

Combinatoire algébrique et calcul symbolique Focus scientifique — Logique combinatoire et treillis

S. Giraudo

15 mars 2022

Laboratoire d'Informatique Gaspard-Monge UMR 8049

Some combinatorial objects

Words

Let $A := \{a, b\}$ be an alphabet and A^* be the combinatorial collection of the words on A.

$$A^*(0) = \{\epsilon\}, \qquad A^*(1) = \{\mathbf{a}, \mathbf{b}\}, \qquad A^*(2) = \{\mathbf{aa}, \mathbf{ab}, \mathbf{ba}, \mathbf{bb}\}.$$

Permutations

Let \mathfrak{S} be the combinatorial collection of the **permutations**.

$$\mathfrak{S}(0) = \{\epsilon\}, \qquad \mathfrak{S}(1) = \{1\}, \qquad \mathfrak{S}(2) = \{12, 21\}, \qquad \mathfrak{S}(3) = \{123, 132, 213, 231, 312, 321\}.$$

Binary trees

Let $\mathfrak B$ be the combinatorial collection of the binary trees.

$$\mathfrak{B}(0) = \left\{\begin{array}{c} 1 \\ 1 \end{array}\right\}, \ \mathfrak{B}(1) = \left\{\begin{array}{c} 1 \\ 1 \end{array}\right\}, \ \mathfrak{B}(2) = \left\{\begin{array}{c} 1 \\ 1 \end{array}\right\}, \ \mathfrak{B}(3) = \left\{\begin{array}{c} 1 \\ 1 \end{array}\right\}, \ \mathfrak{B}$$

Combinatorial collections

A combinatorial collection (CC) is a set C endowed with a map

$$|-|:C\to\mathbb{N}$$

such that for any $n \in \mathbb{N}$, the set $C(n) := \{x \in C : |x| = n\}$ is finite.

Some usual questions

- 1. **Enumerate** the elements of C(n);
- 2. Generate exhaustively the elements of C(n);
- 3. Randomly generate an element of C(n);
- 4. Design transformations between two CCs.

Examples

- 1. $\#\mathfrak{B}(n) = \frac{1}{n+1} \binom{2n}{n}$;
- Gray codes on binary trees [Proskurowski, Ruskey, 1985];
- 3. Rémy algorithm [Rémy, 1985];
- 4. Insertion of $\sigma \in \mathfrak{S}$ into a binary search tree.

Combinatory logic

Combinatory logic is a model of computation [Schönfinkel, 1924].

Its objects are terms.

They are binary trees where leaves are labeled by constants $\mathbf X$ or by variables $i \in \{1,2,\dots\}$.

A computation step consists in transforming a term by applying a local transformation specified by **rewrite rules**.

Example

A(2A)(B23) is a term on the constants A and B.

Its tree representation is

Example

Let the rule $A1 \rightarrow 11$.

$$(\underline{\mathbf{A}(2\,\mathbf{A})})(\mathbf{B}\,2\,3)\Rightarrow (\underline{(2\,\mathbf{A})(2\,\mathbf{A})})(\mathbf{B}\,2\,3)$$
 holds.

The S, K, I-system

Let the system [Curry, 1930] made on the three constants S, K, and I, satisfying

$$\mathbf{S}123 \to 13(23), \quad \mathbf{K}12 \to 1, \quad \mathbf{I}1 \to 1.$$

Example

Here is a sequence of computation:

This CLS is Turing-complete: there are algorithms to emulate any λ -term by a term of this CLS. These are abstraction algorithms [Rosser, 1955], [Curry, Feys, 1958].

Some important combinators

In *To Mock a Mockingbird: and Other Logic Puzzles* [Smullyan, 1985], a large number of constants with rules are listed, forming the Enchanted forest of combinator birds.

Here is a sublist:

- Identity bird: I $1 \rightarrow 1$
- Mockingbird: $M1 \rightarrow 11$
- **Kestrel**: **K**12 → 1
- Thrush: $T12 \rightarrow 21$
- Mockingbird 1: $M_1 12 \rightarrow 112$
- Warbler: W12 → 122
- Lark: L 12 \rightarrow 1 (22)

- Owl: $\mathbf{O} 12 \to 2(12)$
- Turing bird: **U**12 \to 2 (112)
- **Cardinal**: **C**123 → 132
- Vireo: V123 → 312
- Bluebird: B123 → 1(23)
- **Starling**: $S123 \rightarrow 13(23)$
- Jay: $J1234 \rightarrow 12(143)$

Rewrite graph of L

For L12 \rightarrow 1(22), here is rewriting the graph of terms on L from closed terms of degrees up to 5 and up to 4 rewritings:

This is a poset.

Interval are conjectured to be lattices.

Rewrite graph of S

For $\$123 \rightarrow 13(23)$, here is the rewriting graph of terms on \$ from closed terms of degrees up to 6 and up to 11 rewritings:

This is a poset (consequence of [Bergstra, Klop, 1979]).

Interval are conjectured to be lattices.

Algorithmic questions

Let C be a system.

Word problem

Is there an algorithm to decide, given two terms \mathfrak{t} and \mathfrak{t}' of \mathcal{C} , if \mathfrak{t} and \mathfrak{t}' belong to the same connected component? (See [Baader, Nipkow, 1998], [Statman, 2000].)

- Yes for the system on L [Statman, 1989], [Sprenger, Wymann-Böni, 1993].
- Yes for the system on **W** [Sprenger, Wymann-Böni, 1993].
- Yes for the system on M_1 [Sprenger, Wymann-Böni, 1993].
- Open for the system on **S** [RTA Problem #97, 1975].

Strong normalization problem

Is there an algorithm to decide, given a term t of C, if t if every computation starting from t terminates?

- Yes for the system on **S** [Waldmann, 2000].
- Yes for the system on J [Probst, Studer, 2000].

Combinatorial questions

If C is a system, let

- \mathfrak{T} be the set of the terms of \mathcal{C} ;
- ≪ be the reflexive and transitive closure of ⇒;
- $G(\mathfrak{t})$ be the set $\{\mathfrak{t}' \in \mathfrak{T} : \mathfrak{t} \ll \mathfrak{t}'\}$.

Structure of the rewrite graphs

- 1. Is the preorder \ll an order relation on \mathfrak{T} ?
- 2. If so, are all subposets $(G(t), \ll)$ lattices for all $t \in \mathfrak{T}$?
- 3. Are all the connected components of the rewrite graph of C finite?
- 4. Understand when $(G(\mathfrak{t}), \Rightarrow)$ and $(G(\mathfrak{t}'), \Rightarrow)$ are isomorphic graphs.

Enumerative issues

- 1. Enumerate the connected components of C w.r.t. some size notions;
- 2. When for t, the connected component of t is finite, compute its number of elements and of edges;
- 3. When for \mathfrak{t} , $(G(\mathfrak{t}), \ll)$ is a poset, enumerate its intervals.

The Mockingbird system

The Mockingbird system is made on the constant M satisfying M $1 \rightarrow 11$.

Here is a part of its rewrite graph restrained on closed terms of degrees 4 or less:

Lattices of duplicative forests

A duplicative forest is a forest of planar rooted trees where nodes are either black \bullet or white o. Let \mathcal{D}^* be the set of all duplicative forests.

For $\mathfrak{f},\mathfrak{g}\in\mathcal{D}^*$, $\mathfrak{f} \Longrightarrow \mathfrak{g}$ if \mathfrak{g} is obtained by blackening a white node of \mathfrak{f} and by duplicating its sequence of descendants.

The reflexive and transitive closure \ll of \Rightarrow is an order relation.

Let
$$\mathcal{D}^*(\mathfrak{f}) := \{\mathfrak{f}' \in \mathcal{D}^* : \mathfrak{f} \lll \mathfrak{f}'\}.$$

Theorem [G., 2022]

- For any $f \in \mathcal{D}^*$, $\mathcal{D}^*(f)$ is a lattice.
- For any **M**-term \mathfrak{t} , the poset $(G(\mathfrak{t}), \ll)$ is isomorphic to $(\mathcal{D}^*(\mathfrak{f}), \ll)$ for a certain $\mathfrak{f} \in \mathcal{D}^*$.

An example of a duplicative forest lattice

Here are an interval of the Mockingbird system poset and its corresponding interval of the lattice of duplicative forests:

Some enumerative results

For any duplicative forest \mathfrak{f} , let the series $\mathbf{gr}(\mathfrak{f}) = \sum_{\mathfrak{f}' \in \mathcal{D}^*(\mathfrak{f})} \mathfrak{f}'$ and $\mathbf{ns}(\mathfrak{f}) = \mathbf{gr}(\mathbf{gr}(\mathfrak{f}))$.

Example

$$\mathsf{ns}\Big(\left. \left\langle \right. \right\rangle \Big) = \left. \left\langle \right. \right\rangle + 2 \left. \left\langle \right. \right\rangle + 2 \left. \left\langle \right. \right\rangle + 4 \left. \left\langle \right. \right\rangle + 2 \left. \left\langle \right. \right\rangle + 4 \left. \left\langle \right. \right\rangle + 4 \left. \left\langle \right. \right\rangle + 4 \left. \left\langle \right. \right\rangle + 3 \left. \left\langle \right. \right\rangle + 3 \left. \left\langle \right. \right\rangle + 6 \left. \left. \left. \right\rangle + 6 \left. \left. \left(\left. \right\rangle + 6 \left. \left. \right\rangle + 6 \left. \left. \left(\left. \right\rangle + 6 \left. \left(\left. \right\rangle + 6 \left. \left(\left. \right\rangle + 6$$

Theorem [G., 2022]

The generating series F(z) of the cardinalities of M(d), the lattices of terms from M(M...(MM)...) of degrees d > 0. satisfies

$$F(z) = 1 + zF(z) + z(F(z) \boxtimes F(z)).$$

The generating series G(z) of intervals of M(d) satisfies $G(z) = G_1(z)$ where for any $k \ge 1$,

$$G_k(\mathsf{z}) = 1 + \mathsf{z}(G_k(\mathsf{z}) \boxtimes G_k(\mathsf{z})) + \mathsf{z} \sum_{0 \le i \le k} \binom{k}{i} G_{k+i}(\mathsf{z}).$$

Coefficients of F(z): 1, 1, 2, 6, 42, 1806, 3263442,... (Sequence **A007018**). Coefficients of G(z): 1, 1, 3, 17, 371, 144513, 20932611523,...