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M-semigroups

– De�nition [G., 2015] –
Let (M, ·, ε) be a monoid. AnM-semigroup is a set S endowed with a binary operation ? : S × S → S and unary
operations θα : S → S, α ∈M, satisfying

(x1 ? x2) ? x3 = x1 ? (x2 ? x3),

θα(x1 ? x1) = θα(x1) ? θα(x1),

θα1 (θα2 (x1)) = θα1·α2 (x1),

θε(x1) = x1.

Such structures (and variations) appear quite often in combinatorics.

– Example –
LetM := (N,max, 0), S := N∗ (the set of sequences of nonnegative integers), ? be the concatenation product, and
θα be the map sending any word to its subword made of the letters nonsmaller than α. For instance,

θ2(0015213 ? 41200) = θ2(001521341200) = 52342.

AnM-semigroup is hence a semigroup (S, ?) endowed with semigroups endomorphisms θα for
any α ∈M, and such that the map (x, α) 7→ θα(x) is a monoid action ofM on S.
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Overview

– Goals –
Introduce a clone having, as algebras,M-semigroups and provide a combinatorial realization of it.

Study this clone and understand what it contains (as quotients or sub-clones).

We will use terms, rewrite systems, and clone theory.

Word

PArrR

ArrRl PArr ArrRr

Arrl MSet Arrr

Set

Clone Combinatorial objects Realized variety

Word Monochrome words Semigroups

MSet Multisets Commutative semigroups

Arrl Arrangements Left-regular bands

Set Sets Semilattices

ArrRl Arrangements of runs Ass. and x1x2x1 = x1x1x2

PArr Pairs of compatible arr. Regular bands

PArrR Pairs of comp. arr. of runs Ass. and x1x1x2x3x1 = x1x2x1x3x1 = x1x2x3x1x1
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Terms

A signature is a graded set G :=
⊔

n>0 G(n) wherein each a ∈ G(n) is an constant of arity n.

A G-term is
either a variable x from the set Xk := {x1, . . . , xk} for a k > 0;
either a pair (a, (t1, . . . , tn)) where a ∈ G(n) and each ti is a G-term.

The set of all G-terms is denoted by T(G).

– Example –

x2 x4

x1 c

x1

b

a

a

b

This is the tree representation of the G-term

(a, ((b, (x2, x4)), (b, ((a, (x1, c)), x1))))

where G := G(0) t G(2) with G(0) := {c} and
G(2) := {a, b}.
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Varieties

A G-equation is a pair (t, t′) where t and t′ are both G-terms.
A variety is a pair (G,R) where G is a signature and R is a set of G-equations. We denote by
t R t′ the fact that (t, t′) ∈ R.

– Example –
The variety of groups is the pair (G,R) where G := G(0) t G(1) t G(2) with G(0) := {1}, G(1) := {i}, and
G(2) := {?}, and R is the set of G-equations satisfying

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 1

? R
x1

R
1 x1

? ,

x1

x1i

?

R
1
R x1

x1

?

i .

– Example –
The variety of semilattices is the pair (G,R) where G := G(2) := {∧}, and R is the set of G-equations satisfying

x1 x2

x3∧

∧
R x1

x2 x3

∧

∧ ,
x1 x2

∧ R
x2 x1

∧ ,
x1 x1

∧ R
x1
.
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Substitutions, interpretations, and evaluations

Let A be a nonempty set. An A-substitution is a map σ : X→ A, where X := {x1, x2, . . .}.
An A-interpretation of a signature G is a set

GA :=
{
aA : Ak → A : a ∈ G(k), k > 0

}
.

The evaluation evσA(t) of a G-term t is the element of A de�ned recursively by

evσA(t) :=

{
σ(x) if t = x is a variable,
aA(evσA(t1), . . . , evσA(tk)) otherwise, where t = (a, (t1, . . . , tk)).

– Example –

t :=
x2 x3

x1 x1

x3

+

×

×

+
σ−−→

2 0

1 1

0

+

×

×

+
evσA−−−→ 2

With A := N, GA de�ned naturally, and σ satisfying
σ(x1) := 1, σ(x2) := 2, and σ(x3) := 0, one obtains
evσA(t) = 2.
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Algebras of a variety

An algebra of a variety (G,R) is a pair (A,GA) such that, for any (t, t′) ∈ R and any
A-substitution σ, we have evσA(t) = evσA(t′).

– Example –
Any algebra of the variety (G,R) of groups is a setA endowed with three operations 1 (nullary), i (unary), and ?
(binary), such that, for all x1, x2, x3 ∈ A,

(x1 ? x2) ? x3 = x1 ? (x2 ? x3), x1 ? 1 = x1 = 1 ? x1, i(x1) ? x1 = 1 = x1 ? i(x1).

Two G-terms t and t′ are R-equivalent if for all algebras (A,GA) of (G,R) and for all
A-substitutions σ, one has evσA(t) = evσA(t′). This property is denoted by t ≡R t′.

– Example –

In the variety of groups,

x1 x2

x3

x4

?

?

?

≡R
x1

x2 x3

x4

?

?

? and

x1 x2

i

?
≡R

x2 x1

i

?

i
.
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Clones

Abstract clones [Cohn, 1965] provide a framework to study varieties.

An abstract clone is a triple (C,},1i,n) where
C is a graded set C =

⊔
n>0 C(n);

} is a map } : C(n)× C(m)n → C(m) called superposition map;

for each n > 0 and i ∈ [n], 1i,n is an element of C(n) called projection.

The following relations have to hold:
for all x i ∈ C(m),

1i,n } [x1, . . . , xn] = x i;

for all x ∈ C(n),
x } [11,n, . . . ,1n,n] = x;

for all x ∈ C(n), yi ∈ C(m), and zj ∈ C(k),

(x } [y1, . . . , yn]) } [z1, . . . , zm] = x } [y1 } [z1, . . . , zm], . . . , yn } [z1, . . . , zm]].
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Free clones

Let G be a signature.
The free clone on G is the clone (T(G),},1i,n) where

for any n > 0, T(G)(n) is the set of all G-terms on Xn;

} is de�ned as follows. The G-term t} [s1, . . . , sn] is obtained by replacing each occurrence
of a variable x i of t by the root of si;

1i,n is the term
x i

of arity n.

– Example –
By setting G := G(2) t G(3) where G(2) := {a, b} and G(3) := {c}, in the free clone T(G), one has

x3 x1

x3 x1

c

a }


x1 x2

x2a

a
,

x2 x2

b ,
x2 x1

b

 = x2

x1

x1 x2

x2

x1

x1 x2

x2

x2

b

b

a

a

a

c

a

a
.
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Clone realizations of varieties

A clone congruence of a clone C is an equivalence relation ≡ on C compatible with the
superposition map, that is, for any x, x′ ∈ C(n) and y1, y′1, . . . , yn, y

′
n ∈ C(m), if x ≡ x′ and

y1 ≡ y′1, . . . , yn ≡ y′n, then

x } [y1, . . . , yn] ≡ x′ } [y′1, . . . , y
′
n].

For any variety (G,R), the R-equivalence relation ≡R is a clone congruence of T(G).

A presentation of a clone C is a variety (G,R) such that

C ' T(G)/≡R
.

Conversely, we say in this case that C is a clone realization of (G,R) (see [Neumann, 1970]).

An algebra on C is an algebra of the variety (G,R).
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Term realizations

Let (G,R) be a variety.

The term realization of (G,R) is the clone constructed from an orientation→ of R such that
C(n) is in one-to-one correspondence with the set of the normal forms on Xn for→;

to compute t} [s1, . . . , sn] in C, compute this term in the free clone on G and then consider
the unique normal form for→ reachable from it;

the projections of C are the normal forms reachable from the terms consisting in one leaf.

Term realizations allow us to decide the word problem: to decide if two G-terms are
≡R-equivalent, just compare their normal forms [Baader, Nipkow, 1998]. This can be undecidable.

In this context, completion algorithms are important [Knuth, Bendix, 1970].

They can also be used to construct free objects of the category of the algebras of (G,R).
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Rewrite systems on terms

A rewrite relation on T(G) is a binary relation→ on T(G) such that if s→ s′, then s and s′ are
two terms on Xn for an n > 0.
The context closure of→ is the binary relation⇒ satisfying t⇒ t′ whenever t′ is obtained by
replacing in t a factor s by s′ provided that s→ s′.

– Example –
For G := G(2) := {a}, let the rewrite relation→ de�ned by

x1 x1

a →
x1

and
x1 x2

x3a

a
→

x1 x1 x3 x3

a

a

a .

We have

x2

x3

x5x2

x2 x1 x3

a a

a

a

a

a

⇒ x2

x1

x5 x5

x2

x2 x1 x2

a a

a

a

a

a

a

⇒ x2

x1

x5x2

x2 x1 x2

a a

a

a

a

a

.
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Termination and con�uence

Let→ be a rewrite relation on T(G).

Let (G,R) be a variety. A rewrite relation→ on T(G) is an orientation of R if for any (t, t′) ∈ R,
we have either t→ t′ or t′ → t.

A normal form for→ is a G-term t such that there is no G-term t′ satisfying t⇒ t′.

When there is no in�nite chain t0 ⇒ t1 ⇒ · · · , the rewrite relation→ is terminating.

If t ∗⇒ s1 and t
∗⇒ s2 implies the existence of t′ such that s1

∗⇒ t′ and s2
∗⇒ t′, then→ is con�uent.

Some properties:
For any two G-terms t and t′, t ≡R t′ i� t

∗⇔ t′.
If→ is terminating and con�uent, then t ≡R t′ i� there is a normal form s such that t ∗⇒ s

and t′
∗⇒ s.
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Example: duplicial algebras

Let the variety (G,R) where G := G(2) := {�,�} and R is the set G-equations satisfying

x1 x2

x3�

�
R x1

x2 x3

�

� ,

x1 x2

x3�

�
R x1

x2 x3

�

� ,

x1 x2

x3�

�
R x1

x2 x3

�

� .

The algebras of this variety are duplicial algebras [Brouder, Frabetti, 2003].

– Example –
On N+ (the set of nonempty sequences of nonnegative integers), let� and� be the operations de�ned by

u� v := u
(
v ↑max(u)

)
, u� v := u

(
v ↑|u|

)
.

Then, for instance,
0211� 14 = 021136, 0211� 14 = 021158.

This structure is a duplicial algebra [Novelli, Thibon, 2013].
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Orientation of duplicial relations

Let the orientation→ of R de�ned by

x1 x2

x3�

�

→x1

x2 x3

�

� ,

x1 x2

x3�

�
→ x1

x2 x3

�

� ,

x1 x2

x3�

�

→x1

x2 x3

�

� .

We have for instance the following sequence of rewritings:

x1 x6 x7x2

x3

x4 x5

� �

�

�

�

� ⇒

x1

x6 x7

x2

x3 x4 x5�

�

�

�

�

�

⇒

x1

x6 x7

x2 x3

x4 x5

�

�

�

�

�

�

.

– Proposition [Loday, 2008] –

The rewrite relation→ is terminating and con�uent.
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Encoding duplicial operations

– Proposition [Loday, 2008] –
The set of normal forms for→ with n > 0 inputs is in one-to-one correspondence with the set of all binary trees with
n internal nodes where internal nodes are decorated on X.

A possible bijection puts the following two trees in correspondence:

x2

x5 x2

x4

x4

x1 x1 x5

�

�

�

�

�

�

� ←→
x2

x5

x2

x4

x4

x1

x1

x5 .

Therefore, there are
1

n + 1

(
2n
n

)
kn

pairwise nonequivalent duplicial operations with n inputs on variables of Xk .
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Clone realization

Thanks to previous properties, we obtain a clone realization of the variety of duplicial algebras.

Let Dup be the clone such that
for any n > 0, Dup(n) is the set of the binary trees where internal nodes are decorated on Xn;

for any such trees t and s1, . . . , sn, the superposition t} [s1, . . . , sn] is obtained by replacing in
t each node u labeled by x i by si and by grafting onto the leftmost (resp. rightmost) leaf of si
the left (resp. right) child of u.

– Example –

x1

x2

x3

x1 }

 x2

x1 , x1

x2

x1

x1 , x2

 =
x2

x1

x2

x1

x1x1

x1

x2

x1
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3. Clone of colored words
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The variety ofM-semigroups

Let (M, ·, ε) be a monoid.

Let the variety (GM,RM) de�ned by
GM := GM(1) tGM(2) where GM(1) :=M and GM(2) := {?};

RM is the set of GM-equations satisfying

x1 x2

x3?

?
RM x1

x2 x3

?

?
,

x1 x2

α

?

α
RM

x1 x2

α

?
,

x1

α1

α2
RM

x1

α1 · α2 ,
x1

ε RM x1
,

for any α, α1, α2 ∈M.

This is the variety ofM-semigroups in the sense that anyM-semigroup is an algebra of
(GM,RM) and any algebra of (GM,RM) is anM-semigroup.
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Orientation of the equations

Let the orientation→ of RM satisfying

x1 x2

x3?

?
→ x1

x2 x3

?

?
,

x1 x2

α

?

α

→

x1 x2

α

?
,

x1

α1

α2
→

x1

α1 · α2 ,
x1

ε →
x1
.

– Proposition [G., 2020–] –

For any monoidM, the orientation→ of RM is terminating and con�uent.

The set of normal forms for→ of planar GM-terms is the set of the terms avoiding the left
members of→. These are the terms of the form

s1

s2

sn−1 sn

?

?

?

where si = xki
or si =

xki

αki , for αki ∈M \ {ε}.
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Colored words

Let (M, ·, ε) be a monoid.
Let WM be the graded set of allM-colored words de�ned for any n > 0 by

WM(n) :=
⊔
`>1

{(
u
c

)
: (u, c) ∈ [n]` ×M`

}
.

– Example –(
1 2 1 6
ε ab bab b

)
is a ({a, b}∗, ., ε)-colored word of arity 6 (or greater).

Let } be the superposition map de�ned by(
u
c

)
}
[(

v1
d1

)
, . . . ,

(
vn
dn

)]
:=
(

vu(1) . . . vu(`)(
c(1) ·̄ du(1)

)
. . .
(
c(`) ·̄ du(`)

))
where for any α ∈M and w ∈M∗, α ·̄ w := (α · w(1)) . . . (α · w(|w|)).

Let also 1i,n :=
(
i
ε

)
.
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Clone of colored words

– Example –
In W({a, b}∗, ., ε),(

2 2 3
ba aa ε

)
}

[(
2 1
b aa

)
,

(
1 1 2

bbb ε b

)
,

(
2 2
aa a

)]
=

(
1 1 2 1 1 2 2 2

ba.bbb ba.ε ba.b aa.bbb aa.ε aa.b ε.aa ε.a

)
.

– Theorem [G., 2020–] –
For any monoidM, (WM,},1i,n) is a clone and is a clone realization of the variety (GM,RM).

– Example –

Here is a normal for → of the variety
(GM,RM) where M is the monoid
({a, b}∗, ., ε) and the M-colored word in
correspondence:

x2

x4

x3

x2 x4

?

ab

bbb

?

b

?

?

←→
(

2 3 2 4 4
ε bbb b ε ab

)
.
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Clone of monochrome words

Let us focus on the case whereM is the trivial monoid {ε}.
Let Word := W{ε}. We can forget about the colors of the elements of Word without any loss of
information.
For any n > 0, Word(n) is the set of the nonempty words on the alphabet [n].

– Example –
In Word,

311434 } [221, 33, 2, 1] = 2 221 221 1 2 1 = 2221221121

– Proposition [G., 2020–] –
The clone Word admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
.

Therefore, Word is a clone realization of the variety of semigroups.
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Congruences on Word

Let ≡st be the equivalence relation on Word
wherein u ≡st v if u and v have both the same
sorted version.

– Examples –

47 ≡st 74, 311322 ≡st 131232, 211��≡st 122

Let ≡lo (resp. ≡ro) be the equivalence relation on
Word wherein u ≡lo v (resp. u ≡ro v) if the ver-
sions of u and v obtained by keeping only the
leftmost (resp. rightmost) among the multiple
occurrences of a same letter are equal.

– Examples –
223111352 ≡lo 2333315, 5142144 ≡ro 552214,

3113��≡lo 113

Let ≡ll (resp. ≡rl) be the equivalence relation on
Word wherein u ≡ll v (resp. u ≡rl v) if u1 = v1

(resp. u|u| = v|v|).

– Examples –

1 ≡ll12, 3114 ≡ll 32233, 211535 ≡rl 5

– Proposition [G., 2020–] –

The equivalence relations ≡st, ≡lo, ≡ro, ≡ll, and ≡rl are clone congruences of Word.
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Multisets

Let MSet := Word/≡st .
For any n > 0, the elements of MSet(n) can be seen as nonempty multisets on [n]. By encoding any
such multiset M = *1a(1), . . . , na(n)+ by the tuple a = (a(1), . . . , a(n)), the superposition map of
MSet expresses as a matrix multiplication

a} [b1, . . . , bn] =
(
a(1) . . . a(n)

)b1(1) . . . b1(m)

... . . .
...

bn(1) . . . bn(m)

 .

– Proposition [G., 2020–] –
The clone MSet admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x2

? R
x2 x1

? .

Therefore, MSet is a clone realization of the variety of commutative semigroups.
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Rooted multisets

Let ≡:= ≡st ∩ ≡ll and RMSetl := Word/≡.
For any n > 0, the elements of RMSetl(n) can be seen as pairs (M, i) where M is a nonempty
multiset on [n] and i ∈ M .

– Proposition [G., 2021–] –
The clone RMSetl admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x2

x3?

?
R

x1 x3

x2?

?
.

Therefore, RMSetl is a clone realization of the variety of right-commutative semigroups, that
are semigroups wherein the operation ? satis�es the relation x1 ? x2 ? x3 = x1 ? x3 ? x2.

Analog properties hold for the quotient RMSetr := Word/≡′ , where ≡′:= ≡st ∩ ≡rl.
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Pairs of integers

Let ≡:= ≡ll ∩ ≡rl and PInt := Word/≡.
For any n > 0, the set PInt(n) can be identi�ed with [n]2. The superposition of PInt expresses as

(i, i′) } [(j1, j′1), . . . , (jn, j
′
n)] = (ji, j′i′).

Moreover, #PInt(n) = n2.

– Proposition [G., 2021–] –
The clone PInt admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x1

? R
x1
,

x1 x2

x3?

?
R

x1 x3

? .

Therefore, PInt is a clone realization of the variety of rectangular bands, that are idempotent
semigroups wherein the operation ? satis�es the relation x1 ? x2 ? x3 = x1 ? x3.
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Arrangements

Let Arrl := Word/≡lo .
For any n > 0, the elements of Arrl(n) can be seen as nonempty arrangements (nonempty words
without repetitions) on [n]. Moreover,

#Arrl(n) =
∑

06k6n−1

n!
k!

and this sequence starts by 0, 1, 4, 15, 64, 325, 1956, 13699, 109600 (Sequence A007526).

– Proposition [G., 2020–] –
The clone Arrl admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x1

? R
x1
,

x1 x2

x1?

?
R

x1 x2

? .

Therefore, Arrl is a clone realization of the variety of left-regular bands, that are idempotent
semigroups wherein the operation ? satis�es the relation x1 ? x2 ? x1 = x1 ? x2.
Analog properties hold for the quotient Arrr := Word/≡ro , leading to right-regular bands.
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Sets

– Lemma [G., 2020–] –
≡st ◦ ≡lo = ≡lo ◦ ≡st

Therefore, this composition is a clone congruence of Word.
Let us set it as ≡in and let Set := Word/≡in .

For any n > 0, the elements of Set(n) can be seen as nonempty subsets of [n]. On such objects, the
superposition map of Set expresses as

U } [V1, . . . ,Vn] =
⋃
j∈U

Vj.

Moreover, #Set(n) = 2n − 1.

– Proposition [G., 2020–] –
The clone Set admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x2

? R
x2 x1

? ,
x1 x1

? R
x1
.

Therefore, Set is a clone realization of the variety of semilattices.
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Diagram of clones

Word

PArrR

RArrRl RArrRrPArr

ArrRl ArrRrRArrl RArrrBRMSet

Arrl ArrrRMSetl RMSetrPInt

Intl IntrMSet

Maps are surjective clone morphisms.

The framed clones are combinatorial.
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Congruences on WM

Some of the previous constructions can be generalized at the level of the clone WM.
Let ≡st, ≡lo, ≡ro, ≡ll, and ≡rl be the equivalence relations on WM de�ned in the same way as
before where each color goes with its letter.

– Proposition [G., 2021–] –

For any monoidM, the equivalence relations ≡st, ≡lo, ≡ro, ≡ll, and ≡rl are clone congruences of WM.

Let ≡1:= ≡st ◦ ≡lo and ≡2:= ≡lo ◦ ≡st. IfM has two di�erent elements a and b, one has(
1 2 1
a a b

)
��≡1

(
1 2
b a

)
but (

1 2 1
a a b

)
≡2

(
1 2
b a

)
.

For this reason, in this general case, ≡1 and ≡2 are not clone congruences of WM.
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Monoids on two elements

The two monoids on two elements areM1 := (Z/2Z,+, 0) andM2 := ({0, 1},max, 0).

The clone WM1 admits the presentation (G,R) where G := G(1) tG(2), G(1) := {1},
G(2) := {?}, and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x2

1

?

1 R

x1 x2

1

?
,

x1

1

1 R
x1
.

Any algebra on this clone is a semigroup endowed with an involutive semigroup
endomorphism.

The clone WM2 admits the presentation (G,R) where G := G(1) tG(2), G(1) := {1},
G(2) := {?}, and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x2

1

?

1 R

x1 x2

1

?
,

x1

1

1 R
x1

1

Any algebra on this clone is a semigroup endowed with an idempotent semigroup
endomorphism.
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Conclusion and future work

In this work,
we use clones as a framework to study varieties of algebras;

we use rewrite systems on terms to build term realizations of varieties;

we introduce a new functorial construction W from monoids to clones;

we build quotients of the clone of monochrome words providing clone realizations of
special classes of semigroups.

Future work include
the discovery of other congruences of WM;

the exploration of the previous constructions for colored words;

the study of subclones of WM generated by �nite sets of colored words.
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Outline

4. Appendix
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Bi-rooted multisets

Let ≡:= ≡st ∩ ≡ll ∩ ≡rl and BRMSet := Word/≡.
For any n > 0, the elements of BRMSet(n) can be seen as triples (M, i, i′) where M is a nonempty
multiset on [n] and i,′ i ∈ M .

– Proposition [G., 2021–] –
The clone RMSetl admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x2

x3

x1

?

?

?

R

x1 x3

x2

x1

?

?

?

.

Therefore, BRMSet is a clone realization of the variety of medial semigroups, that are
semigroups wherein the operation ? satis�es the relation x1 ? x2 ? x3 ? x1 = x1 ? x3 ? x2 ? x1.

38 / 46



Integers

Let Intl := Word/≡ll .
For any n > 0, the set Intl(n) can be identi�ed with [n]. The superposition of Intl expresses as

i } [j1, . . . , jn] = ji.

Moreover, #Intl(n) = n.

– Proposition [G., 2021–] –
The clone Intl admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

? R
x1
.

This is the trivial clone.
Therefore, Intl is a clone realization of the variety of left-zero bands, that are semigroups wherein
the operation ? satis�es the relation x1 ? x2 = x1.

Analog properties hold for the quotient Intr := Word/≡rl , leading to right-zero bands.
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Rooted arrangements

Let ≡:= ≡lo ∩ ≡rl and RArrl := Word/≡.
For any n > 0, the elements of RArrl(n) can be seen as pairs (a, i) where a is a nonempty
arrangement on [n] and i occurs in a. Moreover,

#RArrl(n) =
∑

06k6n−1

n!(n− k)
k!

and this sequence starts by 0, 1, 6, 33, 196, 1305, 9786, 82201, 767208 (Sequence A093964).

– Proposition [G., 2021–] –
The clone RArrl admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x1

? R
x1
,

x1 x2

x1

x3

?

?

?

R

x1 x2

x3?

?
.

Therefore, RArrl is a clone realization of the variety of idempotent semigroups wherein the
operation ? satis�es the relation x1 ? x2 ? x1 ? x3 = x1 ? x2 ? x3.

Analog properties hold for the quotient RArrr := Word/≡′ where ≡′:= ≡ro ∩ ≡ll 40 / 46
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Rooted sets

Let ≡:= ≡in ∩ ≡ll and RSetl := Word/≡.
For any n > 0, the elements of RSetl(n) can be seen as pairs (S, i) where S is a nonempty subset of
[n] and i ∈ S. Moreover,

#RSetl(n) = n 2n−1

and this sequence starts by 0, 1, 4, 12, 32, 80, 192, 448, 1024 (Sequence A001787).

– Proposition [G., 2021–] –
The clone RSetl admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x1

? R
x1
,

x1 x2

x3?

?
R

x1 x3

x2?

?
.

Therefore, RSetl is a clone realization of the variety of idempotent semigroups wherein the
operation ? satis�es the relation x1 ? x2 ? x3 = x1 ? x3 ? x2.

Analog properties hold for the quotient RSetr := Word/≡′ , where ≡′:= ≡in ∩ ≡rl.
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Bi-rooted sets

Let ≡:= ≡in ∩ ≡ll ∩ ≡rl and BRSet := Word/≡.
For any n > 0, the elements of BRSet(n) can be seen as triples (S, i, i′) where S is a nonempty
subset of [n] and i, i′ ∈ S. Moreover,

#BRSet(n) = n(n + 1) 2n−2

and this sequence starts by 0, 1, 6, 24, 80, 240, 672, 1792, 4608 (Sequence A001788).

– Proposition [G., 2021–] –
The clone BRSet admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x1

? R
x1
,

x1 x2

x3

x1

?

?

?

R

x1 x3

x2

x1

?

?

?

.

Therefore, BRSet is a clone realization of the variety of normal bands, that are idempotent
semigroups wherein the operation ? satis�es the relation x1 ? x2 ? x3 ? x1 = x1 ? x3 ? x2 ? x1.
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Arrangements of runs

Let ≡:= ≡st ∩ ≡lo (stalactite congruence [Hivert, Novelli, Thibon, 2007]) and ArrRl := Word/≡.
For any n > 0, the elements of ArrRl(n) can be seen as nonempty arrangements of runs on [n].

– Examples –

The word 33 1111 55 2 6 is an element of ArrRl(9). The word 22222 33311 2 is not an element of ArrRl.

– Proposition [G., 2020–] –
The clone ArrRl admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x2

x1?

?
R

x1 x1

x2?

?
.

Therefore ArrRl is a clone realization of semigroups wherein the operation ? satis�es the relation
x1 ? x2 ? x1 = x1 ? x1 ? x2.

Analog properties hold for the quotient ArrRr := Word/≡′ , where ≡′:= ≡st ∩ ≡ro.
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Pairs of compatible arrangements

Let ≡:= ≡lo ∩ ≡ro and PArr := Word/≡.

For n > 0, the elements of PArr(n) can be seen as pairs (u, v)

such that u and v are nonempty arrangements on [n] with j
appears in u i� j appears in v.

– Example –

(3261, 1263) is an element of PArr(6).

Moreover,
#PArr(n) =

∑
k∈[n]

n!k!
(n− k)!

and this sequence starts by 0, 1, 6, 51, 748, 17685, 614226, 29354311, 1844279256 (linked with
Sequence A046662).

– Proposition [G., 2020–] –
The clone PArr admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x1

? R
x1
,

x1 x2

x1

x3

x1

?

?

?

?

R

x1 x2

x3

x1

?

?

?

.

Therefore, PArr is a clone realization of the variety of regular bands. 44 / 46
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Pairs of compatible arrangements of runs

Let ≡:= ≡st ∩ ≡lo ∩ ≡ro and PArrR := Word/≡.

For any n > 0, the elements of PArrR(n) can be
seen as pairs (u, v) such that u and v are nonempty
arrangements of runs of repeated letters on [n],
with u and v having the same number of occur-
rences of any letter.

– Example –
(3222611, 22211263) is an element of PArrR(6).

(221, 12) is not.

– Proposition [G., 2020–] –
The clone PArrR admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x1

x2

x3

x1

?

?

?

?

R

x1 x2

x1

x3

x1

?

?

?

?

R

x1 x2

x3

x1

x1

?

?

?

?

.

Therefore, PArrR is a clone realization of semigroups wherein the operation ? satis�es the relation
x1 ? x1 ? x2 ? x3 ? x1 = x1 ? x2 ? x1 ? x3 ? x1 = x1 ? x2 ? x3 ? x1 ? x1.
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Rooted arrangements of runs

Let ≡:= ≡st ∩ ≡lo ∩ ≡rl and RArrRl := Word/≡.
For any n > 0, the elements of RArrRl(n) can be seen as nonempty arrangements of runs on [n]

wherein the rightmost run is marked or a run of length two or more is marked.

– Proposition [G., 2021–] –
The clone RArrRl admits the presentation (G,R) where G := G(2) := {?} and R satis�es

x1 x2

x3?

?
R x1

x2 x3

?

?
,

x1 x2

x1

x3

?

?

?

R

x1 x1

x2

x3

?

?

?

Therefore, RArrRl is a clone realization of semigroups wherein the operation ? satis�es the
relation x1x2x1x3 = x1x1x2x3.

Analog properties hold for the quotient RArrRr := Word/≡′ , where ≡:= ≡st ∩ ≡ro ∩ ≡ll.
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