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Types of algebraic structures

Combinatorics deals with sets (or spaces) of structured objects:
monoids;
groups;
lattices;

associative alg.;
Hopf bialg.;
Lie alg.;

pre-Lie alg.;
dendriform alg.;
duplicial alg.

Such types of algebras are speci�ed by
1. a collection of operations;
2. a collection of relations between operations.

– Example –
The type of monoids can be speci�ed by

1. the operations ? (binary) and 1 (nullary);

2. the relations (x1 ? x2) ? x3 = x1 ? (x2 ? x3) and x ? 1 = x = 1 ? x.
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Universal algebra

Universal algebra is a formalism to work with such structures.

A signature is a graded set G :=
⊔

k>0 G(k) wherein each a ∈ G(k) is an operation of arity k.

A G-term is
either a variable x from the set X := {x1, x2, . . .};
either a pair (a, (t1, . . . , tk)) where a ∈ G(k) and each ti is a G-term.

The set of all G-terms is denoted by T(G).

– Example –

x2 x3

x1 x1

x3

+

×

×

+

This is the tree representation of the G-term

(×, ((+, (x1, x2)), (+, ((×, (x1, x1)), x3))))

where G := G(2) := {+,×}.
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More on terms

Let t be a G-term.

The frontier of t is the sequence of all variables appearing in t.

– Example –

x2 x3 x6x3

x1 x1

x3 x3

a c

c

a

b The frontier of this term is (x2, x3, x1, x1, x3, x3, x3, x6)

and its ground arity is 6.

The ground arity of t is the greatest integer n such that xn is a variable appearing in t.

The term t is
planar if its frontier is (x1, . . . , xn);
standard if its frontier is a permutation of (x1, . . . , xn);
linear if there are no multiple occurrences of the same variable in the frontier of t.
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Varieties

A G-equation is a pair (t, t′) where t and t′ are both G-terms.

A variety is a pair (G,R) where G is a signature and R is a set of G-equations. We denote by
t R t′ the fact that (t, t′) ∈ R.

– Example –
The variety of groups is the pair (G,R) where G := G(0) t G(1) t G(2) with G(0) := {1}, G(1) := {i}, and
G(2) := {?}, and R is the set of G-equations satisfying

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 1

? R
x1

R
1 x1

? ,

x1

x1i

?

R
1
R x1

x1

?

i .

– Example –
The variety of semilattices is the pair (G,R) where G := G(2) := {∧}, and R is the set of G-equations satisfying

x1 x2

x3∧

∧
R x1

x2 x3

∧

∧ ,
x1 x2

∧ R
x2 x1

∧ ,
x1 x1

∧ R
x1
.
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Algebras of a variety

Let A be a nonempty set. An A-substitution is a map σ : X→ A.
An A-interpretation of a signature G is a set

GA :=
{
aA : Ak → A : a ∈ G(k) for a k > 0

}
.

The evaluation of a G-term t under anA-substitution σ and anA-interpretation GA is de�ned by
induction as

evσA(t) :=

{
σ(x) if t = x is a variable,
aA(evσA(t1), . . . , evσA(tk)) otherwise, where t = (a, (t1, . . . , tk)).

– Example –

t :=
x2 x3

x1 x1

x3

+

×

×

+ ;
2 0

1 1

0

+

×

×

+

With A := N, GA de�ned naturally, and σ satisfying σ(x1) := 1,
σ(x2) := 2, and σ(x3) := 0, one obtains evσA(t) = 2.

An algebra of a variety (G,R) is a pair (A,GA) where for any (t, t′) ∈ R and A-substitution σ,
evσA(t) = evσA(t′). 8 / 42



Equivalent terms

Two G-terms t and t′ are R-equivalent if for all algebras (A,GA) of (G,R) and for all
A-substitutions σ, one has evσA(t) = evσA(t′). This property is denoted by t ≡R t′.

– Example –
In the variety of groups,

x1 x2

i

?
≡R

x2 x1

i

?

i
.

– Questions –

1. Design an algorithm to decide if two G-terms are ≡R-equivalent. This is known as the word problem.

2. Construct a system of representatives C of the ≡R-equivalence classes. The set C is a combinatorial
realization of the variety.

3. Enumerate the ≡R-equivalence classes of (planar/standard/linear) G-terms w.r.t. their ground arity.
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Abstract operations and compositions

To tackle these issues, we need a formalization and an abstraction of the notion of composition of
terms in order to consider operations over operations.
An G-term t on the variables {x1, . . . , xn} is an abstract operation

(x1, . . . , xn) 7→ ft(x1, . . . , xn)

depicted as

ft
1 k

x1 xn

. . .

. . .

where k is the length of the frontier of t.

– Example –

For the signature G of the variety of semilattices,
here is a G-term seen on the set {x1, . . . , x4} of
variables and the abstract operation it denotes:

t :=
x1 x2

x1 x3

x1

∧

∧

∧

∧ ,
ft

x1 x2 x3 x4

.
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A �rst paradigm for composition

If f is an abstract operation of arity n and g1, . . . , gn are abstract operations of respective arities
m1, . . . , mn, then f ◦ [g1, . . . , gn] is the abstract operation satisfying

(x1, . . . , xm1+···+mn) 7→ f
(
g1(x1, . . . , xm1), . . . , gn

(
xm1+···+mn−1+1, . . . , xm1+···+mn

))
.

This is the abstract operation depicted as

f

1 k

1 n

. . .

. . .

g1

1 k1

1 m1

. . .

. . .

gn

1 kn

1 mn

. . .

. . .

x1 xm1 xm1+···+mn−1+1 xm1+···+mn

. . .

. . .

. . . . . .. . .

.
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A second paradigm for composition

If f is an abstract operation of arity n and g1, . . . , gn are abstract operations all of arity m, then
f } [g1, . . . , gn] is the operation satisfying

(x1, . . . , xm) 7→ f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)).

This is the abstract operation depicted as

f

1 k

1 n

. . .

. . .

g1

1 k1

1 m

. . .

. . .

gn

1 kn

1 m

. . .

. . .

x1 xm

. . .

. . .

. . .

.
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Duplicial algebras

A duplicial algebra [Brouder, Frabetti, 2003] is a set A endowed with two binary operations

�,�: A2 → A

satisfying the three relations

(x1 � x2)� x3 = x1 � (x2 � x3),

(x1 � x2)� x3 = x1 � (x2 � x3),

(x1 � x2)� x3 = x1 � (x2 � x3).

– Example –
On N∗, let� and� be the operations de�ned by

u� v := u
(
v ↑max(u)

)
, u� v := u

(
v ↑|u|

)
.

Then, for instance,
0211� 14 = 021136, 0211� 14 = 021158.

This structure is a duplicial algebra [Novelli, Thibon, 2013].
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Duplicial operations and equivalence

Let us describe as way to test if two planar duplicial operations are equivalent.

By the duplicial relations, we have

x1 x2

x3�

�
≡ x1

x2 x3

�

� ,

x1 x2

x3�

�
≡ x1

x2 x3

�

� ,

x1 x2

x3�

�
≡ x1

x2 x3

�

� .

We orient these equations as

x1 x2

x3�

�

→x1

x2 x3

�

� ,

x1 x2

x3�

�
→ x1

x2 x3

�

� ,

x1 x2

x3�

�

→x1

x2 x3

�

� .

in order to obtain a rewrite relation⇒ on the set of all the duplicial operations by performing
local moves.
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Testing equivalence of duplicial operations

We have for instance the sequence

x1 x6 x7x2

x3

x4 x5

� �

�

�

�

� ⇒

x1

x6 x7

x2

x3 x4 x5�

�

�

�

�

�

⇒

x1

x6 x7

x2 x3

x4 x5

�

�

�

�

�

�

of rewritings.

– Proposition –
Two planar duplicial operations t and t′ are equivalent i� there is a duplicial operation s such that t ∗⇒ s and
t′
∗⇒ s.

To prove this, we have to establish the fact that⇒ is a terminating and con�uent rewrite relation.
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Enumerating duplicial operations

– Proposition –
The set of normal forms for⇒ of planar duplicial operations with n > 0 inputs is in one-to-one
correspondence with the set of all binary trees with n internal nodes.

A possible bijection puts the following two trees in correspondence:

x1

x6 x7

x8

x2

x3 x4 x5

�

�

�

�

�

�

� ←→ .

Therefore, there are
1

n + 1

(
2n
n

)
pairwise nonequivalent planar duplicial operations with n inputs.
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Distributive lattices

A distributive lattice is a set A endowed with two binary operations

∧,∨ : A2 → A

satisfying the relations

(x1 ∧ x2) ∧ x3 = x1 ∧ (x2 ∧ x3), (x1 ∨ x2) ∨ x3 = x1 ∨ (x2 ∨ x3),

x1 ∧ x2 = x2 ∧ x1, x1 ∨ x2 = x2 ∨ x1,

x1 ∧ (x1 ∨ x2) = x1, x1 ∨ (x1 ∧ x2) = x1,

x1 ∨ (x2 ∧ x3) = (x1 ∨ x2) ∧ (x1 ∨ x3), x1 ∧ (x2 ∨ x3) = (x1 ∧ x2) ∨ (x1 ∧ x3).

– Example –

On [n], ∨ de�ned as the union and ∧ as the intersection is a �nite distributive lattice.

The set of all Young diagrams is an in�nite lattice for the intersection and the union of diagrams.
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Combinatorial realization

A normal term is a term t expressing as

t = s1 ∨ . . . ∨ sm, m > 0, where si = xfi,1 ∧ . . . ∧ xfi,ki , ki > 1,

for any i, i′ ∈ [k], xfi,r = xfi,r′ implies r = r ′, and {fi,1, . . . , fi,ki} ⊆
{
fi′,1, . . . , fi′,ki′

}
implies i = i′.

– Examples –
(x2 ∧ x3 ∧ x5) ∨ (x3 ∧ x7) ∨ (x3 ∧ x4) ∨ x6 is a normal term.
(x2 ∧ x3 ∧ x5) ∨ (x2 ∧ x5) is not.

– Proposition –
The set of all sets of sets of positive integers {{f1,1, . . . , f1,k1}, . . . , {fm,1, . . . , fm,km}} satisfying the above
properties is a combinatorial realization of the variety of distributive lattices.

Pairwise nonequivalent distributive lattice operations with n inputs are enumerated by the
Dedekind numbers whose sequence begins with (only these few terms are known today)

1, 2, 5, 19, 167, 7580, 7828353, 2414682040997, 56130437228687557907787.
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Operads

Nonsymmetric operads provide a formalization of planar operations under the �rst paradigm for
composition.

A nonsymmetric operad is a triple (O, ◦,1) where
O is a graded set

O =
⊔
n>0

O(n);

◦ is a map
◦ : O(n)×O(m1)× · · · × O(mn)→ O(m1 + · · ·+ mn)

called full composition map;

1 is an element of O(1) called unit.

This data has to satisfy some axioms.
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Operad axioms and partial composition maps

The following relations have to be satis�ed:

For all x ∈ O,
1 ◦ [x] = x = x ◦ [1, . . . ,1].

This says that 1 is the identity operation.

For all x ∈ O(n), yi ∈ O(mi), and zi,j ∈ O,

(x ◦ [y1, . . . , yn]) ◦ [z1,1, . . . , z1,m1 , . . . , zn,1, . . . , zn,mn ]

= x ◦ [y1 ◦ [z1,1, . . . , z1,m1 ], . . . yn ◦ [zn,1, . . . , zn,mn ]].

This says that the two ways to compose elements to form an operation having three layers
(by starting from top or by starting from bottom) give the same operation.

The partial composition map of O is the map ◦i : O(n)×O(m)→ O(n + m− 1) where i ∈ [n]

and de�ned by

x ◦i y := x ◦ [

i−1︷ ︸︸ ︷
1, . . . ,1, y,

n−i︷ ︸︸ ︷
1, . . . ,1].
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Free operads

Let G be a signature.

The free operad on G is the operad (P(G), ◦,1) where
P(G) is the set of all planar G-terms graded by the ground arity;
◦i is de�ned as follows. The G-term t ◦i s is obtained by replacing the variable x i of t by the
root of s, and by setting (x1, x2, . . .) for the frontier of the obtained term;

1 is the G-term
x1

.

– Example –
By setting G := G(2) t G(3) where G(2) := {a, b} and G(3) := {c}, one has

x1 x2 x3 x4 x5

c

a

b

↑

◦3 x1

x2 x3 x4

b

c
= x1 x7 x8x2

x3

x4 x5 x6

c b

b
c

a

in the free operad P(G).
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A variety from a monoid

Let (M, ·, ε) be a monoid.

Let the signature GM := GM(1)tGM(2) where GM(1) :=M and GM(2) := {a}, and let RM
be the set of GM-equations satisfying

x1 x2

x3a

a
RM x1

x2 x3

a

a ,

x1

α1

α2
RM

x1

α1 · α2 ,
x1

ε RM x1
,

x1 x2

α

a

α
RM

x1 x2

α

a

for any α, α1, α2 ∈M.

Any algebra of this variety is a semigroup (A, a) endowed with semigroup endomorphisms
φα : A → A with α ∈M and satisfying

φε(x) = x,

φα1 ◦ φα2 = φα1·α2

for any α1, α2 ∈M and x ∈M.
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Orientation of the equations

Let the orientation→ of RM satisfying

x1 x2

x3a

a → x1

x2 x3

a

a ,

x1

α1

α2
→

x1

α1 · α2 ,
x1

ε →
x1
,

x1 x2

α

a

α

→

x1 x2

α

a ,

– Proposition –
Two planar GM-terms t and t′ are equivalent i� there is a GM-term s such that t ∗⇒ s and t′

∗⇒ s.

This is a consequence of the fact that⇒ is a convergent rewrite relation.

The set of normal forms for⇒ of planar GM-terms is the set of the terms of the form

s1

s2

sn−1 sn

a

a

a
where si ∈

{
x i
,

x i

αi

}
, αi ∈M \ {ε}.
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Combinatorial realization

Let TM be the set of all words onM, graded by their length, let ◦i be the partial composition
map de�ned by

u ◦i v := u(1) . . . u(i − 1) (u(i) ·̄ v) u(i + 1) . . . u(n),

where for any α ∈M and w ∈M∗,

α ·̄ w := (α · w(1)) . . . (α · w(|w|)),

and let 1 be ε seen as a word of length 1.

– Example –
In T(N,+, 0),

2100213 ◦5 3001 = 2100 5223 13.

– Theorem [G., 2015] –
For any monoidM, the triple (TM, ◦,1) is an operad.

Moreover, this operad is a combinatorial realization of the variety (GM,RM).
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Some suboperads

The operads TM are large enough to contain a lot of suboperads realizable in combinatorial
terms. As main examples:

For any m > 0, withM := (N,+, 0),
PRTm, generated by {01, . . . , 0m}, on primitive m-Dyck paths;
FCatm, generated by {00, 01, . . . , 0m}, on m-trees;
Schrm, generated by {01, . . . , 0m} ∪ {00} ∪ {10, . . . ,m0}, on some Schröder trees;
Motzm, generated by {00, 000, 010, . . . , 0m0}, on colored Motzkin paths.

For any m > 0, withM := (Z/(m + 1)Z,+, 0),
Compm, generated by {00, 01, . . . , 0m}, on m-words;
DAm, generated by {00, 01, . . . , 0(m− 1)}, on some directed animals.

For any m > 0,M := (N,max, 0),
Diasm, generated by {01, . . . , 0m} ∪ {10, . . . ,m0}, is the m-pluriassociative operad
[Loday, 2001] [G., 2016];
Triasm, generated by {01, . . . , 0m} ∪ {00} ∪ {10, . . . ,m0}, is the m-pluritriassociative
operad [Loday, Ronco, 2004] [G., 2016].
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Some partial compositions on combinatorial objects

◦2 = (in PRT1)

◦1 = (in FCat2)

◦6 = (in Schr1)

◦4 = (in Motz1)

◦5 = (in Comp1)
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Full diagram

T(N,+, 0)

T(Z/(m + 1)Z,+, 0)

T(N,max, 0)

Schrm+1

SchrmFCatm+1

FCatmPRTm+1

PRTm

Motzm+1

Motzm

Motz0

PRT0

Compm

DAm

Diasm

Diasm+1 Triasm

Triasm+1
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Clones

Abstract clones provide a formalization of general operations under the second paradigm for
composition.

An abstract clone is a triple (C,},1i,n) where

C is a graded set
C =

⊔
n>0

C(n);

} is a map
} : C(n)× C(m)n → C(m)

called superposition map;

for each n > 0 and i ∈ [n], 1i,n is an element of C(n) called projection.

This data has to satisfy some axioms.
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Clone axioms

The following relations have to be satis�ed:

For all x i ∈ C(m),
1i,n } [x1, . . . , xn] = x i.

This says that 1i,n is the operation returning its i-th input.

For all x ∈ C(n),
x } [11,n, . . . ,1n,n] = x,

This says that each 1j,n, put as j-th input, is an identity operation.

For all x ∈ C(n), yi ∈ C(m), and zj ∈ C(k),

(x } [y1, . . . , yn]) } [z1, . . . , zm] = x } [y1 } [z1, . . . , zm], . . . , yn } [z1, . . . , zm]].

This says that the two ways to compose elements to form an operation having three layers
(by starting from top or by starting from bottom) give the same operation.
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Free Clones

Let G be a signature.

The free clone on G is the clone (T(G),},1i,n) where
T(G) is the set of all G-terms. Each G-term t is endowed with an integer equal as or greater
than its ground arity and called arity;
} is de�ned as follows. The G-term t} [s1, . . . , sn] is obtained by replacing each occurrence
of a variable x i of t by the root of si (without any relabeling);

1i,n is the term
x i

of arity n.

– Example –
By setting G := G(2) t G(3) where G(2) := {a, b} and G(3) := {c}, one has

x3 x1

x3 x1

c

a }


x1 x2

x2a

a
,

x2 x2

b ,
x2 x1

b

 = x2

x1

x1 x2

x2

x1

x1 x2

x2

x2

b

b

a

a

a

c

a

a

in the free clone T(G).
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Colored words

Let (M, ·, ε) be a monoid.

Let WM be the graded set of allM-colored words de�ned, for any n > 0, by

WM(n) :=
⊔
n>0

{(
u
c

)
: u ∈ [n]`, c ∈M`, ` > 0

}
.

– Example –(
1 2 1 6
0 0 1 0

)
is a Z/2Z-colored word.

Let } be the superposition map de�ned by(
u
c

)
}

[(
v1
d1

)
, . . . ,

(
vn
dn

)]
:=

(
vu(1) . . . vu(`)(

c(1) ·̄ du(1)
)
. . .
(
c(`) ·̄ du(`)

)) .
Let �nally set 1i,n :=

(
i
ε

)
.
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Clone of colored words

– Example –
In W(N,+, 0), (

2 2 3
0 1 0

)
}

[(
2 1
1 1

)
,

(
1 1 2
3 0 0

)
,

(
2 2
1 0

)]
=

(
1 1 2 1 1 2 2 2
3 0 0 4 1 1 1 0

)
.

– Theorem [G., 2020–] –
For any monoidM, (WM,},1i,n) is a clone.

The clone WM is in fact the clone counterpart of the operad TM.

This is due to the fact that they have both the same presentation.
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Clone of words and congruences

Let us focus on the case whereM is the trivial monoid {ε}.

Let Word := W{ε}. We can forget about the colors of the elements of Word without any loss of
information.

Let ≡s be the equivalence relation on Word wherein u ≡s v if u and v have both the same
sorted version.
Let ≡l (resp. ≡r) be the equivalence relation on Word wherein u ≡l v (resp. u ≡r v) if the
versions of u and v obtained by keeping only the leftmost (resp. rightmost) among the
multiple occurrences of a same letter are equal.

– Examples –
We have 311322 ≡s 131232, 223111352 ≡l 2333315, 5142144 ≡r 552214.

– Proposition –
The equivalence relations ≡s, ≡l, and ≡r are clone congruences of Word.
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Multisets

Let MSet := Word/≡s .

The elements of MSet can be seen as multisets of positive integers. By encoding any such
multiset u = *1a(1), . . . , na(n)+ by the tuple a = (a(1), . . . , a(n)), the superposition map of MSet
expresses as a matrix multiplication

a} [b1, . . . , bn] =
(
a(1) . . . a(n)

)b1(1) . . . b1(m)

... . . .
...

bn(1) . . . bn(m)

 .

– Proposition –
The clone MSet admits the presentation (G,R) where G := G(2) := {a} and R satis�es

x1 x2

x3a

a
R x1

x2 x3

a

a ,
x1 x2

a R
x2 x1

a .

Therefore, MSet is a combinatorial realization of the variety of commutative semigroups.
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Arrangements

Let Arrl := Word/≡l .
The elements of Arrl(n) can be seen as arrangements (words without repetitions) on [n]. For any
n > 0,

#Arrl(n) =
∑

06k6n

n!

k!

and this sequence starts by 1, 2, 5, 16, 65, 326, 1957, 13700, 109601.

– Proposition –
The clone Arrl admits the presentation (G,R) where G := G(2) := {a} and R satis�es

x1 x2

x3a

a
R x1

x2 x3

a

a ,
x1 x1

a R
x1

,

x1 x2

x1a

a
R

x1 x2

a .

The algebra of this variety are left-regular bands, that are idempotent semigroups wherein the
operation a satis�es the relation x1 a x2 a x1 = x1 a x2.
Analogs properties hold for the quotient Arrr := Word/≡r , leading to right-regular bands.
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Sets

– Lemma –
≡s ◦ ≡l = ≡l ◦ ≡s

Therefore, this composition is a clone congruence of Word.
Let us set it as ≡i and let Set := Word/≡i .

The elements of Set can be seen as sets of positive integers. On such objects, the superposition
map of Set expresses as

U } [V1, . . . ,Vn] =
⋃
j∈U

Vj.

Moreover, for any n > 0, #Set(n) = 2n.

– Proposition –
The clone Set admits the presentation (G,R) where G := G(2) := {a} and R satis�es

x1 x2

x3a

a
R x1

x2 x3

a

a ,
x1 x2

a R
x2 x1

a ,
x1 x1

a R
x1

.

Therefore, Set is a combinatorial realization of the variety of semilattices.
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Arrangements of blocks

Let us consider some intersections involving the congruences ≡s, ≡l, and ≡r.

Let ≡sl := ≡s ∩ ≡l and ArrBl := Word/≡sl .

The elements of ArrBl(n) can be seen as arrangements of possibly empty blocks of repeated
letters of [n].

– Examples –
The word 3311115526 is such an element of ArrBl(9). The word 22222333112 is not an element of ArrBl.

– Proposition –
The clone ArrBl admits the presentation (G,R) where G := G(2) := {a} and R satis�es

x1 x2

x3a

a
R x1

x2 x3

a

a ,

x1 x2

x1a

a
R

x1 x1

x2a

a
.

Analogs properties hold for the quotient ArrBr := Word/≡sr , where ≡sr := ≡s ∩ ≡r.
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Pairs of compatible arrangements

Let ≡lr := ≡l ∩ ≡r and PArr = Word/≡lr .

The elements of PArr(n) can be seen as pairs (u, v)

such that u and v are arrangements on [n], such that j
appears in u i� j appears in v.

– Example –
(3261, 1263) is such an element of PArr(6).

For any n > 0,
#PArr(n) =

∑
06k6n

n!k!
(n− k)!

and this sequence starts by 1, 2, 7, 52, 749, 17686, 614227, 29354312, 1844279257.

– Proposition –
The clone PArr admits the presentation (G,R) where G := G(2) := {a} and R satis�es

x1 x2

x3a

a
R x1

x2 x3

a

a ,
x1 x1

a R
x1

,

x1 x2

x1

x3

x1

a
a

a
a

R

x1 x2

x3

x1

a
a

a

.

Therefore, PArr is a combinatorial realization of the variety of regular bands.
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Pairs of compatible arrangements of blocks

Let ≡slr := ≡s ∩ ≡l ∩ ≡r and PArrB := Word/≡slr .

The elements of PArrB(n) can be seen as
pairs (u, v) such that u and v are arrange-
ments of possibly empty blocks of repeated
letters on [n], with u and v having the same
number of occurrences of any letter.

– Example –
(3222611, 22211263) is such an element of PArrB(6).

– Proposition –
The clone PArrB admits the presentation (G,R) where G := G(2) := {a} and R satis�es

x1 x2

x3a

a
R x1

x2 x3

a

a ,

x1 x1

x2

x3

x1

a
a

a
a

R

x1 x2

x1

x3

x1

a
a

a
a

R

x1 x2

x3

x1

x1

a
a

a
a

.
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Full diagram

Word

PArrB

ArrBl PArr ArrBr

Arrl MSet Arrr

Set

Squared clones are combinatorial.
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