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Some combinatorial objects

Words

Let A := {a, b} be an alphabet and A∗ be the combinatorial collection of the words on A.

A∗(0) = {ϵ}, A∗(1) = {a, b}, A∗(2) = {aa, ab, ba, bb}.

Permutations

Let S be the combinatorial collection of the permutations.

S(0) = {ϵ}, S(1) = {1}, S(2) = {12, 21}, S(3) = {123, 132, 213, 231, 312, 321}.

Binary trees

Let B be the combinatorial collection of the binary trees.

B(0) =
{ }

, B(1) =

{ }
, B(2) =

{
,

}
, B(3) =

 , , , ,

.



Combinatorial collections

A combinatorial collection (CC) is a set C endowed with a map

| − | : C → N

such that for any n ∈ N, the set C (n) := {x ∈ C : |x | = n} is finite.

Some usual questions

1. Enumerate the elements of C(n);

2. Generate exhaustively the elements of C(n);

3. Randomly generate an element of C(n);

4. Design transformations between two CCs.

Examples

1. #B(n) = 1
n+1

(2n
n

)
;

2. Gray codes on binary trees [Proskurowski,

Ruskey, 1985];

3. Rémy algorithm [Rémy, 1985];

4. Insertion of σ ∈ S into a binary search tree.



Combinatory logic

Combinatory logic is a model of computation [Schönfinkel, 1924].

Its objects are terms.

They are binary trees where leaves are labeled

by constants X or by variables i ∈ {1, 2, . . . }.

A computation step consists in transforming a

term by applying a local transformation spec-

ified by rewrite rules.

Example

A(2A)(B 2 3) is a term on the constants A and B.

Its tree representation is

A 3

2 A B 2

⋆

⋆

⋆

⋆

⋆

Example

Let the rule A 1 → 1 1.(
A(2A)

)
(B 2 3) ⇒

(
(2A)(2A)

)
(B 2 3) holds.

A 3

2 A B 2

⋆

⋆

⋆

⋆

⋆ ⇒

2 2

3

A 2 A B

⋆

⋆⋆

⋆

⋆

⋆



The S, K, I-system

Let the system [Curry, 1930] made on the three constants S, K, and I, satisfying

S 1 2 3 → 1 3 (2 3), K 1 2 → 1, I 1 → 1.

Example

Here is a sequence of computation:

S

S I

K K

S

K⋆

⋆

⋆

⋆

⋆

⋆

⇒

S K

K S I⋆

⋆

⋆

⋆ ⇒
K

IS S

K

S

⋆

⋆

⋆

⋆

⋆

⇒
S I

⋆

This CLS is Turing-complete: there are algorithms to emulate any λ-term by a term of this

CLS. These are abstraction algorithms [Rosser, 1955], [Curry, Feys, 1958].



Some important combinators

In To Mock a Mockingbird: and Other Logic Puzzles [Smullyan, 1985], a large number of

constants with rules are listed, forming the Enchanted forest of combinator birds.

Here is a sublist:

• Identity bird: I 1 → 1

• Mockingbird: M 1 → 1 1

• Kestrel: K 1 2 → 1

• Thrush: T 1 2 → 2 1

• Mockingbird 1: M1 1 2 → 1 1 2

• Warbler: W 1 2 → 1 2 2

• Lark: L 1 2 → 1 (2 2)

• Owl: O 1 2 → 2 (1 2)

• Turing bird: U 1 2 → 2 (1 1 2)

• Cardinal: C 1 2 3 → 1 3 2

• Vireo: V 1 2 3 → 3 1 2

• Bluebird: B 1 2 3 → 1 (2 3)

• Starling: S 1 2 3 → 1 3 (2 3)

• Jay: J 1 2 3 4 → 1 2 (1 4 3)



Rewrite graph of L

For L 1 2 → 1 (2 2), here is rewriting the graph of terms on L from closed terms of degrees up

to 5 and up to 4 rewritings:

This is a poset.

Interval are conjectured to be lattices.



Rewrite graph of S

For S 1 2 3 → 1 3 (2 3), here is the rewriting graph of terms on S from closed terms of degrees

up to 6 and up to 11 rewritings:

This is a poset (consequence of [Bergstra, Klop, 1979]).

Interval are conjectured to be lattices.



Algorithmic questions

Let C be a system.

Word problem

Is there an algorithm to decide, given two terms t and t′ of C, if t and t′ belong to the same connected

component? (See [Baader, Nipkow, 1998], [Statman, 2000].)

• Yes for the system on L [Statman, 1989], [Sprenger, Wymann-Böni, 1993].

• Yes for the system on W [Sprenger, Wymann-Böni, 1993].

• Yes for the system on M1 [Sprenger, Wymann-Böni, 1993].

• Open for the system on S [RTA Problem #97, 1975].

Strong normalization problem

Is there an algorithm to decide, given a term t of C, if t if every computation starting from t terminates?

• Yes for the system on S [Waldmann, 2000].

• Yes for the system on J [Probst, Studer, 2000].



Combinatorial questions

If C is a system, let

• T be the set of the terms of C;
• ≪ be the reflexive and transitive closure of ⇒;

• G(t) be the set {t′ ∈ T : t ≪ t′}.

Structure of the rewrite graphs

1. Is the preorder ≪ an order relation on T?

2. If so, are all subposets (G(t),≪) lattices for all t ∈ T?

3. Are all the connected components of the rewrite graph of C finite?

4. Understand when (G(t),⇒) and (G(t′),⇒) are isomorphic graphs.

Enumerative issues

1. Enumerate the connected components of C w.r.t. some size notions;

2. When for t, the connected component of t is finite, compute its number of elements and of edges;

3. When for t, (G(t),≪) is a poset, enumerate its intervals.



The Mockingbird system

The Mockingbird system is made on the constant M satisfying M 1 → 1 1.

Here is a part of its rewrite graph restrained on closed terms of degrees 4 or less:



Lattices of duplicative forests

A duplicative forest is a forest of planar rooted trees where nodes are either black or white

. Let D∗ be the set of all duplicative forests.

For f, g ∈ D∗, f⇒⇒ g if g is obtained by blackening a white

node of f and by duplicating its sequence of descendants.

The reflexive and transitive closure ≪ of ⇒⇒ is an order

relation.

Let D∗(f) := {f′ ∈ D∗ : f ≪ f′}.

Example

⇒⇒

Theorem [G., 2022]

• For any f ∈ D∗, D∗(f) is a lattice.

• For any M-term t, the poset (G(t),≪) is isomorphic to (D∗(f),≪) for a certain f ∈ D∗.



An example of a duplicative forest lattice

Here are an interval of the Mockingbird system poset and its corresponding interval of the

lattice of duplicative forests:

M(M1)2(M3)

M(11)2(M3)

(M1)(M1)2(M3)

(11)(M1)2(M3) (M1)(11)2(M3)

(11)(11)2(M3)

M(M1)2(33)

M(11)2(33)

(M1)(M1)2(33)

(11)(M1)2(33) (M1)(11)2(33)

(11)(11)2(33)



Some enumerative results

For any duplicative forest f, let the series gr(f) =
∑

f′∈D∗(f)

f′ and ns(f) = gr(gr(f)).

Example

ns
( )

= + 2 + 2 + 4 + 2 + 4 + 3 + 3 + 6 + 6 + 6 + 12

Theorem [G., 2022]

The generating series F (z) of the cardinalities of M(d), the lattices of terms from M(M . . . (MM) . . . )) of

degrees d ≥ 0, satisfies

F (z) = 1 + zF (z) + z(F (z)⊠F (z)).

The generating series G(z) of intervals of M(d) satisfies G(z) = G1(z) where for any k ≥ 1,

Gk (z) = 1 + z(Gk (z)⊠Gk (z)) + z
∑

0≤i≤k

(
k

i

)
Gk+i (z).

Coefficients of F (z): 1, 1, 2, 6, 42, 1806, 3263442, . . . (Sequence A007018).

Coefficients of G (z): 1, 1, 3, 17, 371, 144513, 20932611523, . . . .

http://oeis.org/A007018

