} \dashv_{b} - \Vdash_{a} \circ_{2} \Vdash_{b}, \qquad \dashv_{a} \circ_{1} \dashv_{b} - \dashv_{a} \circ_{2} \Vdash_{b}, \qquad a < b \in [\gamma],$ $\Vdash_{a} \circ_{1} \Vdash_{a} - \sum (\Vdash_{a} \circ_{2} \Vdash_{b}), \qquad \sum (\dashv_{a} \circ_{1} \dashv_{b}) - \dashv_{a} \circ_{2} \dashv_{a}, \qquad a \in [\gamma],$ a≤b∈[γ] $a \leq b \in [\gamma]$ $\Vdash_{a} \circ_{1} \dashv_{a} - \sum (\Vdash_{b} \circ_{2} \Vdash_{a}), \qquad \sum (\dashv_{b} \circ_{1} \dashv_{a}) - \dashv_{a} \circ_{2} \Vdash_{a}, \qquad a \in [\gamma].$ $a \leq b \in [\gamma]$ $a \leq b \in [\gamma]$

Alternative presentation of Dias_γ

Proposition

 Dias_{γ} admits the presentation $(\mathfrak{G}'_{\mathsf{Dias}_{\gamma}},\mathfrak{R}'_{\mathsf{Dias}_{\gamma}})$ where

$$\mathfrak{G}'_{\mathsf{Dias}_{\gamma}} := \mathfrak{G}'_{\mathsf{Dias}_{\gamma}}(2) := \{ \dashv_a, \Vdash_a : a \in [\gamma] \}$$

and $\mathfrak{R}'_{\mathsf{Dias}_{\alpha}}$ is generated by

$$\begin{split} & \quad \quad \exists_{a} \circ_{1} \Vdash_{a'} - \Vdash_{a'} \circ_{2} \dashv_{a}, \quad a, a' \in [\gamma], \\ & \Vdash_{b} \circ_{1} \Vdash_{a}, \quad \dashv_{b} \circ_{2} \dashv_{a}, \quad \Vdash_{b} \circ_{1} \dashv_{a}, \quad \dashv_{b} \circ_{2} \Vdash_{a}, \quad a < b \in [\gamma], \\ & \Vdash_{a} \circ_{1} \Vdash_{b} - \Vdash_{b} \circ_{2} \Vdash_{a}, \quad \dashv_{b} \circ_{1} \dashv_{a} - \dashv_{a} \circ_{2} \dashv_{b}, \quad a < b \in [\gamma], \\ & \Vdash_{a} \circ_{1} \Vdash_{b} - \Vdash_{a} \circ_{2} \Vdash_{b}, \quad \dashv_{a} \circ_{1} \dashv_{b} - \dashv_{a} \circ_{2} \vdash_{b}, \quad a < b \in [\gamma], \\ & \Vdash_{a} \circ_{1} \dashv_{b} - \Vdash_{a} \circ_{2} \Vdash_{b}, \quad \exists_{a} \circ_{1} \dashv_{b} - \dashv_{a} \circ_{2} \vdash_{b}, \quad a < b \in [\gamma], \\ & \Vdash_{a} \circ_{1} \Vdash_{a} - \sum_{a \leqslant b \in [\gamma]} (\Vdash_{b} \circ_{2} \Vdash_{b}), \quad \sum_{a \leqslant b \in [\gamma]} (\dashv_{a} \circ_{1} \dashv_{b}) - \dashv_{a} \circ_{2} \dashv_{a}, \quad a \in [\gamma], \\ & \Vdash_{a} \circ_{1} \dashv_{a} - \sum_{a \leqslant b \in [\gamma]} (\Vdash_{b} \circ_{2} \Vdash_{a}), \quad \sum_{a \leqslant b \in [\gamma]} (\dashv_{b} \circ_{1} \dashv_{a}) - \dashv_{a} \circ_{2} \Vdash_{a}, \quad a \in [\gamma]. \end{split}$$

Its proof uses the identification of \dashv_a with $\mathsf{K}_{0a}^{(\gamma)}$ and of \Vdash_a with $\mathsf{K}_{a0}^{(\gamma)}$ together with the previous partial composition rules.

Outline

Polydendriform operads

Pluriassociative operad

Polydendriform operad and algebra

A generalization of Dendr

 Dias_{γ} admits a binary and quadratic presentation, and thus, has a Koszul dual.

A generalization of Dendr

 Dias_{γ} admits a binary and quadratic presentation, and thus, has a Koszul dual.

Let $\mathsf{Dendr}_{\gamma} := \mathsf{Dias}_{\gamma}^!$ be the γ -polydendriform operad.

A generalization of Dendr

 Dias_{γ} admits a binary and quadratic presentation, and thus, has a Koszul dual.

Let $\mathsf{Dendr}_{\gamma} := \mathsf{Dias}_{\gamma}^!$ be the γ -polydendriform operad.

Theorem

 Dendr_γ admits the presentation $(\mathfrak{G}_{\mathsf{Dendr}_\gamma}, \mathfrak{R}_{\mathsf{Dendr}_\gamma})$ where

$$\mathfrak{G}_{\mathsf{Dendr}_{\gamma}} := \mathfrak{G}_{\mathsf{Dendr}_{\gamma}}(2) := \{ \leftharpoonup_{\mathsf{a}}, \rightharpoonup_{\mathsf{a}} : \mathsf{a} \in [\gamma] \}$$

and $\mathfrak{R}_{\mathsf{Dendr}_{\gamma}}$ is generated by

Dimensions of Dendr $_{\gamma}$

Since ${\sf Dias}_{\gamma}$ is Koszul, we can compute the dimensions of ${\sf Dendr}_{\gamma}$ from the ones of ${\sf Dias}_{\gamma}$ because

$$\mathcal{H}_{\mathsf{Dias}_{\gamma}}(-\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(-t)) = t.$$

Dimensions of Dendr $_{\gamma}$

Since ${\sf Dias}_{\gamma}$ is Koszul, we can compute the dimensions of ${\sf Dendr}_{\gamma}$ from the ones of ${\sf Dias}_{\gamma}$ because

$$\mathcal{H}_{\mathsf{Dias}_{\gamma}}(-\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(-t)) = t.$$

We obtain

Proposition

$$\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(t) = t + 2\gamma t \,\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(t) + \gamma^2 t \,\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(t)^2$$

Dimensions of Dendr $_{\gamma}$

Since ${\sf Dias}_{\gamma}$ is Koszul, we can compute the dimensions of ${\sf Dendr}_{\gamma}$ from the ones of ${\sf Dias}_{\gamma}$ because

$$\mathcal{H}_{\mathsf{Dias}_{\gamma}}(-\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(-t)) = t.$$

We obtain

Proposition

$$\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(t) = t + 2\gamma t \,\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(t) + \gamma^2 t \,\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(t)^2$$

Proof.

This is a consequence of

$$t = rac{-\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(-t)}{(1 + \gamma\,\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(-t))^2}$$

and the fact that

$$\mathcal{H}_{\mathsf{Dias}_{\gamma}}(t) = rac{t}{(1-\gamma t)^2}.$$

Dimensions and elements of Dendr $_{\gamma}$

We deduce, from the expression of $\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(t)$, that

$$\dim \mathsf{Dendr}_{\gamma}(n) = \gamma^{n-1} \frac{1}{n+1} \binom{2n}{n}.$$

Dimensions and elements of Dendr $_{\gamma}$

We deduce, from the expression of $\mathcal{H}_{\mathsf{Dendr}_{\gamma}}(t)$, that

$$\dim \mathsf{Dendr}_{\gamma}(n) = \gamma^{n-1} \frac{1}{n+1} \binom{2n}{n}.$$

Hence, $\mathsf{Dendr}_{\gamma}(n)$ is the linear span of γ -edge valued binary trees of size n, that are binary trees with n internal nodes wherein its n-1 edges connecting two internal nodes are labeled on $[\gamma]$.

Example

is a 4-edge valued binary tree and a basis element of $Dendr_6(10)$.

Polydendriform algebras

A Dendr $_{\gamma}$ -algebra, called γ -polydendriform algebra is a vector space $\mathcal V$ endowed with 2γ binary operations

$$\leftharpoonup_a: \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$
 and $\rightharpoonup_a: \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$, $a \in [\gamma]$,

Polydendriform algebras

A Dendr $_{\gamma}$ -algebra, called γ -polydendriform algebra is a vector space $\mathcal V$ endowed with 2γ binary operations

$$\leftarrow_a : \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$
 and $\rightarrow_a : \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$, $a \in [\gamma]$,

satisfying, for all $x, y, z \in \mathcal{V}$, the relations

 $c \in [d]$

$$(x \rightharpoonup_{a'} y) \leftharpoonup_{a} z = x \rightharpoonup_{a'} (y \leftharpoonup_{a} z), \qquad a, a' \in [\gamma],$$

$$(x \leftharpoonup_{b} y) \leftharpoonup_{a} z = x \leftharpoonup_{a} (y \rightharpoonup_{b} z), \qquad a < b \in [\gamma],$$

$$(x \leftharpoonup_{b} y) \rightharpoonup_{a} z = x \rightharpoonup_{a} (y \rightharpoonup_{b} z), \qquad a < b \in [\gamma],$$

$$(x \leftharpoonup_{a} y) \leftharpoonup_{b} z = x \leftharpoonup_{a} (y \leftharpoonup_{b} z), \qquad a < b \in [\gamma],$$

$$(x \rightharpoonup_{b} y) \rightharpoonup_{a} z = x \rightharpoonup_{b} (y \rightharpoonup_{a} z), \qquad a < b \in [\gamma],$$

$$(x \rightharpoonup_{b} y) \rightharpoonup_{a} z = x \rightharpoonup_{b} (y \rightharpoonup_{a} z), \qquad a < b \in [\gamma],$$

$$(x \rightharpoonup_{d} y) \leftharpoonup_{d} z = \sum_{c \in [d]} x \leftharpoonup_{d} (y \leftharpoonup_{c} z) + x \leftharpoonup_{d} (y \rightharpoonup_{c} z), \qquad d \in [\gamma],$$

$$\sum (x \rightharpoonup_{c} y) \rightharpoonup_{d} z + (x \leftharpoonup_{c} y) \rightharpoonup_{d} z = x \rightharpoonup_{d} (y \rightharpoonup_{d} z), \qquad d \in [\gamma].$$

γ -split of an associative operation

A binary element x of an operad \mathcal{O} is associative if

$$x \circ_1 x = x \circ_2 x$$
.

γ -split of an associative operation

A binary element x of an operad \mathcal{O} is associative if

$$x \circ_1 x = x \circ_2 x$$
.

Proposition

In $Dendr_{\gamma}$, the element

$$\bullet_b := \sum_{a \in [b]} (\leftharpoonup_a + \rightharpoonup_a)$$

is associative.

γ -split of an associative operation

A binary element x of an operad \mathcal{O} is associative if

$$x \circ_1 x = x \circ_2 x$$
.

Proposition

In $Dendr_{\gamma}$, the element

$$\bullet_b := \sum_{a \in [b]} (-_a + -_a)$$

is associative.

Then, γ -polydendriform algebras are adapted to split an associative product \cdot into 2γ parts by

$$\cdot = \leftarrow_1 + \rightarrow_1 + \leftarrow_2 + \rightarrow_2 + \cdots + \leftarrow_{\gamma} + \rightarrow_{\gamma},$$

with the partial sums condition, that is

$$\leftarrow_1 + \rightarrow_1,$$

 $\leftarrow_1 + \rightarrow_1 + \leftarrow_2 + \rightarrow_2,$
 $\leftarrow_1 + \rightarrow_1 + \leftarrow_2 + \rightarrow_2 + \leftarrow_3 + \rightarrow_3,$
....

are associative.

Alternative presentation of Dendr $_{\gamma}$

The computation of the Koszul dual of Dias_{γ} expressed on its presentation $(\mathfrak{G}'_{\mathsf{Dias}_{\gamma}},\mathfrak{R}'_{\mathsf{Dias}_{\gamma}})$ leads to an alternative presentation for Dendr_{γ} .

Proposition

 Dendr_γ admits the presentation $(\mathfrak{G}'_{\mathsf{Dendr}_\gamma},\mathfrak{R}'_{\mathsf{Dendr}_\gamma})$ where

$$\mathfrak{G}_{\mathsf{Dendr}_{\gamma}}' := \mathfrak{G}_{\mathsf{Dendr}_{\gamma}}'(2) := \{ \prec_{\mathsf{a}}, \succ_{\mathsf{a}} : \mathsf{a} \in [\gamma] \}$$

and $\mathfrak{R}'_{\mathsf{Dendr}_{\infty}}$ is generated by

where \downarrow denotes the operation min on integers.

Alternative presentation of Dendr $_{\gamma}$

The computation of the Koszul dual of Dias_{γ} expressed on its presentation $(\mathfrak{G}'_{\mathsf{Dias}_{\gamma}},\mathfrak{R}'_{\mathsf{Dias}_{\gamma}})$ leads to an alternative presentation for Dendr_{γ} .

Proposition

 Dendr_{γ} admits the presentation $(\mathfrak{G}'_{\mathsf{Dendr}_{\gamma}}, \mathfrak{R}'_{\mathsf{Dendr}_{\gamma}})$ where

$$\mathfrak{G}'_{\mathsf{Dendr}_\gamma} := \mathfrak{G}'_{\mathsf{Dendr}_\gamma}(2) := \{ \prec_{\mathsf{a}}, \succ_{\mathsf{a}} : \mathsf{a} \in [\gamma] \}$$

and $\mathfrak{R}'_{\mathsf{Dendr}_{\infty}}$ is generated by

where \downarrow denotes the operation min on integers.

Fact: this presentation of Dendr_γ can also be obtained through the change of basis

$$\prec_b = \sum_{a \in [b]} \leftharpoonup_a, \quad \text{and} \quad \succ_b = \sum_{a \in [b]} \rightharpoonup_a, \qquad b \in [\gamma].$$

We endow the space $\mathcal{F}_{\mathsf{Dendr}_\gamma}$ of $\gamma\text{-edge}$ valued binary trees with linear operations

$$\prec_{\mathit{a}}, \succ_{\mathit{a}} : \mathcal{F}_{\mathsf{Dendr}_{\gamma}} \otimes \mathcal{F}_{\mathsf{Dendr}_{\gamma}} \to \mathcal{F}_{\mathsf{Dendr}_{\gamma}}, \qquad \mathit{a} \in [\gamma],$$

We endow the space $\mathcal{F}_{\mathsf{Dendr}_\gamma}$ of $\gamma\text{-edge}$ valued binary trees with linear operations

$$\prec_a, \succ_a : \mathcal{F}_{\mathsf{Dendr}_\gamma} \otimes \mathcal{F}_{\mathsf{Dendr}_\gamma} \to \mathcal{F}_{\mathsf{Dendr}_\gamma}, \qquad a \in [\gamma],$$

recursively defined, for any γ -edge valued binary tree $\mathfrak s$ and any γ -edge valued binary trees or leaves $\mathfrak t_1$ and $\mathfrak t_2$ by

Note that neither $\frac{1}{4} \prec_a \frac{1}{4}$ nor $\frac{1}{4} \succ_a \frac{1}{4}$ are defined.

Theorem

 $\mathcal{F}_{\mathsf{Dendr}_{\gamma}}$ is the free $\gamma\text{-polydendriform}$ algebra over one generator.

Theorem

 $\mathcal{F}_{\mathsf{Dendr}_{\gamma}}$ is the free γ -polydendriform algebra over one generator.

Example

Outline

Annex

Example: the polynomial product

Let $A := \{a_0, a_1, \dots\}$ be a totally ordered alphabet by $a_i \leqslant a_j$ if $i \leqslant j$.

Example: the polynomial product

Let $A := \{a_0, a_1, \dots\}$ be a totally ordered alphabet by $a_i \leq a_j$ if $i \leq j$.

The space of noncommutative polynomials $\mathbb{Q}\langle A\rangle$ is endowed with its usual product $\cdot.$

Example

$$\mathtt{a}_0\mathtt{a}_2\mathtt{a}_0\cdot\mathtt{a}_1\mathtt{a}_2=\mathtt{a}_0\mathtt{a}_2\mathtt{a}_0\mathtt{a}_1\mathtt{a}_2$$

Example: the polynomial product

Let $A := \{a_0, a_1, \dots\}$ be a totally ordered alphabet by $a_i \leqslant a_i$ if $i \leqslant j$.

The space of noncommutative polynomials $\mathbb{Q}\langle A\rangle$ is endowed with its usual product \cdot .

Example

$$a_0a_2a_0 \cdot a_1a_2 = a_0a_2a_0a_1a_2$$

 \cdot splits into two parts \prec and \succ according to the origin of the greatest letter:

$$u \prec \mathbf{v} := \begin{cases} u\mathbf{v} & \text{if } \max(u) > \max(\mathbf{v}), \\ 0 & \text{otherwise}, \end{cases} \qquad u \succ \mathbf{v} := \begin{cases} u\mathbf{v} & \text{if } \max(u) \leqslant \max(\mathbf{v}), \\ 0 & \text{otherwise}. \end{cases}$$

Example: the polynomial product

Let $A := \{a_0, a_1, \dots\}$ be a totally ordered alphabet by $a_i \leqslant a_j$ if $i \leqslant j$.

The space of noncommutative polynomials $\mathbb{Q}\langle A\rangle$ is endowed with its usual product $\cdot.$

Example

$$a_0a_2a_0 \cdot a_1a_2 = a_0a_2a_0a_1a_2$$

 \cdot splits into two parts \prec and \succ according to the origin of the greatest letter:

$$u \prec \mathbf{v} := \begin{cases} u\mathbf{v} & \text{if } \max(u) > \max(\mathbf{v}), \\ 0 & \text{otherwise}, \end{cases} \qquad u \succ \mathbf{v} := \begin{cases} u\mathbf{v} & \text{if } \max(u) \leqslant \max(\mathbf{v}), \\ 0 & \text{otherwise}. \end{cases}$$

Example

$$\begin{aligned} a_0 a_2 &\prec a_1 a_0 = a_0 a_2 a_1 a_0 & a_0 a_2 a_0 \prec a_1 a_2 = 0 \\ a_0 a_2 &\succ a_1 a_0 = 0 & a_0 a_2 a_0 \succ a_1 a_2 = a_0 a_2 a_0 a_1 a_2 \end{aligned}$$

Example: the associative operad

The associative operad As is defined in the following way:

- ► As(n) is the one-dimensional space spanned by the abstract operator a_n of arity n;
- ▶ the partial composition is linearly defined by $\mathfrak{a}_n \circ_i \mathfrak{a}_m := \mathfrak{a}_{n+m-1}$;
- \blacktriangleright the unit is \mathfrak{a}_1 .

Example: the associative operad

The associative operad As is defined in the following way:

- ► As(n) is the one-dimensional space spanned by the abstract operator a_n of arity n;
- ▶ the partial composition is linearly defined by $\mathfrak{a}_n \circ_i \mathfrak{a}_m := \mathfrak{a}_{n+m-1}$;
- \blacktriangleright the unit is \mathfrak{a}_1 .

Example

$$\mathfrak{a}_4 \circ_2 \mathfrak{a}_3 = \mathfrak{a}_6$$

$$\mathfrak{a}_1 \circ_1 \mathfrak{a}_1 = \mathfrak{a}_1$$

$$\mathfrak{a}_4 \circ_4 \mathfrak{a}_1 = \mathfrak{a}_4$$

1. Hilbert series:

$$\mathcal{H}_{\mathsf{As}}(t) = t + t^2 + t^3 + t^4 + t^5 + \dots = \frac{t}{1-t}.$$

1. Hilbert series:

$$\mathcal{H}_{As}(t) = t + t^2 + t^3 + t^4 + t^5 + \dots = \frac{t}{1 - t}.$$

2. Minimal generating set: $\{a_2\}$.

1. Hilbert series:

$$\mathcal{H}_{As}(t) = t + t^2 + t^3 + t^4 + t^5 + \dots = \frac{t}{1 - t}.$$

2. Minimal generating set: $\{a_2\}$. Indeed,

$$\mathfrak{a}_3 = \mathfrak{a}_2 \circ_1 \mathfrak{a}_2,$$

1. Hilbert series:

$$\mathcal{H}_{As}(t) = t + t^2 + t^3 + t^4 + t^5 + \dots = \frac{t}{1-t}$$

2. Minimal generating set: $\{a_2\}$. Indeed,

$$\mathfrak{a}_3 = \mathfrak{a}_2 \circ_1 \mathfrak{a}_2, \qquad \mathfrak{a}_4 = \mathfrak{a}_3 \circ_1 \mathfrak{a}_2,$$

1. Hilbert series:

$$\mathcal{H}_{As}(t) = t + t^2 + t^3 + t^4 + t^5 + \dots = \frac{t}{1-t}$$

2. Minimal generating set: $\{a_2\}$. Indeed,

$$\mathfrak{a}_3 = \mathfrak{a}_2 \circ_1 \mathfrak{a}_2, \qquad \mathfrak{a}_4 = \mathfrak{a}_3 \circ_1 \mathfrak{a}_2, \qquad \mathfrak{a}_5 = \mathfrak{a}_4 \circ_1 \mathfrak{a}_2, \qquad \textit{etc.}$$

1. Hilbert series:

$$\mathcal{H}_{As}(t) = t + t^2 + t^3 + t^4 + t^5 + \dots = \frac{t}{1 - t}.$$

2. Minimal generating set: $\{a_2\}$. Indeed,

$$\mathfrak{a}_3 = \mathfrak{a}_2 \circ_1 \mathfrak{a}_2, \qquad \mathfrak{a}_4 = \mathfrak{a}_3 \circ_1 \mathfrak{a}_2, \qquad \mathfrak{a}_5 = \mathfrak{a}_4 \circ_1 \mathfrak{a}_2, \qquad \text{etc.}$$

3. Nontrivial relations:

$$\mathfrak{a}_2 \circ_1 \mathfrak{a}_2 = \mathfrak{a}_2 \circ_2 \mathfrak{a}_2.$$

Let \mathcal{O} be an operad.

An \mathcal{O} -algebra is a vector space \mathcal{V} where any $x \in \mathcal{O}$ of arity n endows \mathcal{V} with a linear map

$$x: \mathcal{V}^{\otimes n} \to \mathcal{V}.$$

Let \mathcal{O} be an operad.

An \mathcal{O} -algebra is a vector space \mathcal{V} where any $x \in \mathcal{O}$ of arity n endows \mathcal{V} with a linear map

$$x: \mathcal{V}^{\otimes n} \to \mathcal{V}.$$

The relation

$$(x \circ_i y)(e_1, \ldots, e_{n+m-1}) = x(e_1, e_{i-1}, y(e_i, \ldots, e_{i+m-1}), e_{i+m}, \ldots, e_{n+m-1})$$

must be satisfied, for all $x \in \mathcal{O}(n)$, $y \in \mathcal{O}(m)$, and $i \in [n]$.

Let \mathcal{O} be an operad.

An \mathcal{O} -algebra is a vector space \mathcal{V} where any $x \in \mathcal{O}$ of arity n endows \mathcal{V} with a linear map

$$x: \mathcal{V}^{\otimes n} \to \mathcal{V}.$$

The relation

$$(x \circ_i y)(e_1, \dots, e_{n+m-1}) = x(e_1, e_{i-1}, y(e_i, \dots, e_{i+m-1}), e_{i+m}, \dots, e_{n+m-1})$$

must be satisfied, for all $x \in \mathcal{O}(n)$, $y \in \mathcal{O}(m)$, and $i \in [n]$.

Therefore, any operad \mathcal{O} describes a category of algebras: the class of all \mathcal{O} -algebras with obvious morphisms as arrows.

Let \mathcal{O} be an operad.

An \mathcal{O} -algebra is a vector space \mathcal{V} where any $x \in \mathcal{O}$ of arity n endows \mathcal{V} with a linear map

$$x: \mathcal{V}^{\otimes n} \to \mathcal{V}.$$

The relation

$$(x \circ_i y)(e_1, \dots, e_{n+m-1}) = x(e_1, e_{i-1}, y(e_i, \dots, e_{i+m-1}), e_{i+m}, \dots, e_{n+m-1})$$

must be satisfied, for all $x \in \mathcal{O}(n)$, $y \in \mathcal{O}(m)$, and $i \in [n]$.

Therefore, any operad \mathcal{O} describes a category of algebras: the class of all \mathcal{O} -algebras with obvious morphisms as arrows.

Moreover, if $\phi: \mathcal{O}_1 \to \mathcal{O}_2$ is a morphism of operads, ϕ gives rises to a functor from the category of \mathcal{O}_2 -algebras to the category of \mathcal{O}_1 -algebras.

Recall that As admits the presentation $(\mathfrak{G}_{As},\mathfrak{R}_{As})$ where $\mathfrak{G}_{As}=\mathfrak{G}_{As}(2)=\{a\}$ and \mathfrak{R}_{As} is generated by $a\circ_1 a-a\circ_2 a$.

Recall that As admits the presentation $(\mathfrak{G}_{As},\mathfrak{R}_{As})$ where $\mathfrak{G}_{As}=\mathfrak{G}_{As}(2)=\{a\}$ and \mathfrak{R}_{As} is generated by $a\circ_1 a-a\circ_2 a$.

Then, any As-algebra is a vector space \mathcal{V} endowed with a linear operation

$$a: \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$
,

Recall that As admits the presentation $(\mathfrak{G}_{As},\mathfrak{R}_{As})$ where $\mathfrak{G}_{As}=\mathfrak{G}_{As}(2)=\{a\}$ and \mathfrak{R}_{As} is generated by $a\circ_1 a-a\circ_2 a$.

Then, any As-algebra is a vector space \mathcal{V} endowed with a linear operation

$$a: \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$
,

$$(\mathbf{a} \circ_1 \mathbf{a})(x, y, z) = \mathbf{a}(\mathbf{a}(x, y), z)$$

Recall that As admits the presentation $(\mathfrak{G}_{As},\mathfrak{R}_{As})$ where $\mathfrak{G}_{As}=\mathfrak{G}_{As}(2)=\{a\}$ and \mathfrak{R}_{As} is generated by $a\circ_1 a-a\circ_2 a$.

Then, any As-algebra is a vector space \mathcal{V} endowed with a linear operation

$$a: \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$
.

$$(\mathbf{a} \circ_1 \mathbf{a})(x, \mathbf{y}, z) = \mathbf{a}(\mathbf{a}(x, \mathbf{y}), z)$$

$$\parallel$$

$$(\mathbf{a} \circ_2 \mathbf{a})(x, \mathbf{y}, z)$$

Recall that As admits the presentation $(\mathfrak{G}_{As},\mathfrak{R}_{As})$ where $\mathfrak{G}_{As}=\mathfrak{G}_{As}(2)=\{a\}$ and \mathfrak{R}_{As} is generated by $a\circ_1 a-a\circ_2 a$.

Then, any As-algebra is a vector space \mathcal{V} endowed with a linear operation

$$a: \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$
.

$$(\mathbf{a} \circ_1 \mathbf{a})(x, y, z) = \mathbf{a}(\mathbf{a}(x, y), z)$$

$$\parallel$$

$$(\mathbf{a} \circ_2 \mathbf{a})(x, y, z) = \mathbf{a}(x, \mathbf{a}(y, z)).$$

Recall that As admits the presentation $(\mathfrak{G}_{As},\mathfrak{R}_{As})$ where $\mathfrak{G}_{As}=\mathfrak{G}_{As}(2)=\{a\}$ and \mathfrak{R}_{As} is generated by $a\circ_1 a-a\circ_2 a$.

Then, any As-algebra is a vector space \mathcal{V} endowed with a linear operation

$$a: \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$
,

$$(\mathbf{a} \circ_1 \mathbf{a})(x, \mathbf{y}, z) = \mathbf{a}(\mathbf{a}(x, \mathbf{y}), z)$$

$$\parallel \qquad \qquad \parallel$$

$$(\mathbf{a} \circ_2 \mathbf{a})(x, \mathbf{y}, z) = \mathbf{a}(x, \mathbf{a}(\mathbf{y}, z)).$$

Recall that As admits the presentation $(\mathfrak{G}_{As},\mathfrak{R}_{As})$ where $\mathfrak{G}_{As}=\mathfrak{G}_{As}(2)=\{a\}$ and \mathfrak{R}_{As} is generated by $a\circ_1 a-a\circ_2 a$.

Then, any As-algebra is a vector space $\mathcal V$ endowed with a linear operation

$$a: \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$$
,

satisfying, for all $x, y, z \in \mathcal{V}$,

$$(\mathbf{a} \circ_1 \mathbf{a})(x, \mathbf{y}, z) = \mathbf{a}(\mathbf{a}(x, \mathbf{y}), z)$$

$$\parallel \qquad \qquad \parallel$$

$$(\mathbf{a} \circ_2 \mathbf{a})(x, \mathbf{y}, z) = \mathbf{a}(x, \mathbf{a}(\mathbf{y}, z)).$$

Using infix notation for the binary operator a, we obtain the relation

$$(x \mathbf{a} y) \mathbf{a} z = x \mathbf{a} (y \mathbf{a} z),$$

so that As-algebras are associative algebras.

Dendr admits the following realization (i.e., a description of the spaces Dendr(n) and of its partial composition):

Dendr admits the following realization (i.e., a description of the spaces Dendr(n) and of its partial composition):

ightharpoonup Dendr(n) is the linear span of binary trees with n internal nodes;

Dendr admits the following realization (i.e., a description of the spaces Dendr(n) and of its partial composition):

- ightharpoonup Dendr(n) is the linear span of binary trees with n internal nodes;
- ▶ its partial composition (at the root of index *i*) satisfies

where intervals are intervals for Tamari order [Tamari, 1962], $\mathfrak{s}/\mathfrak{t}$ consists in grafting the root of $\mathfrak s$ onto the first leaf of $\mathfrak t$, and $\mathfrak s \setminus \mathfrak t$ consists in grafting the root of $\mathfrak t$ onto the last leaf of $\mathfrak s$;

Dendr admits the following realization (i.e., a description of the spaces Dendr(n) and of its partial composition):

- ightharpoonup Dendr(n) is the linear span of binary trees with n internal nodes;
- ▶ its partial composition (at the root of index *i*) satisfies

where intervals are intervals for Tamari order [Tamari, 1962], $\mathfrak{s}/\mathfrak{t}$ consists in grafting the root of \mathfrak{s} onto the first leaf of \mathfrak{t} , and $\mathfrak{s}/\mathfrak{t}$ consists in grafting the root of \mathfrak{t} onto the last leaf of \mathfrak{s} ;

▶ the unit of Dendr is the binary tree 🔼.

From any monoid (\mathcal{M}, \bullet) , define

From any monoid (\mathcal{M}, \bullet) , define

▶ the vector space

$$\mathsf{T}\mathcal{M} := \bigoplus_{n\geqslant 1} \mathsf{T}\mathcal{M}(n)$$

where

$$\mathsf{T}\mathcal{M}(n) := \mathrm{Vect}\left(u_1 \dots u_n : u_i \in \mathcal{M} \text{ for all } i \in [n]\right);$$

From any monoid (\mathcal{M}, \bullet) , define

the vector space

$$\mathsf{T}\mathcal{M} := \bigoplus_{n\geqslant 1} \mathsf{T}\mathcal{M}(n)$$

where

$$\mathsf{T}\mathcal{M}(n) := \mathsf{Vect}\left(u_1 \ldots u_n : u_i \in \mathcal{M} \text{ for all } i \in [n]\right);$$

▶ the partial compositions maps

$$\circ_i: \mathsf{T}\mathcal{M}(n) \times \mathsf{T}\mathcal{M}(m) \to \mathsf{T}\mathcal{M}(n+m-1),$$
 defined for all $u \in \mathsf{T}\mathcal{M}(n)$, $\mathbf{v} \in \mathsf{T}\mathcal{M}(m)$, and $i \in [n]$ by
$$u \circ_i \mathbf{v} := u_1 \ \ldots \ u_{i-1} \ (u_i \bullet \mathbf{v}_1) \ \ldots \ (u_i \bullet \mathbf{v}_m) \ u_{i+1} \ \ldots \ u_n.$$

From any monoid (\mathcal{M}, \bullet) , define

the vector space

$$\mathsf{T}\mathcal{M} := \bigoplus_{n \geq 1} \mathsf{T}\mathcal{M}(n)$$

where

$$\mathsf{T}\mathcal{M}(n) := \mathsf{Vect}\left(u_1 \ldots u_n : u_i \in \mathcal{M} \text{ for all } i \in [n]\right);$$

▶ the partial compositions maps

$$\circ_i : \mathsf{T}\mathcal{M}(n) \times \mathsf{T}\mathcal{M}(m) \to \mathsf{T}\mathcal{M}(n+m-1),$$
 defined for all $u \in \mathsf{T}\mathcal{M}(n)$, $\mathbf{v} \in \mathsf{T}\mathcal{M}(m)$, and $i \in [n]$ by
$$u \circ_i \mathbf{v} := u_1 \ \dots \ u_{i-1} \ (u_i \bullet \mathbf{v}_1) \ \dots \ (u_i \bullet \mathbf{v}_m) \ u_{i+1} \ \dots \ u_n.$$

Theorem [G, 2012]

For any monoid \mathcal{M} , $T\mathcal{M}$ is an operad.