Construction algébrique sur les objets de Baxter

Samuele Giraudo

Université de Marne-la-Vallée

Journées du GDR IM 23-24 juin 2010

Algèbres de Hopf combinatoires

Une algèbre de Hopf combinatoire (AHC) est composée :

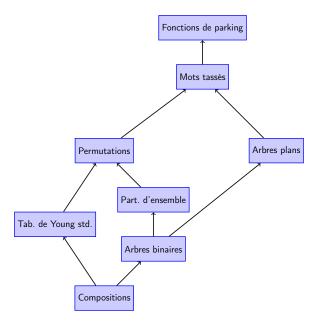
- ▶ d'un espace vectoriel gradué *V* dont ses bases sont indexées par des objets combinatoires ;
- ▶ d'un produit $\cdot : V \otimes V \rightarrow V$ associatif gradué;
- ▶ d'un coproduit $\Delta: V \to V \otimes V$ coassociatif gradué;
- ▶ d'une antipode $S: V \rightarrow V$;

qui vérifient nombre de relations de compatibilité.

Quelques AHC

AHC	Objets	
NCSF	Compositions	[Gelfand et al, 1994]
FQSym	Permutations	[Malvenuto, 1994]
FSym	Tableaux de Young standards	[Poirier, Reutenauer, 1995]
PBT	Arbres binaires	[Loday, Ronco, 1998]
PQSym	Fonctions de parking	[Novelli, Thibon, 2004]
WQSym	Mots tassés	[Sagan, Rosas, 2006]
\mathfrak{TD}	Arbres plans	[Novelli, Thibon, 2006]
Bell	Partitions d'ensemble	[Rey, 2007]

Cartographie



Buts de ce travail

- Construire une AHC sur les objets de Baxter.
- Étudier ses propriétés algébriques.
- ▶ Voir les objets de Baxter selon un nouveau point de vue.

Objets en bijection avec les permutations de Baxter.

Définition

La permutation $\sigma \in \mathfrak{S}$ est de Baxter [Baxter, 1964] si elle évite les motifs généralisés 2-41-3 et 3-14-2.

Objets en bijection avec les permutations de Baxter.

Définition

La permutation $\sigma \in \mathfrak{S}$ est de Baxter [Baxter, 1964] si elle évite les motifs généralisés 2-41-3 et 3-14-2.

Exemples:

> 561382479

Objets en bijection avec les permutations de Baxter.

Définition

La permutation $\sigma \in \mathfrak{S}$ est de Baxter [Baxter, 1964] si elle évite les motifs généralisés 2-41-3 et 3-14-2.

Exemples:

▶ 561382479 n'est pas de Baxter.

Objets en bijection avec les permutations de Baxter.

Définition

La permutation $\sigma \in \mathfrak{S}$ est de Baxter [Baxter, 1964] si elle évite les motifs généralisés 2-41-3 et 3-14-2.

- ▶ 561382479 n'est pas de Baxter.
- ▶ *ϵ*, 1, 1234, 2143 sont de Baxter.

Permutations de Baxter dénombrées [Chung et al., 1978] par :

$$b_n = \sum_{k=1}^n \frac{\binom{n+1}{k-1} \binom{n+1}{k} \binom{n+1}{k+1}}{\binom{n+1}{1} \binom{n+1}{2}}.$$

[Sloane, A0011811]: 1, 1, 2, 6, 22, 92, 422, 2074, 10754, ...

C'est aussi le nombre

- de partitions rectangulaires [Yao et al., 2003];
- d'arbres binaires jumeaux [Dulucq, Guibert, 1994];
- d'orientations planes bipolaires [Bousquet-Mélou et al., 2010]; et bien d'autres objets.

Un nouvel objet de Baxter

On définit l'objet suivant :

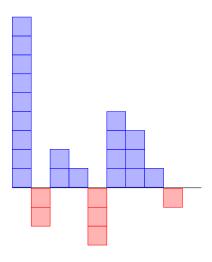
Définition

Un diagramme de Tamari double (DTD) $\delta = \delta_1 \dots \delta_n$ est un mot de \mathbb{Z}^* tel que :

- 1. $\delta_i \neq 0$, pour tout $i \in [1, n-1]$;
- 2. les lettres δ_i vérifient la condition de validité en colonne.

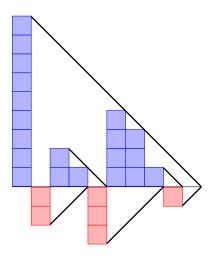
Diagrammes de Tamari doubles (exemple)

Représentation graphique de $\delta = (9, -2, 2, 1, -3, 4, 3, 1, -1, 0)$:



Diagrammes de Tamari doubles (exemple)

Représentation graphique de $\delta=\left(9,-2,2,1,-3,4,3,1,-1,0\right)$:



→ Condition de validité : aucune colonne ne dépasse des lignes.

Monoïde de Baxter

Soit $A = \{a_1 < a_2 < \ldots\}$ un alphabet totalement ordonné.

Définition

Le monoïde de Baxter est le quotient du monoïde libre A^* par la congruence \equiv engendrée par :

$$\ldots c \ldots ad \ldots b \ldots \equiv \ldots c \ldots da \ldots b \ldots$$
 où $a \leq b < c \leq d$ et $\ldots b \ldots da \ldots c \ldots \equiv \ldots b \ldots ad \ldots c \ldots$ où $a < b \leq c < d$.

Objet analogue au monoïde plaxique [Lascoux, Schützenberger, 1981], au monoïde hypolaxique [Krob, Thibon, 1997] et au monoïde sylvestre [Hivert, Novelli, Thibon, 2004].

Proposition

Le monoïde de Baxter est compatible aux restrictions aux segments d'alphabet.

Proposition

Le monoïde de Baxter est compatible aux restrictions aux segments d'alphabet.

Proposition

Le monoïde de Baxter est compatible avec la déstandardisation.

Proposition

Le monoïde de Baxter est compatible aux restrictions aux segments d'alphabet.

Proposition

Le monoïde de Baxter est compatible avec la déstandardisation.

Théorème

Toute classe d'équivalence de $\mathfrak{S}_n/_{\equiv}$ contient exactement une permutation de Baxter.

Proposition

Le monoïde de Baxter est compatible aux restrictions aux segments d'alphabet.

Proposition

Le monoïde de Baxter est compatible avec la déstandardisation.

Théorème

Toute classe d'équivalence de $\mathfrak{S}_n/_{\equiv}$ contient exactement une permutation de Baxter.

 ∼→ Construction d'une AHC sur les permutations de Baxter comme sous-AHC de FQSym.

On associe un DTD P(u) à tout mot u de A^* .

On associe un DTD P(u) à tout mot u de A^* .

Exemple : calcul de $P(\sigma)$ pour $\sigma = 253164$:

Ø

On associe un DTD P(u) à tout mot u de A^* .

$$\emptyset$$
 $\frac{2}{}$

On associe un DTD P(u) à tout mot u de A^* .

$$\emptyset \xrightarrow{2} \xrightarrow{2}$$

On associe un DTD P(u) à tout mot u de A^* .

$$\emptyset \ \stackrel{2}{\longrightarrow} \ \stackrel{2}{\longrightarrow} \ \stackrel{5}{\longrightarrow}$$

On associe un DTD P(u) à tout mot u de A^* .

$$\emptyset \stackrel{2}{\longrightarrow} \stackrel{2}{\longrightarrow} \stackrel{2}{\longrightarrow} \stackrel{2}{\longrightarrow}$$

On associe un DTD P(u) à tout mot u de A^* .

$$\emptyset \xrightarrow{2} \xrightarrow{2} \xrightarrow{5} \xrightarrow{2} 5$$

On associe un DTD P(u) à tout mot u de A^* .

$$\emptyset \xrightarrow{2} \xrightarrow{2} \xrightarrow{5} \xrightarrow{2} \xrightarrow{3}$$

On associe un DTD P(u) à tout mot u de A^* .

$$\emptyset \xrightarrow{2} \xrightarrow{2} \xrightarrow{5} \xrightarrow{2} \xrightarrow{3} \xrightarrow{2} \xrightarrow{3} \xrightarrow{5}$$

On associe un DTD P(u) à tout mot u de A^* .

$$\emptyset \xrightarrow{2} \xrightarrow{2} \xrightarrow{5} \xrightarrow{2} \xrightarrow{3} \xrightarrow{5}$$

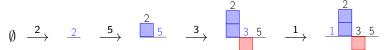
On associe un DTD P(u) à tout mot u de A^* .

$$\emptyset \xrightarrow{2} \xrightarrow{2} \xrightarrow{5} \xrightarrow{3} \xrightarrow{3} \xrightarrow{5}$$

On associe un DTD P(u) à tout mot u de A^* .

$$\emptyset \xrightarrow{2} \xrightarrow{2} \xrightarrow{5} \xrightarrow{3} \xrightarrow{5} \xrightarrow{3} \xrightarrow{1}$$

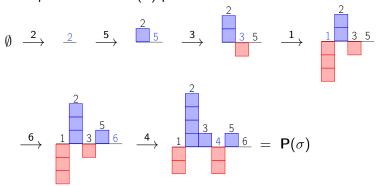
On associe un DTD P(u) à tout mot u de A^* .



On associe un DTD P(u) à tout mot u de A^* .

$$\emptyset \xrightarrow{2} \xrightarrow{2} \xrightarrow{5} \xrightarrow{3} \xrightarrow{3} \xrightarrow{1} \xrightarrow{1} \xrightarrow{3} \xrightarrow{5}$$

On associe un DTD P(u) à tout mot u de A^* .



Utilité de l'insertion

Proposition

Soient $\sigma, \nu \in \mathfrak{S}_n$. Alors, $\sigma \equiv \nu$ ssi $P(\sigma) = P(\nu)$.

Utilité de l'insertion

Proposition

Soient $\sigma, \nu \in \mathfrak{S}_n$. Alors, $\sigma \equiv \nu$ ssi $P(\sigma) = P(\nu)$.

Un DTD représente donc une classe d'équivalence de permutations de Baxter.

Utilité de l'insertion

Proposition

Soient $\sigma, \nu \in \mathfrak{S}_n$. Alors, $\sigma \equiv \nu$ ssi $P(\sigma) = P(\nu)$.

- Un DTD représente donc une classe d'équivalence de permutations de Baxter.
- Existence d'un algorithme de lecture de la permutation de Baxter associée à un DTD.

L'algèbre de Baxter

On part de l'algèbre des permutations **FQSym** dont $\{F_{\sigma}\}_{\sigma \in \mathfrak{S}}$ est une base.

Définition

Baxter est l'espace vectoriel engendré par les éléments suivants :

$$\mathsf{P}_{\delta} = \sum_{\mathsf{P}(\sigma) = \delta} \mathsf{F}_{\sigma}.$$

L'algèbre de Baxter

On part de l'algèbre des permutations **FQSym** dont $\{F_{\sigma}\}_{{\sigma} \in \mathfrak{S}}$ est une base.

Définition

Baxter est l'espace vectoriel engendré par les éléments suivants :

$$\mathsf{P}_{\delta} = \sum_{\mathsf{P}(\sigma) = \delta} \mathsf{F}_{\sigma}.$$

$$\begin{array}{lll} P_{\bullet} & = & F_{132} \\ P_{\bullet} & = & F_{415326} + F_{451326} \\ P_{\bullet} & = & F_{246513} + F_{246153} + F_{241653} + F_{214653} \end{array}$$

Relations de couverture :

- diminution d'une colonne orientée vers le haut;
- augmentation d'une colonne orientée vers le bas;
- changement d'une colonne orientée vers le haut en une colonne orientée vers le bas.

Relations de couverture :

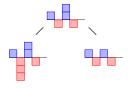
- diminution d'une colonne orientée vers le haut;
- augmentation d'une colonne orientée vers le bas;
- changement d'une colonne orientée vers le haut en une colonne orientée vers le bas.

Relations de couverture :

- diminution d'une colonne orientée vers le haut;
- augmentation d'une colonne orientée vers le bas;
- changement d'une colonne orientée vers le haut en une colonne orientée vers le bas.

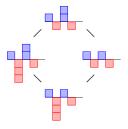
Relations de couverture :

- diminution d'une colonne orientée vers le haut;
- augmentation d'une colonne orientée vers le bas;
- changement d'une colonne orientée vers le haut en une colonne orientée vers le bas.



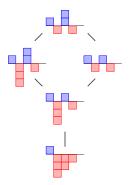
Relations de couverture :

- diminution d'une colonne orientée vers le haut;
- augmentation d'une colonne orientée vers le bas;
- changement d'une colonne orientée vers le haut en une colonne orientée vers le bas.



Relations de couverture :

- diminution d'une colonne orientée vers le haut;
- augmentation d'une colonne orientée vers le bas;
- changement d'une colonne orientée vers le haut en une colonne orientée vers le bas.



Interprétation combinatoire du produit de Baxter

Proposition

Les éléments qui apparaissent dans le produit de deux DTD forment un intervalle du treillis de Baxter. Plus précisément :

$$\mathsf{P}_{\delta_0} \cdot \mathsf{P}_{\delta_1} = \sum_{\delta_0 \diagup \delta_1 \le \delta_2 \le \delta_0 \diagdown \delta_1} \mathsf{P}_{\delta_2}.$$

Où

- $\delta_0/\delta_1 = \delta_0 \cdot \delta_1$ où les colonnes maximales du haut de δ_0 sont incrémentées de $|\delta_1|$. Exemple :
- $\delta_0 \setminus \delta_1 = \delta_0 \cdot \delta_1$ où les colonnes maximales du bas de δ_0 sont incrémentées de $|\delta_1|$. Exemple :

Quelques propriétés de Baxter

- Non commutative et non cocommutative.
- Libre et colibre.
- ▶ Dimensions de ses générateurs algébriques : 1, 1, 1, 3, 11, 47, 221, 1113, 5903 . . . En bijection avec les permutations de Baxter connectées.
- ► Structure de bigèbre bidendriforme [Foissy, 2005].
- Autoduale.

Questions diverses

- Bijection explicite entre DTD et orientations planes bipolaires?
- Comportement des relations de couvertures du treillis de Baxter sur d'autres objets de Baxter?
- Interprétation du produit et du coproduit de Baxter en termes d'orientations planes bipolaires?
- ► Construction de « bons » monoïdes $A^*/_{\equiv}$ dont le nombre de classes d'équivalence de $\mathfrak{S}_n/_{\equiv}$ compte d'autres permutations particulières ?