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Nonsymmetric operads

A nonsymmetric operad is a triple (O, ◦,1) where

O is a graded set O =
⊔

n>1O(n);

◦ : O(n)× (O(m1)× · · · × O(mn))→ O(m1 + · · ·+mn) is a map called full composition;

1 is an element of O(1) called unit.

The following relations have to hold:

for all x ∈ O(n), yi ∈ O(mi), and zi,j ∈ O, i ∈ [n], j ∈ [mi],

(x ◦ y1 . . . yn) ◦ z1,1 . . . z1,m1 . . . zn,1 . . . zn,mn = x ◦(y1 ◦ z1,1 . . . z1,m1) . . . (yn ◦ zn,1 . . . zn,mn);

for all x ∈ O(n),
1 ◦ x = x = x ◦1n.
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Intuition

Each element x of O(n) can be seen as a planar operator, that is an entity having n inputs and a
single output:

x

1 n. . .

.

The arity |x| of x is its number n of inputs, numbered from 1 to n from left to right.

The full composition x ◦ y1 . . . yn consists in grafting the output of each yi onto the i-th input of x.

This produces a new operator

x

1 n. . .

◦ y1

1 m1. . .

. . . yn

1 mn. . .

=

x

. . .

y1

1 m1. . .

yn

m−mn+1 m. . .

of arity m := m1 + · · ·+mn.
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Partial and homogeneous composition maps

Let O be an operad.

The partial composition map of O is the map ◦i : O(n)×O(m)→ O(n+m− 1) de�ned, for
any x ∈ O(n), i ∈ [n], and y ∈ O(m), by

x ◦i y := x ◦1i−1 y 1n−i.

Conversely, we recover ◦ from the ◦i by setting, for any x ∈ O(n) and y1 . . . yn ∈ On,

x ◦ y1 . . . yn := (. . . (x ◦n yn) ◦n−1 yn−1 . . .) ◦1 y1.

The homogeneous composition map of O is the map � : O(n)×O(m)→ O(nm) de�ned, for
any x ∈ O(n) and y ∈ O(m), by

x� y := x ◦ yn.

The triple (O,�,1) is a monoid.
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Example: the duplicial operad

The duplicial operad [Loday, 2008] is the operad (Dup, ◦i,1) such that

for any n > 1, Dup(n) is the set of all binary trees with n internal nodes;

for any t ∈ Dup(n), i ∈ [n], and s ∈ Dup, t ◦i s is the binary tree obtained by replacing the
i-th internal node u of t (for the in�x traversal) by s and by grafting onto the leftmost (resp.
rightmost) leaf of s the left (resp. right) child of u;

1 is the binary tree with exactly one internal node.

– Example –

1
2

3
4

5

◦2 =
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The construction T

Let (M, ?, e) be a monoid and let (TM, ◦i,1) be the triple such that

for any n > 1, TM(n) is the setMn;

for any u ∈ TM(n), i ∈ [n], and v ∈ TM,

u ◦i v := u(1, i − 1) (u(i) ? v(1)) . . . (u(i) ? v(`(v))) u(i + 1, `(u));

1 is the element e seen as a word of length 1.

– Examples –
SetM := ({a, b}∗, ., ε). In TM,

(aa, ε, bab, ε, b) ∈ TM(5)

and
(b, ab, ε, a) ◦2(ε, a, aa) = (b, ab.ε, ab.a, ab.aa, ε, a) = (b, ab, aba, abaa, ε, a).

– Theorem [G., 2015] –
For any monoidM, TM is an operad.
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Operads from the construction T

The operads TM are large enough to contain a lot of suboperads realizable in combinatorial terms.
As main examples:

For any m > 0, withM := (N,+, 0),
PRTm, generated by {01, . . . , 0m}, on primitive m-Dyck paths;
FCatm, gen. by {00, 01, . . . , 0m}, on m-trees;
Schrm, gen. by {01, . . . , 0m, 00,m0, . . . , 10}, on some Schröder trees;
Motzm, gen. by {00, 000, 010, . . . , 0m0}, on colored Motzkin paths.

For any m > 0, withM := (Z/(m+ 1)Z,+, 0),
Compm, gen. by {00, 01, . . . , 0m}, on m-words;
DAm, gen. by {00, 01, . . . , 0(m− 1)}, on some directed animals.

For any m > 0,M := (N,max, 0),
Diasm, gen. by {01, . . . , 0m,m0, . . . , 10}, is the m-pluriassociative operad [Loday, 2001] [G., 2016];
Triasm, gen. by {01, . . . , 0m, 00,m0, . . . , 10}, is the m-pluritriassociative operad [Loday, Ronco,
2004] [G., 2016].
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Some partial compositions on combinatorial objects

◦2 = (in PRT1)

◦1 = (in FCat2)

◦6 = (in Schr1)

◦4 = (in Motz1)

◦5 = (in Comp1)
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Full diagram

T(N,+, 0)

T(Z/(m + 1)Z,+, 0)

T(N,max, 0)

Schrm+1

SchrmFCatm+1

FCatmPRTm+1

PRTm

Motzm+1

Motzm

Motz0

PRT0

Compm

DAm

Diasm

Diasm+1 Triasm

Triasm+1
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The construction U

Let (M, ?, e) be a monoid and let (UM, ◦i,1) be the triple such that

for any n > 1, UM(n) is the setMn+1;

for any u ∈ UM(n), i ∈ [n], and v ∈ UM,

u ◦i v := u(1, i − 1) (u(i) ? v(1)) v(2, `(v)− 1) (v(`(v)) ? u(i + 1)) u(i + 2, `(u)));

1 is the element ee.

– Examples –
SetM := ({a, b}∗, ., ε). In UM,

(aa, ε, bab, ε, b) ∈ UM(4)

and
(ba, aa, b, ε, a) ◦2(a, bb, b) = (ba, aa.a, bb, b.b, ε, a) = (ba, aaa, bb, bb, ε, a).

– Theorem [G., 2021–] –
For any monoidM, UM is an operad.
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Degree patterns

A degree is an integer.

A degree pattern is a nonempty word d of degrees. The arity |d| of d is its length.

Let N be the set of all musical notes nk where n is the pitch class and k is the octave of the note.

A degree interpretation is a map ρ : Z→ N sending each degree to a note. The
ρ-interpretation ρ(d) of d is the sequence ρ(d(1)) . . . ρ(d(|d|)) of notes.

– Examples –
Let the degree pattern

d := 102̄3̄507.

A negative value has a bar above its absolute value. The arity of d is 7.

If ρ sends 0 to 04 and the other degrees according with the minor pentatonic scale,

ρ(d) = 34 04 73 53 05 04 55.

Instead, if ρ sends 0 to 04 and the other degrees according with the major natural scale,

ρ(d) = 24 04 93 73 94 04 05.
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Rhythm patterns

A rhythm pattern is a nonempty word r on the alphabet { , } having at least one occurrence of
. The arity |r| of r is its number of occurrences of .

The duration sequence of a rhythm pattern r is the unique sequence σ := σ(1) . . . σ(|r|+ 1) of
nonnegative integers such that

r = σ(1) σ(2) . . . σ(|r|+1) .

A rhythm interpretation is a positive integer value δ specifying the duration of the unit of time.
The δ-interpretation δ(r) of r is the sequence σ(1)δ, (σ(2) + 1)δ, . . . , (σ(|r|+ 1) + 1)δ. It
speci�es the duration of the initial rest and the durations of the other beats.

– Examples –
Let the rhythm pattern

r := .

The arity of r is 3.

The duration sequence of r is 2013 so that r speci�es the rhythm consisting in a rest lasting 2 units of time, a note
lasting 1 unit of time, a note lasting 2 units of time, and a note lasting 4 units of time.
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Patterns

A pattern p is a pair (d, r) such that |d| = |r|.
The arity |p| of p is the arity of d (or of r).

– Example –

The pattern p := (11̄2, ) is of arity 3.

Patterns are denoted concisely by replacing each
by the corresponding degree. In this way,

patterns are words on the alphabet { } ∪ Z.

– Example –

The previous patterns writes as p = 11̄ 2 .

An interpretation is a pair (ρ, δ) such that ρ is a degree interpretation and δ is a rhythm
interpretation. The (ρ, δ)-interpretation of a pattern p is the sequence of notes with their
durations obtained from the ρ-interpretation of p and the δ-interpretation of p.
By convention, in the following musical scores, each unit of time lasts 1

8 the duration of a whole note.

– Example –
Let the pattern p := 0 121̄ 012̄ 1̄0̄0 . By setting ρ as the degree interpretation specifying the 93 harmonic
minor scale and δ as the rhythm interpretation specifying 192 as tempo, we obtain the musical phrase

= 192

8
8

n
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Multi-patterns

A multi-pattern is a nonempty sequence m of patterns such that for all i, j ∈ [`(m)],
|m(i)| = |m(j)| and `(m(i)) = `(m(j)).

The arity |m| of m is the arity of any m(i).
The length `(m) of m is the length of any m(i).
The multiplicity m(m) of m is `(m).
Multi-patterns are denoted as matrices by stack-
ing their patterns.

– Example –
Let the multi-pattern

m :=

[
0 4 4 0 0
7̄ 7̄ 0 3̄ 3̄

]
.

The arity of m is 5, its length is 9, and its multiplicity is 2.

By interpreting each pattern of a multi-pattern through an interpretation, a multi-pattern speci�es
a musical phrase consisting in stacked voices.

– Example –

The previous multi-pattern, interpreted through the de-
gree interpretation specifying the 93 harmonic minor scale
and the rhythm interpretation specifying 128 as tempo
gives the musical phrase

= 128

8
8

8
8

n
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Operads of degree patterns

A degree monoid is a monoid (D, ?, e) such that D ⊆ Z.

The D-degree pattern operad is the operad DPD := TD. The elements of DPD are degree
patterns on D.

– Examples –
By denoting by Z the monoid (Z,+, 0), we have in DPZ,

0121̄ ◦3 024 = 01 246 1̄,

0121̄� 024 = 024 135 246 1̄13.

By denoting, for any k > 1, by Ck the cyclic monoid (Z/kZ,+, 0), we have in DPC3 ,

20010 ◦4 2120 = 200 0201 0.

By denoting, for any subset Z of Z having a lower bound z, by MZ the monoid (Z ,max, z), we have in DPM[0,2] ,

20010 ◦4 2120 = 200 2121 0.
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Operad of rhythm patterns

Let N be the monoid (N,+, 0).

The rhythm pattern operad is the operad RP := UN. The elements of RP are duration
sequences.

– Example –
In RP,

001 21 ◦3 110 = 00 212 1.

Since duration sequences and rhythm patterns are in one-to-one correspondence, RP can be seen
as an operad on rhythm patterns.
On rhythm patterns, the partial composition of RP expresses as follows: if r and r′ are two rhythm
patterns, then r ◦i r′ is obtained by replacing the i-th beat of r by r′.

– Example –
The previous composition, seen on rhythm patterns, translates as

◦3 = .
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Operads of patterns

The Hadamard product of two operads O and O′ is the operad O�O′ such that for any n > 1,

(O�O′)(n) := O(n)×O′(n)

and for any (x, x′), (y, y′) ∈ O�O′,

(x, x′) ◦i(y, y′) = (x ◦i y, x′ ◦i y′).

Let D be a degree monoid.
The D-pattern operad is the operad PD := DPD �RP. The elements of PD are pairs (d, r) such
that |d| = |r|. Therefore, the elements of PD are patterns.

– Examples –
In PZ, we have

(2̄31, ) ◦2 (01̄, ) = (2̄ 32 1, )

which translates through the concise notation for patterns as

2̄3 1 ◦2 0 1̄ = 2̄3 2 1.
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Operads of multi-patterns

Let D be a degree monoid and m > 1. Let PD
m
′ be the operad de�ned as

PD
m
′
:= PD � · · ·�PD︸ ︷︷ ︸

m terms
.

Let also PD
m be the subset of the underlying graded set of PD

m
′ restrained to the sequences

m(1) . . .m(m) such that `(m(1)) = · · · = `(m(m)).

– Theorem [G., 2021–] –

For any degree monoid D and any positive integer m, PD
m is an operad.

We call PD
m the D-music box operad.

– Example –
In PZ

2 , [
2̄ 1̄ 0

0 1 1

]
◦2

[
1
3̄

]
=

[
2̄ 0 0

0 2̄ 1

]
.
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Operations on musical phrases

Every element of PD
m(n) can be seen as an operator of arity n acting on multi-patterns.

Here are some examples.

If m is an arpeggio shape and p is a pattern, p′�m is an arpeggiation of p, where p′ is the
multi-pattern obtained by stacking m(m) equal voices from p.

– Example –

If p := 210 1 and m :=

 0
4

2

 , we obtain

 2 1 0 1
6 5 4 5

4 3 2 3

 .
If m is a chord shape and p is a pattern, p′�m is an harmonization of p, where p′ is the
multi-pattern obtained by stacking m(m) equal voices from p.

– Example –

If p := 210 1 and m :=

[
0
4

]
, we obtain

[
2 1 0 1
6 5 4 5

]
.
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Colored operads

Let C be a nonempty set, called set of colors.

A C-colored operad is a triple (C, ◦,1) where

C is a set
C =

⊔
a∈C
u∈C+

C(a, u);

◦ : C(a, u)×
(
C(u(1), v1)× · · · × C

(
u(`(u)), v`(u)

))
→ C

(
a, v1 . . . v`(u)

)
is a map called

colored full composition;

1 : C→ C(a, a) is a map called colored unit.

This data satis�es similar relations than the ones of operads.

Intuitively, in a colored operad, each element has an output color and a color for each input. The
composition is de�ned only when colors match.
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Bud operads

Let (O, ◦,1) be an operad and C be a set of colors.

Let (BCO, ◦′,1′) be the triple such that

for any a ∈ C and u ∈ C+,

(BCO)(a, u) := {(a, x, u) : x ∈ O(`(u))};

for any (a, x, u) ∈ BCO and (u(i), yi, vi) ∈ BCO, i ∈ [`(u)],

(a, x, u) ◦′(u(1), y1, v1) . . .
(
u(`(u)), y`(u), v`(u)

)
=
(
a, x ◦ y1 . . . y`(u), v1 . . . v`(u)

)
;

for any c ∈ C, 1′(c) := (c,1, c).

– Proposition [G., 2019] –

For any operadO and any set of colors C, BCO is a C-colored operad.
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Bud generating systems

A bud generating system is a tuple B := (O,C,R, b) where
(O, ◦i,1) is an operad, called ground operad;

C is a �nite set of colors;

R is a �nite subset of BC(O), called set of rules;

b is a color of C, called initial color.

Let ◦−→ be the binary relation on BCO such that (a, x, u) ◦−→ (a, y, v) if there are rules
r1, . . . , r|x| ∈ R such that

(a, y, v) = (a, x, u) ◦ r1 . . . r|x|.

An element x of O is fully generated by B if there is an element (b, x, u) such that (b,1, b) is in
relation with (b, x, u) w.r.t. the re�exive and transitive closure of ◦−→.
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Bud generating systems

– Example –
Let the bud generating system B :=

(
PZ

2 , {b1, b2, b3}, {c1, c2, c3, c4, c5}, b1
)

where

c1 :=

(
b1,

[
0 2 1 0 4
5̄ 0 0 0 0

]
, b3b2b1b1b3

)
, c2 :=

(
b1,

[
1 0
0 1

]
, b1b1

)
,

c3 :=

(
b2,

[
1̄
1̄

]
, b1

)
, c4 :=

(
b2,

[
0 0
0 0

]
, b1b1

)
, c5 :=

(
b3,

[
0
0

]
, b3

)
.

Since(
b1,

[
0
0

]
, b1

)
◦−→
(
b1,

[
0 2 1 0 4
5̄ 0 0 0 0

]
, b3b2b1b1b3

)
◦−→
(
b1,

[
0 1 2 1 0 2 1 0 4 4
5̄ 1̄ 0 1 5̄ 0 0 0 0 0

]
, b3b1b1b1b3b2b1b1b3b3

)
,

the multi-pattern [
0 1 2 1 0 2 1 0 4 4
5̄ 1̄ 0 1 5̄ 0 0 0 0 0

]
is fully generated by B.
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A random generation algorithm

For any color a ∈ C, we shall denote byRa the set of all rules ofR having a as output color.

If S is a nonempty �nite set, random(S) returns an element of S picked uniformly at random.

Let us consider the following random generation algorithm.

Data: A bud generating system B := (O,C,R, b) and an integer k ∈ N.
Result: A randomly generated element of O.

1 begin
2 (a, x, u)← (b,1, b)
3 for j ∈ [k] do
4 R← Ru(1) × · · · × Ru(`(x))

5 if R 6= ∅ then
6 (a, x, u)← (a, x, u) ◦ random(R)

7 return x
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A random generation algorithm

– Example –
Let the bud generating system B :=

(
PZ

2 , {b1, b2, b3}, {c1, c2, c3, c4, c5}, b1
)

where

c1 :=

(
b1,

[
0 2 1 0 4
5̄ 0 0 0 0

]
, b3b2b1b1b3

)
, c2 :=

(
b1,

[
1 0
0 1

]
, b1b1

)
,

c3 :=

(
b2,

[
1̄
1̄

]
, b1

)
, c4 :=

(
b2,

[
0 0
0 0

]
, b1b1

)
, c5 :=

(
b3,

[
0
0

]
, b3

)
.

The previous random generation algorithm run with this bud generating system and k := 2 generates the multi-pattern[
2 4 3 2 6 2 1 0 1 2 1 1 0 4
5̄ 0 0 0 0 1 2 4̄ 0 1 2 1 2 1

]
.

This pattern is obtained from the underlying random syntax tree

c2

c5 c3

c1

c2c1 c2 c5

c2

c2

.
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The Bud Music Box program

An implementation of these concepts can be found at
https://github.com/SamueleGiraudo/Bud-Music-Box

Here is a Bud Music Box program:
scale 2 1 4 1 4
root 57
tempo 192
sounds 3 1

multi_pattern mpat_1 0 2 4 * ; -5 * 0 -1
multi_pattern mpat_2 0 * ; * 0
multi_pattern mpat_3 0 ; 0

colorize cpat_1 mpat_1 c1 c3 c1 c3
colorize cpat_2 mpat_1 c1 c3 c2 c3
colorize cpat_3 mpat_2 c2 c1
colorize cpat_4 mpat_3 c3 c3

generate mpat_3 full 8 c1 cpat_1 cpat_2 cpat_3 cpat_4
show
play mpat_3

Here is a randomly generated pattern:
0 2 4 6 8 10 12 * 14 * 12 * 10 * 8 * * 6 * 4 * ;
-5 * -5 * * -5 * -5 * -5 * -5 * * 0 -1 -1 -1 -1 -1 -1

n Interpreted in the Hirajoshi scale.

Here is another one:
0 2 4 6 8 10 12 * * 10 * * 8 * 6 * * 4 * ;
-5 * * -5 * -5 * * -5 * * -5 * 0 -1 -1 -1 -1 -1

n Interpreted in the Hirajoshi scale.
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