Pattern avoidance in trees, operads, and enumeration

Samuele Giraudo

LIGM, Université Paris-Est Marne-la-Vallée

Séminaire CALIN du LIPN

September 17, 2019

Outline

Syntax trees and patterns

Operads and enumeration

Examples

Outline

Syntax trees and patterns

Syntax trees

An alphabet is a graded set $\mathfrak{G}:=\bigsqcup_{n\geqslant 1}\mathfrak{G}(n).$

Syntax trees

An alphabet is a graded set $\mathfrak{G} := \bigsqcup_{n \geq 1} \mathfrak{G}(n)$.

Let $\mathbf{S}(\mathfrak{G})$ be the set of $\mathfrak{G}\text{-syntax}$ trees defined recursively as

- ightharpoonup $| \in S(\mathfrak{G})$, where | is the leaf;
- ▶ if $a \in \mathfrak{G}$ and $\mathfrak{t}_1, \dots, \mathfrak{t}_{|a|} \in \mathbf{S}(\mathfrak{G})$, then $a(\mathfrak{t}_1, \dots, \mathfrak{t}_{|a|}) \in \mathbf{S}(\mathfrak{G})$.

- Example -

Let $\mathfrak{G} := \mathfrak{G}(2) \sqcup \mathfrak{G}(3)$ such that $\mathfrak{G}(2) = \{a, b\}$ and $\mathfrak{G}(3) = \{c\}$.

denotes the G-tree

$$c\left(\;|,c\left(\;a\left(\;|,|\right),|,b\left(\;a\left(\;|,|\right),c\left(\;|,|,|\right)\;\right)\;\right),b\left(\;|,b\left(\;|,|\right)\;\right)\;\right)$$

Syntax trees

An alphabet is a graded set $\mathfrak{G} := \bigsqcup_{n\geqslant 1} \mathfrak{G}(n)$.

Let $\mathbf{S}(\mathfrak{G})$ be the set of $\mathfrak{G}\text{-syntax}$ trees defined recursively as

- ightharpoonup $\mid \in \mathbf{S}(\mathfrak{G})$, where \mid is the leaf;
- ▶ if $a \in \mathfrak{G}$ and $\mathfrak{t}_1, \dots, \mathfrak{t}_{|a|} \in \mathbf{S}(\mathfrak{G})$, then $a(\mathfrak{t}_1, \dots, \mathfrak{t}_{|a|}) \in \mathbf{S}(\mathfrak{G})$.

Let $\mathfrak{t} = a (\mathfrak{t}_1, \dots, \mathfrak{t}_{|a|}) \in \mathbf{S}(\mathfrak{G})$. Some definitions:

- ▶ the degree deg(t) of t is its number of internal nodes;
- ▶ the arity |t| of t is its number of leaves;
- ▶ for any $i \in [|a|]$, $\mathfrak{t}(i)$ is the i-th subtree \mathfrak{t}_i of \mathfrak{t} .

- Example

Let $\mathfrak{G} := \mathfrak{G}(2) \sqcup \mathfrak{G}(3)$ such that $\mathfrak{G}(2) = \{a, b\}$ and $\mathfrak{G}(3) = \{c\}$.

denotes the G-tree

$$c(|,c(a(|,|),|,b(a(|,|),c(|,|,|))),b(|,b(|,|)))$$

having degree 8 and arity 12.

Compositions of syntax trees

Let $\mathfrak{t},\mathfrak{s}\in\mathbf{S}(\mathfrak{G})$. For each $i\in[|\mathfrak{t}|]$, the partial composition $\mathfrak{t}\circ_i\mathfrak{s}$ is the tree obtained by grafting the root of \mathfrak{s} onto the i-th leaf of \mathfrak{t} .

Compositions of syntax trees

Let $\mathfrak{t},\mathfrak{s}\in\mathbf{S}(\mathfrak{G})$. For each $i\in[|\mathfrak{t}|]$, the partial composition $\mathfrak{t}\circ_i\mathfrak{s}$ is the tree obtained by grafting the root of \mathfrak{s} onto the i-th leaf of \mathfrak{t} .

Let \mathfrak{t} , \mathfrak{s}_1 , ..., $\mathfrak{s}_{|\mathfrak{t}|}$ be \mathfrak{G} -trees. The full composition $\mathfrak{t} \circ [\mathfrak{s}_1, \ldots, \mathfrak{s}_{|\mathfrak{t}|}]$ is obtained by grafting simultaneously the roots of each \mathfrak{s}_i onto the i-th leaf of \mathfrak{t} .

Factors and prefixes

Let $\mathfrak{t},\mathfrak{s}\in\mathbf{S}(\mathfrak{G})$.

Factors and prefixes

Let $\mathfrak{t},\mathfrak{s}\in\mathbf{S}(\mathfrak{G})$.

If t decomposes as

$$\mathfrak{t}=\mathfrak{r}\circ_i\left(\mathfrak{s}\circ\left[\mathfrak{r}_1,\ldots,\mathfrak{r}_{\left[\mathfrak{s}\right|}
ight]
ight)$$

for some trees \mathfrak{r} , \mathfrak{r}_1 , ..., $\mathfrak{r}_{|\mathfrak{s}|}$, and $i\in[|\mathfrak{r}|]$, then \mathfrak{s} is a factor of $\mathfrak{t}.$

This property is denoted by $\mathfrak{s} \preccurlyeq_{\mathrm{f}} \mathfrak{t}$.

Factors and prefixes

Let $\mathfrak{t},\mathfrak{s}\in\mathbf{S}(\mathfrak{G})$.

If t decomposes as

$$\mathfrak{t}=\mathfrak{r}\circ_i\left(\mathfrak{s}\circ\left[\mathfrak{r}_1,\ldots,\mathfrak{r}_{\left[\mathfrak{s}
ight]}
ight]
ight)$$

for some trees \mathfrak{r} , \mathfrak{r}_1 , ..., $\mathfrak{r}_{|\mathfrak{s}|}$, and $i\in[|\mathfrak{r}|]$, then \mathfrak{s} is a factor of $\mathfrak{t}.$

This property is denoted by $\mathfrak{s} \preccurlyeq_{\mathrm{f}} \mathfrak{t}$.

If in the previous decomposition $\mathfrak{r}=1$, then

$$\mathfrak{t} = \mathfrak{s} \circ [\mathfrak{r}_1, \dots, \mathfrak{r}_{[\mathfrak{s}]}],$$

and \mathfrak{s} is a prefix of \mathfrak{t} .

This property is denoted by $\mathfrak{s} \preccurlyeq_{p} \mathfrak{t}$.

A G-tree t avoids (resp. prefix-avoids) a G-tree s if s $\not \ll_f t$ (resp. $s \not \ll_p t$).

For any $\mathcal{P}\subseteq \mathbf{S}(\mathfrak{G})$, let

$$A(\mathcal{P}):=\left\{\mathfrak{t}\in\mathbf{S}(\mathfrak{G}):\text{ for all }\mathfrak{s}\in\mathcal{P},\mathfrak{s}\cancel{\preccurlyeq_{f}}\mathfrak{t}\right\}.$$

A G-tree t avoids (resp. prefix-avoids) a G-tree s if $s \not \ll_f t$ (resp. $s \not \ll_p t$).

For any
$$\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G})$$
, let

$$A(\mathcal{P}) := \left\{\mathfrak{t} \in \mathbf{S}(\mathfrak{G}): \text{ for all } \mathfrak{s} \in \mathcal{P}, \mathfrak{s} \not \ll_f \mathfrak{t} \right\}.$$

- Question -

Enumerate $\mathrm{A}(\mathcal{P})$ w.r.t. the arities of the trees.

A G-tree t avoids (resp. prefix-avoids) a G-tree s if $s \not \ll_f t$ (resp. $s \not \ll_p t$).

For any $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G})$, let

$$A(\mathcal{P}) := \{\mathfrak{t} \in \mathbf{S}(\mathfrak{G}): \text{ for all } \mathfrak{s} \in \mathcal{P}, \mathfrak{s} \not \ll_f \mathfrak{t} \} \,.$$

- Examples

- Question -

Enumerate $A(\mathcal{P})$ w.r.t. the arities of the trees.

A G-tree t avoids (resp. prefix-avoids) a G-tree s if $s \not \ll_f t$ (resp. $s \not \ll_p t$).

For any $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G})$, let

$$A(\mathcal{P}) := \{\mathfrak{t} \in \mathbf{S}(\mathfrak{G}): \text{ for all } \mathfrak{s} \in \mathcal{P}, \mathfrak{s} \not \ll_f \mathfrak{t} \} \,.$$

- Examples

- $A \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ a & 1$

- Question -

Enumerate $A(\mathcal{P})$ w.r.t. the arities of the trees.

A G-tree t avoids (resp. prefix-avoids) a G-tree s if $s \not \ll_f t$ (resp. $s \not \ll_p t$).

For any $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G})$, let

$$A(\mathcal{P}) := \{\mathfrak{t} \in \mathbf{S}(\mathfrak{G}): \text{ for all } \mathfrak{s} \in \mathcal{P}, \mathfrak{s} \not \ll_f \mathfrak{t} \} \,.$$

- Examples

- $A \begin{pmatrix} \frac{1}{a} & \frac{1}{b} & \frac{1}{b} & \frac{1}{b} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{b} & \frac{1}{b} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{b} & \frac{1}{b} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{b} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} \\ \frac{a}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\$

- Question -

Enumerate $\mathrm{A}(\mathcal{P})$ w.r.t. the arities of the trees.

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{1\}$ and $a \in \mathfrak{G}(k)$.

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{1\}$ and $a \in \mathfrak{G}(k)$.

Let \mathcal{P}_a be the subset of \mathcal{P} of the trees whose roots are labeled by a.

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{ \mid \}$ and $a \in \mathfrak{G}(k)$.

Let \mathcal{P}_a be the subset of \mathcal{P} of the trees whose roots are labeled by a.

A sequence $\mathcal{S}:=(\mathcal{S}_1,\ldots,\mathcal{S}_k)$, where each \mathcal{S}_i is a subset of $\mathbf{S}(\mathfrak{G})$, is \mathcal{P}_a -consistent if for any $\mathfrak{s}\in\mathcal{P}_a$, there is an $i\in[k]$ such that $\mathfrak{s}(i)\neq 1$ and $\mathfrak{s}(i)\in\mathcal{S}_i$.

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{1\}$ and $a \in \mathfrak{G}(k)$.

Let \mathcal{P}_a be the subset of \mathcal{P} of the trees whose roots are labeled by a.

A sequence $\mathcal{S}:=(\mathcal{S}_1,\ldots,\mathcal{S}_k)$, where each \mathcal{S}_i is a subset of $\mathbf{S}(\mathfrak{G})$, is \mathcal{P}_a -consistent if for any $\mathfrak{s}\in\mathcal{P}_a$, there is an $i\in[k]$ such that $\mathfrak{s}(i)\neq 1$ and $\mathfrak{s}(i)\in\mathcal{S}_i$.

- Example

Let the set of patterns

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{1\}$ and $a \in \mathfrak{G}(k)$.

Let \mathcal{P}_a be the subset of \mathcal{P} of the trees whose roots are labeled by a.

A sequence $\mathcal{S}:=(\mathcal{S}_1,\ldots,\mathcal{S}_k)$, where each \mathcal{S}_i is a subset of $\mathbf{S}(\mathfrak{G})$, is \mathcal{P}_a -consistent if for any $\mathfrak{s}\in\mathcal{P}_a$, there is an $i\in[k]$ such that $\mathfrak{s}(i)\neq 1$ and $\mathfrak{s}(i)\in\mathcal{S}_i$.

- Example

Let the set of patterns

$$\mathcal{P} := \left\{ \begin{array}{cccc} \frac{1}{a} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} \\ \frac{1}{c} & \frac{1}{$$

The sequence

$$\mathcal{S} := \left(\left\{ \begin{array}{c} \frac{1}{a} \\ \frac{1}{a} \end{array} \right\}, \ \left\{ \begin{array}{c} \frac{1}{b}, & \stackrel{1}{\stackrel{c}{\sim}} \\ \frac{1}{a} \\ \stackrel{1}{\nearrow} & \stackrel{1}{\nearrow} \end{array} \right\}, \ \left\{ \begin{array}{c} \frac{1}{a}, & \stackrel{1}{\stackrel{a}{\sim}} \\ \frac{1}{\nearrow} & \stackrel{1}{\stackrel{\sim}{\sim}} \end{array} \right\} \right)$$

is \mathcal{P}_c -consistent.

Let $\mathcal{P}\subseteq \mathbf{S}(\mathfrak{G})\setminus\{\,|\,\}$, $a\in\mathfrak{G}(k)$, and $\mathcal{S}:=(\mathcal{S}_1,\ldots,\mathcal{S}_k)$ be a \mathcal{P}_a -consistent sequence.

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{ \mathbf{I} \}$, $a \in \mathfrak{G}(k)$, and $\mathcal{S} := (\mathcal{S}_1, \dots, \mathcal{S}_k)$ be a \mathcal{P}_a -consistent sequence.

A \mathfrak{G} -tree \mathfrak{t} is \mathcal{S} -admissible if the root of \mathfrak{t} is labeled by a and for all $i \in [k]$, $\mathfrak{t}(i)$ prefix-avoids \mathcal{S}_i .

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{l\}$, $a \in \mathfrak{G}(k)$, and $\mathcal{S} := (\mathcal{S}_1, \dots, \mathcal{S}_k)$ be a \mathcal{P}_a -consistent sequence.

A \mathfrak{G} -tree \mathfrak{t} is S-admissible if the root of \mathfrak{t} is labeled by a and for all $i \in [k]$, $\mathfrak{t}(i)$ prefix-avoids S_i .

- Example

Let the set of patterns

and the \mathcal{P}_c -consistent word

$$\mathcal{S} := \left(\left\{ \begin{smallmatrix} 1 \\ a \\ / \land \end{smallmatrix} \right\}, \; \left\{ \begin{smallmatrix} 1 \\ b \\ / \land \end{smallmatrix}, \; \begin{smallmatrix} 1 \\ a \\ / \land \end{smallmatrix} \right\}, \; \left\{ \begin{smallmatrix} 1 \\ 1 \\ a \\ / \land \end{smallmatrix}, \; \begin{smallmatrix} 1 \\ a \\ / \land \end{smallmatrix} \right\} \right).$$

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{ \mathbb{I} \}$, $a \in \mathfrak{G}(k)$, and $\mathcal{S} := (\mathcal{S}_1, \dots, \mathcal{S}_k)$ be a \mathcal{P}_a -consistent sequence.

A \mathfrak{G} -tree \mathfrak{t} is S-admissible if the root of \mathfrak{t} is labeled by a and for all $i \in [k]$, $\mathfrak{t}(i)$ prefix-avoids S_i .

- Example -

Let the set of patterns

and the \mathcal{P}_c -consistent word

$$\mathcal{S} := \left(\left\{ \begin{smallmatrix} 1 \\ a \\ / \land \end{smallmatrix} \right\}, \; \left\{ \begin{smallmatrix} 1 \\ b \\ / \land \end{smallmatrix}, \; \begin{smallmatrix} 1 \\ c \\ / \land \end{smallmatrix} \right\}, \; \left\{ \begin{smallmatrix} 1 \\ a \\ / \land \end{smallmatrix}, \; \begin{smallmatrix} 1 \\ a \\ / \land \end{smallmatrix} \right\} \right).$$

The tree

is S-admissible.

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{i\}$, $a \in \mathfrak{G}(k)$, and $\mathcal{S} := (\mathcal{S}_1, \dots, \mathcal{S}_k)$ and $\mathcal{S}' := (\mathcal{S}'_1, \dots, \mathcal{S}'_k)$ be two sequences of subsets of $\mathbf{S}(\mathfrak{G})$.

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{i\}$, $a \in \mathfrak{G}(k)$, and $\mathcal{S} := (\mathcal{S}_1, \dots, \mathcal{S}_k)$ and $\mathcal{S}' := (\mathcal{S}'_1, \dots, \mathcal{S}'_k)$ be two sequences of subsets of $\mathbf{S}(\mathfrak{G})$.

The sum of ${\mathcal S}$ and ${\mathcal S}'$ is the sequence

$$\mathcal{S} \dotplus \mathcal{S}' := \left(\mathcal{S}_1 \cup \mathcal{S}_1', \dots, \mathcal{S}_k \cup \mathcal{S}_k'\right).$$

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{i\}$, $a \in \mathfrak{G}(k)$, and $\mathcal{S} := (\mathcal{S}_1, \dots, \mathcal{S}_k)$ and $\mathcal{S}' := (\mathcal{S}'_1, \dots, \mathcal{S}'_k)$ be two sequences of subsets of $\mathbf{S}(\mathfrak{G})$.

The sum of ${\mathcal S}$ and ${\mathcal S}'$ is the sequence

$$\mathcal{S} \dotplus \mathcal{S}' := \left(\mathcal{S}_1 \cup \mathcal{S}_1', \dots, \mathcal{S}_k \cup \mathcal{S}_k'\right).$$

A \mathcal{P}_a -consistent word \mathcal{S} is minimal if for any decomposition $\mathcal{S}=\mathcal{S}'\dotplus\mathcal{S}''$ where \mathcal{S}' is a \mathcal{P}_a -consistent word and \mathcal{S}'' is a sequence of subsets of $\mathbf{S}(\mathfrak{G})$, one has $\mathcal{S}=\mathcal{S}'$.

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{i\}$, $a \in \mathfrak{G}(k)$, and $\mathcal{S} := (\mathcal{S}_1, \dots, \mathcal{S}_k)$ and $\mathcal{S}' := (\mathcal{S}'_1, \dots, \mathcal{S}'_k)$ be two sequences of subsets of $\mathbf{S}(\mathfrak{G})$.

The sum of ${\mathcal S}$ and ${\mathcal S}'$ is the sequence

$$\mathcal{S} \dotplus \mathcal{S}' := \left(\mathcal{S}_1 \cup \mathcal{S}'_1, \dots, \mathcal{S}_k \cup \mathcal{S}'_k\right).$$

A \mathcal{P}_a -consistent word \mathcal{S} is minimal if for any decomposition $\mathcal{S}=\mathcal{S}'\dotplus\mathcal{S}''$ where \mathcal{S}' is a \mathcal{P}_a -consistent word and \mathcal{S}'' is a sequence of subsets of $\mathbf{S}(\mathfrak{G})$, one has $\mathcal{S}=\mathcal{S}'$.

Let $\mathfrak{M}\left(\mathcal{P}_{a}
ight)$ be the set of all minimal \mathcal{P}_{a} -consistent words.

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{ \mid \}$, $a \in \mathfrak{G}(k)$, and $\mathcal{S} := (\mathcal{S}_1, \dots, \mathcal{S}_k)$ and $\mathcal{S}' := (\mathcal{S}'_1, \dots, \mathcal{S}'_k)$ be two sequences of subsets of $\mathbf{S}(\mathfrak{G})$.

The sum of ${\mathcal S}$ and ${\mathcal S}'$ is the sequence

$$\mathcal{S} \dotplus \mathcal{S}' := (\mathcal{S}_1 \cup \mathcal{S}'_1, \dots, \mathcal{S}_k \cup \mathcal{S}'_k)$$
.

A \mathcal{P}_a -consistent word \mathcal{S} is minimal if for any decomposition $\mathcal{S}=\mathcal{S}'\dotplus\mathcal{S}''$ where \mathcal{S}' is a \mathcal{P}_a -consistent word and \mathcal{S}'' is a sequence of subsets of $\mathbf{S}(\mathfrak{G})$, one has $\mathcal{S}=\mathcal{S}'$.

Let $\mathfrak{M}\left(\mathcal{P}_{a}\right)$ be the set of all minimal \mathcal{P}_{a} -consistent words.

- Examples \cdot

Let the set of patterns

$$\mathcal{P}:=\left\{\begin{array}{cccc} \frac{1}{\alpha}, & \frac{1}{\alpha^2}, & \frac{$$

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{ \mid \}$, $a \in \mathfrak{G}(k)$, and $\mathcal{S} := (\mathcal{S}_1, \dots, \mathcal{S}_k)$ and $\mathcal{S}' := (\mathcal{S}'_1, \dots, \mathcal{S}'_k)$ be two sequences of subsets of $\mathbf{S}(\mathfrak{G})$.

The sum of ${\mathcal S}$ and ${\mathcal S}'$ is the sequence

$$\mathcal{S} \dotplus \mathcal{S}' := (\mathcal{S}_1 \cup \mathcal{S}'_1, \dots, \mathcal{S}_k \cup \mathcal{S}'_k)$$
.

A \mathcal{P}_a -consistent word \mathcal{S} is minimal if for any decomposition $\mathcal{S}=\mathcal{S}'\dotplus\mathcal{S}''$ where \mathcal{S}' is a \mathcal{P}_a -consistent word and \mathcal{S}'' is a sequence of subsets of $\mathbf{S}(\mathfrak{G})$, one has $\mathcal{S}=\mathcal{S}'$.

Let $\mathfrak{M}\left(\mathcal{P}_{a}\right)$ be the set of all minimal \mathcal{P}_{a} -consistent words.

- Examples -

Let the set of patterns

$$\mathcal{P}:=\left\{\begin{array}{cccc} \frac{1}{\alpha}, & \frac{1}$$

We have $\mathfrak{M}\left(\mathcal{P}_{a}
ight)=\left\{\left(\left\{egin{array}{c} rac{1}{c} \\ \frac{1}{c} \end{array}
ight\},\;\;\emptyset
ight)
ight\},$

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{ \mid \}$, $a \in \mathfrak{G}(k)$, and $\mathcal{S} := (\mathcal{S}_1, \dots, \mathcal{S}_k)$ and $\mathcal{S}' := (\mathcal{S}_1', \dots, \mathcal{S}_k')$ be two sequences of subsets of $\mathbf{S}(\mathfrak{G})$.

The sum of ${\mathcal S}$ and ${\mathcal S}'$ is the sequence

$$\mathcal{S} \dotplus \mathcal{S}' := \left(\mathcal{S}_1 \cup \mathcal{S}_1', \dots, \mathcal{S}_k \cup \mathcal{S}_k'\right).$$

A \mathcal{P}_a -consistent word \mathcal{S} is minimal if for any decomposition $\mathcal{S}=\mathcal{S}'\dotplus\mathcal{S}''$ where \mathcal{S}' is a \mathcal{P}_a -consistent word and \mathcal{S}'' is a sequence of subsets of $\mathbf{S}(\mathfrak{G})$, one has $\mathcal{S}=\mathcal{S}'$.

Let $\mathfrak{M}\left(\mathcal{P}_{a}\right)$ be the set of all minimal \mathcal{P}_{a} -consistent words.

- Examples \cdot

Let the set of patterns

$$\mathcal{P}:=\left\{\begin{array}{cccc} \frac{1}{2} & \frac{1}{2}$$

We have $\mathfrak{M}\left(\mathcal{P}_{a}\right)=\left\{\left(\left\{\begin{array}{c} \frac{1}{a}\\ \frac{1}{a}\end{array}\right\},\;\;\emptyset\right)\right\},\;\;\mathfrak{M}\left(\mathcal{P}_{b}\right)=\left\{\left(\emptyset,\emptyset\right)\right\},$

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{i\}$, $a \in \mathfrak{G}(k)$, and $\mathcal{S} := (\mathcal{S}_1, \dots, \mathcal{S}_k)$ and $\mathcal{S}' := (\mathcal{S}'_1, \dots, \mathcal{S}'_k)$ be two sequences of subsets of $\mathbf{S}(\mathfrak{G})$.

The sum of ${\mathcal S}$ and ${\mathcal S}'$ is the sequence

$$\mathcal{S} \dotplus \mathcal{S}' := (\mathcal{S}_1 \cup \mathcal{S}'_1, \dots, \mathcal{S}_k \cup \mathcal{S}'_k)$$
.

A \mathcal{P}_a -consistent word \mathcal{S} is minimal if for any decomposition $\mathcal{S}=\mathcal{S}'\dotplus\mathcal{S}''$ where \mathcal{S}' is a \mathcal{P}_a -consistent word and \mathcal{S}'' is a sequence of subsets of $\mathbf{S}(\mathfrak{G})$, one has $\mathcal{S}=\mathcal{S}'$.

Let $\mathfrak{M}\left(\mathcal{P}_{a}\right)$ be the set of all minimal \mathcal{P}_{a} -consistent words.

- Examples -

Let the set of patterns

$$\mathcal{P}:=\left\{\begin{array}{cccc} \frac{1}{2} & \frac{1}{2}$$

We have $\mathfrak{M}\left(\mathcal{P}_{a}\right)=\left\{\left(\left\{\begin{array}{c} \frac{1}{c}\\ \frac{1}{c}\end{array}\right\},\;\;\emptyset\right)\right\},\;\;\mathfrak{M}\left(\mathcal{P}_{b}\right)=\left\{\left(\emptyset,\emptyset\right)\right\},$

$$\mathfrak{M}\left(\mathcal{P}_{\mathbf{c}}\right) = \left\{ \left(\left\{ \begin{array}{c} \frac{1}{\wedge} \\ \wedge \end{array} \right\}, \ \left\{ \begin{array}{c} \frac{1}{\wedge} \\ \wedge \end{array} \right\} \right), \ \left(\left\{ \begin{array}{c} \frac{1}{\wedge} \\ \wedge \end{array} \right\}, \ \emptyset, \ \left\{ \begin{array}{c} \frac{1}{\wedge} \\ \wedge \end{array} \right\} \right), \\ \left(\left\{ \begin{array}{c} \frac{1}{\wedge} \\ \wedge \end{array}, \begin{array}{c} \frac{1}{\wedge} \\ \wedge \end{array} \right\}, \ \emptyset, \ \emptyset \right) \right\}.$$

Minimal consistent words and pattern avoidance

- Lemma -

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{1\}$ and \mathfrak{t} be a \mathfrak{G} -tree with root labeled by a.

The following assertions are equivalent:

- 1. \mathfrak{t} prefix-avoids \mathcal{P} ;
- 2. there exists a minimal \mathcal{P}_a -consistent word \mathcal{S} such that \mathfrak{t} is \mathcal{S} -admissible.

Minimal consistent words and pattern avoidance

- Lemma -

Let $\mathcal{P} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{1\}$ and \mathfrak{t} be a \mathfrak{G} -tree with root labeled by a.

The following assertions are equivalent:

- 1. \mathfrak{t} prefix-avoids \mathcal{P} ;
- 2. there exists a minimal \mathcal{P}_a -consistent word \mathcal{S} such that \mathfrak{t} is \mathcal{S} -admissible.

- Lemma -

Let $\mathcal{P}, \mathcal{Q} \subseteq \mathbf{S}(\mathfrak{G}) \setminus \{ | \}$ and \mathfrak{t} be a \mathfrak{G} -tree with root labeled by $a \in \mathfrak{G}(k)$.

The following assertions are equivalent:

- 1. $\mathfrak t$ avoids $\mathcal P$ and prefix-avoids $\mathcal Q$;
- 2. for all $i\in[k]$, $\mathfrak{t}(i)$ avoid $\mathcal P$ and there exists a minimal $(\mathcal P\cup\mathcal Q)_a$ -consistent word $\mathcal S$ such that $\mathfrak t$ is $\mathcal S$ -admissible.

Let \mathbb{K} be the field $\mathbb{Q}\left(q_0,q_1,q_2,\dots\right)$ and \mathcal{X} be a set.

Let $\mathbb K$ be the field $\mathbb Q\left(q_0,q_1,q_2,\dots\right)$ and $\mathcal X$ be a set.

An $\mathcal{X}\text{-series}$ is a map

$$\mathbf{f}:\mathcal{X}\to\mathbb{K}.$$

Let $\mathbb K$ be the field $\mathbb Q\left(q_0,q_1,q_2,\dots\right)$ and $\mathcal X$ be a set.

An \mathcal{X} -series is a map

$$\mathbf{f}:\mathcal{X}\to\mathbb{K}.$$

The coefficient f(x) of $x \in \mathcal{X}$ in f is denoted by $\langle x, f \rangle$.

Let $\mathbb K$ be the field $\mathbb Q\left(q_0,q_1,q_2,\ldots
ight)$ and $\mathcal X$ be a set.

An \mathcal{X} -series is a map

$$\mathbf{f}: \mathcal{X} \to \mathbb{K}$$
.

The coefficient f(x) of $x \in \mathcal{X}$ in f is denoted by $\langle x, f \rangle$.

The set of all \mathcal{X} -series is $\mathbb{K}\langle\langle\mathcal{X}\rangle\rangle$.

Let \mathbb{K} be the field $\mathbb{Q}\left(q_0,q_1,q_2,\dots\right)$ and \mathcal{X} be a set.

An \mathcal{X} -series is a map

$$\mathbf{f}: \mathcal{X} \to \mathbb{K}$$
.

The coefficient f(x) of $x \in \mathcal{X}$ in f is denoted by $\langle x, f \rangle$.

The set of all \mathcal{X} -series is $\mathbb{K}\langle\langle\mathcal{X}\rangle\rangle$.

Endowed with the pointwise addition

$$\langle x, \mathbf{f} + \mathbf{g} \rangle := \langle x, \mathbf{f} \rangle + \langle x, \mathbf{g} \rangle$$

and the pointwise multiplication by a scalar

$$\langle x, \lambda \mathbf{f} \rangle := \lambda \langle x, \mathbf{f} \rangle,$$

the set $\mathbb{K}\langle\langle\mathcal{X}\rangle\rangle$ is a vector space.

Let $\mathbb K$ be the field $\mathbb Q\left(q_0,q_1,q_2,\dots\right)$ and $\mathcal X$ be a set.

An \mathcal{X} -series is a map

$$\mathbf{f}: \mathcal{X} \to \mathbb{K}$$
.

The coefficient f(x) of $x \in \mathcal{X}$ in f is denoted by $\langle x, f \rangle$.

The set of all \mathcal{X} -series is $\mathbb{K}\langle\langle\mathcal{X}\rangle\rangle$.

Endowed with the pointwise addition

$$\langle x, \mathbf{f} + \mathbf{g} \rangle := \langle x, \mathbf{f} \rangle + \langle x, \mathbf{g} \rangle$$

and the pointwise multiplication by a scalar

$$\langle x, \lambda \mathbf{f} \rangle := \lambda \langle x, \mathbf{f} \rangle$$
,

the set $\mathbb{K}\langle\langle\mathcal{X}\rangle\rangle$ is a vector space.

The sum notation of f is

$$\mathbf{f} = \sum_{x \in \mathcal{X}} \langle x, \mathbf{f} \rangle \, x.$$

A tree series is an element of $\mathbb{K}\left\langle\left\langle \mathbf{S}(\mathfrak{G})\right\rangle\right\rangle$.

A tree series is an element of $\mathbb{K}\langle\langle \mathbf{S}(\mathfrak{G})\rangle\rangle$.

- Example -

For $x\in\mathfrak{G}$, let \mathbf{f}_x be the $\mathbf{S}(\mathfrak{G})$ -series wherein $\langle\mathfrak{t},\mathbf{f}_x\rangle$ is the number of occurrences of x in \mathfrak{t} . For instance,

$$\mathbf{f}_a = \left(\begin{array}{c} 1 \\ a \end{array} \right) + 2 \left(\begin{array}{c} 1 \\ a \end{array} \right) + 2 \left(\begin{array}{c} 1 \\ a \end{array} \right) + 3 \left(\begin{array}{c} 1 \\ a \end{array} \right) + \cdots$$

A tree series is an element of $\mathbb{K}\langle\langle \mathbf{S}(\mathfrak{G})\rangle\rangle$.

- Example -

For $x\in\mathfrak{G}$, let \mathbf{f}_x be the $\mathbf{S}(\mathfrak{G})$ -series wherein $\langle\mathfrak{t},\mathbf{f}_x\rangle$ is the number of occurrences of x in \mathfrak{t} . For instance,

$$\mathbf{f}_{a} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ a & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 1 & 1 & 1 \\ a & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 1 & 1 & 1 \\ a & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} + \cdots$$

- Example ·

Let $\mathbf{f}_{|}$ be the $\mathbf{S}(\mathfrak{G})$ -series wherein $\langle\mathfrak{t},\mathbf{f}_{|}\rangle:=|\mathfrak{t}|$. Hence,

$$\mathbf{f}_{\parallel} = \parallel + 2 \stackrel{\parallel}{\underset{/ \setminus}{a}} + 2 \stackrel{\parallel}{\underset{/ \setminus}{b}} + 3 \stackrel{\stackrel{\perp}{\underset{c}{a}}}{\underset{/ \setminus}{a}} + 3 \stackrel{\stackrel{\parallel}{\underset{a}{a}}}{\underset{/ \setminus}{a}} + 3 \stackrel{\stackrel{\parallel}{\underset{b}{a}}}{\underset{/ \setminus}{a}} + 3 \stackrel{\stackrel{\parallel}{\underset{a}{a}}}{\underset{/ \setminus}{a}} + 3 \stackrel{\stackrel{\parallel}{\underset{a}{a}}}{\underset{/ \setminus}{a}} + \cdots.$$

A tree series is an element of $\mathbb{K}\langle\langle \mathbf{S}(\mathfrak{G})\rangle\rangle$.

- Example -

For $x\in\mathfrak{G}$, let \mathbf{f}_x be the $\mathbf{S}(\mathfrak{G})$ -series wherein $\langle\mathfrak{t},\mathbf{f}_x\rangle$ is the number of occurrences of x in \mathfrak{t} . For instance,

$$\mathbf{f}_{a} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ a & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 1 & 1 & 1 \\ a & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 1 & 1 & 1 \\ a & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} + \cdots$$

- Example -

Let $\mathbf{f}_{|}$ be the $\mathbf{S}(\mathfrak{G})$ -series wherein $\langle\mathfrak{t},\mathbf{f}_{|}\rangle:=|\mathfrak{t}|$. Hence,

$$\mathbf{f}_{\parallel} = \parallel + 2 \stackrel{\parallel}{\underset{/ \backslash}{\overset{\perp}{\circ}}} + 2 \stackrel{\parallel}{\underset{/ \backslash}{\overset{\perp}{\circ}}} + 3 \stackrel{\stackrel{\parallel}{\underset{/ \backslash}{\overset{\perp}{\circ}}}}{\underset{/ \backslash}{\overset{\perp}{\circ}}} + \cdots.$$

- Example

In the tree series $\mathbf{f}_a+\mathbf{f}_b+\mathbf{f}_c$, the coefficient of a tree is its degree. In the tree series $\mathbf{f}_{|}+\mathbf{f}_a+\mathbf{f}_b+\mathbf{f}_c$, the coefficient of a tree is its number of edges.

Characteristic series

Let \mathcal{X} be a set and $\mathcal{S} \subseteq \mathcal{X}$.

The characteristic series of ${\mathcal S}$ is the series

$$\mathbf{f}_{\mathcal{S}} := \sum_{x \in \mathcal{S}} x$$

of $\mathbb{K}\langle\langle\mathcal{X}\rangle\rangle$.

Characteristic series

Let \mathcal{X} be a set and $\mathcal{S} \subseteq \mathcal{X}$.

The characteristic series of ${\mathcal S}$ is the series

$$\mathbf{f}_{\mathcal{S}} := \sum_{x \in \mathcal{S}} x$$

of $\mathbb{K}\langle\langle\mathcal{X}\rangle\rangle$.

The sieve principle translates as follows in terms of characteristic series.

Characteristic series

Let \mathcal{X} be a set and $\mathcal{S} \subseteq \mathcal{X}$.

The characteristic series of ${\mathcal S}$ is the series

$$\mathbf{f}_{\mathcal{S}} := \sum_{x \in \mathcal{S}} x$$

of $\mathbb{K}\langle\langle\mathcal{X}\rangle\rangle$.

The sieve principle translates as follows in terms of characteristic series.

- Lemma -

Let $\mathcal X$ be a set and $\mathcal S_1$, ..., $\mathcal S_n$, $n\geqslant 0$, be subsets of $\mathcal X$.

Then, the characteristic series of $\mathcal{S}_1 \cup \cdots \cup \mathcal{S}_n$ expresses as

$$\mathbf{f}_{\mathcal{S}_1 \cup \dots \cup \mathcal{S}_n} = \sum_{\substack{\ell \geqslant 1 \\ \{i_1, \dots, i_\ell\} \subseteq [n]}} (-1)^{\ell+1} \ \mathbf{f}_{\mathcal{S}_{i_1} \cap \dots \cap \mathcal{S}_{i_\ell}}.$$

Let $\mathcal X$ be a set endowed with a size map $|-|:\mathcal X \to \mathbb N.$

Let $\mathcal X$ be a set endowed with a size map $|-|:\mathcal X \to \mathbb N.$

The enumeration map

en :
$$\mathbb{K}\langle\langle\mathcal{X}\rangle\rangle \to \mathbb{K}\langle\langle z\rangle\rangle$$

is the linear map satisfying

$$en(x) = z^{|x|}.$$

Let $\mathcal X$ be a set endowed with a size map $|-|:\mathcal X \to \mathbb N.$

The enumeration map

en :
$$\mathbb{K}\langle\langle\mathcal{X}\rangle\rangle \to \mathbb{K}\langle\langle z\rangle\rangle$$

is the linear map satisfying

$$en(x) = z^{|x|}.$$

When $\mathcal X$ is combinatorial (that is, each fiber $|n|^{-1}$ is finite), $\operatorname{en}(\mathbf f_{\mathcal X})$ is the generating series of $\mathcal X$, enumerating its elements w.r.t. their sizes.

Let $\mathcal X$ be a set endowed with a size map $|-|:\mathcal X \to \mathbb N.$

The enumeration map

$$en : \mathbb{K} \langle \langle \mathcal{X} \rangle \rangle \to \mathbb{K} \langle \langle z \rangle \rangle$$

is the linear map satisfying

$$en(x) = z^{|x|}.$$

When $\mathcal X$ is combinatorial (that is, each fiber $|n|^{-1}$ is finite), $\operatorname{en}(\mathbf f_{\mathcal X})$ is the generating series of $\mathcal X$, enumerating its elements w.r.t. their sizes.

A k-ary product $\star: \mathbb{K} \langle \langle \mathcal{X} \rangle \rangle^{\otimes k} \to \mathbb{K} \langle \langle \mathcal{X} \rangle \rangle$ is enumeration-compatible if

$$\operatorname{en}\left(\star\left(\mathbf{f}_{1},\ldots,\mathbf{f}_{k}\right)\right)=\prod_{i\in[k]}\operatorname{en}\left(\mathbf{f}_{i}\right)$$

for all \mathcal{X} -series \mathbf{f}_1 , ..., \mathbf{f}_k .

The composition of the $\mathbf{S}(\mathfrak{G})$ -series \mathbf{f} and \mathbf{g}_1 , ..., \mathbf{g}_n is the series

$$\mathbf{f}ar{\circ}\left[\mathbf{g}_1,\ldots,\mathbf{g}_n
ight] := \sum_{\substack{\mathfrak{t}\in\mathbf{S}(\mathfrak{G})(n)\ \mathfrak{s}_1,\ldots,\mathfrak{s}_n\in\mathbf{S}(\mathfrak{G})}} \left(\langle\mathfrak{t},\mathbf{f}
angle\prod_{i\in[n]}\left\langle\mathfrak{s}_i,\mathbf{g}_i
ight
angle
ight)} \mathfrak{t}\circ\left[\mathfrak{s}_1,\ldots,\mathfrak{s}_n
ight].$$

Observe that this product is linear in all its arguments.

The composition of the $\mathbf{S}(\mathfrak{G})$ -series \mathbf{f} and \mathbf{g}_1 , \dots , \mathbf{g}_n is the series

$$\mathbf{f} ar{\circ} \left[\mathbf{g}_1, \ldots, \mathbf{g}_n
ight] := \sum_{\substack{\mathfrak{t} \in \mathbf{S}(\mathfrak{G})(n) \\ \mathfrak{s}_1, \ldots, \mathfrak{s}_n \in \mathbf{S}(\mathfrak{G})}} \left(\langle \mathfrak{t}, \mathbf{f}
angle \prod_{i \in [n]} \left\langle \mathfrak{s}_i, \mathbf{g}_i
angle
ight) \mathbf{t} \circ \left[\mathfrak{s}_1, \ldots, \mathfrak{s}_n
ight].$$

Observe that this product is linear in all its arguments.

The composition of the $\mathbf{S}(\mathfrak{G})$ -series \mathbf{f} and \mathbf{g}_1 , ..., \mathbf{g}_n is the series

$$\mathbf{f} ar{\circ} \left[\mathbf{g}_1, \dots, \mathbf{g}_n
ight] := \sum_{\substack{\mathfrak{t} \in \mathbf{S}(\mathfrak{G})(n) \\ \mathfrak{s}_1, \dots, \mathfrak{s}_n \in \mathbf{S}(\mathfrak{G})}} \left(\langle \mathfrak{t}, \mathbf{f}
angle \prod_{i \in [n]} \langle \mathfrak{s}_i, \mathbf{g}_i
angle \right) \mathfrak{t} \circ \left[\mathfrak{s}_1, \dots, \mathfrak{s}_n
ight].$$

Observe that this product is linear in all its arguments.

For any $\mathfrak{t} \in \mathbf{S}(\mathfrak{G})(n)$, let $\bar{\circ}_{\mathfrak{t}} : \mathbb{K} \langle \langle \mathbf{S}(\mathfrak{G}) \rangle \rangle^{\otimes n} \to \mathbb{K} \langle \langle \mathbf{S}(\mathfrak{G}) \rangle \rangle$ be the product defined by

$$\bar{\circ}_{\mathfrak{t}}\left(\mathbf{g}_{1},\ldots,\mathbf{g}_{n}\right):=\mathbf{f}_{\left\{\mathfrak{t}\right\}}\bar{\circ}\left[\mathbf{g}_{1},\ldots,\mathbf{g}_{n}\right].$$

for all tree series \mathbf{g}_1 , ..., \mathbf{g}_n .

The composition of the $\mathbf{S}(\mathfrak{G})$ -series \mathbf{f} and \mathbf{g}_1 , ..., \mathbf{g}_n is the series

$$\mathbf{f} ar{\circ} \left[\mathbf{g}_1, \dots, \mathbf{g}_n
ight] := \sum_{\substack{\mathfrak{t} \in \mathbf{S}(\mathfrak{G})(n) \\ \mathfrak{s}_1, \dots, \mathfrak{s}_n \in \mathbf{S}(\mathfrak{G})}} \left(\langle \mathfrak{t}, \mathbf{f}
angle \prod_{i \in [n]} \langle \mathfrak{s}_i, \mathbf{g}_i
angle \right) \mathfrak{t} \circ \left[\mathfrak{s}_1, \dots, \mathfrak{s}_n
ight].$$

Observe that this product is linear in all its arguments.

For any $\mathfrak{t} \in \mathbf{S}(\mathfrak{G})(n)$, let $\bar{\circ}_{\mathfrak{t}} : \mathbb{K} \langle \langle \mathbf{S}(\mathfrak{G}) \rangle \rangle^{\otimes n} \to \mathbb{K} \langle \langle \mathbf{S}(\mathfrak{G}) \rangle \rangle$ be the product defined by

$$\bar{\circ}_{\mathfrak{t}}\left(\mathbf{g}_{1},\ldots,\mathbf{g}_{n}\right):=\mathbf{f}_{\left\{\mathfrak{t}\right\}}\bar{\circ}\left[\mathbf{g}_{1},\ldots,\mathbf{g}_{n}\right].$$

for all tree series \mathbf{g}_1 , ..., \mathbf{g}_n .

These products $\bar{\circ}_t$ are enumeration-compatible.

For any $\mathcal{P},\mathcal{Q}\subseteq\mathbf{S}(\mathfrak{G})$, let

$$\mathbf{F}(\mathcal{P}, \mathcal{Q}) := \sum_{\substack{\mathfrak{t} \in \mathbf{S}(\mathfrak{G}) \\ \mathfrak{t} \in \mathcal{A}(\mathcal{P}) \\ \forall \mathfrak{s} \in \mathcal{Q}, \mathfrak{s} \not \Rightarrow_{\mathfrak{t}} \mathfrak{t}}} \mathfrak{t}.$$

This is the formal sum of all the \mathfrak{G} -trees avoiding as factors all patterns of \mathcal{P} and avoiding as prefixes all patterns of \mathcal{Q} .

For any $\mathcal{P},\mathcal{Q}\subseteq\mathbf{S}(\mathfrak{G})$, let

$$\mathbf{F}(\mathcal{P},\mathcal{Q}) := \sum_{\substack{\mathfrak{t} \in \mathbf{S}(\mathfrak{G}) \\ \mathfrak{t} \in \Lambda(\mathcal{P}) \\ \forall \mathfrak{s} \in \mathcal{Q}, \mathfrak{s} \not \gg_{\mathbf{P}} \mathfrak{t}}} \mathfrak{t}.$$

This is the formal sum of all the \mathfrak{G} -trees avoiding as factors all patterns of \mathcal{P} and avoiding as prefixes all patterns of \mathcal{Q} .

Since

 $lackbox{ }\mathbf{F}(\mathcal{P},\emptyset)$ is the characteristic series of $\mathrm{A}(\mathcal{P})$;

For any $\mathcal{P},\mathcal{Q}\subseteq\mathbf{S}(\mathfrak{G})$, let

$$\mathbf{F}(\mathcal{P}, \mathcal{Q}) := \sum_{\substack{\mathfrak{t} \in \mathbf{S}(\mathfrak{G}) \\ \mathfrak{t} \in \Lambda(\mathcal{P}) \\ \forall \mathfrak{s} \in \mathcal{Q}, \mathfrak{s} \not \gg_{\mathfrak{t}} \mathfrak{t}}} \mathfrak{t}.$$

This is the formal sum of all the \mathfrak{G} -trees avoiding as factors all patterns of \mathcal{P} and avoiding as prefixes all patterns of \mathcal{Q} .

Since

- ightharpoonup $\mathbf{F}(\mathcal{P},\emptyset)$ is the characteristic series of $\mathrm{A}(\mathcal{P})$;
- lacktriangle the enumeration $\mathrm{en}(\mathbf{F}(\mathcal{P},\emptyset))$ is the generating series of $\mathrm{A}(\mathcal{P})$;

For any $\mathcal{P}, \mathcal{Q} \subseteq \mathbf{S}(\mathfrak{G})$, let

$$\mathbf{F}(\mathcal{P}, \mathcal{Q}) := \sum_{\substack{\mathfrak{t} \in \mathbf{S}(\mathfrak{G}) \\ \mathfrak{t} \in \Lambda(\mathcal{P}) \\ \forall \mathfrak{s} \in \mathcal{Q}, \mathfrak{s} \not \gg_{\mathfrak{t}} \mathfrak{t}}} \mathfrak{t}.$$

This is the formal sum of all the $\mathfrak G$ -trees avoiding as factors all patterns of $\mathcal P$ and avoiding as prefixes all patterns of $\mathcal Q.$

Since

- ightharpoonup $\mathbf{F}(\mathcal{P},\emptyset)$ is the characteristic series of $\mathrm{A}(\mathcal{P})$;
- ▶ the enumeration $en(\mathbf{F}(\mathcal{P},\emptyset))$ is the generating series of $A(\mathcal{P})$; then the series $\mathbf{F}(\mathcal{P},\mathcal{Q})$ contains all the enumerative data about the trees avoiding \mathcal{P} .

For any $\mathcal{P}, \mathcal{Q} \subseteq \mathbf{S}(\mathfrak{G})$, let

$$\mathbf{F}(\mathcal{P},\mathcal{Q}) := \sum_{\substack{\mathfrak{t} \in \mathbf{S}(\mathfrak{G}) \\ \mathfrak{t} \in \Lambda(\mathcal{P}) \\ \forall \mathfrak{s} \in \mathcal{Q}, \mathfrak{s} \not \gg_{\mathbf{P}} \mathfrak{t}}} \mathfrak{t}.$$

This is the formal sum of all the $\mathfrak G$ -trees avoiding as factors all patterns of $\mathcal P$ and avoiding as prefixes all patterns of $\mathcal Q$.

Since

- ightharpoonup $\mathbf{F}(\mathcal{P},\emptyset)$ is the characteristic series of $\mathrm{A}(\mathcal{P})$;
- ▶ the enumeration $en(\mathbf{F}(\mathcal{P},\emptyset))$ is the generating series of $A(\mathcal{P})$; then the series $\mathbf{F}(\mathcal{P},\mathcal{Q})$ contains all the enumerative data about the trees avoiding \mathcal{P} .

We describe a system of equations for $\mathbf{F}(\mathcal{P},\emptyset)$ using sums, multiplications by scalars, and operations $\bar{\circ}_a$, $a\in\mathfrak{G}$.

When \mathfrak{G} , \mathcal{P} , and \mathcal{Q} satisfy some conditions, $\mathbf{F}(\mathcal{P},\mathcal{Q})$ expresses as an inclusion-exclusion formula involving simpler terms $\mathbf{F}(\mathcal{P},\mathcal{S}_i)$.

The series $\mathbf{F}(\mathcal{P},\mathcal{Q})$ satisfies

$$\mathbf{F}(\mathcal{P}, \mathcal{Q}) = 1 + \sum_{\substack{k \geqslant 1 \\ a \in \mathfrak{G}(k)}} \sum_{\substack{\ell \geqslant 1 \\ \left\{\mathcal{R}^{(1)}, \dots, \mathcal{R}^{(\ell)}\right\} \subseteq \mathfrak{M}((\mathcal{P} \cup \mathcal{Q})_a) \\ \left(\mathcal{S}_1, \dots, \mathcal{S}_k\right) = \mathcal{R}^{(1)} + \dots + \mathcal{R}^{(\ell)}}} (-1)^{1+\ell} \,\bar{\circ}_a \left(\mathbf{F}\left(\mathcal{P}, \mathcal{S}_1\right), \dots, \mathbf{F}\left(\mathcal{P}, \mathcal{S}_k\right)\right).$$

When \mathfrak{G} , \mathcal{P} , and \mathcal{Q} satisfy some conditions, $\mathbf{F}(\mathcal{P},\mathcal{Q})$ expresses as an inclusion-exclusion formula involving simpler terms $\mathbf{F}(\mathcal{P},\mathcal{S}_i)$.

- Theorem [G., 2019] -

The series $\mathbf{F}(\mathcal{P},\mathcal{Q})$ satisfies

$$\mathbf{F}(\mathcal{P}, \mathcal{Q}) = 1 + \sum_{\substack{k \geqslant 1 \\ a \in \mathfrak{G}(k)}} \sum_{\substack{\ell \geqslant 1 \\ \left\{\mathcal{R}^{(1)}, \dots, \mathcal{R}^{(\ell)}\right\} \subseteq \mathfrak{M}((\mathcal{P} \cup \mathcal{Q})_a) \\ \left(\mathcal{S}_1, \dots, \mathcal{S}_k\right) = \mathcal{R}^{(1)} + \dots + \mathcal{R}^{(\ell)}}} (-1)^{1+\ell} \, \bar{\circ}_a \left(\mathbf{F} \left(\mathcal{P}, \mathcal{S}_1 \right), \dots, \mathbf{F} \left(\mathcal{P}, \mathcal{S}_k \right) \right).$$

This leads to a system of equations for the generating series of $\mathrm{A}(\mathcal{P}).$

Indeed, the generating series of $\mathrm{A}(\mathcal{P})$ is the series $F(\mathcal{P},\emptyset)$ where

$$\begin{split} F(\mathcal{P},\mathcal{Q}) &= z + \sum_{\substack{k \geqslant 1 \\ a \in \mathfrak{G}(k)}} \sum_{\substack{\{\mathcal{R}^{(1)}, \dots, \mathcal{R}^{(\ell)}\} \subseteq \mathfrak{M}((\mathcal{P} \cup \mathcal{Q})_a) \\ (\mathcal{S}_1, \dots, \mathcal{S}_k) = \mathcal{R}^{(1)} \dotplus \dots \dotplus \mathcal{R}^{(\ell)}}} (-1)^{1+\ell} \prod_{i \in [k]} F\left(\mathcal{P}, \mathcal{S}_i\right). \end{split}$$

- Example -

Let

$$\mathcal{P}:=\left\{\begin{array}{cc} & & \\ & a \\ & & \\ & & \wedge & \\ & & \wedge & \end{array}\right\}.$$

We obtain the system of formal power series of trees

$$\begin{split} \mathbf{F}(\mathcal{P},\emptyset) &= |+ \bar{\circ}_a \left(\mathbf{F}(\mathcal{P}, \{a\}), \mathbf{F}(\mathcal{P},\emptyset) \right) + \bar{\circ}_a \left(\mathbf{F}(\mathcal{P},\emptyset), \mathbf{F}(\mathcal{P}, \{b\}) \right) \\ &- \bar{\circ}_a \left(\mathbf{F}(\mathcal{P}, \{a\}), \mathbf{F}(\mathcal{P}, \{b\}) \right) + \bar{\circ}_b \left(\mathbf{F}(\mathcal{P},\emptyset), \mathbf{F}(\mathcal{P},\emptyset) \right), \\ \mathbf{F}(\mathcal{P}, \{a\}) &= |+ \bar{\circ}_b \left(\mathbf{F}(\mathcal{P},\emptyset), \mathbf{F}(\mathcal{P},\emptyset) \right), \\ \mathbf{F}(\mathcal{P}, \{b\}) &= |+ \bar{\circ}_a \left(\mathbf{F}(\mathcal{P}, \{a\}), \mathbf{F}(\mathcal{P},\emptyset) \right) + \bar{\circ}_a \left(\mathbf{F}(\mathcal{P},\emptyset), \mathbf{F}(\mathcal{P}, \{b\}) \right) \\ &- \bar{\circ}_a \left(\mathbf{F}(\mathcal{P}, \{a\}), \mathbf{F}(\mathcal{P}, \{b\}) \right). \end{split}$$

- Example -

Let

$$\mathcal{P} := \left\{ \begin{array}{c} \stackrel{|}{a} \\ \stackrel{|}{a} \\ \stackrel{|}{\wedge} & \stackrel{|}{\wedge} \\ \end{array} \right\}.$$

We obtain the system of formal power series of trees

$$\begin{split} \mathbf{F}(\mathcal{P},\emptyset) &= |+\bar{\circ}_a\left(\mathbf{F}(\mathcal{P},\{a\}),\mathbf{F}(\mathcal{P},\emptyset)\right) + \bar{\circ}_a\left(\mathbf{F}(\mathcal{P},\emptyset),\mathbf{F}(\mathcal{P},\{b\})\right) \\ &-\bar{\circ}_a\left(\mathbf{F}(\mathcal{P},\{a\}),\mathbf{F}(\mathcal{P},\{b\})\right) + \bar{\circ}_b\left(\mathbf{F}(\mathcal{P},\emptyset),\mathbf{F}(\mathcal{P},\emptyset)\right), \\ \mathbf{F}(\mathcal{P},\{a\}) &= |+\bar{\circ}_b\left(\mathbf{F}(\mathcal{P},\emptyset),\mathbf{F}(\mathcal{P},\emptyset)\right), \\ \mathbf{F}(\mathcal{P},\{b\}) &= |+\bar{\circ}_a\left(\mathbf{F}(\mathcal{P},\{a\}),\mathbf{F}(\mathcal{P},\emptyset)\right) + \bar{\circ}_a\left(\mathbf{F}(\mathcal{P},\emptyset),\mathbf{F}(\mathcal{P},\{b\})\right) \\ &-\bar{\circ}_a\left(\mathbf{F}(\mathcal{P},\{a\}),\mathbf{F}(\mathcal{P},\{b\})\right). \end{split}$$

This leads to the system of generating series

$$\begin{split} F(\mathcal{P},\emptyset) &= z + F(\mathcal{P},\{a\})F(\mathcal{P},\emptyset) + F(\mathcal{P},\emptyset)F(\mathcal{P},\{b\}) \\ &- F(\mathcal{P},\{a\})F(\mathcal{P},\{b\}) + F(\mathcal{P},\emptyset)F(\mathcal{P},\emptyset), \\ F(\mathcal{P},\{a\}) &= z + F(\mathcal{P},\emptyset)F(\mathcal{P},\emptyset), \\ F(\mathcal{P},\{b\}) &= z + F(\mathcal{P},\{a\})F(\mathcal{P},\emptyset) + F(\mathcal{P},\emptyset)F(\mathcal{P},\{b\}) \\ &- F(\mathcal{P},\{a\})F(\mathcal{P},\{b\}). \end{split}$$

- Example -

Let

$$\mathcal{P}:=\left\{\begin{array}{cc} & & \\ & a \\ & & \\ & & \wedge & \\ & & \wedge & \end{array}\right\}.$$

We obtain the system of formal power series of trees

$$\begin{split} \mathbf{F}(\mathcal{P},\emptyset) &= |+\bar{\circ}_a\left(\mathbf{F}(\mathcal{P},\{a\}),\mathbf{F}(\mathcal{P},\emptyset)\right) + \bar{\circ}_a\left(\mathbf{F}(\mathcal{P},\emptyset),\mathbf{F}(\mathcal{P},\{b\})\right) \\ &-\bar{\circ}_a\left(\mathbf{F}(\mathcal{P},\{a\}),\mathbf{F}(\mathcal{P},\{b\})\right) + \bar{\circ}_b\left(\mathbf{F}(\mathcal{P},\emptyset),\mathbf{F}(\mathcal{P},\emptyset)\right), \\ \mathbf{F}(\mathcal{P},\{a\}) &= |+\bar{\circ}_b\left(\mathbf{F}(\mathcal{P},\emptyset),\mathbf{F}(\mathcal{P},\emptyset)\right), \\ \mathbf{F}(\mathcal{P},\{b\}) &= |+\bar{\circ}_a\left(\mathbf{F}(\mathcal{P},\{a\}),\mathbf{F}(\mathcal{P},\emptyset)\right) + \bar{\circ}_a\left(\mathbf{F}(\mathcal{P},\emptyset),\mathbf{F}(\mathcal{P},\{b\})\right) \\ &-\bar{\circ}_a\left(\mathbf{F}(\mathcal{P},\{a\}),\mathbf{F}(\mathcal{P},\{b\})\right). \end{split}$$

This leads to the system of generating series

$$\begin{split} F(\mathcal{P},\emptyset) &= z + F(\mathcal{P},\{a\})F(\mathcal{P},\emptyset) + F(\mathcal{P},\emptyset)F(\mathcal{P},\{b\}) \\ &- F(\mathcal{P},\{a\})F(\mathcal{P},\{b\}) + F(\mathcal{P},\emptyset)F(\mathcal{P},\emptyset), \\ F(\mathcal{P},\{a\}) &= z + F(\mathcal{P},\emptyset)F(\mathcal{P},\emptyset), \\ F(\mathcal{P},\{b\}) &= z + F(\mathcal{P},\{a\})F(\mathcal{P},\emptyset) + F(\mathcal{P},\emptyset)F(\mathcal{P},\{b\}) \\ &- F(\mathcal{P},\{a\})F(\mathcal{P},\{b\}). \end{split}$$

As a consequence, $F(\mathcal{P},\emptyset)$ satisfies

$$z - F(\mathcal{P}, \emptyset) + (2+z)F(\mathcal{P}, \emptyset)^2 - F(\mathcal{P}, \emptyset)^3 + F(\mathcal{P}, \emptyset)^4 = 0.$$

Outline

Operads and enumeration

Operators

An operator is an entity having $n\geqslant 1$ inputs and a single output:

The arity |x| of x is its number n of inputs.

Operators

An operator is an entity having $n\geqslant 1$ inputs and a single output:

The arity |x| of x is its number n of inputs.

Composing two operators \boldsymbol{x} and \boldsymbol{y} consists in

- 1. selecting an input of x specified by its position i;
- 2. grafting the output of \boldsymbol{y} onto this input.

Operators

An operator is an entity having $n\geqslant 1$ inputs and a single output:

The arity |x| of x is its number n of inputs.

Composing two operators \boldsymbol{x} and \boldsymbol{y} consists in

- 1. selecting an input of \boldsymbol{x} specified by its position i;
- 2. grafting the output of y onto this input.

This produces a new operator

of arity |x| + |y| - 1.

Operads

Operads are algebraic structures formalizing the notion of operations and their composition.

Operads are algebraic structures formalizing the notion of operations and their composition.

- A (nonsymmetric set-theoretic) operad is a triple $(\mathcal{O},\circ_i,1)$ where
- 1. \mathcal{O} is a graded set

$$\mathcal{O} := \bigsqcup_{n \geqslant 1} \mathcal{O}(n);$$

Operads are algebraic structures formalizing the notion of operations and their composition.

- A (nonsymmetric set-theoretic) operad is a triple $(\mathcal{O},\circ_i,1)$ where
- 1. \mathcal{O} is a graded set

$$\mathcal{O} := \bigsqcup_{n \geqslant 1} \mathcal{O}(n);$$

2. \circ_i is a map, called partial composition map,

$$\circ_i : \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n+m-1), \qquad 1 \leqslant i \leqslant n, \ 1 \leqslant m;$$

Operads are algebraic structures formalizing the notion of operations and their composition.

- A (nonsymmetric set-theoretic) operad is a triple $(\mathcal{O},\circ_i,1)$ where
- 1. \mathcal{O} is a graded set

$$\mathcal{O} := \bigsqcup_{n \geqslant 1} \mathcal{O}(n);$$

2. \circ_i is a map, called partial composition map,

$$\circ_i: \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n+m-1), \qquad 1 \leqslant i \leqslant n, \ 1 \leqslant m;$$

3. 1 is an element of $\mathcal{O}(1)$ called unit.

Operads are algebraic structures formalizing the notion of operations and their composition.

- A (nonsymmetric set-theoretic) operad is a triple $(\mathcal{O},\circ_i,1)$ where
 - 1. \mathcal{O} is a graded set

$$\mathcal{O} := \bigsqcup_{n \geqslant 1} \mathcal{O}(n);$$

2. \circ_i is a map, called partial composition map,

$$\circ_i: \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n+m-1), \qquad 1 \leqslant i \leqslant n, \ 1 \leqslant m;$$

3. 1 is an element of $\mathcal{O}(1)$ called unit.

This data has to satisfy some axioms.

Operad axioms

The associativity relation

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

says that the pictured operation can be constructed from top to bottom or from bottom to top.

Operad axioms

The associativity relation

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \leqslant i \leqslant |x|, 1 \leqslant j \leqslant |y|$$

says that the pictured operation can be constructed from top to bottom or from bottom to top.

The commutativity relation

$$(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y$$
$$1 \leqslant i < j \leqslant |x|$$

says that the pictured operation can be constructed from left to right or from right to left.

Operad axioms

The associativity relation

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

$$1 \le i \le |x|, 1 \le i \le |y|$$

says that the pictured operation can be constructed from top to bottom or from bottom to top.

The commutativity relation

$$(x \circ_i y) \circ_{j+|y|-1} z = (x \circ_j z) \circ_i y$$
$$1 \le i < j \le |x|$$

says that the pictured operation can be constructed from left to right or from right to left.

The unitality relation

$$\mathbf{1} \circ_1 x = x = x \circ_i \mathbf{1}$$
$$1 \leqslant i \leqslant |x|$$

says that 1 is the identity map.

Let $\mathfrak G$ be an alphabet.

Let $\mathfrak G$ be an alphabet.

The free operad on ${\mathfrak G}$ is the operad on the set ${\mathbf S}({\mathfrak G})$ wherein

ightharpoonup elements of arity n are the $\mathfrak G$ -trees of arity n;

Let $\mathfrak G$ be an alphabet.

The free operad on ${\mathfrak G}$ is the operad on the set ${\mathbf S}({\mathfrak G})$ wherein

- ightharpoonup elements of arity n are the \mathfrak{G} -trees of arity n;
- lacktriangle the partial composition map \circ_i is the one of the \mathfrak{G} -trees;

Let $\mathfrak G$ be an alphabet.

The free operad on ${\mathfrak G}$ is the operad on the set ${\mathbf S}({\mathfrak G})$ wherein

- ightharpoonup elements of arity n are the \mathfrak{G} -trees of arity n;
- lacktriangle the partial composition map \circ_i is the one of the $\mathfrak G$ -trees;
- ▶ the unit is |.

Let $\mathfrak G$ be an alphabet.

The free operad on ${\mathfrak G}$ is the operad on the set ${\mathbf S}({\mathfrak G})$ wherein

- ightharpoonup elements of arity n are the \mathfrak{G} -trees of arity n;
- \blacktriangleright the partial composition map \circ_i is the one of the \mathfrak{G} -trees;
- ▶ the unit is |.

Let $c:\mathfrak{G}\to\mathbf{S}(\mathfrak{G})$ be the natural injection.

Let $\mathfrak G$ be an alphabet.

The free operad on ${\mathfrak G}$ is the operad on the set $S({\mathfrak G})$ wherein

- \blacktriangleright elements of arity n are the \mathfrak{G} -trees of arity n;
- \blacktriangleright the partial composition map \circ_i is the one of the \mathfrak{G} -trees;
- ▶ the unit is |.

Let $c: \mathfrak{G} \to \mathbf{S}(\mathfrak{G})$ be the natural injection.

Free operads satisfy the following universality property.

For any alphabet \mathfrak{G} , any operad \mathcal{O} , and any map $f:\mathfrak{G}\to\mathcal{O}$ preserving the arities, there exists a unique operad morphism $\phi:\mathbf{S}(\mathfrak{G})\to\mathcal{O}$ such that $f=\phi\circ c$.

Let $(\mathcal{M},\star,\mathbf{1}_{\mathcal{M}})$ be a monoid.

We define $(T\mathcal{M},\circ_i,\mathbf{1})$ as the triple such that

Let $(\mathcal{M},\star,\mathbf{1}_{\mathcal{M}})$ be a monoid.

We define $(T\mathcal{M}, \circ_i, \mathbf{1})$ as the triple such that

ightharpoonup $\mathrm{T}\mathcal{M}(n)$ is the set of all words of length n on \mathcal{M} seen as an alphabet.

Let $(\mathcal{M},\star,\mathbf{1}_{\mathcal{M}})$ be a monoid.

We define $(T\mathcal{M},\circ_i,\mathbf{1})$ as the triple such that

- ightharpoonup $\mathrm{T}\mathcal{M}(n)$ is the set of all words of length n on \mathcal{M} seen as an alphabet.
- ▶ For any $u \in T\mathcal{M}(n)$ and $v \in T\mathcal{M}(m)$,

$$u \circ_i v := u_1 \dots u_{i-1} \ (u_i \star v_1) \dots (u_i \star v_m) \ u_{i+1} \dots u_n.$$

- Example -

In $T(\mathbb{N}, +, 0)$,

 $2100\mathbf{2}13 \circ_5 3001 = 2100\mathbf{5}\mathbf{2}\mathbf{2}\mathbf{3}13.$

Let $(\mathcal{M},\star,\mathbf{1}_{\mathcal{M}})$ be a monoid.

We define $(T\mathcal{M},\circ_i,\mathbf{1})$ as the triple such that

- ightharpoonup $\mathrm{T}\mathcal{M}(n)$ is the set of all words of length n on \mathcal{M} seen as an alphabet.
- lacktriangle For any $u\in \mathrm{T}\mathcal{M}(n)$ and $v\in \mathrm{T}\mathcal{M}(m)$,

$$u \circ_i v := u_1 \dots u_{i-1} \ (u_i \star v_1) \dots (u_i \star v_m) \ u_{i+1} \dots u_n.$$

▶ 1 is defined as 1_M seen as a word of length 1.

- Example

In
$$T(\mathbb{N}, +, 0)$$
,

 $2100\mathbf{2}13 \circ_5 3001 = 2100\mathbf{5}\mathbf{2}\mathbf{2}\mathbf{3}13.$

Let $(\mathcal{M},\star,\mathbf{1}_{\mathcal{M}})$ be a monoid.

We define $(T\mathcal{M}, \circ_i, \mathbf{1})$ as the triple such that

- ightharpoonup $\mathrm{T}\mathcal{M}(n)$ is the set of all words of length n on \mathcal{M} seen as an alphabet.
- ▶ For any $u \in T\mathcal{M}(n)$ and $v \in T\mathcal{M}(m)$,

$$u \circ_i v := u_1 \dots u_{i-1} \ (u_i \star v_1) \dots (u_i \star v_m) \ u_{i+1} \dots u_n.$$

▶ 1 is defined as 1_M seen as a word of length 1.

- Example

In $T(\mathbb{N}, +, 0)$,

 $2100\mathbf{2}13 \circ_5 3001 = 2100\mathbf{5223}13.$

- Theorem [G., 2015] -

For any monoid \mathcal{M} , $T\mathcal{M}$ is an operad.

Some combinatorial suboperads

Monoid	Operad	Generators	First dimensions	Comb. objects
$(\mathbb{N},+,0)$	End		1, 4, 27, 256, 3125	Endofunctions
	PF		1, 3, 16, 125, 1296	Parking functions
	PW		1, 3, 13, 75, 541	Packed words
	\mathbf{Per}_0		1, 2, 6, 24, 120	Permutations
	PRT	01	1, 1, 2, 5, 14, 42	Planar rooted trees
	$\mathbf{FCat}^{(m)}$	00, 01,, 0m	Fuss-Catalan numbers	m-trees
	Schr	00, 01, 10	1, 3, 11, 45, 197	Schröder trees
	Motz	00, 010	1, 1, 2, 4, 9, 21, 51	Motzkin words
$(\mathbb{Z}/_{2\mathbb{Z}},+,0)$	Comp	00, 01	1, 2, 4, 8, 16, 32	Compositions
$(\mathbb{Z}/_{3\mathbb{Z}},+,0)$	DA	00, 01	1, 2, 5, 13, 35, 96	Directed animals
	SComp	00, 01, 02	1, 3, 27, 81, 243	Seg. compositions
$(\mathbb{N}, \max, 0)$	Dias	01, 10	1, 2, 3, 4, 5	Some bin. words
	Trias	00, 01, 10	1, 3, 7, 15, 31	Some bin. words

Diagram of operads

Let \mathcal{O} be an operad.

A congruence of $\mathcal O$ is an equivalence relation \equiv on $\mathcal O$ preserving the arities and such that $x\equiv x'$ and $y\equiv y'$ imply $x\circ_i y\equiv x'\circ_i y'$ for all $i\in[|x|]$.

Let \mathcal{O} be an operad.

A congruence of $\mathcal O$ is an equivalence relation \equiv on $\mathcal O$ preserving the arities and such that $x\equiv x'$ and $y\equiv y'$ imply $x\circ_i y\equiv x'\circ_i y'$ for all $i\in[|x|]$.

A presentation of $\mathcal O$ is a pair $(\mathfrak G,\equiv)$ such that $\mathfrak G$ is an alphabet and \equiv is a congruence of $\mathcal O$ satisfying

$$\mathcal{O}\simeq \mathbf{S}(\mathfrak{G})/_{\equiv}.$$

Let \mathcal{O} be an operad.

A congruence of $\mathcal O$ is an equivalence relation \equiv on $\mathcal O$ preserving the arities and such that $x\equiv x'$ and $y\equiv y'$ imply $x\circ_i y\equiv x'\circ_i y'$ for all $i\in[|x|]$.

A presentation of $\mathcal O$ is a pair $(\mathfrak G,\equiv)$ such that $\mathfrak G$ is an alphabet and \equiv is a congruence of $\mathcal O$ satisfying

$$\mathcal{O} \simeq \mathbf{S}(\mathfrak{G})/_{\equiv}$$
.

A basis of $\mathcal O$ is a subset $\mathcal B$ of $\mathbf S(\mathfrak G)$ such that for any $[\mathfrak t]_{\equiv} \in \mathbf S(\mathfrak G)/_{\equiv}$, there exists a unique $\mathfrak s \in \mathcal B$ such that $\mathfrak s \in [\mathfrak t]_{\equiv}$.

Let \mathcal{O} be an operad.

A congruence of $\mathcal O$ is an equivalence relation \equiv on $\mathcal O$ preserving the arities and such that $x\equiv x'$ and $y\equiv y'$ imply $x\circ_i y\equiv x'\circ_i y'$ for all $i\in[|x|]$.

A presentation of $\mathcal O$ is a pair $(\mathfrak G,\equiv)$ such that $\mathfrak G$ is an alphabet and \equiv is a congruence of $\mathcal O$ satisfying

$$\mathcal{O} \simeq \mathbf{S}(\mathfrak{G})/_{\equiv}$$
.

A basis of $\mathcal O$ is a subset $\mathcal B$ of $\mathbf S(\mathfrak G)$ such that for any $[\mathfrak t]_{\equiv} \in \mathbf S(\mathfrak G)/_{\equiv}$, there exists a unique $\mathfrak s \in \mathcal B$ such that $\mathfrak s \in [\mathfrak t]_{\equiv}$.

- Link between bases and pattern avoidance -

In most cases, $\mathcal B$ can be described as the set of $\mathfrak G$ -trees avoiding a subset $\mathcal P_{\mathcal B}$ of $\mathbf S(\mathfrak G)$.

Let $\mathcal{X}=\coprod_{n\geqslant 1}\mathcal{X}(n)$ be a family of combinatorial objects, and consider that we want to describe the generating series

$$\operatorname{en}\left(\mathbf{f}_{\mathcal{X}}\right) = \sum_{n \geqslant 1} \# \mathcal{X}(n) z^{n}.$$

Let $\mathcal{X}=\coprod_{n\geqslant 1}\mathcal{X}(n)$ be a family of combinatorial objects, and consider that we want to describe the generating series

$$\operatorname{en}\left(\mathbf{f}_{\mathcal{X}}\right) = \sum_{n \geq 1} \# \mathcal{X}(n) z^{n}.$$

- Operads as tools for enumeration -

The approach using operads consists in

1. endowing \mathcal{X} with the structure of an operad $\mathcal{O}_{\mathcal{X}}$;

Let $\mathcal{X}=\coprod_{n\geqslant 1}\mathcal{X}(n)$ be a family of combinatorial objects, and consider that we want to describe the generating series

$$\operatorname{en}\left(\mathbf{f}_{\mathcal{X}}\right) = \sum_{n \geqslant 1} \# \mathcal{X}(n) z^{n}.$$

- Operads as tools for enumeration -

The approach using operads consists in

- 1. endowing \mathcal{X} with the structure of an operad $\mathcal{O}_{\mathcal{X}}$;
- 2. exhibiting a presentation (\mathfrak{G},\equiv) of $\mathcal{O}_{\mathcal{X}}$ and a basis \mathcal{B} ;

Let $\mathcal{X}=\coprod_{n\geqslant 1}\mathcal{X}(n)$ be a family of combinatorial objects, and consider that we want to describe the generating series

$$\operatorname{en}\left(\mathbf{f}_{\mathcal{X}}\right) = \sum_{n \geqslant 1} \# \mathcal{X}(n) z^{n}.$$

- Operads as tools for enumeration -

The approach using operads consists in

- 1. endowing ${\mathcal X}$ with the structure of an operad ${\mathcal O}_{{\mathcal X}}$;
- 2. exhibiting a presentation (\mathfrak{G},\equiv) of $\mathcal{O}_{\mathcal{X}}$ and a basis \mathcal{B} ;
- 3. computing the series $\mathbf{F}\left(\mathcal{P}_{\mathcal{B}},\emptyset\right)$ where $\mathcal{P}_{\mathcal{B}}$ is a set of \mathfrak{G} -trees satisfying $A\left(\mathcal{P}_{\mathcal{B}}\right)=\mathcal{B}$.

Let $\mathcal{X}=\coprod_{n\geqslant 1}\mathcal{X}(n)$ be a family of combinatorial objects, and consider that we want to describe the generating series

$$\operatorname{en}\left(\mathbf{f}_{\mathcal{X}}\right) = \sum_{n \geq 1} \# \mathcal{X}(n) z^{n}.$$

- Operads as tools for enumeration -

The approach using operads consists in

- 1. endowing \mathcal{X} with the structure of an operad $\mathcal{O}_{\mathcal{X}}$;
- 2. exhibiting a presentation (\mathfrak{G},\equiv) of $\mathcal{O}_{\mathcal{X}}$ and a basis \mathcal{B} ;
- 3. computing the series $\mathbf{F}\left(\mathcal{P}_{\mathcal{B}},\emptyset\right)$ where $\mathcal{P}_{\mathcal{B}}$ is a set of \mathfrak{G} -trees satisfying $A\left(\mathcal{P}_{\mathcal{B}}\right)=\mathcal{B}$.

By the previous results,

$$\mathbf{F}(\mathcal{P}_{\mathcal{B}},\emptyset)=\mathbf{f}_{\mathcal{X}},$$

so that $\mathrm{en}(\mathbf{F}\left(\mathcal{P}_{\mathcal{B}},\emptyset\right))$ is the generating series of $\mathcal{X}.$

Outline

Examples

Let \mathbf{Schr} be the suboperad of $T\left(\mathbb{N},+,0\right)$ generated by $\mathfrak{G}:=\{00,01,10\}$.

Let Schr be the suboperad of $T(\mathbb{N},+,0)$ generated by $\mathfrak{G}:=\{00,01,10\}$.

- Proposition -

The set Schr contains exactly all the words u having at least a 0 and, for any letter $u_i\geqslant 1$, there is a letter $u_j=u_i-1$ and the letters of the factor of u between u_i and u_j is made of letters $u_k\geqslant u_i$.

Let Schr be the suboperad of $T(\mathbb{N},+,0)$ generated by $\mathfrak{G}:=\{00,01,10\}$.

- Proposition -

The set Schr contains exactly all the words u having at least a 0 and, for any letter $u_i\geqslant 1$, there is a letter $u_j=u_i-1$ and the letters of the factor of u between u_i and u_j is made of letters $u_k\geqslant u_i$.

Moreover, the set $\mathbf{Schr}(n)$ is in one-to-one correspondence with the set of Schröder trees with n+1 leaves.

The first dimensions of Schr are hence

1, 3, 11, 45, 197, 903, 4279, 20793 (A001003).

Let Schr be the suboperad of $T(\mathbb{N},+,0)$ generated by $\mathfrak{G}:=\{00,01,10\}.$

- Proposition -

The set Schr contains exactly all the words u having at least a 0 and, for any letter $u_i\geqslant 1$, there is a letter $u_j=u_i-1$ and the letters of the factor of u between u_i and u_j is made of letters $u_k\geqslant u_i$.

Moreover, the set $\mathbf{Schr}(n)$ is in one-to-one correspondence with the set of Schröder trees with n+1 leaves.

The first dimensions of Schr are hence

1, 3, 11, 45, 197, 903, 4279, 20793 (A001003).

- Proposition -

The operad $\operatorname{\mathbf{Schr}}$ admits the presentation (\mathfrak{G},\equiv) where \equiv is the smallest operad congruence satisfying

$$c(00) \circ_1 c(00) \equiv c(00) \circ_2 c(00),$$

$$c(01) \circ_1 c(10) \equiv c(10) \circ_2 c(01),$$

$$c(00) \circ_1 c(01) \equiv c(00) \circ_2 c(10),$$

$$c(01) \circ_1 c(00) \equiv c(00) \circ_2 c(01),$$

$$c(00) \circ_1 c(10) \equiv c(10) \circ_2 c(00),$$

$$c(01) \circ_1 c(01) \equiv c(01) \circ_2 c(00),$$

$$c(10) \mathrel{\circ_1} c(00) \equiv c(10) \mathrel{\circ_2} c(10).$$

- Proposition -

The operad Schr admits the presentation (\mathfrak{G},\equiv) where \equiv is the smallest operad congruence satisfying

$$c(00) \circ_1 c(00) \equiv c(00) \circ_2 c(00),$$

$$c(01) \circ_1 c(10) \equiv c(10) \circ_2 c(01),$$
 $c(00) \circ_1 c(10) \equiv c(10) \circ_2 c(00),$

$$c(01) \circ_1 c(01) \equiv c(01) \circ_2 c(00),$$

 $c(00) \circ_1 c(01) \equiv c(00) \circ_2 c(10),$
 $c(01) \circ_1 c(01) \equiv c(01) \circ_2 c(00),$

$$c(01) \circ_1 c(00) \equiv c(00) \circ_2 c(01)$$
, $c(10) \circ_1 c(00) \equiv c(10) \circ_2 c(10)$.

- Proposition -

The set of the $\mathfrak{G}\text{-trees}$ avoiding the set

$$\mathcal{P} := \left\{ \begin{smallmatrix} \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} \\ \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} \\ \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} \\ \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} \\ \stackrel{\downarrow}{1} & \stackrel$$

is a basis of Schr.

- Proposition -

The operad Schr admits the presentation (\mathfrak{G},\equiv) where \equiv is the smallest operad congruence satisfying

$$c(00) \circ_1 c(00) \equiv c(00) \circ_2 c(00),$$

$$c(01) \circ_1 c(10) \equiv c(10) \circ_2 c(01),$$
 $c(00) \circ_1 c(10) \equiv c(10) \circ_2 c(00),$

$$c(00) \circ_1 c(01) \equiv c(00) \circ_2 c(10),$$

$$c(01) \circ_1 c(01) \equiv c(01) \circ_2 c(00),$$

$$c(01) \circ_1 c(00) \equiv c(00) \circ_2 c(01)$$

$$c(10) \circ_1 c(00) \equiv c(10) \circ_2 c(10).$$

- Proposition -

The set of the \mathfrak{G} -trees avoiding the set

$$\mathcal{P} := \left\{ \begin{smallmatrix} \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} & \stackrel{\downarrow}{0} \\ \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} \\ \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} \\ \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} \\ \stackrel{\downarrow}{1} & \stackrel{\downarrow}{1} \\ \stackrel{\downarrow}{1} & \stackrel$$

is a basis of Schr.

The characteristic series of this basis satisfies

$$\begin{split} \mathbf{F}\left(\mathcal{P},\emptyset\right) &= \left| + \bar{\diamond}_{00}\left(\mathbf{F}\left(\mathcal{P},\mathfrak{G}\right),\mathbf{F}\left(\mathcal{P},\emptyset\right)\right) + \bar{\diamond}_{01}\left(\mathbf{F}\left(\mathcal{P},\mathfrak{G}\right),\mathbf{F}\left(\mathcal{P},\emptyset\right)\right) \\ &+ \bar{\diamond}_{10}\left(\mathbf{F}\left(\mathcal{P},\emptyset\right),\mathbf{F}\left(\mathcal{P},\left\{10\right\}\right)\right), \\ \mathbf{F}\left(\mathcal{P},\mathfrak{G}\right) &= \left|, \right. \\ \mathbf{F}\left(\mathcal{P},\left\{10\right\}\right) &= \left| + \bar{\diamond}_{00}\left(\mathbf{F}\left(\mathcal{P},\mathfrak{G}\right),\mathbf{F}\left(\mathcal{P},\emptyset\right)\right) + \bar{\diamond}_{01}\left(\mathbf{F}\left(\mathcal{P},\mathfrak{G}\right),\mathbf{F}\left(\mathcal{P},\emptyset\right)\right). \end{split}$$

The generating series of these trees enumerated w.r.t. their arities (parameter z) and the numbers of internal nodes by types (parameters q_a , $a \in \mathfrak{G}$) satisfies

$$z + (z(q_{00} + q_{01} + q_{10}) - 1) F(\mathcal{P}, \emptyset) + (z(q_{00}q_{10} + q_{01}q_{10})) F(\mathcal{P}, \emptyset)^2 = 0.$$

The generating series of these trees enumerated w.r.t. their arities (parameter z) and the numbers of internal nodes by types (parameters q_a , $a \in \mathfrak{G}$) satisfies

$$z + (z(q_{00} + q_{01} + q_{10}) - 1) F(\mathcal{P}, \emptyset) + (z(q_{00}q_{10} + q_{01}q_{10})) F(\mathcal{P}, \emptyset)^2 = 0.$$

One has

$$\begin{split} F(\mathcal{P},\emptyset) &= z + (q_{00} + q_{01} + q_{10}) \, z^2 \\ &\quad + \left(q_{00}^2 + 2q_{00}q_{01} + 3q_{00}q_{10} + q_{01}^2 + 3q_{01}q_{10} + q_{10}^2 \right) z^3 \\ &\quad + \left(q_{00}^3 + 3q_{00}^2q_{01} + 6q_{00}^2q_{10} + 3q_{00}q_{01}^2 + 12q_{00}q_{01}q_{10} + 6q_{00}q_{10}^2 \right. \\ &\quad + q_{01}^3 + 6q_{01}^2q_{10} + 6q_{01}q_{10}^2 + q_{10}^3 \right) z^4 + \cdots \, . \end{split}$$

The generating series of these trees enumerated w.r.t. their arities (parameter z) and the numbers of internal nodes by types (parameters q_a , $a \in \mathfrak{G}$) satisfies

$$z + (z(q_{00} + q_{01} + q_{10}) - 1) F(\mathcal{P}, \emptyset) + (z(q_{00}q_{10} + q_{01}q_{10})) F(\mathcal{P}, \emptyset)^2 = 0.$$

One has

$$\begin{split} F(\mathcal{P},\emptyset) &= z + (q_{00} + q_{01} + q_{10}) \, z^2 \\ &\quad + \left(q_{00}^2 + 2q_{00}q_{01} + 3q_{00}q_{10} + q_{01}^2 + 3q_{01}q_{10} + q_{10}^2 \right) z^3 \\ &\quad + \left(q_{00}^3 + 3q_{00}^2q_{01} + 6q_{00}^2q_{10} + 3q_{00}q_{01}^2 + 12q_{00}q_{01}q_{10} + 6q_{00}q_{10}^2 \right) \\ &\quad + q_{01}^3 + 6q_{01}^2q_{10} + 6q_{01}q_{10}^2 + q_{10}^3 \right) z^4 + \cdots \,. \end{split}$$

The coefficients of the bivariate series obtained by specializing q_{10} and q_{01} (resp. q_{00} and q_{01}) to 1 are the ones of Triangle A126216 (resp. Triangle A114656).

For any $m\geqslant 0$, let $\mathbf{FCat}^{(m)}$ be the suboperad of $\mathrm{T}(\mathbb{N},+,0)$ generated by $\mathfrak{G}:=\{00,01,\dots,0m\}$.

For any $m\geqslant 0$, let $\mathbf{FCat}^{(m)}$ be the suboperad of $\mathrm{T}(\mathbb{N},+,0)$ generated by $\mathfrak{G}:=\{00,01,\dots,0m\}$.

- Proposition -

The set $\mathbf{FCat}^{(m)}$ contains exactly all the words u satisfying $u_1=0$ and $u_i\in [0,u_{i-1}+m]$ for all valid positions i and i-1.

For any $m\geqslant 0$, let $\mathbf{FCat}^{(m)}$ be the suboperad of $\mathrm{T}(\mathbb{N},+,0)$ generated by $\mathfrak{G}:=\{00,01,\dots,0m\}$.

- Proposition -

The set $\mathbf{FCat}^{(m)}$ contains exactly all the words u satisfying $u_1=0$ and $u_i\in [0,u_{i-1}+m]$ for all valid positions i and i-1.

Moreover, the set $\mathbf{FCat}^{(m)}(n)$ is in one-to-one correspondence with the set of planar rooted trees with wherein all their n internal nodes have m+1 children.

The dimensions of $\mathbf{FCat}^{(m)}$ are hence Fuss-Catalan numbers.

For any $m\geqslant 0$, let $\mathbf{FCat}^{(m)}$ be the suboperad of $\mathrm{T}(\mathbb{N},+,0)$ generated by $\mathfrak{G}:=\{00,01,\dots,0m\}$.

- Proposition -

The set $\mathbf{FCat}^{(m)}$ contains exactly all the words u satisfying $u_1=0$ and $u_i\in[0,u_{i-1}+m]$ for all valid positions i and i-1.

Moreover, the set $\mathbf{FCat}^{(m)}(n)$ is in one-to-one correspondence with the set of planar rooted trees with wherein all their n internal nodes have m+1 children.

The dimensions of $\mathbf{FCat}^{(m)}$ are hence Fuss-Catalan numbers.

- Proposition -

The operad $\mathbf{FCat}^{(m)}$ admits the presentation (\mathfrak{G},\equiv) where \equiv is the smallest operad congruence satisfying

$$c(0k_3) \circ_1 c(0k_1) \equiv c(0k_1) \circ_2 c(0k_2), \qquad k_3 = k_1 + k_2.$$

- Proposition -

The operad $\mathbf{FCat}^{(m)}$ admits the presentation (\mathfrak{G},\equiv) where \equiv is the smallest operad congruence satisfying

$$c(0k_3) \circ_1 c(0k_1) \equiv c(0k_1) \circ_2 c(0k_2), \qquad k_3 = k_1 + k_2.$$

- Proposition -

The set of the $\mathfrak{G}\text{-trees}$ avoiding the set

$$\mathcal{P} := \left\{ egin{array}{c} dots \ rac{0}{0}k_3 \ rac{0}{N_1} \ lac{N_2}{N_1} \end{array} : 0 \leqslant k_1 \leqslant k_3 \leqslant m
ight\}$$

is a basis of $\mathbf{FCat}^{(m)}$.

- Proposition -

The operad $\mathbf{FCat}^{(m)}$ admits the presentation (\mathfrak{G},\equiv) where \equiv is the smallest operad congruence satisfying

$$c(0k_3) \circ_1 c(0k_1) \equiv c(0k_1) \circ_2 c(0k_2), \qquad k_3 = k_1 + k_2.$$

- Proposition -

The set of the $\mathfrak{G}\text{-trees}$ avoiding the set

is a basis of $\mathbf{FCat}^{(m)}$.

The characteristic series of this basis satisfies

$$\mathbf{F}(\mathcal{P}, \emptyset) = 1 + \sum_{0 \le k \le m} \bar{\circ}_{0k} \left(\mathbf{F} \left(\mathcal{P}, \mathcal{Q}_k \right), \mathbf{F}(\mathcal{P}, \emptyset) \right),$$

$$\mathbf{F}\left(\mathcal{P},\mathcal{Q}_{k}
ight) = 1 + \sum_{k < k' \le m} \bar{\circ}_{0k'} \left(\mathbf{F}\left(\mathcal{P},\mathcal{Q}_{k'}
ight), \mathbf{F}(\mathcal{P},\emptyset)
ight),$$

where

$$Q_k := \{00, 01, \dots, 0k\}.$$

The generating series of these trees enumerated w.r.t. their arities (parameter z) and the numbers of internal nodes by types (parameters q_a , $a\in\mathfrak{G}$) satisfies

$$-F(\mathcal{P},\emptyset) + z \prod_{0 \le k \le m} (q_{0k}F(\mathcal{P},\emptyset) + 1) = 0.$$

The generating series of these trees enumerated w.r.t. their arities (parameter z) and the numbers of internal nodes by types (parameters q_a , $a \in \mathfrak{G}$) satisfies

$$-F(\mathcal{P},\emptyset) + z \prod_{0 \le k \le m} (q_{0k}F(\mathcal{P},\emptyset) + 1) = 0.$$

One has, for m:=1,

$$\begin{split} F(\mathcal{P},\emptyset) &= z + \left(q_{00} + q_{01}\right)z^2 \\ &\quad + \left(q_{00}^2 + 2q_{00}q_{01} + 2q_{01}^2\right)z^3 + \left(q_{00}^3 + 3q_{00}^2q_{01} + 5q_{00}q_{01}^2 + 5q_{01}^3\right)z^4 \\ &\quad + \left(q_{00}^4 + 4q_{00}^3q_{01} + 9q_{00}^2q_{01}^2 + 14q_{00}q_{01}^3 + 14q_{01}^4\right)z^5 \\ &\quad + \left(q_{00}^5 + 5q_{00}^4q_{01} + 14q_{00}^3q_{01}^2 + 28q_{00}^2q_{01}^3 + 42q_{00}q_{01}^4 + 42q_{01}^5\right)z^6 + \cdots, \end{split}$$

The generating series of these trees enumerated w.r.t. their arities (parameter z) and the numbers of internal nodes by types (parameters q_a , $a \in \mathfrak{G}$) satisfies

$$-F(\mathcal{P},\emptyset) + z \prod_{0 \le k \le m} (q_{0k}F(\mathcal{P},\emptyset) + 1) = 0.$$

One has, for m:=1,

$$\begin{split} F(\mathcal{P},\emptyset) &= z + \left(q_{00} + q_{01}\right)z^2 \\ &\quad + \left(q_{00}^2 + 2q_{00}q_{01} + 2q_{01}^2\right)z^3 + \left(q_{00}^3 + 3q_{00}^2q_{01} + 5q_{00}q_{01}^2 + 5q_{01}^3\right)z^4 \\ &\quad + \left(q_{00}^4 + 4q_{00}^3q_{01} + 9q_{00}^2q_{01}^2 + 14q_{00}q_{01}^3 + 14q_{01}^4\right)z^5 \\ &\quad + \left(q_{00}^5 + 5q_{00}^4q_{01} + 14q_{00}^3q_{01}^2 + 28q_{00}^2q_{01}^3 + 42q_{00}q_{01}^4 + 42q_{01}^5\right)z^6 + \cdots, \end{split}$$

The coefficients of the bivariate series obtained by specializing q_{10} (resp. q_{00}) to 1 are the ones of Triangle A033184 (resp. Triangle A009766).

Let $\mathbf{D}\mathbf{A}$ be the suboperad of $(\mathbb{Z}/_{3\mathbb{Z}},+,0)$ generated by $\mathfrak{G}:=\{00,01\}$.

Let \mathbf{DA} be the suboperad of $(\mathbb{Z}/_{3\mathbb{Z}},+,0)$ generated by $\mathfrak{G}:=\{00,01\}$.

- Proposition -

The set $\mathbf{D}\mathbf{A}(n)$ is in one-to-one correspondence with the set of prefixes of Motkzin paths of n-1 steps.

Let $\mathbf{D}\mathbf{A}$ be the suboperad of $(\mathbb{Z}/_{3\mathbb{Z}},+,0)$ generated by $\mathfrak{G}:=\{00,01\}$.

- Proposition -

The set $\mathbf{D}\mathbf{A}(n)$ is in one-to-one correspondence with the set of prefixes of Motkzin paths of n-1 steps.

Let \mathbf{DA} be the suboperad of $(\mathbb{Z}/_{3\mathbb{Z}},+,0)$ generated by $\mathfrak{G}:=\{00,01\}$.

- Proposition -

The set $\mathbf{D}\mathbf{A}(n)$ is in one-to-one correspondence with the set of prefixes of Motkzin paths of n-1 steps.

Since prefixes of Motzkin paths are in one-to-one correspondence with directed animals on the square lattice [Gouyou-Beauchamps, \mathbf{DA} is an operad on such objects.

The first dimensions of DA are

1, 2, 5, 13, 35, 96, 267, 750, 2123 (A005773).

- Proposition -

The operad ${\bf DA}$ admits the presentation (\mathfrak{G},\equiv) where \equiv is the smallest operad congruence satisfying

$$\begin{split} c(00) \circ_1 c(00) &\equiv c(00) \circ_2 c(00), \\ c(01) \circ_1 c(00) &\equiv c(00) \circ_2 c(01), \\ c(01) \circ_1 c(01) &\equiv c(01) \circ_2 c(00), \\ (c(00) \circ_1 c(01)) \circ_2 c(01) &\equiv (c(01) \circ_2 c(01)) \circ_3 c(01). \end{split}$$

- Proposition -

The operad ${\bf DA}$ admits the presentation (\mathfrak{G},\equiv) where \equiv is the smallest operad congruence satisfying

$$\begin{split} c(00) \circ_1 c(00) &\equiv c(00) \circ_2 c(00), \\ c(01) \circ_1 c(00) &\equiv c(00) \circ_2 c(01), \\ c(01) \circ_1 c(01) &\equiv c(01) \circ_2 c(00), \\ (c(00) \circ_1 c(01)) \circ_2 c(01) &\equiv (c(01) \circ_2 c(01)) \circ_3 c(01). \end{split}$$

- Proposition -

The set of the $\mathfrak{G}\text{-trees}$ avoiding the set

is a basis of $\mathbf{D}\mathbf{A}$.

The characteristic series of the previous basis of DA satisfies
$$\begin{split} \mathbf{F}(\mathcal{P},\emptyset) &= |+\bar{\circ}_{00}\left(\mathbf{F}(\mathcal{P},\{00\}),\mathbf{F}(\mathcal{P},\emptyset)) + \bar{\circ}_{01}\left(\mathbf{F}(\mathcal{P},\{00\}),\mathbf{F}\left(\mathcal{P},\{00,\mathfrak{t}\}\right)\right),\\ \mathbf{F}(\mathcal{P},\{00\}) &= |+\bar{\circ}_{01}\left(\mathbf{F}(\mathcal{P},\{00\}),\mathbf{F}\left(\mathcal{P},\{00,\mathfrak{t}\}\right)\right),\\ \mathbf{F}\left(\mathcal{P},\{00,\mathfrak{t}\}\right) &= |+\bar{\circ}_{01}\left(\mathbf{F}(\mathcal{P},\{00\}),\mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)\right),\\ \mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right) &= |.\\ \end{split}$$
 where $\mathfrak{t} := c(01) \circ_2 c(01).$

The characteristic series of the previous basis of DA satisfies

$$\begin{split} \mathbf{F}(\mathcal{P},\emptyset) &= |+ \bar{\diamond}_{00} \left(\mathbf{F}(\mathcal{P},\{00\}), \mathbf{F}(\mathcal{P},\emptyset) \right) + \bar{\diamond}_{01} \left(\mathbf{F}(\mathcal{P},\{00\}), \mathbf{F}\left(\mathcal{P},\{00,\mathfrak{t}\}\right) \right), \\ \mathbf{F}(\mathcal{P},\{00\}) &= |+ \bar{\diamond}_{01} \left(\mathbf{F}(\mathcal{P},\{00\}), \mathbf{F}\left(\mathcal{P},\{00,\mathfrak{t}\}\right) \right), \\ \mathbf{F}\left(\mathcal{P},\{00,\mathfrak{t}\}\right) &= |+ \bar{\diamond}_{01} \left(\mathbf{F}(\mathcal{P},\{00\}), \mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right) \right), \\ \mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right) &= |. \\ \text{here } \mathfrak{t} := c(01) \diamond_2 c(01). \end{split}$$

where $\mathfrak{t} := c(01) \circ_2 c(01)$.

The generating series of these trees enumerated w.r.t. their arities (parameter z) and the numbers of internal nodes by types (parameters q_a , $a \in \mathfrak{G}$) satisfies

$$F(\mathcal{P},\emptyset) = \frac{1 - \sqrt{1 - 2zq_{01} - 3z^2q_{01}^2} - z(2q_{00} + q_{01})}{2z\left(q_{00}^2 + q_{00}q_{01} + q_{01}^2\right) - 2q_{00}}$$

The characteristic series of the previous basis of DA satisfies

$$\begin{split} \mathbf{F}(\mathcal{P},\emptyset) &= |+\bar{\circ}_{00}\left(\mathbf{F}(\mathcal{P},\{00\}),\mathbf{F}(\mathcal{P},\emptyset)) + \bar{\circ}_{01}\left(\mathbf{F}(\mathcal{P},\{00\}),\mathbf{F}\left(\mathcal{P},\{00,\mathfrak{t}\}\right)\right),\\ \mathbf{F}(\mathcal{P},\{00\}) &= |+\bar{\circ}_{01}\left(\mathbf{F}(\mathcal{P},\{00\}),\mathbf{F}\left(\mathcal{P},\{00,\mathfrak{t}\}\right)\right),\\ \mathbf{F}\left(\mathcal{P},\{00,\mathfrak{t}\}\right) &= |+\bar{\circ}_{01}\left(\mathbf{F}(\mathcal{P},\{00\}),\mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)\right),\\ \mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right) &= |.\\ \end{split}$$
 where $\mathbf{t}:=\mathbf{c}(01)\circ_{2}\mathbf{c}(01).$

The generating series of these trees enumerated w.r.t. their arities (parameter z) and the numbers of internal nodes by types (parameters q_a , $a \in \mathfrak{G}$) satisfies

$$F(\mathcal{P},\emptyset) = \frac{1 - \sqrt{1 - 2zq_{01} - 3z^2q_{01}^2} - z(2q_{00} + q_{01})}{2z\left(q_{00}^2 + q_{00}q_{01} + q_{01}^2\right) - 2q_{00}}$$

One has

$$\begin{split} F(\mathcal{P},\emptyset) &= z + \left(q_{00} + q_{01}\right)z^2 + \left(q_{00}^2 + 2q_{00}q_{01} + 2q_{01}^2\right)z^3 \\ &\quad + \left(q_{00}^3 + 3q_{00}^2q_{01} + 5q_{00}q_{01}^2 + 4q_{01}^3\right)z^4 + \left(q_{00}^4 + 4q_{00}^3q_{01} + 9q_{00}^2q_{01}^2 + 12q_{00}q_{01}^3 + 9q_{01}^4\right)z^5 \\ &\quad + \left(q_{00}^5 + 5q_{00}^4q_{01} + 14q_{00}^3q_{01}^2 + 25q_{00}^2q_{01}^3 + 30q_{00}q_{01}^4 + 21q_{01}^5\right)z^6 + \cdot\cdot\cdot\cdot. \end{split}$$

The characteristic series of the previous basis of ${f DA}$ satisfies

$$\begin{split} \mathbf{F}(\mathcal{P},\emptyset) &= |+\bar{\circ}_{00}\left(\mathbf{F}(\mathcal{P},\{00\}),\mathbf{F}(\mathcal{P},\emptyset)) + \bar{\circ}_{01}\left(\mathbf{F}(\mathcal{P},\{00\}),\mathbf{F}\left(\mathcal{P},\{00,\mathfrak{t}\}\right)\right),\\ \mathbf{F}(\mathcal{P},\{00\}) &= |+\bar{\circ}_{01}\left(\mathbf{F}(\mathcal{P},\{00\}),\mathbf{F}\left(\mathcal{P},\{00,\mathfrak{t}\}\right)\right),\\ \mathbf{F}\left(\mathcal{P},\{00,\mathfrak{t}\}\right) &= |+\bar{\circ}_{01}\left(\mathbf{F}(\mathcal{P},\{00\}),\mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)\right),\\ \mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right) &= |.\\ \mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right) &= |\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right) &= |\mathcal{P}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right) &= |\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right) &= |\mathcal{P}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right) &= |\mathcal{P}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right) &= |\mathcal{P}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P}\left(\mathcal{P}\left(\mathcal{P},\{00,01,\mathfrak{t}\}\right)|,\\ \mathbf{F}\left(\mathcal{P}\left(\mathcal{P}\left(\mathcal{P}\right)|,\\ \mathbf{F}\left(\mathcal{P}\left(\mathcal{P}\right)|,\\ \mathbf{F}\left(\mathcal{$$

The generating series of these trees enumerated w.r.t. their arities (parameter z) and the numbers of internal nodes by types (parameters q_a , $a \in \mathfrak{G}$) satisfies

$$F(\mathcal{P},\emptyset) = \frac{1 - \sqrt{1 - 2zq_{01} - 3z^2q_{01}^2} - z(2q_{00} + q_{01})}{2z\left(q_{00}^2 + q_{00}q_{01} + q_{01}^2\right) - 2q_{00}}$$

One has

$$\begin{split} F(\mathcal{P},\emptyset) &= z + \left(q_{00} + q_{01}\right)z^2 + \left(q_{00}^2 + 2q_{00}q_{01} + 2q_{01}^2\right)z^3 \\ &\quad + \left(q_{00}^3 + 3q_{00}^2q_{01} + 5q_{00}q_{01}^2 + 4q_{01}^3\right)z^4 + \left(q_{00}^4 + 4q_{00}^3q_{01} + 9q_{00}^2q_{01}^2 + 12q_{00}q_{01}^3 + 9q_{01}^4\right)z^5 \\ &\quad + \left(q_{00}^5 + 5q_{00}^4q_{01} + 14q_{00}^3q_{01}^2 + 25q_{00}^2q_{01}^3 + 30q_{00}q_{01}^4 + 21q_{01}^5\right)z^6 + \cdots. \end{split}$$

The coefficients of the bivariate series obtained by specializing q_{10} (resp. q_{00}) to 1 are the ones of Triangle A064189 (resp. Triangle A026300).