From PROs to combinatorial Hopf algebras

Samuele Giraudo, LIGM, Université Paris-Est Marne-la-Vallée
—

Joint work with Jean-Paul Bultel, LITIS, Université de Rouen

Journée Trees and graphs, LIPN, Université Paris-Nord

September 24, 2013

Contents

The natural Hopf algebra of an operad

Operads Combinatorial Hopf algebras From operads to Hopf algebras

From PROs to bialgebras

PROs

From free PROs to bialgebras
From quotients of free PROs to bialgebras

Constructing PROs

From operads to PROs From monoids to PROs

Examples

Noncommutative symmetric functions Noncommutative Faà di Bruno algebra and its deformations Hopf algebras of planar rooted forests Hopf algebras of heaps of pieces

Outline

The natural Hopf algebra of an operad Operads

Combinatorial Hopf algebras From operads to Hopf algebras

Operads

(Nonsymmetric set-)operad: triple $(\mathcal{O}, \circ_i, \mathbf{1})$ where:

 \mathcal{O} is a graded set

$$\mathcal{O} := \biguplus_{n\geqslant 1} \mathcal{O}(n);$$

 \circ_i is a composition map

$$\circ_i: \mathcal{O}(n) \times \mathcal{O}(m) \to \mathcal{O}(n+m-1), \qquad n, m \geqslant 1, i \in [n];$$

1 is an element of $\mathcal{O}(1)$, called unit.

This data has to satisfy axioms.

Operadic axioms

For all
$$x \in \mathcal{O}(n)$$
, $y \in \mathcal{O}(m)$, and $z \in \mathcal{O}$,

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z), \qquad i \in [n], j \in [m];$$

Commutativity:

$$(x \circ_i y) \circ_{i+m-1} z = (x \circ_i z) \circ_i y, \qquad 1 \leqslant i < j \leqslant n;$$

Unitarity:

$$\mathbf{1} \circ_1 x = x = x \circ_i \mathbf{1}, \quad i \in [n].$$

Trees and elements of operads

Element x of $\mathcal{O}(n) \rightsquigarrow$ operator of arity n:

Operator x of arity $n \rightsquigarrow planar rooted tree with <math>n$ leaves:

Composition map → tree grafting:

Trees and operadic axioms

Associativity:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

Commutativity:

$$(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y$$

Unitarity:

$$\mathbf{1} \circ_1 x = x = x \circ_i \mathbf{1}$$

The associative operad

Assoc: associative operad.

Elements of **Assoc**(n): one formal symbol α_n .

Composition:

$$\alpha_n \circ_i \alpha_m := \alpha_{n+m-1}.$$

Example

$$\alpha_4 \circ_2 \alpha_3 = \alpha_6$$

$$\alpha_4 \circ_2 \alpha_3 = \alpha_6, \qquad \alpha_1 \circ_1 \alpha_1 = \alpha_1,$$

$$\alpha_4 \circ_4 \alpha_1 = \alpha_4$$

Free operads

 $G := \biguplus_{n \ge 1} G(n)$: a graded set.

 \mathcal{O}_G : free operad on G.

Elements of $\mathcal{O}_G(n)$: G-labeled planar rooted trees with n leaves.

Composition $S \circ_i T$: graft the root of T on the *i*th leaf of S.

Example

Let
$$G := G(2) \uplus G(3)$$
 with $G(2) := \{a, b\}$ and $G(3) := \{c\}$.

$$\mathcal{O}_{G}(3) = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}, \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\}$$

Outline

The natural Hopf algebra of an operad

Operad:

Combinatorial Hopf algebras

From operads to Hopf algebras

Combinatorial Hopf algebras

Combinatorial Hopf algebra: triple $(\mathcal{H}, \cdot, \Delta)$ where:

 ${\mathcal H}$ is a graded ${\mathbb K}$ -vector space

$$\mathcal{H}:=\bigoplus_{n\geqslant 0}\mathcal{H}_n$$

s.t. dim $\mathcal{H}_0 = 1$ and the \mathcal{H}_n are finite-dimensional;

 $\cdot: \mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$ is a graded associative product;

 $\Delta: \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ is a graded coassociative coproduct.

This data has to satisfy some axioms including

$$\Delta(x \cdot y) = \Delta(x)\Delta(y), \qquad x, y \in \mathcal{H}.$$

The shuffle/deconcatenation Hopf algebra

Let
$$\mathcal{H} := \bigoplus_{n \geqslant 0} \text{Vect} (\{a, b\}^n)$$
.

Shuffle product \coprod on \mathcal{H} .

Example

ab
$$\coprod$$
 aa = abaa + aaba + aaab + aaab + aaab + aaab = 3 aaab + 2 aaba + abaa

Deconcatenation coproduct Δ on \mathcal{H} .

Example

$$\Delta(\mathtt{baa}) = \epsilon \otimes \mathtt{baa} + \mathtt{b} \otimes \mathtt{aa} + \mathtt{ba} \otimes \mathtt{a} + \mathtt{baa} \otimes \epsilon$$

Theorem

 $(\mathcal{H}, \sqcup, \Delta)$ is a combinatorial Hopf algebra. [Malvenuto, Reutenauer, 1993]

Outline

The natural Hopf algebra of an operad

Operads Combinatorial Hopf algebras

From operads to Hopf algebras

The natural Hopf algebra of an operad

 \mathcal{O} : an operad s.t. $\mathcal{O}(1) = \{\mathbf{1}\}$. Set \mathcal{O}^+ as $\mathcal{O} \setminus \mathcal{O}(1)$.

 $H(\mathcal{O})$: the natural Hopf algebra of \mathcal{O} .

Vector space:

 $H(\mathcal{O}) := \text{Vect}(S_M : M \text{ finite multiset of elements of } \mathcal{O}^+).$

Product:

$$S_{M_1} \cdot S_{M_2} := S_{M_1 \cup M_2}.$$

Coproduct: the unique algebra morphism satisfying

$$\Delta\left(S_{\{\!\{x\}\!\}}\right) := \sum_{\substack{y,z_1,\ldots,z_\ell \in \mathcal{O} \\ y \circ [z_1,\ldots,z_\ell] = x}} S_{\{\!\{y\}\!\}} \otimes S_{\{\!\{z_1,\ldots,z_\ell\}\!\}}.$$

Gradation: the degree of $S_{\{\{x\}\}}$ is n-1 if $x \in \mathcal{O}(n)$.

The natural Hopf algebra of an operad

Some properties:

 $H(\mathcal{O})$ is commutative but not cocommutative in general;

 $H(\mathcal{O})$ is free as a commutative algebra;

Algebraic generators of $H(\mathcal{O})$: $S_{\{\{x\}\}}$, where $x \in \mathcal{O}^+$.

Construction considered in several works as [van der Laan, 2004], [Chapoton, Livernet, 2007], [Frabetti, 2008], [Méndez, Liendo, 2013].

The natural Hopf algebra of Assoc

Bases of $H(\mathbf{Assoc})$: indexed by finite multisets of elements of \mathbf{Assoc}^+ . Indexes encoded by nonincreasing words on $\mathbb{N} \setminus \{0,1\}$.

Example

$$S_{\{\{\alpha_2,\alpha_2,\alpha_4,\alpha_5\}\}} \longrightarrow S_{5422}$$

Degree	Basis elements of $H(Assoc)$
0	${\mathcal S}_\epsilon$
1	S_2
2	<i>S</i> ₃ , <i>S</i> ₂₂
3	S_4 , S_{32} , S_{222}
4	S_5 , S_{42} , S_{33} , S_{322} , S_{2222}

Example

$$S_{22} \cdot S_{32} = S_{3222}$$

Example

$$\Delta(S_4) = S_{\epsilon} \otimes S_4 + S_2 \otimes S_{22} + 2S_2 \otimes S_3 + 3S_3 \otimes S_2 + S_4 \otimes S_{\epsilon}$$

H(Assoc) is the Faà di Bruno Hopf algebra FdB.

Outline

From PROs to bialgebras PROs

From free PROs to bialgebras

PROs

PRO: quadruple $(\mathcal{P}, *, \circ, \mathbf{1}_p)$ where:

 \mathcal{P} is a bigraded set

$$\mathcal{P} := \biguplus_{p\geqslant 0} \biguplus_{q\geqslant 0} \mathcal{P}(p,q);$$

* is a horizontal composition map

$$*: \mathcal{P}(p,q) \times \mathcal{P}(p',q') \to \mathcal{P}(p+p',q+q'), \qquad p,p',q,q' \geqslant 0;$$

o is a vertical composition map

$$\circ: \mathcal{P}(q,r) \times \mathcal{P}(p,q) \to \mathcal{P}(p,r), \qquad p,q,r \geqslant 0;$$

 $\mathbf{1}_p$ is for any $p \ge 0$ an element of $\mathcal{P}(p,p)$, called unit of arity p.

This data has to satisfy axioms.

PROs axioms

For all $x, y, z, t \in \mathcal{P}$, when they make sense, the following six relations must be satisfied:

Horizontal associativity:

$$(x*y)*z=x*(y*z);$$

Vertical associativity:

$$(x \circ y) \circ z = x \circ (y \circ z);$$

Interchange relation:

$$(x \circ y) * (z \circ t) = (x * z) \circ (y * t);$$

Unitarity relations:

$$\mathbf{1}_{p} * \mathbf{1}_{q} = \mathbf{1}_{p+q};$$

$$x * \mathbf{1}_{0} = x = \mathbf{1}_{0} * x;$$

$$x \circ \mathbf{1}_{p} = x = \mathbf{1}_{q} \circ x.$$

Operators and elements of PROs

Element x of $\mathcal{P}(p,q) \rightsquigarrow$ operator with p inputs and q outputs:

Horizontal composition:

Vertical composition:

The PRO of maps

Map: PRO of maps.

Elements of Map(p, q): maps from [p] to [q] (encoded by words).

Horizontal composition: shifted concatenation.

Vertical composition: map composition.

Example

Let
$$x := 3115 \in Map(4,5)$$
 and $y := 133 \in Map(3,9)$. Then, $x * y = 3115688$.

Example

Let
$$x := 1224244 \in \mathbf{Map}(7,6)$$
 and $y := 3312 \in \mathbf{Map}(4,7)$. Then, $x \circ y = 2212$.

Free PROs

 $G := \biguplus_{p \geqslant 1} \biguplus_{q \geqslant 1} G(p,q)$: a bigraded set.

 \mathcal{P}_G : free PRO on G.

Elements of $\mathcal{P}_G(p,q)$: operators built from formal operators labeled on G with p inputs and q outputs.

Horizontal composition: concatenation of operators.

Vertical composition: composition of operators.

Example

Let $G := G(2,2) \uplus G(3,1)$ with $G(2,2) := \{a\}$ and $G(3,1) := \{b\}$. Then,

is an element of $\mathcal{P}_G(7,5)$.

Outline

From PROs to bialgebras

PROS

From free PROs to bialgebras

From quotients of free PROs to bialgebras

Maximal decompositions

 \mathcal{P} : a free PRO.

Maximal decomposition dec(x) of $x \in \mathcal{P}$: word (y_1, \dots, y_ℓ) s.t.

$$x = y_1 * \cdots * y_\ell$$

where ℓ is maximal and $y_i \neq \mathbf{1}_0$ for all $i \in [\ell]$.

Since $(\mathcal{P}, *, \mathbf{1}_0)$ is free as a monoid, dec(x) is unique.

Example

$$\mathsf{dec}(\mathbf{1}_0) = \epsilon, \quad \mathsf{dec}(\mathbf{1}_1) = (\mathbf{1}_1), \quad \mathsf{dec}(\mathbf{1}_2) = (\mathbf{1}_1, \mathbf{1}_1)$$

Example

Reduced elements

 \mathcal{P} : a free PRO.

 $x \in \mathcal{P}$ is reduced if all letters of dec(x) are different from $\mathbf{1}_1$.

Reduction red(x) of x:

$$red(x) := z_1 * \cdots * z_k,$$

where (z_1, \ldots, z_k) is the longest subword of dec(x) s.t. $z_i \neq \mathbf{1}_1$, $i \in [k]$.

Example

 $\mathbf{1}_0$ is reduced; $\mathbf{1}_1$ and $\mathbf{1}_2$ are not reduced; $\operatorname{red}(\mathbf{1}_9) = \mathbf{1}_0$.

Example / | | | | | | |

The bialgebra of a free PRO

 \mathcal{P} : a free PRO.

Set $red(\mathcal{P})$ as the set of reduced elements of \mathcal{P} .

 $H(\mathcal{P})$: the bialgebra of \mathcal{P} .

Vector space:

$$\mathsf{H}(\mathcal{P}) := \mathsf{Vect}\left(\mathbf{S}_{\mathsf{x}} : \mathsf{x} \in \mathsf{red}(\mathcal{P})\right).$$

Product:

$$\mathbf{S}_{x} \cdot \mathbf{S}_{y} := \mathbf{S}_{x*y}.$$

Coproduct:

$$\Delta\left(\mathbf{S}_{x}\right) := \sum_{\substack{y,z \in \mathcal{P} \\ y \circ z = x}} \mathbf{S}_{\text{red}(y)} \otimes \mathbf{S}_{\text{red}(z)}.$$

The bialgebra of a free PRO

Example

Example

$$\Delta \textbf{S}_{10} \otimes \textbf{S}_{10} + 2 \, \textbf{S}_{10} \otimes \textbf{S}_{10} + \mathbf{S}_{10} \otimes \textbf{S}_{10}$$

Example

$$\Delta S_{\bullet,\bullet} = S_{\mathbf{1}_0} \otimes S_{\bullet,\bullet} + S_{\bullet,\bullet} \otimes S_{\bullet,\bullet} + S_{\bullet,\bullet} \otimes S_{\bullet,\bullet}$$

$$+ S_{\bullet,\bullet} \otimes S_{\bullet,\bullet} + S_{\bullet,\bullet} \otimes S_{\bullet,\bullet} + S_{\bullet,\bullet} \otimes S_{\mathbf{1}_0}$$

First properties

Theorem

Let \mathcal{P} be a free PRO. Then, $H(\mathcal{P})$ is a bialgebra.

An element $x \in \mathcal{P}$ is indecomposable if $|\operatorname{dec}(x)| = 1$.

Proposition

Let \mathcal{P} be a free PRO. Then, $H(\mathcal{P})$ is freely generated as an algebra by the S_x , where the x are indecomposable and reduced elements of \mathcal{P} .

In general, $H(\mathcal{P})$ is neither commutative nor cocommutative.

The coproduct of $H(\mathcal{P})$ is not multiplicity-free on the **S** basis.

Gradation

 \mathcal{P}_G : free PRO on G.

 $w: G \to \mathbb{N}$: map.

w-weight $\omega_w(x)$ of $x \in \mathcal{P}_G$:

$$\omega_w(x) := \sum_{g \in x} w(g).$$

Proposition

Let \mathcal{P}_G be a free PRO on G and $w:G\to\mathbb{N}$ be a map. If the following two conditions are satisfied:

- 1. for any $g \in G$, $w(g) \geqslant 1$;
- 2. for any $n \ge 1$, the fiber $w^{-1}(n)$ is finite;

then, $H(\mathcal{P})$ endowed with the gradation

$$\mathsf{H}(\mathcal{P}) = \bigoplus_{n \geq 0} \mathsf{Vect}\left(\mathbf{S}_{x} : x \in \mathsf{red}(\mathcal{P}) \text{ and } \omega_{w}(x) = n\right)$$

is a combinatorial Hopf algebra.

Antipode

Proposition

Let \mathcal{P} be a free PRO. Then, for any reduced x of \mathcal{P} of different from $\mathbf{1}_0$, the antipode ν of $H(\mathcal{P})$ satisfies

$$\nu(\mathbf{S}_{\mathbf{x}}) = \sum_{\substack{\mathbf{x}_1, \dots, \mathbf{x}_\ell \in \underline{\mathcal{P}}, \ell \geqslant 1\\ \mathbf{x}_1 \circ \dots \circ \mathbf{x}_\ell = \mathbf{x}\\ \operatorname{red}(\mathbf{x}_i) \neq \mathbf{1}_0, i \in [\ell]}} (-1)^{\ell} \, \mathbf{S}_{\operatorname{red}(\mathbf{x}_1 * \dots * \mathbf{x}_\ell)}.$$

Example

$$\nu \mathbf{S} = -\mathbf{S} + \mathbf{S} + \mathbf{S} + \mathbf{S} - \mathbf{S} + \mathbf{S}$$

Outline

From PROs to bialgebras

PROS

From free PROs to bialgebras

From quotients of free PROs to bialgebras

Congruences of PROs

 \mathcal{P} : a PRO.

Congruence of PRO: equivalence relation \equiv on \mathcal{P} s.t.

- 1. $x \equiv x'$ and $x \in \mathcal{P}(p, q)$ imply $x' \in \mathcal{P}(p, q)$;
- 2. $x \equiv x'$ and $y \equiv y'$ imply $x * y \equiv x' * y'$;
- 3. $x \equiv x'$ and $y \equiv y'$ and $x \circ y$ well-defined imply $x \circ y \equiv x' \circ y'$.

 $\mathcal{P}/_{\equiv}$: quotient of \mathcal{P} by \equiv defined in the usual way.

Example

Let $\mathbf{Per} := \mathcal{P}/_{\equiv}$ be the quotient of the free PRO \mathcal{P} on $G := G(2,2) := \{s\}$ by the finest congruence \equiv satisfying

Per is the PRO of permutations and \equiv is a congruence of PROs.

Good congruences of PROs

 \mathcal{P} : a free PRO.

Good congruence of \mathcal{P} : congruence \equiv on \mathcal{P} s.t.

- 1. for any $x \in \text{red}(\mathcal{P})$, all the elements of $[x]_{\equiv}$ are reduced;
- 2. for any $x, y \in \operatorname{red}(\mathcal{P})$ s.t. $x \equiv y$, $\operatorname{dec}(x)$ and $\operatorname{dec}(y)$ have the same length ℓ and for any $i \in [\ell]$, $x_i \equiv y_i$.

 ${\cal Q}$ is a good PRO if it is the quotient of a free PRO by a good congruence.

Example

Per is the quotient of the free PRO on $G := G(2,2) := \{s\}$ by the finest congruence \equiv satisfying

Per is **not** a good PRO since \equiv does not satisfy 1.

The bialgebra of a good PRO

 \mathcal{P} : a free PRO.

 \equiv : a good congruence of \mathcal{P} .

For any $x \in red(\mathcal{P})$, set

$$\mathsf{T}_{[x]_{\equiv}} := \sum_{y \in [x]_{\equiv}} \mathsf{S}_{y}.$$

Example

Let \mathcal{P} be the quotient of the free PRO on $G := G(1,1) \uplus G(2,2)$ with $G(1,1) := \{a\}$ and $G(2,2) := \{b\}$ by the finest congruence \equiv satisfying

One has

The bialgebra of a good PRO

Theorem

Let \mathcal{P} be a free PRO and \equiv be a good congruence of \mathcal{P} . Then, the family

$$\left\{ \mathsf{T}_{[x]_{\equiv}} : x \in \operatorname{red}(\mathcal{P}) \right\}$$

spans a sub-bialgebra of $H(\mathcal{P})$, denoted by $H(\mathcal{P}/_{\equiv})$.

Some easy properties:

 $H(\mathcal{P}/_{\equiv})$ is freely generated as an algebra by the $T_{[x]_{\equiv}}$, where the $[x]_{\equiv}$ are \equiv -equivalence classes of indecomposable and reduced elements of \mathcal{P} .

If $H(\mathcal{P})$ is graded, and, for any \equiv -equivalence class $[x]_{\equiv}$ of reduced elements of \mathcal{P} , all elements of $[x]_{\equiv}$ have the same degree, then $H(\mathcal{P}/_{\equiv})$ is graded.

Outline

Constructing PROs
From operads to PROs

The PRO of an operad

O: an operad.

 $R(\mathcal{O})$: the PRO of \mathcal{O} [Markl, 2006].

Elements: finite sequences of elements of \mathcal{O} .

Horizontal composition: concatenation of sequences.

Vertical composition: extension of the composition map of \mathcal{O} .

Example

Let \mathcal{O} be the free operad on $G := G(2) := \{a\}$. Set

Then, one has $x \in \mathbb{R}(\mathcal{O})(8,3)$, $y \in \mathbb{R}(\mathcal{O})(13,8)$,

and

$$x \circ y = 0$$

The natural Hopf algebra of an operad

Lemma

Let \mathcal{O} be an operad s.t. $\mathcal{O}(1) = \{1\}$. Then, $R(\mathcal{O})$ is a good PRO.

Proposition

Let \mathcal{O} be an operad s.t. $\mathcal{O}(1)=\{\mathbf{1}\}$. Then, the bialgebras $\mathcal{H}(\mathcal{O})$ and $\mathcal{H}(\mathcal{R}(\mathcal{O}))/_{Com}$ are isomorphic, where Com is the vector space generated by

$$T_x \cdot T_y - T_y \cdot T_x$$

where x and y are elements of $R(\mathcal{O})$ with 1 as output arity.

$$FdB = H(Assoc) = H(R(Assoc))/_{Com}$$

Constructing PROs

From operads to PROs

From monoids to PROs

The PRO of a monoid

 \mathcal{M} : a monoid.

 $B(\mathcal{M})$: PRO of \mathcal{M} .

Elements: finite sequences of elements of \mathcal{M} .

Horizontal composition: concatenation of sequences.

Vertical composition:

$$x_1 \dots x_p \circ y_1 \dots y_p := (x_1 \bullet y_1) \dots (x_p \bullet y_p),$$

where \bullet is the product of \mathcal{M} .

Example

Let $\ensuremath{\mathbb{N}}$ be the additive monoid of nonnegative integers. Set

$$x := 002501$$
 and $y := 200111$.

Then, one has
$$x \in \mathcal{M}(\mathbb{N})(6,6)$$
, $y \in \mathcal{M}(\mathbb{N})(6,6)$,

$$x * y = 002501200111,$$

and

$$x \circ y = 202612.$$

The Hopf algebra of a monoid

Lemma

Let $\mathcal M$ be a monoid that does not contain any nontrivial subgroup. Then, $B(\mathcal M)$ is a good PRO.

Example

Let \mathbb{Z} be the additive monoid of integers. \mathbb{Z} admits the presentation $\mathbb{Z} = \langle \mathbf{a}, \mathbf{b} : \mathbf{ab} = \mathbf{ba} = 1 \rangle$.

 $\mathsf{B}(\mathbb{Z})$ is the quotient of the free PRO \mathcal{P} on $G:=G(1,1):=\{\mathtt{a},\mathtt{b}\}$ by the finest congruence \equiv satisfying

 \mathbb{Z} is a group and \equiv is **not** a good congruence.

Example

 $B(\mathbb{N})$ is a good PRO.

Examples

Noncommutative symmetric functions

Noncommutative Faà di Bruno algebra and its deformations Hopf algebras of planar rooted forests Hopf algebras of heaps of pieces

The PRO of ladders

Lad: free PRO on $G := G(1,1) := \{a\}.$

Lemma

The morphism of PROS $\phi : \mathbf{Lad} \to \mathsf{B}(\mathbb{N})$ satisfying

$$\phi\left(\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) = 1$$

is an isomorphism.

Example

$$\stackrel{\stackrel{\bullet}{=}}{=} \stackrel{\stackrel{\bullet}{=}}{\longrightarrow} 1211$$

The reduced elements of **Lad** are encoded by words on $\mathbb{N} \setminus \{0\}$.

Gradation: w(a) := 1. Degree of a word: the sum of its letters.

Noncommutative symmetric functions

H(Lad) is the Hopf algebra Sym of noncommutative symmetric functions over the S basis.

Degree	Basis elements of H(Lad)
0	S_{ϵ}
1	S_1
2	S_2 , S_{11}
3	S_3 , S_{21} , S_{12} , S_{111}

The PRO of positive integers

Pos: free PRO on $G := G(1,0) := \{a_n : n \ge 1\}$.

The reduced elements of **Pos** are encoded by words on $\mathbb{N} \setminus \{0\}$.

Example

Gradation: $w(a_n) := n$. Degree of a word: the sum of its letters.

Noncommutative symmetric functions

H(Pos) is Sym over the Φ basis.

Degree	Basis elements of H(Pos)
0	S_{ϵ}
1	S_1
2	S_2 , S_{11}
3	S_3 , S_{21} , S_{12} , S_{111}

$$\Delta \textbf{S}_{21} \ = \ \textbf{S}_{\epsilon} \otimes \textbf{S}_{21} \ + \ \textbf{S}_{1} \otimes \textbf{S}_{2} \ + \ \textbf{S}_{2} \otimes \textbf{S}_{1} \ + \ \textbf{S}_{21} \otimes \textbf{S}_{\epsilon}$$

Examples

Noncommutative symmetric functions

Noncommutative Faà di Bruno algebra and its deformations

Hopf algebras of planar rooted forests Hopf algebras of heaps of pieces

The PRO R(Assoc)

The PRO R(**Assoc**) is the quotient of the free PRO on $G := G(2,1) := \{a\}$ by the finest congruence \equiv satisfying

The reduced elements of $\mathbb{R}(\mathbf{Assoc})$ are encoded by words on $\mathbb{N} \setminus \{0,1\}$.

Example

Gradation: w(a) := 1. Degree of a word: sum of its letters minus its length.

$$\omega_w(5344) = (5+3+4+4)-4=12$$

Noncommutative Faà di Bruno Hopf algebra

H(R(Assoc)) is the noncommutative Faà di Bruno Hopf algebra FdB.

Degree	Basis elements of $H(R(Assoc))$
0	T_{ϵ}
1	T_2
2	T_3 , T_{22}
3	T_4 , T_{32} , T_{23} , T_{222}

Example

$$\mathsf{T}_5 \; = \; \mathsf{S} \quad \overset{\circ}{\underset{\mathsf{A}}{\circ}} \; + \; \mathsf{S} \quad \overset{\circ}{\underset{\mathsf{A}}{\circ}} \; \overset{\circ}$$

$$\Delta (\mathsf{T}_5) \ = \ \mathsf{T}_\epsilon \otimes \mathsf{T}_5 \ + \ \mathsf{T}_2 \otimes \mathsf{T}_{23} \ + \ \mathsf{T}_2 \otimes \mathsf{T}_{32} \ + \ 3 \, \mathsf{T}_3 \otimes \mathsf{T}_3$$
$$+ \ 3 \, \mathsf{T}_3 \otimes \mathsf{T}_{22} \ + \ 4 \, \mathsf{T}_4 \otimes \mathsf{T}_2 \ + \ \mathsf{T}_5 \otimes \mathsf{T}_\epsilon$$

The PRO $R(Assoc_{\gamma})$

 γ : a positive integer.

Assoc_{γ}: suboperad of **Assoc** generated by $\alpha_{\gamma+1}$.

Example

$$\begin{aligned} & \textbf{Assoc}_1 = \textbf{Assoc} = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \dots \} \\ & \textbf{Assoc}_2 = \{\alpha_1, \alpha_3, \alpha_5, \alpha_7, \alpha_9, \dots \} \end{aligned}$$

The reduced elements of $R(\mathbf{Assoc}_{\gamma})$ are encoded by words on $\{k\gamma + 1 : k \ge 1\}$.

Example

In Assoc₂,

$$\alpha_3\alpha_3\alpha_9\alpha_5 \longrightarrow 3395.$$

Gradation: $w(\alpha_{\gamma}) := 1$. Degree of a letter ℓ : $\frac{\ell-1}{\gamma}$. Degree of a word: sum of the degrees of its letters.

Foissy's deformation of FdB

Degree	Basis elements of $H(R(Assoc_2))$
0	T_{ϵ}
1	T_3
2	T_5 , T_{33}
3	T_7 , T_{53} , T_{35} , T_{333}

 γ -deformation of **FdB** [Foissy, 2008]: **FdB** $_{\gamma}$, $\gamma \in \mathbb{R}$.

 \mathbf{FdB}_0 is the Hopf algebra of noncommutative symmetric functions.

 \mathbf{FdB}_1 is the noncommutative Faà di Bruno Hopf algebra.

All the **FdB** $_{\gamma}$, $\gamma \in \mathbb{R} \setminus \{0\}$ are isomorphic.

Proposition

For any integer $\gamma \geqslant 1$, the Hopf algebras $\mathsf{H}(\mathsf{R}(\mathsf{Assoc}_{\gamma}))$ and FdB_{γ} are isomorphic.

Examples

Noncommutative symmetric functions Noncommutative Faà di Bruno algebra and its deformations

Hopf algebras of planar rooted forests

Hopf algebras of heaps of pieces

The PRO of planar rooted forests

PRF: free PRO on $G := \bigoplus_{n \geqslant 1} G(n,1) := \bigoplus_{n \geqslant 1} \{a_n\}.$

The elements of **PRF** are encoded by forests of planar rooted leafy trees.

Example

The reduced elements of **PRF** are encoded by planar rooted forests with no empty tree.

Gradation: $w(\mathbf{a}_n) := n$. Degree of a forest: number of edges.

A Hopf algebra on planar rooted forests

H(PRF): Hopf algebra of forests of planar rooted leafy trees.

Degree	Basis elements of H(PRF)
0	Sø
1	$S_{ extstyle Q}$
2	S, S, S,

First dimensions:

1, 1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378.

Example
$$\Delta S = S_{\emptyset} \otimes S + S_{\emptyset} \otimes S_{\emptyset} + S_{\emptyset} \otimes S_{\emptyset}$$

$$+ S_{\emptyset} \otimes S_{\emptyset} + S_{\emptyset} \otimes S_{\emptyset}$$

Examples

Noncommutative symmetric functions Noncommutative Faà di Bruno algebra and its deformations Hopf algebras of planar rooted forests

Hopf algebras of heaps of pieces

The PRO of heaps of pieces

 γ : a positive integer.

$$\mathbf{Hp}_{\gamma}$$
: free PRO on $G := G(\gamma, \gamma) := \{\mathbf{a}_{\gamma}\}.$

The elements of \mathbf{Hp}_{γ} are encoded by heaps of pieces of length γ .

The reduced elements of \mathbf{Hp}_{γ} are encoded by connected heaps of pieces of length $\gamma.$

Gradation: $w(a_{\gamma}) := 1$. Degree of a heap of pieces: number of pieces.

A Hopf algebra of heaps of pieces

 $H(\mathbf{Hp}_{\gamma})$: Hopf algebra of connected heaps of pieces of length γ .

Degree	Basis elements of $H(\mathbf{Hp}_2)$
0	S_\emptyset
1	S
2	S, S, S, S

In
$$H(Hp_2)$$
,

$$\Delta S = S_0 \otimes S + S_0 \otimes S + S_0 \otimes S_0 + S_0 \otimes S_0 + S_0 \otimes S_0$$

The PRO of friable heaps of pieces

 γ : a positive integer.

 \mathbf{FHp}_{γ} : quotient of \mathbf{Hp}_{γ} by the finest congruence \equiv satisfying

Gradation: the gradation of \mathbf{Hp}_{γ} .

Proposition

The PRO \mathbf{FHp}_{γ} is isomorphic to the sub-PRO of $\mathbf{B}(\mathbb{N})$ generated by 1^{γ} .

The elements of \mathbf{FHp}_{γ} are encoded by connected heaps of pieces of length 1.

Example

In FHp₂,

$$[=]$$
 \leftrightarrow 231 \longrightarrow $=$

A Hopf algebra of friable heaps of pieces

 $H(\mathbf{FHp}_{\gamma})$: Hopf algebra of connected heaps of friable pieces of length γ .

Degree	Basis elements of $H(FHp_2)$
0	T_\emptyset
1	T
2	T, T, T

Example

In
$$H(\mathbf{FHp}_2)$$
,

$$T_{\blacksquare} = S_{\blacksquare} + S_{\blacksquare} + S_{\blacksquare}.$$

In
$$H(FHp_2)$$
,

$$\Delta \mathsf{T}_{\blacksquare} \ = \ \mathsf{T}_{\emptyset} \otimes \mathsf{T}_{\blacksquare} \ + \ \mathsf{T}_{\blacksquare} \otimes \mathsf{T}_{\blacksquare} \ + \ \mathsf{T}_{\blacksquare} \otimes \mathsf{T}_{\blacksquare}$$

$$+ \ \mathsf{T}_{\blacksquare} \otimes \mathsf{T}_{\blacksquare} \ + \ \mathsf{T}_{\blacksquare} \otimes \mathsf{T}_{\square} \ + \ \mathsf{T}_{\blacksquare} \otimes \mathsf{T}_{\emptyset} \,.$$

Summary

PRO	Hopf algebra
Lad	Sym (S basis)
Pos	Sym (Φ basis)
R(Assoc)	FdB
$R(Assoc_\gamma)$	$FdB_\gamma,\gamma\in\mathbb{N}\setminus\{0\}$
PRF	Hopf algebra of planar rooted forests
\mathbf{Hp}_{γ}	Hopf algebra of heaps of pieces of length γ
FHp_{γ}	Hopf algebra of friable heaps of pieces of length γ