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Young la�ice

The Young la�ice is a la�ice
on the set of all integer par-
titions.

— Example —

533111 ↔

Its Hasse diagram is
0

Paths connecting 0 with a partition λ are in one-to-one correspondence
with the set of standard Young tableaux of shape λ.

— Example —
The path 0→ → → → →
is in correspondence with the standard Young tableau

1 2 4

3 5
.
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Sum of squares formula
By denoting by fλ the number of standard Young tableaux of shape λ, for
any n > 0, one has the famous identity∑

λ`n

f2λ = n!.

This identity admits a proof [Stanley, 1988], [Sagan, 2001] based on up and
down operators of the Young la�ice, defined respectively by

U(λ) :=
∑
λ′

λ→λ′

λ′ and U?(λ) :=
∑
λ′

λ′→λ

λ′.

— Example —

U
( )

= + +

— Example —

U?
( )

= +

These operators are linear maps on the linear span of all integer partitions
(over a field K of characteristic 0) and are adjoint.
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Proof of the sum of squares formula
The first tool consists in observing that

U?U−UU? = I

where I is the identity map, so that the Young la�ice admits the structure
of a di�erential poset [Stanley, 1988].

A a consequence, we obtain the relation

U?Un −UnU? = nUn−1

for any n > 1 (provable by recurrence on n).

Now, since

Un(0) =
∑
λ`n

fλλ and U?n(λ) = fλ 0,

for any λ ` n, we obtain

U?nUn(0) = U?n

(∑
λ`n

fλλ

)
=
∑
λ`n

fλU?n(λ) =
∑
λ`n

f2λ 0.
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Proof of the sum of squares formula
On the other hand, by using the di�erential poset structure of the Young
la�ice, we show the relation

U?nUn(0) = n! 0

by induction on n > 1.

First,
U?1U1(0) = 1! 0.

Moreover, by induction hypothesis,

U?nUn(0) = U?n−1U?Un(0)

= U?n−1 (nUn−1 + UnU?
)

(0)

=
(
nU?n−1Un−1

)
(0) +

(
U?n−1UnU?

)
(0)

=
(
nU?n−1Un−1

)
(0)

= n(n− 1)! 0

= n! 0.
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Graded graphs
It is natural to search for analogous formulas.

For this, we start with a graded set G :=
⊔
d>0G(d) and a linear map

U : K 〈G(d)〉 → K 〈G(d+ 1)〉 , d > 0.

This pair (G,U) defines a graded multigraph.

— Example —
Let G be the set of all words on {0, 1} starting with 0 and graded by the length.
The map U satisfying

U(u) :=
∑
i∈[|u|]

u1 . . . ui−1θ (ui)ui+1 . . . u|u|,

where θ satisfies θ(0) = 00+ 01 and θ(1) = 11+ 10, defines the graded graph

0

00 01

000 001 010 011

0000 0001 0010 0011 0100 0101 0110 0111

2 2

3 2
2 2

2 3
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Paths in graded graphs
The weight of an edge between x ∈ G(d) and y ∈ G(d+ 1) is the
coe�icient ωx,y of y in U(x).

A path is a sequence (x1, . . . , x`) of vertices such that all (xi, xi+1) are
edges. The weight of a path is the product of the weights of its edges.

The poset of (G,U) is the poset (G,�) wherein x � y if there is a path
from x to y.

From now, G(0) = {0}. In this case, any path from 0 to x ∈ G is to x
what a standard Young tableau of shape λ is to the integer partition λ in
the Young la�ice.

— Lemma —
When (G,U) is a multigraph (all weights are in N),

(I −U)−1(0) =

(∑
n>0

Un
)
(0) =

∑
x∈G

hU(x) x,

where hU(x) is the number of paths from 0 to x.

9 / 38



Paths in graded graphs
The weight of an edge between x ∈ G(d) and y ∈ G(d+ 1) is the
coe�icient ωx,y of y in U(x).

A path is a sequence (x1, . . . , x`) of vertices such that all (xi, xi+1) are
edges. The weight of a path is the product of the weights of its edges.

The poset of (G,U) is the poset (G,�) wherein x � y if there is a path
from x to y.

From now, G(0) = {0}. In this case, any path from 0 to x ∈ G is to x
what a standard Young tableau of shape λ is to the integer partition λ in
the Young la�ice.

— Lemma —
When (G,U) is a multigraph (all weights are in N),

(I −U)−1(0) =

(∑
n>0

Un
)
(0) =

∑
x∈G

hU(x) x,

where hU(x) is the number of paths from 0 to x.

9 / 38



Paths in graded graphs
The weight of an edge between x ∈ G(d) and y ∈ G(d+ 1) is the
coe�icient ωx,y of y in U(x).

A path is a sequence (x1, . . . , x`) of vertices such that all (xi, xi+1) are
edges. The weight of a path is the product of the weights of its edges.

The poset of (G,U) is the poset (G,�) wherein x � y if there is a path
from x to y.

From now, G(0) = {0}. In this case, any path from 0 to x ∈ G is to x
what a standard Young tableau of shape λ is to the integer partition λ in
the Young la�ice.

— Lemma —
When (G,U) is a multigraph (all weights are in N),

(I −U)−1(0) =

(∑
n>0

Un
)
(0) =

∑
x∈G

hU(x) x,

where hU(x) is the number of paths from 0 to x.

9 / 38



Paths in graded graphs
The weight of an edge between x ∈ G(d) and y ∈ G(d+ 1) is the
coe�icient ωx,y of y in U(x).

A path is a sequence (x1, . . . , x`) of vertices such that all (xi, xi+1) are
edges. The weight of a path is the product of the weights of its edges.

The poset of (G,U) is the poset (G,�) wherein x � y if there is a path
from x to y.

From now, G(0) = {0}. In this case, any path from 0 to x ∈ G is to x
what a standard Young tableau of shape λ is to the integer partition λ in
the Young la�ice.

— Lemma —
When (G,U) is a multigraph (all weights are in N),

(I −U)−1(0) =

(∑
n>0

Un
)
(0) =

∑
x∈G

hU(x) x,

where hU(x) is the number of paths from 0 to x.

9 / 38



Paths in graded graphs
The weight of an edge between x ∈ G(d) and y ∈ G(d+ 1) is the
coe�icient ωx,y of y in U(x).

A path is a sequence (x1, . . . , x`) of vertices such that all (xi, xi+1) are
edges. The weight of a path is the product of the weights of its edges.

The poset of (G,U) is the poset (G,�) wherein x � y if there is a path
from x to y.

From now, G(0) = {0}. In this case, any path from 0 to x ∈ G is to x
what a standard Young tableau of shape λ is to the integer partition λ in
the Young la�ice.

— Lemma —
When (G,U) is a multigraph (all weights are in N),

(I −U)−1(0) =

(∑
n>0

Un
)
(0) =

∑
x∈G

hU(x) x,

where hU(x) is the number of paths from 0 to x.

9 / 38



Duality of graded graphs
Let (G,U) and (G,V) be two graded graphs on the same graded set G.

The pair of graded graphs (G,U,V) is

I dual [Stanley, 1988] if
V?U−UV? = I;

I r-dual [Fomin, 1994] if
V?U−UV? = rI

for an r ∈ K;

I φ-diagonal dual [G., 2018] if

V?U−UV? = φ

for a nonzero diagonal linear map (φ(x) = λxx where λx ∈ K \ {0}).

Each one is a generalization of the previous.

Other relations can be considered, like quantum duality [Lam, 2010] or
filtered duality [Patrias, Pylyavskyy, 2018].
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Returning paths in graded graphs
— Proposition —

Let (G,U,V) be a pair of φ-diagonal dual graded graphs. For any n > 0,

V?Un = UnV? +
∑

k1,k2>0
k1+k2=n−1

Uk1φUk2 .

When there is an r ∈ K such that, for all x ∈ G, φ(x) = rx, this gives

V?nUn =
∏
j∈[n]

(UV? + jrI) .

A returning path is a pair (p1, p2) s.t. p1 is a path in (G,U) from 0 to x
and p2 is a path in V? from x to 0. It is to x what a pair of standard Young
tableaux of shape λ is to the integer partition λ in the Young la�ice.

— Lemma —
When (G,U,V) is a connected multigraph, for any n > 0,

V?
n
Un(0) =

∑
x∈G(n)

hU(x)hV(x) 0.
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Syntax trees
An alphabet is a finite graded set

G :=
⊔
n>1

G(n).

A syntax tree on G (also called G-tree) is a planar rooted tree t such that
each internal node of arity n is labeled by a le�er of G(n).

Let F(G) be the set of all G-trees.

The degree deg(t) of t is its number of internal nodes.

— Example —
Let G := G(2) t G(3) such that G(2) = {a, b} and G(3) = {c}.

Here is a G-tree having degree 8 and arity 12:

c

b

c

b

ba

c

a

.
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Compositions of syntax trees
Let t, s ∈ F(G). For each i ∈ [|t|], the partial composition t ◦i s is the tree
obtained by gra�ing the root of s onto the ith leaf of t.

— Example —

c

ba

c b ◦5
a

b

c
=

c

b

c

b

ba

c

a

Let t, s1, . . . , s|t| be G-trees. The full composition t ◦
[
s1, . . . , s|t|

]
is

obtained by gra�ing simultaneously the roots of each si onto the ith leaf
of t.

— Example —

b

a
◦

 a

a

b
, p, c

 =
a c

a

b

b

a
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A first graded graph on syntax trees
For any alphabet G, let (F(G),U) be the graded graph where

U(t) :=
∑
a∈G
i∈[|t|]

t ◦i a.

— Example —

For G = {a} with |a| = 2, the graph
(F(G),U) is

p

a

a
a a

a

a
a

a
a

a

a

a

a

a

a

a
a

a
a

a

— Example —
For G = {e, c} with |e| = 1 and |c| = 3, the
graph (F(G),U) is

p

e c

e
e

e

c e

c c

e

c

e c

c c

c

c

c

e

c

e e

c

e

c

e e
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Some properties
The rank in (F(G),U) of a tree t is its degree.

Let Nmax(t) be the set of all internal nodes of the tree t having only leaves
as children.

— Proposition —
If G = {a} with |a| > 2, the graded graph (F(G),U) is φ-diagonal self-dual for
the linear map φ : K 〈F(G)〉 → K 〈F(G)〉 satisfying

φ(t) = (|t| −#Nmax(t)) t

for any G-tree t.

— Example —
For G = {c} with |c| = 3,

(U?U−UU?)

(
c

c

)
=

(
5

c

c
+

c

c
+

c

c

)
−
(

c

c
+

c

c
+

c

c

)
= 4

c

c
.
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Prefix poset
The G-prefix poset is the poset (F(G),�) of (F(G),U).

A G-tree s is a prefix of a G-tree t if there exist some G-trees r1, . . . , r[s|
such that t = s ◦

[
r1, . . . , r[s|

]
.

— Proposition —
For any G-trees s and t, s � t i� s is a prefix of t.

Let s∧ s′ be the tree being the largest common part between s and s′.
Let s∨ s′ be the tree obtained by superimposing (if possible) s and s′.

— Example —

a

c

e

a ∧
e

c

a a
= c

a

— Example —

a
a
∨ c

a

a

= c

a

a

a

— Proposition —
All G-prefix posets are meet-semila�ices for ∧.

All intervals [s, t] of these posets are distributive la�ices for ∧ and ∨.
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Prefix poset intervals
Let s and t be two G-trees such that s � t. The di�erence t \ s is the
ordered forest

(
r1, . . . , r|s|

)
such that the ri are the unique trees satisfying

t = s ◦
[
r1, . . . , r[s|

]
.

— Example —

a c

a

b

b

a \ b

a
=


a

a

b
, p, c



— Proposition —
Any interval [s, t] is isomorphic as a poset to a Cartesian product of initial
intervals. More precisely,

[s, t] ' [p, r1]× · · · × [p, r|s|]

where (r1, . . . , r|s|) is the forest t \ s.

18 / 38



Prefix poset intervals
Let s and t be two G-trees such that s � t. The di�erence t \ s is the
ordered forest

(
r1, . . . , r|s|

)
such that the ri are the unique trees satisfying

t = s ◦
[
r1, . . . , r[s|

]
.

— Example —

a c

a

b

b

a \ b

a
=


a

a

b
, p, c



— Proposition —
Any interval [s, t] is isomorphic as a poset to a Cartesian product of initial
intervals. More precisely,

[s, t] ' [p, r1]× · · · × [p, r|s|]

where (r1, . . . , r|s|) is the forest t \ s.

18 / 38



Prefix poset intervals
The shadow sh(t) of a G-tree is the unordered rooted tree obtained by
keeping only the internal nodes of t.

— Example —

sh

 a a

c

e

c

a

 = =

ld−→
1 1

1 14

20

— Proposition —
The intervals [s, t] and [s′, t′] are isomorphic as posets i�

sh (♦ ◦ (t \ s)) = sh
(
♦ ◦

(
t′ \ s′

))
.

The load ld(s) of a shadow s is
∏
i (1 + ld (si)) otherwise, where the si

are the children of the root of s.

— Proposition —
Any interval [s, t] has cardinality ld (sh (♦ ◦ (t \ s))).
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Prefix poset intervals

— Proposition —
The generating series IF(G)(q, t) of all the intervals [s, t] enumerated with respect
to deg(s) (parameter q) and deg(t) (parameter t) satisfies

IF(G)(q, t) = 1 + t RG

(
IF(G)(q, t)

)
+ qt RG

(
RF(G)(qt)

)
,

whereRG(t) is the generating series of G andRF(G)(t) is the generating series
of F(G).

— Example —
For G = {a} with |a| = 2,

IF(G)(q, t) = 1 + (1 + q)t+ 2
(
1 + q + q2

)
t2 +

(
5 + 6q + 5q2 + 5q3

)
t3

+2
(
7 + 10q + 9q2 + 7q3 + 7q4

)
t4+14

(
3 + 5q + 5q2 + 4q3 + 3q4 + 3q5

)
t5+· · · .

Moreover,

IF(G)(1, t) = 1 + 2t+ 6t2 + 21t3 + 80t4 + 322t5 + 1348t6 + · · ·

is the generating series of the vertices of the multiplihedra (Sequence A121988).
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Enumeration of paths
A standard labeling of a tree t is a labeled version of t where the internal
nodes are bijectively labeled on {1, . . . ,deg(t)} and the label of a node is
smaller than the ones of its children.

— Example —

The tree a a

c

e

c

a

admits the standard labeling 3 2

1

5

4

6

.

The hook-length formula for trees [Knuth, 2005]

h(t) :=
deg(t)!∏

u∈N (t)

deg (t(u))

counts the standard labelings of a tree t.

— Proposition —
For any alphabet G,

(I −U)−1(p) =
∑

t∈F(G)

h(t) t.
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A second graded graph on syntax trees
Let (F(G),V) be the graded graph defined from the adjoint V? of V by

V? (p) := 0,

V? (a◦̄ [s, p, . . . , p]) := s,

V?
(
a◦̄
[
s1, . . . , s|a|

])
:=

∑
26j6|a|

a◦̄
[
s1, . . . , sj−1,V

? (sj) , sj+1, . . . , s|a|
]
.

— Example —
For G = {e, a, c} with |e| = 1, |a| = 2, and |c| = 3,

V?

 a c

a c

c

e

c

 = a

c

c

e c

a

+ a c

a

c

e

c + a c

c

c

e

c ,

V

(
a

a

)
=

a

a

e
+

a

e

a
+

e

a

a
+

a

a

a
+

a

a

a + a

a

a

+
a

a

e

+
a

a

c + a

a

c

.

22 / 38



A second graded graph on syntax trees
Let (F(G),V) be the graded graph defined from the adjoint V? of V by

V? (p) := 0,

V? (a◦̄ [s, p, . . . , p]) := s,

V?
(
a◦̄
[
s1, . . . , s|a|

])
:=

∑
26j6|a|

a◦̄
[
s1, . . . , sj−1,V

? (sj) , sj+1, . . . , s|a|
]
.

— Example —
For G = {e, a, c} with |e| = 1, |a| = 2, and |c| = 3,

V?

 a c

a c

c

e

c

 = a

c

c

e c

a

+ a c

a

c

e

c + a c

c

c

e

c ,

V

(
a

a

)
=

a

a

e
+

a

e

a
+

e

a

a
+

a

a

a
+

a

a

a + a

a

a

+
a

a

e

+
a

a

c + a

a

c

.

22 / 38



A second graded graph on syntax trees
Let (F(G),V) be the graded graph defined from the adjoint V? of V by

V? (p) := 0,

V? (a◦̄ [s, p, . . . , p]) := s,

V?
(
a◦̄
[
s1, . . . , s|a|

])
:=

∑
26j6|a|

a◦̄
[
s1, . . . , sj−1,V

? (sj) , sj+1, . . . , s|a|
]
.

— Example —
For G = {e, a, c} with |e| = 1, |a| = 2, and |c| = 3,

V?

 a c

a c

c

e

c

 = a

c

c

e c

a

+ a c

a

c

e

c + a c

c

c

e

c ,

V

(
a

a

)
=

a

a

e
+

a

e

a
+

e

a

a
+

a

a

a
+

a

a

a + a

a

a

+
a

a

e

+
a

a

c + a

a

c

.

22 / 38



A second graded graph on syntax trees
Let (F(G),V) be the graded graph defined from the adjoint V? of V by

V? (p) := 0,

V? (a◦̄ [s, p, . . . , p]) := s,

V?
(
a◦̄
[
s1, . . . , s|a|

])
:=

∑
26j6|a|

a◦̄
[
s1, . . . , sj−1,V

? (sj) , sj+1, . . . , s|a|
]
.

— Example —
For G = {e, a, c} with |e| = 1, |a| = 2, and |c| = 3,

V?

 a c

a c

c

e

c

 = a

c

c

e c

a

+ a c

a

c

e

c + a c

c

c

e

c ,

V

(
a

a

)
=

a

a

e
+

a

e

a
+

e

a

a
+

a

a

a
+

a

a

a + a

a

a

+
a

a

e

+
a

a

c + a

a

c

.

22 / 38



A second graded graph on syntax trees
Let (F(G),V) be the graded graph defined from the adjoint V? of V by

V? (p) := 0,

V? (a◦̄ [s, p, . . . , p]) := s,

V?
(
a◦̄
[
s1, . . . , s|a|

])
:=

∑
26j6|a|

a◦̄
[
s1, . . . , sj−1,V

? (sj) , sj+1, . . . , s|a|
]
.

— Example —
For G = {e, a, c} with |e| = 1, |a| = 2, and |c| = 3,

V?

 a c

a c

c

e

c

 = a

c

c

e c

a

+ a c

a

c

e

c + a c

c

c

e

c ,

V

(
a

a

)
=

a

a

e
+

a

e

a
+

e

a

a
+

a

a

a
+

a

a

a + a

a

a

+
a

a

e

+
a

a

c + a

a

c

.

22 / 38



A second graded graph on syntax trees

— Example —
For G = {a} with |a| = 2, the graph
(F(G),V) is the bracket tree [Fomin,
1994].

It appears in dual pairs of graded graphs
constructed from the Hopf bialgebra of
binary search trees
[Hivert, Novelli, Thibon, 2005].

p
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a
a a
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a
a

a
a

a

a

a

a

a

a

a
a

a
a

a

— Example —
For G = {a, c} with |a| = 2 and |c| = 3,
the graph (F(G),V) is not a tree.

p

a c

a
a a
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a a

c a
c c

a
c
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c

c

c

c

a a c
c
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Dual graded graphs from free operads

For any t ∈ F(G), let α(t) be the number of leaves of t that are not in a
first subtree of any internal node of t.

— Example —

a c

a c

c

e

c

� �

� � �

α7−→ 5

— Theorem [G., 2018] —
When G(1) = ∅, (F(G),U,V) is φ-diagonal dual for the linear map satisfying

φ(t) := (#G)α(t) t

for any G-tree t.
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Outline

Graded graphs from operads
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Abstract operators
An abstract operator is a device

x

1 n. . .

having n = |x| inputs and 1 output.

Such operators can be composed. If x and y are two operators, the
composition x ◦i y is the operator obtained by gra�ing the output of y
onto the ith input of x:

x

1 |x|i. . . . . .

◦i y

1 |y|. . .

=

x

1 |x|+|y|−1. . . . . .y

i i+|y|−1. . .

.
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Operads

Operads are algebraic structures formalizing the notion of abstract
operators and their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set
O :=

⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.
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Operad axioms
The associativity relation

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
1 6 i 6 |x|, 1 6 j 6 |y|

says that the pictured operator can be
constructed from top to bo�om or from
bo�om to top.

x

1 |x|+|y|+|z|−2. . . . . .y

i i+|y|+|z|−2. . . . . .z

i+j−1 i+j+|z|−2. . .

The commutativity relation

(x ◦i y) ◦j+|y|−1 z = (x ◦j z) ◦i y

1 6 i < j 6 |x|

says that the pictured operator can be
constructed from le� to right or from
right to le�.

x

1 |x|+|y|+|z|−2. . . . . .
. . .y

i i+|y|−1. . .

z

j+|y|+|z|−2j+|y|−1. . .

The unitality relation

1 ◦1 x = x = x ◦i 1
1 6 i 6 |x|

says that 1 is the identity map.

1 =
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Some operads
— Example —

The free operad on an alphabet G is the set F(G) of all G-trees endowed with the partial
composition ◦i.

— Example —
The associative operad As is the operad wherein for any n > 1, As(n) := {?n}, and
?n ◦i ?m := ?n+m−1.

— Example —
The diassociative operad Dias is the operad wherein for any n > 1

Dias(n) := {1α101α2 : α1 + 1 + α2 = n} ,

and

1α1 0 1α2 ◦i 1β1 0 1β2 :=


1β1+β2 1α10 1α2 if i 6 α1,

1α1 1β1 0 1β2 1α2 if i = α1 + 1,

1α1 0 1α2 1β1+β2 otherwise.
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An operad on Motzkin paths

Let Motz be an operad wherein:

I Motz(n) is the set of all Motzkin paths with n points.

— Example —

is a Motzkin path of arity 16.

I The partial composition in Motz is a substitution in paths:

— Example —

◦4 =

I The unit is .
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Presentation of Motz

A presentation of an operad O is a pair (G,≡) such that

O ' F(G)/≡.

— Proposition [G., 2015] —
The operad Motz admits the presentation (GMotz,≡Motz) where

GMotz :=
{

,
}

and ≡ is the smallest operad congruence satisfying

◦1 ≡Motz ◦2 ,

◦1 ≡Motz ◦2 ,

◦1 ≡Motz ◦3 ,

◦1 ≡Motz ◦3 .
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A first graded graph from operads
An operad O is homogeneous if O(1) = {1}, all O(n), n > 1, are finite,
and O admits the presentation (G,≡) wherein G is finite and t≡ t′

implies deg(t) = deg (t′).

Let (O,U) be the graded graph where

U(x) :=
∑
a∈G
i∈[|x|]

x ◦i a.

This graph has multiplicities and is graded by the degrees of the elements.

— Example —
The graded graph (Motz,U) is

2 2

— Example —
The graded graph (As,U) is

?1

?2

?3

?4

2

3
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A second graded graph from operads
Let O be an homogeneous operad.

Let (O,V) be the graded graph where

V(x) :=
∑
y∈O

∃(s,t)∈ev−1(x)×ev−1(y)
〈t,V(s)〉6=0

y.

This graph has no multiplicities and is graded by the degrees of the
elements.

— Example —
In (Motz,V),

V
( )

= + + .

Indeed, among others,

I admits the factorization ◦1 ;

I admits the factorization
(

◦1
)
◦4 ;

I in (F (GMotz) ,V) , the tree
(

◦1
)
◦4 appears in V

(
◦1

)
.
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Some pairs of graded graphs from operads
— Example —

The pair (Comp,U,V) is 2-dual.

The graded graph (Comp,U) is the

composition poset [Bjöner, Stan-

ley, 2005].

2 2

3 2 2 2
2 3

— Example —

The pair (Motz,U,V) is

φ-diagonal dual 2 2

— Example —

The pair (Dias,U,V) is not φ-

diagonal dual.

0

01 10

011 101 110

0111 1011 1101 1110

01111 10111 11011 11101 11110

3 3

5 3 3 5

7 5 3 3 5 7

0

01 10

011 101 110

0111 1011 1101 1110

01111 10111 11011 11101 11110
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Experimental data

— Example: operad As —
Number of elements by degree: 1, 1, 1, 1, 1, 1, . . .

The pair (As,U,V) is dual.

U-hook series:

(I −U)−1 (?1) = ?1 + ?2 +2 ?3 +6 ?4 +24 ?5 +120 ?6 + · · ·

Number of initial U-paths by length: 1, 1, 2, 6, 24, 120, . . .

V-hook series:

(I −V)−1 (?1) = ?1 + ?2 + ?3 + ?4 + ?5 + ?6 + · · ·

Number of initial V-paths by length: 1, 1, 1, 1, 1, 1, . . .

Number of returning UV-paths by length: 1, 1, 2, 6, 24, 120, . . .
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Experimental data

— Example: operad Comp —
Number of elements by degree: 1, 2, 4, 8, 16, 32, . . .

The pair (Comp,U,V) is 2-dual.

U-hook series:

(I −U)−1 ( ) = + + + 2 + 2 + 2 + 2

+ 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 24 + · · ·

Number of initial U-paths by length: 1, 2, 8, 48, 384, 3840, . . . (Sequence A000165)

V-hook series:

(I −V)−1 ( ) = + + + + + +

+ + + + + + + + + + · · ·

Number of initial V-paths by length: 1, 2, 4, 8, 16, 32, . . .

Number of returning UV-paths by length: 1, 2, 8, 48, 384, 3840, . . . (Sequence A000165)
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Experimental data

— Example: operad Motz —
Number of elements by degree: 1, 2, 6, 22, 90, 394, . . . (Sequence A006318)

The pair (Motz,U,V) is φ-diagonal dual.

U-hook series:

(I −U)−1 ( ) = + +2 + +6 +2 +2 + +24 + · · ·

Number of initial U-paths by length: 1, 2, 10, 82, 938, 13778, . . . (Sequence A112487)

V-hook series:

(I−V)−1 ( ) = + + + + + + + + +2 +· · ·

Number of initial V-paths by length: 1, 2, 6, 26, . . .

Number of returning UV-paths by length: 1, 2, 10, 94, 1446, . . .
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�estions and perspectives

I Necessarily condition on O for the φ-diagonal duality of (O,U,V)?

I Unimodality of the intervals of the posets (O,�) of (F(G),U)?

The intervals of the Young la�ice are non-unimodal. For instance, the numbers of
elements smaller than the integer partition 8844 are, degree by degree,

1, 2, 3, 5, 6, 9, 11, 15, 17, 21, 23, 27, 28, 31, 30, 31, 27, 24, 18, 14, 8, 5, 2, 1.

I Formulas to count initial paths in (O,U), in (O,V) and returning
paths in (O,U,V)?

I Colored versions of the graph (O,U) to turn it into a tree and use it
for (uniform) random generation.
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