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Operads

(Nonsymmetric set-)operad: triple (O, ◦i , 1) where:

O is a graded set
O :=

⊎
n>1
O(n);

◦i is a composition map

◦i : O(n)×O(m)→ O(n + m − 1), n,m > 1, i ∈ [n];

1 is an element of O(1), called unit.

This data has to satisfy axioms.
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Operadic axioms

For all x ∈ O(n), y ∈ O(m), and z ∈ O,

Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z), i ∈ [n], j ∈ [m];

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y , 1 6 i < j 6 n;

Unitarity:
1 ◦1 x = x = x ◦i 1, i ∈ [n].
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Trees and elements of operads
Element x of O(n)  operator of arity n:

x...n inputs 1 output .

Operator x of arity n  planar rooted tree with n leaves:

x

1 n. . .

.

Composition map  tree grafting:

x

1 ni. . . . . .

◦i

y

1 m. . .

=

x

y1 n+m−1. . . . . .
i

. . .

.

6 / 60



Trees and operadic axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)

x

y. . . . . .

. . . . . .
z

. . .

=

y

. . . . . .
z

. . .

x

. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y

x

y. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y. . . . . .

. . .

Unitarity:

1 ◦1 x = x = x ◦i 1
1

x

. . .

=

x

. . . =

x

1
. . . . . .
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The associative operad

Assoc: associative operad.

Elements of Assoc(n): one formal symbol αn.

Composition:
αn ◦i αm := αn+m−1.

Example
α4 ◦2 α3 = α6, α1 ◦1 α1 = α1, α4 ◦4 α1 = α4
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Free operads
G := ]n>1G(n): a graded set.

OG : free operad on G .

Elements of OG (n): G-labeled planar rooted trees with n leaves.

Composition S ◦i T : graft the root of T on the ith leaf of S.

Example
Let G := G(2) ] G(3) with G(2) := {a, b} and G(3) := {c}.

OG (3) =

{
a

a ,

a

b , a

a

, b

a

,
c
,

b

a ,
b

b , a

b

, b

b
}

b

a

a ◦2

a

c

a

=

b

a

a

a

c

a
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Combinatorial Hopf algebras
Combinatorial Hopf algebra: triple (H, ·,∆) where:

H is a graded K-vector space

H :=
⊕
n>0
Hn

s.t. dimH0 = 1 and the Hn are finite-dimensional;

· : H⊗H → H is a graded associative product;

∆ : H → H⊗H is a graded coassociative coproduct.

This data has to satisfy some axioms including

∆(x · y) = ∆(x)∆(y), x , y ∈ H.
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The shuffle/deconcatenation Hopf algebra
Let H :=

⊕
n>0 Vect

(
{a, b}n).

Shuffle product � on H.

Example
ab� aa = abaa + aaba + aaab + aaba + aaab + aaab

= 3 aaab + 2 aaba + abaa

Deconcatenation coproduct ∆ on H.

Example
∆(baa) = ε⊗ baa + b⊗ aa + ba⊗ a + baa⊗ ε

Theorem
(H,�,∆) is a combinatorial Hopf algebra. [Malvenuto, Reutenauer, 1993]
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The natural Hopf algebra of an operad
O: an operad s.t. O(1) = {1}.
Set O+ as O \ O(1).

H(O): the natural Hopf algebra of O.
Vector space:

H(O) := Vect
(
SM : M finite multiset of elements of O+

)
.

Product:
SM1 · SM2 := SM1∪M2 .

Coproduct: the unique algebra morphism satisfying

∆
(
S{{x}}

)
:=

∑
y ,z1,...,z`∈O

y◦[z1,...,z`]=x

S{{y}} ⊗ S{{z1,...,z`}}.

Gradation: the degree of S{{x}} is n − 1 if x ∈ O(n).
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The natural Hopf algebra of an operad

Some properties:

H(O) is commutative but not cocommutative in general;

H(O) is free as a commutative algebra;

Algebraic generators of H(O): S{{x}}, where x ∈ O+.

Construction considered in several works as [van der Laan, 2004], [Chapoton,
Livernet, 2007], [Frabetti, 2008], [Méndez, Liendo, 2013].
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The natural Hopf algebra of Assoc
Bases of H(Assoc): indexed by finite multisets of elements of Assoc+.
Indexes encoded by nonincreasing words on N \ {0, 1}.

Example
S{{α2,α2,α4,α5}} −→ S5422

Degree Basis elements of H(Assoc)

0 Sε
1 S2
2 S3, S22
3 S4, S32, S222
4 S5, S42, S33, S322, S2222

Example
S22 · S32 = S3222

Example
∆(S4) = Sε ⊗ S4 + S2 ⊗ S22 + 2S2 ⊗ S3 + 3S3 ⊗ S2 + S4 ⊗ Sε

H(Assoc) is the Faà di Bruno Hopf algebra FdB.
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PROs
PRO: quadruple (P, ∗, ◦, 1p) where:
P is a bigraded set

P :=
⊎
p>0

⊎
q>0
P(p, q);

∗ is a horizontal composition map

∗ : P(p, q)× P(p′, q′)→ P(p + p′, q + q′), p, p′, q, q′ > 0;

◦ is a vertical composition map

◦ : P(q, r)× P(p, q)→ P(p, r), p, q, r > 0;

1p is for any p > 0 an element of P(p, p), called unit of arity p.

This data has to satisfy axioms.
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PROs axioms
For all x , y , z , t ∈ P, when they make sense, the following six relations
must be satisfied:

Horizontal associativity:
(x ∗ y) ∗ z = x ∗ (y ∗ z);

Vertical associativity:
(x ◦ y) ◦ z = x ◦ (y ◦ z);

Interchange relation:
(x ◦ y) ∗ (z ◦ t) = (x ∗ z) ◦ (y ∗ t);

Unitarity relations:
1p ∗ 1q = 1p+q;

x ∗ 10 = x = 10 ∗ x ;

x ◦ 1p = x = 1q ◦ x .
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Operators and elements of PROs
Element x of P(p, q)  operator with p inputs and q outputs:

x

1 p

1 q

. . .

. . .

.

Horizontal composition:

x

1 p

1 q

. . .

. . .

∗ y

1 p′

1 q′

. . .

. . .

= x y

1 p

1 q

. . .

. . .

1 p′

1 q′

. . .

. . .

.

Vertical composition:

x

1 p

1 q

. . .

. . .

◦ y

1 r

1 p

. . .

. . .

=
x
y

1 r

1 q

. . .

. . .

.
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The PRO of maps
Map: PRO of maps.

Elements of Map(p, q): maps from [p] to [q] (encoded by words).

Horizontal composition: shifted concatenation.

Vertical composition: map composition.

Example
Let x := 3115 ∈Map(4, 5) and y := 133 ∈Map(3, 9). Then,

x ∗ y = 3115688.

Example
Let x := 1224244 ∈Map(7, 6) and y := 3312 ∈Map(4, 7). Then,

x ◦ y = 2212.
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Free PROs
G := ]p>1 ]q>1 G(p, q): a bigraded set.

PG : free PRO on G .
Elements of PG (p, q): operators built from formal operators labeled on G
with p inputs and q outputs.
Horizontal composition: concatenation of operators.
Vertical composition: composition of operators.

Example
Let G := G(2, 2) ] G(3, 1) with G(2, 2) := {a} and G(3, 1) := {b}.
Then,

a

b

a

is an element of PG (7, 5).
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Maximal decompositions
P: a free PRO.
Maximal decomposition dec(x) of x ∈ P: word (y1, . . . , y `) s.t.

x = y1 ∗ · · · ∗ y `
where ` is maximal and y i 6= 10 for all i ∈ [`].

Since (P, ∗, 10) is free as a monoid, dec(x) is unique.

Example
dec(10) = ε, dec(11) = (11), dec(12) = (11, 11)

Example

dec

 a

b

a

 =

 a
,

b

a ,


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Reduced elements
P: a free PRO.

x ∈ P is reduced if all letters of dec(x) are different from 11.

Reduction red(x) of x :

red(x) := z1 ∗ · · · ∗ zk ,

where (z1, . . . , zk) is the longest subword of dec(x) s.t. z i 6= 11, i ∈ [k].

Example
10 is reduced; 11 and 12 are not reduced; red(19) = 10.

Example

red

 a

b

a

 =
a

b

a
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The bialgebra of a free PRO
P: a free PRO.
Set red(P) as the set of reduced elements of P.

H(P): the bialgebra of P.

Vector space:
H(P) := Vect (Sx : x ∈ red(P)) .

Product:
Sx · Sy := Sx∗y .

Coproduct:
∆ (Sx ) :=

∑
y ,z∈P
y◦z=x

Sred(y) ⊗ Sred(z).
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The bialgebra of a free PRO
Example

S
a

b

a

· S
a a

= S
a

b

a

a a

Example
∆S

a a

= S10 ⊗ S
a a

+ 2 S
a

⊗ S
a

+ S
a a

⊗ S10

Example
∆S

a

b

a

= S10 ⊗ S
a

b

a

+ S
a

⊗ S
b

a

+ S
b

⊗ S
a a

+ S
a b

⊗ S
a

+ S
b

a

⊗ S
a

+ S
a

b

a

⊗ S10
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First properties

Theorem
Let P be a free PRO. Then, H(P) is a bialgebra.

An element x ∈ P is indecomposable if | dec(x)| = 1.

Proposition
Let P be a free PRO. Then, H(P) is freely generated as an algebra by
the Sx , where the x are indecomposable and reduced elements of P.

In general, H(P) is neither commutative nor cocommutative.

The coproduct of H(P) is not multiplicity-free on the S basis.
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Gradation
PG : free PRO on G .
w : G → N: map.
w -weight ωw (x) of x ∈ PG :

ωw (x) :=
∑
g∈x

w(g).

Proposition
Let PG be a free PRO on G and w : G → N be a map. If the following
two conditions are satisfied:
1. for any g ∈ G , w(g) > 1;
2. for any n > 1, the fiber w−1(n) is finite;

then, H(P) endowed with the gradation

H(P) =
⊕
n>0

Vect (Sx : x ∈ red(P) and ωw (x) = n)

is a combinatorial Hopf algebra.
29 / 60



Antipode

Proposition
Let P be a free PRO. Then, for any reduced x of P of different from 10,
the antipode ν of H(P) satisfies

ν(Sx ) =
∑

x1,...,x`∈P,`>1
x1◦···◦x`=x

red(x i )6=10,i∈[`]

(−1)` Sred(x1∗···∗x`).

Example

νS
a

b

a

= −S
a

b

a

+ S
a

b

a

+ S
a

b
a

− S
a b a
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Congruences of PROs
P: a PRO.

Congruence of PRO: equivalence relation ≡ on P s.t.
1. x ≡ x ′ and x ∈ P(p, q) imply x ′ ∈ P(p, q);
2. x ≡ x ′ and y ≡ y ′ imply x ∗ y ≡ x ′ ∗ y ′;
3. x ≡ x ′ and y ≡ y ′ and x ◦ y well-defined imply x ◦ y ≡ x ′ ◦ y ′.

P/≡: quotient of P by ≡ defined in the usual way.

Example
Let Per := P/≡ be the quotient of the free PRO P on
G := G(2, 2) := {s} by the finest congruence ≡ satisfying

s

s ≡ ,

s

s

s
≡

s

s

s

.

Per is the PRO of permutations and ≡ is a congruence of PROs.
32 / 60



Good congruences of PROs
P: a free PRO.
Good congruence of P: congruence ≡ on P s.t.
1. for any x ∈ red(P), all the elements of [x ]≡ are reduced;
2. for any x , y ∈ red(P) s.t. x ≡ y , dec(x) and dec(y) have the same

length ` and for any i ∈ [`], x i ≡ y i .
Q is a good PRO if it is the quotient of a free PRO by a good
congruence.

Example
Per is the quotient of the free PRO on G := G(2, 2) := {s} by the finest
congruence ≡ satisfying

s

s ≡ ,

s

s

s
≡

s

s

s

.

Per is not a good PRO since ≡ does not satisfy 1.
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The bialgebra of a good PRO
P: a free PRO.
≡: a good congruence of P.
For any x ∈ red(P), set

T[x ]≡ :=
∑

y∈[x ]≡

Sy .

Example
Let P be the quotient of the free PRO on G := G(1, 1) ] G(2, 2) with
G(1, 1) := {a} and G(2, 2) := {b} by the finest congruence ≡ satisfying

b

a ≡
b

b .
One has

T
b

a

b


≡

= S
b

a

b

+ S
b

b

b

+ S
b

b

a

+ S
b

a

a

.
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The bialgebra of a good PRO

Theorem
Let P be a free PRO and ≡ be a good congruence of P. Then, the family{

T[x ]≡ : x ∈ red(P)
}

spans a sub-bialgebra of H(P), denoted by H (P/≡).

Some easy properties:

H (P/≡) is freely generated as an algebra by the T[x ]≡ , where the [x ]≡
are ≡-equivalence classes of indecomposable and reduced elements of P.

If H(P) is graded, and, for any ≡-equivalence class [x ]≡ of reduced
elements of P, all elements of [x ]≡ have the same degree, then H (P/≡)
is graded.
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The PRO of an operad
O: an operad.
R(O): the PRO of O [Markl, 2006].
Elements: finite sequences of elements of O.
Horizontal composition: concatenation of sequences.
Vertical composition: extension of the composition map of O.

Example
Let O be the free operad on G := G(2) := {a}. Set

x := a

a
a

a

a and y :=
a a

a a

a .

Then, one has x ∈ R(O)(8, 3), y ∈ R(O)(13, 8),

x ∗ y = a

a
a

a

a
a a

a a

a ,

and

x ◦ y = a

a

a a

a
a

a

a

a

a

.
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The natural Hopf algebra of an operad

Lemma
Let O be an operad s.t. O(1) = {1}. Then, R(O) is a good PRO.

Proposition
Let O be an operad s.t. O(1) = {1}. Then, the bialgebras H(O) and
H(R(O))/Com are isomorphic, where Com is the vector space generated
by

Tx · Ty − Ty · Tx ,

where x and y are elements of R(O) with 1 as output arity.

Example
FdB = H(Assoc) = H(R(Assoc))/Com
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The PRO of a monoid
M: a monoid.
B(M): PRO ofM.
Elements: finite sequences of elements ofM.
Horizontal composition: concatenation of sequences.
Vertical composition:

x1 . . . xp ◦ y1 . . . yp := (x1 • y1) . . . (xp • yp),

where • is the product ofM.

Example
Let N be the additive monoid of nonnegative integers. Set

x := 002501 and y := 200111.

Then, one has x ∈M(N)(6, 6), y ∈M(N)(6, 6),
x ∗ y = 002501200111,

and
x ◦ y = 202612.
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The Hopf algebra of a monoid
Lemma
LetM be a monoid that does not contain any nontrivial subgroup.
Then, B(M) is a good PRO.

Example
Let Z be the additive monoid of integers. Z admits the presentation
Z = 〈a, b : ab = ba = 1〉.
B(Z) is the quotient of the free PRO P on G := G(1, 1) := {a, b} by the
finest congruence ≡ satisfying

a

b ≡
b

a ≡ .

Z is a group and ≡ is not a good congruence.

Example
B(N) is a good PRO.
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The PRO of ladders
Lad: free PRO on G := G(1, 1) := {a}.

Lemma
The morphism of PROS φ : Lad→ B(N) satisfying

φ

(
a

)
= 1

is an isomorphism.

Example
a

a

a a a

φ−−→ 1211

The reduced elements of Lad are encoded by words on N \ {0}.

Gradation: w(a) := 1. Degree of a word: the sum of its letters.
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Noncommutative symmetric functions

H(Lad) is the Hopf algebra Sym of noncommutative symmetric functions
over the S basis.

Degree Basis elements of H(Lad)

0 Sε
1 S1
2 S2, S11
3 S3, S21, S12, S111

Example
∆S21 = Sε ⊗ S21 + S1 ⊗ S2 + S1 ⊗ S11

+ S11 ⊗ S1 + S2 ⊗ S1 + S2 ⊗ Sε
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The PRO of positive integers

Pos: free PRO on G := G(1, 0) := {an : n > 1}.

The reduced elements of Pos are encoded by words on N \ {0}.

Example
a2 a1 a5 a1

−→ 2151

Gradation: w(an) := n. Degree of a word: the sum of its letters.
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Noncommutative symmetric functions

H(Pos) is Sym over the Φ basis.

Degree Basis elements of H(Pos)

0 Sε
1 S1
2 S2, S11
3 S3, S21, S12, S111

Example
∆S21 = Sε ⊗ S21 + S1 ⊗ S2 + S2 ⊗ S1 + S21 ⊗ Sε
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The PRO R(Assoc)
The PRO R(Assoc) is the quotient of the free PRO on
G := G(2, 1) := {a} by the finest congruence ≡ satisfying

a

a ≡
a

a .

The reduced elements of R(Assoc) are encoded by words on N \ {0, 1}.

Example

a

a

a

a

a

a

a

a

a

a

a

a −→ α5α3α4α4 −→ 5344

Gradation: w(a) := 1. Degree of a word: sum of its letters minus its
length.

Example
ωw (5344) = (5 + 3 + 4 + 4)− 4 = 12
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Noncommutative Faà di Bruno Hopf algebra
H(R(Assoc)) is the noncommutative Faà di Bruno Hopf algebra FdB.

Degree Basis elements of H(R(Assoc))

0 Tε

1 T2
2 T3, T22
3 T4, T32, T23, T222

Example
T5 = S

a

a

a

+ S
a

a

a

+ S
a

a

a

+ S
a

a

a

+ S
a

a

a

Example
∆ (T5) = Tε ⊗ T5 + T2 ⊗ T23 + T2 ⊗ T32 + 3T3 ⊗ T3

+ 3T3 ⊗ T22 + 4T4 ⊗ T2 + T5 ⊗ Tε
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The PRO R(Assocγ)
γ: a positive integer.

Assocγ : suboperad of Assoc generated by αγ+1.

Example
Assoc1 = Assoc = {α1, α2, α3, α4, α5, . . . }
Assoc2 = {α1, α3, α5, α7, α9, . . . }

The reduced elements of R(Assocγ) are encoded by words on
{kγ + 1 : k > 1}.

Example
In Assoc2,

α3α3α9α5 −→ 3395.

Gradation: w(αγ) := 1. Degree of a letter `: `−1
γ . Degree of a word:

sum of the degrees of its letters.
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Foissy’s deformation of FdB

Degree Basis elements of H(R(Assoc2))

0 Tε

1 T3
2 T5, T33
3 T7, T53, T35, T333

γ-deformation of FdB [Foissy, 2008]: FdBγ , γ ∈ R.

FdB0 is the Hopf algebra of noncommutative symmetric functions.
FdB1 is the noncommutative Faà di Bruno Hopf algebra.
All the FdBγ , γ ∈ R \ {0} are isomorphic.

Proposition
For any integer γ > 1, the Hopf algebras H(R(Assocγ)) and FdBγ are
isomorphic.
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The PRO of planar rooted forests

PRF: free PRO on G := ]n>1G(n, 1) := ]n>1{an}.

The elements of PRF are encoded by forests of planar rooted leafy trees.

Example

a

a

a −→

The reduced elements of PRF are encoded by planar rooted forests with
no empty tree.

Gradation: w(an) := n. Degree of a forest: number of edges.
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A Hopf algebra on planar rooted forests
H(PRF): Hopf algebra of forests of planar rooted leafy trees.

Degree Basis elements of H(PRF)

0 S∅
1 S
2 S , S , S

First dimensions:

1, 1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378.

Example
∆S = S∅ ⊗ S + S ⊗ S + S ⊗ S

+ S ⊗ S + S ⊗ S∅
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The PRO of heaps of pieces

γ: a positive integer.

Hpγ : free PRO on G := G(γ, γ) := {aγ}.

The elements of Hpγ are encoded by heaps of pieces of length γ.

Example
In Hp2,

a2

a2

a2

−→ .

The reduced elements of Hpγ are encoded by connected heaps of pieces
of length γ.

Gradation: w(aγ) := 1. Degree of a heap of pieces: number of pieces.
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A Hopf algebra of heaps of pieces

H(Hpγ): Hopf algebra of connected heaps of pieces of length γ.

Degree Basis elements of H(Hp2)

0 S∅
1 S
2 S , S , S , S

Example
In H(Hp2),

∆S = S∅ ⊗ S + S ⊗ S + S ⊗ S

+ S ⊗ S + S ⊗ S + S ⊗ S∅ .
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The PRO of friable heaps of pieces
γ: a positive integer.
FHpγ : quotient of Hpγ by the finest congruence ≡ satisfying

aγ

aγ

. . .

. . .

. . .

. . .

. . .
` ≡ aγ

aγ

. . .

. . .

. . .

. . .

. . .
` , ` ∈ [γ − 1].

Gradation: the gradation of Hpγ .

Proposition
The PRO FHpγ is isomorphic to the sub-PRO of B(N) generated by 1γ .

The elements of FHpγ are encoded by connected heaps of pieces of
length 1.

Example
In FHp2,

[ ]≡ ↔ 231 −→ .

58 / 60



A Hopf algebra of friable heaps of pieces
H(FHpγ): Hopf algebra of connected heaps of friable pieces of length γ.

Degree Basis elements of H(FHp2)

0 T∅
1 T
2 T , T , T

Example
In H(FHp2),

T = S + S + S .

Example
In H(FHp2),

∆T = T∅ ⊗ T + T ⊗ T + T ⊗ T
+ T ⊗ T + T ⊗ T + T ⊗ T∅ .
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Summary

PRO Hopf algebra
Lad Sym (S basis)
Pos Sym (Φ basis)

R(Assoc) FdB
R(Assocγ) FdBγ , γ ∈ N \ {0}

PRF Hopf algebra of planar rooted forests
Hpγ Hopf algebra of heaps of pieces of length γ

FHpγ Hopf algebra of friable heaps of pieces of length γ
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