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Syntax trees

An alphabet is a graded set G :=
⊔

n>1 G(n).

Let S(G) be the set of G-syntax trees defined recursively as

I ∈ S(G), where is the leaf;

I if a ∈ G and t1, . . . , t|a| ∈ S(G), then a ( t1, . . . , t|a| ) ∈ S(G).

Let t = a ( t1, . . . , t|a| ) ∈ S(G). Some definitions:

I the degree deg(t) of t is its number of internal nodes;

I the arity |t| of t is its number of leaves;

I for any i ∈ [|a|], t(i) is the i-th subtree ti of t.

� Example �

Let G := G(2) tG(3) such that G(2) = {a, b} and G(3) = {c}.

c

b

c

b

ba

c

a

denotes the G-tree

c ( , c ( a ( , ) , , b ( a ( , ) , c ( , , ) ) ) , b ( , b ( , ) ) )

having degree 8 and arity 12.
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Compositions of syntax trees

Let t, s ∈ S(G). For each i ∈ [|t|], the partial composition t ◦i s is

the tree obtained by grafting the root of s onto the i-th leaf

of t.

� Example �

c

ba

c b ◦5
a

b

c
=

c

b

c

b

ba

c

a

Let t, s1, ..., s|t| be G-trees. The full composition

t ◦
[
s1, . . . , s|t|

]
is obtained by grafting simultaneously the roots of

each si onto the i-th leaf of t.

� Example �

b

a
◦


a

a

b
, , c

 =

a c

a

b

b

a
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Factors and prefixes

Let t, s ∈ S(G).

If t decomposes as

t = r ◦i
(
s ◦
[
r1, . . . , r[s|

])
for some trees r, r1, ..., r|s|, and i ∈ [|r|], then s is a factor

of t.

This property is denoted by s 4f t.

If in the previous decomposition r = , then

t = s ◦
[
r1, . . . , r[s|

]
,

and s is a prefix of t.

This property is denoted by s 4p t.

� Example �

c

b
4f

a

b

a

b

c

c

b

b
c

b

b

4p
a

b

a

b

c

c

b

b
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Pattern avoidance and enumeration

A G-tree t avoids (resp. prefix-avoids) a G-tree s if s��4f t

(resp. s��4p t).

For any P ⊆ S(G), let

A(P) := {t ∈ S(G) : for all s ∈ P, s��4f t} .

� Examples �

I A


a

a

b

a

a

b

b

b

 is enumerated by 1, 2, 4, 8, 16, 32, 64, 128, . . . .

I A


a

a

c

a

a

c

c

c

 is enumerated by 1, 1, 2, 4, 9, 21, 51, 127, . . . (A001006).

I A


a

a

a

b b

a

b

b

b

 is enumerated by 1, 2, 5, 13, 35, 96, 267, 750, . . . (A005773).

� Question �

Enumerate A(P) w.r.t. the arities of the trees.
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Consistent words

Let P ⊆ S(G) \ { } and a ∈ G(k).

Let Pa be the subset of P of the trees whose roots are labeled

by a.

A sequence S := (S1, . . . ,Sk), where each Si is a subset of S(G), is

Pa-consistent if for any s ∈ Pa, there is an i ∈ [k] such that

s(i) 6= and s(i) ∈ Si.

� Example �

Let the set of patterns

P :=

 c

a
,

a

c
,

b

c

b
,

b

c

a
, c a

c

c

 .

The sequence

S :=

{ a

}
,

 b ,
c

a

 ,

 a , a

a




is Pc-consistent.
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Admissible trees

Let P ⊆ S(G) \ { }, a ∈ G(k), and S := (S1, . . . ,Sk) be a

Pa-consistent sequence.

A G-tree t is S-admissible if the root of t is labeled by a and

for all i ∈ [k], t(i) prefix-avoids Si.

� Example �

Let the set of patterns

P :=

 c

a ,
a

c ,
b

c

b
,

b

c

a
, c a

c

c

 .

and the Pc-consistent word

S :=

{ a

}
,

 b ,
c

a

 ,

{
a , a

a

} .

The tree

c

a

cc

a b

is S-admissible.
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Minimal consistent words

Let P ⊆ S(G) \ { }, a ∈ G(k), and S := (S1, . . . ,Sk) and

S ′ := (S ′1, . . . ,S ′k) be two sequences of subsets of S(G).

The sum of S and S ′ is the sequence

S +̇S ′ :=
(
S1 ∪ S ′1, . . . ,Sk ∪ S ′k

)
.

A Pa-consistent word S is minimal if for any decomposition

S = S ′ +̇S ′′ where S ′ is a Pa-consistent word and S ′′ is a sequence

of subsets of S(G), one has S = S ′.

Let M (Pa) be the set of all minimal Pa-consistent words.

� Examples �

Let the set of patterns

P :=

 c

a ,
a

c ,
b

c

b
,

b

c

a
, c a

c

c

 .

We have M (Pa) =

{({
c

}
, ∅
)}

, M (Pb) = {(∅, ∅)} ,

M (Pc) =

{({
a

}
,

{
b

}
,

{
a

})
,

({
a , b

}
, ∅,

{
a

})
,({

a , b , c

c

}
, ∅, ∅

)}
.
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Minimal consistent words and pattern avoidance

� Lemma �

Let P ⊆ S(G) \ { } and t be a G-tree with root labeled by a.

The following assertions are equivalent:

1. t prefix-avoids P;

2. there exists a minimal Pa-consistent word S such that t is

S-admissible.

� Lemma �

Let P,Q ⊆ S(G) \ { } and t be a G-tree with root labeled by a ∈ G(k).

The following assertions are equivalent:

1. t avoids P and prefix-avoids Q;

2. for all i ∈ [k], t(i) avoid P and there exists a minimal

(P ∪Q)a-consistent word S such that t is S-admissible.
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Formal power series

Let K be the field Q (q0, q1, q2, . . . ) and X be a set.

An X-series is a map

f : X → K.

The coefficient f(x) of x ∈ X in f is denoted by 〈x, f〉.

The set of all X-series is K 〈〈X 〉〉.

Endowed with the pointwise addition

〈x, f + g〉 := 〈x, f〉+ 〈x,g〉

and the pointwise multiplication by a scalar

〈x, λf〉 := λ 〈x, f〉 ,

the set K 〈〈X 〉〉 is a vector space.

The sum notation of f is

f =
∑
x∈X

〈x, f〉x.
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Tree series

A tree series is an element of K 〈〈S(G)〉〉.

� Example �

For x ∈ G, let fx be the S(G)-series wherein 〈t, fx〉 is the number of occurrences

of x in t. For instance,

fa = a + 2
a

a
+

b

a
+

a

b
+ 2

a

a
+ 3

a

a

a
+ · · · .

� Example �

Let f be the S(G)-series wherein
〈
t, f
〉

:= |t|. Hence,

f = + 2 a + 2 b + 3 c + 3
a

a
+ 3

b

a
+ 3

a

b
+ 3

a

a
+ · · · .

� Example �

In the tree series fa + fb + fc, the coefficient of a tree is its degree.

In the tree series f + fa + fb + fc, the coefficient of a tree is its number of

edges.
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Characteristic series

Let X be a set and S ⊆ X.

The characteristic series of S is the series

fS :=
∑
x∈S

x

of K 〈〈X 〉〉.

The sieve principle translates as follows in terms of

characteristic series.

� Lemma �

Let X be a set and S1, ..., Sn, n > 0, be subsets of X.

Then, the characteristic series of S1 ∪ · · · ∪ Sn expresses as

fS1∪···∪Sn =
∑
`>1

{i1,...,i`}⊆[n]

(−1)`+1 fSi1∩···∩Si`
.
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Enumeration map and compatible operations

Let X be a set endowed with a size map | − | : X → N.

The enumeration map

en : K 〈〈X 〉〉 → K 〈〈z〉〉

is the linear map satisfying

en(x) = z|x|.

When X is combinatorial (that is, each fiber |n|−1 is finite),

en (fX ) is the generating series of X, enumerating its elements

w.r.t. their sizes.

A k-ary product ? : K 〈〈X 〉〉⊗k → K 〈〈X 〉〉 is enumeration-compatible

if

en (? (f1, . . . , fk)) =
∏
i∈[k]

en (fi)

for all X-series f1, ..., fk.
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Composition of tree series

The composition of the S(G)-series f and g1, ..., gn is the

series

f ◦̄ [g1, . . . ,gn] :=
∑

t∈S(G)(n)
s1,...,sn∈S(G)

〈t, f〉 ∏
i∈[n]

〈si,gi〉

 t ◦ [s1, . . . , sn] .

Observe that this product is linear in all its arguments.

� Example �

 a +
b

b
+ c

 ◦̄[ , c , a + b

]
=

b

c

b

a

+

b

c

b

b

+
c

c a
+

c

c b

For any t ∈ S(G)(n), let ◦̄t : K 〈〈S(G)〉〉⊗n → K 〈〈S(G)〉〉 be the

product defined by

◦̄t (g1, . . . ,gn) := f{t}◦̄ [g1, . . . ,gn] .

for all tree series g1, ..., gn.

These products ◦̄t are enumeration-compatible.
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These products ◦̄t are enumeration-compatible.
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Composition of tree series

The composition of the S(G)-series f and g1, ..., gn is the

series

f ◦̄ [g1, . . . ,gn] :=
∑

t∈S(G)(n)
s1,...,sn∈S(G)

〈t, f〉 ∏
i∈[n]

〈si,gi〉

 t ◦ [s1, . . . , sn] .

Observe that this product is linear in all its arguments.

� Example �

 a +
b

b
+ c

 ◦̄[ , c , a + b

]
=

b

c

b

a

+

b

c

b

b

+
c

c a
+

c

c b
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Series of trees avoiding patterns

For any P,Q ⊆ S(G), let

F(P,Q) :=
∑

t∈S(G)
t∈A(P)

∀s∈Q,s��4p t

t.

This is the formal sum of all the G-trees avoiding as factors

all patterns of P and avoiding as prefixes all patterns of Q.

Since

I F(P, ∅) is the characteristic series of A(P);

I the enumeration en(F(P, ∅)) is the generating series of A(P);

then the series F(P,Q) contains all the enumerative data about

the trees avoiding P.

We describe a system of equations for F(P, ∅) using sums,

multiplications by scalars, and operations ◦̄a, a ∈ G.
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System of equations

When G, P, and Q satisfy some conditions, F(P,Q) expresses as

an inclusion-exclusion formula involving simpler terms F (P,Si).

� Theorem [G., 2019] �

The series F(P,Q) satisfies

F(P,Q) = +
∑
k>1

a∈G(k)

∑
`>1{

R(1),...,R(`)
}
⊆M((P∪Q)a)

(S1,...,Sk)=R(1)u···uR(`)

(−1)
1+` ◦̄a (F (P,S1) , . . . ,F (P,Sk)) .

This leads to a system of equations for the generating series of

A(P).

Indeed, the generating series of A(P) is the series F (P, ∅) where

F(P,Q) = z +
∑
k>1

a∈G(k)

∑
`>1{

R(1),...,R(`)
}
⊆M((P∪Q)a)

(S1,...,Sk)=R(1)u···uR(`)

(−1)
1+`

∏
i∈[k]

F (P,Si) .
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System of equations

� Example �

Let

P :=

{
a

a

b

}
.

We obtain the system of formal power series of trees

F(P, ∅) = + ◦̄a (F(P, {a}),F(P, ∅)) + ◦̄a (F(P, ∅),F(P, {b}))
− ◦̄a (F(P, {a}),F(P, {b})) + ◦̄b (F(P, ∅),F(P, ∅)) ,

F(P, {a}) = + ◦̄b (F(P, ∅),F(P, ∅)) ,
F(P, {b}) = + ◦̄a (F(P, {a}),F(P, ∅)) + ◦̄a (F(P, ∅),F(P, {b}))

− ◦̄a (F(P, {a}),F(P, {b})) .

This leads to the system of generating series

F(P, ∅) = z + F(P, {a})F(P, ∅) + F(P, ∅)F(P, {b})
− F(P, {a})F(P, {b}) + F(P, ∅)F(P, ∅),

F(P, {a}) = z + F(P, ∅)F(P, ∅),
F(P, {b}) = z + F(P, {a})F(P, ∅) + F(P, ∅)F(P, {b})

− F(P, {a})F(P, {b}).

As a consequence, F(P, ∅) satisfies

z − F(P, ∅) + (2 + z)F(P, ∅)2 − F(P, ∅)3 + F(P, ∅)4 = 0.
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Operads and enumeration
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Operators

An operator is an entity having n > 1 inputs and a single output:

x

1 n. . .

The arity |x| of x is its number n of inputs.

Composing two operators x and y consists in

1. selecting an input of x specified by its position i;

2. grafting the output of y onto this input.

This produces a new operator

x

1 |x|i. . . . . .

◦i y

1 |y|. . .

=

x

1 |x|+|y|−1. . . . . .y

i i+|y|−1. . .

of arity |x|+ |y| − 1.
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Operads

Operads are algebraic structures formalizing the notion of

operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set

O :=
⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.

22 / 39



Operads

Operads are algebraic structures formalizing the notion of

operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set

O :=
⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.

22 / 39



Operads

Operads are algebraic structures formalizing the notion of

operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set

O :=
⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.

22 / 39



Operads

Operads are algebraic structures formalizing the notion of

operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set

O :=
⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.

22 / 39



Operads

Operads are algebraic structures formalizing the notion of

operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set

O :=
⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.

22 / 39



Operad axioms

The associativity relation

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)

1 6 i 6 |x|, 1 6 j 6 |y|
says that the pictured operation

can be constructed from top to

bottom or from bottom to top.

x

1 |x|+|y|+|z|−2. . . . . .y

i i+|y|+|z|−2. . . . . .z

i+j−1 i+j+|z|−2. . .

The commutativity relation

(x ◦i y) ◦j+|y|−1 z = (x ◦j z) ◦i y
1 6 i < j 6 |x|
says that the pictured operation

can be constructed from left to

right or from right to left.

x

1 |x|+|y|+|z|−2. . . . . .
. . .y

i i+|y|−1. . .

z

j+|y|+|z|−2j+|y|−1. . .

The unitality relation

1 ◦1 x = x = x ◦i 1
1 6 i 6 |x|

says that 1 is the identity map.

1 =
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Free operads

Let G be an alphabet.

The free operad on G is the operad on the set S(G) wherein

I elements of arity n are the G-trees of arity n;

I the partial composition map ◦i is the one of the G-trees;

I the unit is .

Let c : G→ S(G) be the natural injection.

Free operads satisfy the following universality property.

For any alphabet G, any operad

O, and any map f : G → O
preserving the arities, there

exists a unique operad morphism

φ : S(G)→ O such that f = φ ◦ c.

G O

S(G)

f

c φ
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From monoids to operads

Let (M, ?,1M) be a monoid.

We define (TM, ◦i,1) as the triple such that

I TM(n) is the set of all words of length n on M seen as an

alphabet.

I For any u ∈ TM(n) and v ∈ TM(m),

u ◦i v := u1 . . . ui−1 (ui ? v1) . . . (ui ? vm) ui+1 . . . un.

I 1 is defined as 1M seen as a word of length 1.

� Example �

In T(N,+, 0),

2100213 ◦5 3001 = 2100522313.

� Theorem [G., 2015] �

For any monoid M, TM is an operad.
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Some combinatorial suboperads

Monoid Operad Generators First dimensions Comb. objects

(N,+, 0)

End �- 1, 4, 27, 256, 3125 Endofunctions

PF �- 1, 3, 16, 125, 1296 Parking functions

PW �- 1, 3, 13, 75, 541 Packed words

Per0 �- 1, 2, 6, 24, 120 Permutations

PRT 01 1, 1, 2, 5, 14, 42 Planar rooted trees

FCat(m) 00, 01, ..., 0m Fuss-Catalan numbers m-trees

Schr 00, 01, 10 1, 3, 11, 45, 197 Schröder trees

Motz 00, 010 1, 1, 2, 4, 9, 21, 51 Motzkin words

(Z/2Z,+, 0) Comp 00, 01 1, 2, 4, 8, 16, 32 Compositions

(Z/3Z,+, 0)
DA 00, 01 1, 2, 5, 13, 35, 96 Directed animals

SComp 00, 01, 02 1, 3, 27, 81, 243 Seg. compositions

(N,max, 0)
Dias 01, 10 1, 2, 3, 4, 5 Some bin. words

Trias 00, 01, 10 1, 3, 7, 15, 31 Some bin. words
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Diagram of operads

T(N,+, 0)

T (Z/2Z,+, 0) T (Z/3Z,+, 0)End

PF

PW

Per0 Schr

FCat(1)

FCat(2)

FCat(3)

SComp

DAPRTMotzComp

FCat(0)

T(N,max, 0)

Trias

Dias
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Operads, presentations, and patterns

Let O be an operad.

A congruence of O is an equivalence relation ≡ on O preserving

the arities and such that x ≡ x′ and y ≡ y′ imply x ◦i y ≡ x′ ◦i y′

for all i ∈ [|x|].

A presentation of O is a pair (G,≡) such that G is an alphabet

and ≡ is a congruence of O satisfying

O ' S(G)/≡.

A basis of O is a subset B of S(G) such that for any

[t]≡ ∈ S(G)/≡, there exists a unique s ∈ B such that s ∈ [t]≡.

� Link between bases and pattern avoidance �

In most cases, B can be described as the set of G-trees avoiding a

subset PB of S(G).
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Operads and enumeration

Let X =
⊔

n>1 X (n) be a family of combinatorial objects, and

consider that we want to describe the generating series

en (fX ) =
∑
n>1

#X (n)zn.

� Operads as tools for enumeration �

The approach using operads consists in

1. endowing X with the structure of an operad OX ;

2. exhibiting a presentation (G,≡) of OX and a basis B;

3. computing the series F (PB, ∅) where PB is a set of G-trees
satisfying A (PB) = B.

By the previous results,

F (PB, ∅) = fX ,

so that en(F (PB, ∅)) is the generating series of X.
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Schröder trees

Let Schr be the suboperad of T (N,+, 0) generated by

G := {00, 01, 10}.

� Proposition �

The set Schr contains exactly all the words u having at least a 0 and,

for any letter ui > 1, there is a letter uj = ui − 1 and the letters of

the factor of u between ui and uj is made of letters uk > ui.

Moreover, the set Schr(n) is in one-to-one correspondence with the set

of Schröder trees with n + 1 leaves.

� Example �

1132002122 ←→
1 1

3

2

0 0

2

1

2 2

←→

The first dimensions of Schr are hence

1, 3, 11, 45, 197, 903, 4279, 20793 (A001003).
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Schröder trees

� Proposition �

The operad Schr admits the presentation (G,≡) where ≡ is the smallest

operad congruence satisfying

c(00) ◦1 c(00) ≡ c(00) ◦2 c(00),

c(01) ◦1 c(10) ≡ c(10) ◦2 c(01),

c(00) ◦1 c(01) ≡ c(00) ◦2 c(10),

c(01) ◦1 c(00) ≡ c(00) ◦2 c(01),

c(00) ◦1 c(10) ≡ c(10) ◦2 c(00),

c(01) ◦1 c(01) ≡ c(01) ◦2 c(00),

c(10) ◦1 c(00) ≡ c(10) ◦2 c(10).

� Proposition �

The set of the G-trees avoiding the set

P :=

{
00

00 ,
10

01 ,
01

00 ,
00

01 ,
10

00 ,
01

01 , 10

10

}
is a basis of Schr.

The characteristic series of this basis satisfies

F (P, ∅) = + ◦̄00 (F (P,G) ,F (P, ∅)) + ◦̄01 (F (P,G) ,F (P, ∅))

+ ◦̄10 (F (P, ∅) ,F (P, {10})) ,

F (P,G) = ,

F (P, {10}) = + ◦̄00 (F (P,G) ,F (P, ∅)) + ◦̄01 (F (P,G) ,F (P, ∅)) .
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Schröder trees

The generating series of these trees enumerated w.r.t. their

arities (parameter z) and the numbers of internal nodes by types

(parameters qa, a ∈ G) satisfies

z + (z (q00 + q01 + q10)− 1)F (P, ∅) + (z (q00q10 + q01q10))F (P, ∅)2 = 0.

One has

F(P, ∅) = z + (q00 + q01 + q10) z
2

+
(
q
2
00 + 2q00q01 + 3q00q10 + q

2
01 + 3q01q10 + q

2
10

)
z
3

+
(
q
3
00 + 3q

2
00q01 + 6q

2
00q10 + 3q00q

2
01 + 12q00q01q10 + 6q00q

2
10

+q
3
01 + 6q

2
01q10 + 6q01q

2
10 + q

3
10

)
z
4

+ · · · .

The coefficients of the bivariate series obtained by specializing

q10 and q01 (resp. q00 and q01) to 1 are the ones of

Triangle A126216 (resp. Triangle A114656).
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m-trees

For any m > 0, let FCat(m) be the suboperad of T(N,+, 0)

generated by G := {00, 01, . . . , 0m}.

� Proposition �

The set FCat(m) contains exactly all the words u satisfying u1 = 0 and

ui ∈ [0, ui−1 + m] for all valid positions i and i− 1.

Moreover, the set FCat(m)(n) is in one-to-one correspondence with the

set of planar rooted trees with wherein all their n internal nodes have

m + 1 children.

� Example �

For m := 2,

024021121 ←→ 4

2

0

2

0

1

1

2 1

←→

The dimensions of FCat(m) are hence Fuss-Catalan numbers.
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m-trees

� Proposition �

The operad FCat(m) admits the presentation (G,≡) where ≡ is the

smallest operad congruence satisfying

c (0k3) ◦1 c (0k1) ≡ c (0k1) ◦2 c (0k2) , k3 = k1 + k2.

� Proposition �

The set of the G-trees avoiding the set

P :=

 0k1

0k3

: 0 6 k1 6 k3 6 m


is a basis of FCat(m).

The characteristic series of this basis satisfies

F(P, ∅) = +
∑

06k6m

◦̄0k (F (P,Qk) ,F(P, ∅)) ,

F (P,Qk) = +
∑

k<k′6m

◦̄0k′ (F (P,Qk′ ) ,F(P, ∅)) ,

where
Qk := {00, 01, . . . , 0k}.
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m-trees

The generating series of these trees enumerated w.r.t. their

arities (parameter z) and the numbers of internal nodes by types

(parameters qa, a ∈ G) satisfies

−F (P, ∅) + z
∏

06k6m
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Directed animals

Let DA be the suboperad of (Z/3Z,+, 0) generated by G := {00, 01}.

� Proposition �

The set DA(n) is in one-to-one correspondence with the set of prefixes

of Motkzin paths of n− 1 steps.

� Example �

01001010121 ←→ 11̄011̄11̄111̄ ←→

Since prefixes of Motzkin paths are in one-to-one correspondence

with directed animals on the square lattice [Gouyou-Beauchamps,

Viennot, 1988], DA is an operad on such objects.

The first dimensions of DA are

1, 2, 5, 13, 35, 96, 267, 750, 2123 (A005773).
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Directed animals

� Proposition �

The operad DA admits the presentation (G,≡) where ≡ is the smallest

operad congruence satisfying

c(00) ◦1 c(00) ≡ c(00) ◦2 c(00),

c(01) ◦1 c(00) ≡ c(00) ◦2 c(01),

c(01) ◦1 c(01) ≡ c(01) ◦2 c(00),

(c(00) ◦1 c(01)) ◦2 c(01) ≡ (c(01) ◦2 c(01)) ◦3 c(01).

� Proposition �

The set of the G-trees avoiding the set

P :=

 00

00
,

00

01
,

01

00
,

01

01

01


is a basis of DA.
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Directed animals

The characteristic series of the previous basis of DA satisfies

F(P, ∅) = + ◦̄00 (F(P, {00}),F(P, ∅)) + ◦̄01 (F(P, {00}),F (P, {00, t})) ,
F(P, {00}) = + ◦̄01 (F(P, {00}),F (P, {00, t})) ,

F (P, {00, t}) = + ◦̄01 (F(P, {00}),F (P, {00, 01, t})) ,
F (P, {00, 01, t}) = .

where t := c(01) ◦2 c(01).

The generating series of these trees enumerated w.r.t. their

arities (parameter z) and the numbers of internal nodes by types

(parameters qa, a ∈ G) satisfies

F(P, ∅) =
1−

√
1− 2zq01 − 3z2q201 − z(2q00 + q01)

2z
(
q200 + q00q01 + q201

)
− 2q00

One has
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2
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3
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4
01 + 21q

5
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)
z
6

+ · · · .

The coefficients of the bivariate series obtained by specializing

q10 (resp. q00) to 1 are the ones of Triangle A064189 (resp.

Triangle A026300).
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