Clone realizations of semigroup varieties

Samuele Giraudo

LIGM, Université Gustave Eiffel

Algebraic Rewriting Seminar, université de Limoges

June 24, 2021

Outline

1. Introduction and overview

- 2. Varieties, clones, and rewrite systems
- 3. Clone of colored words

4. Appendix

Outline

1. Introduction and overview

\mathcal{M} -semigroups

- **Definition** [G., 2015] -

Let $(\mathcal{M}, \cdot, \epsilon)$ be a monoid. An \mathcal{M} -semigroup is a set S endowed with a binary operation $\star : S \times S \to S$ and unary operations $\theta_{\alpha} : S \to S$, $\alpha \in \mathcal{M}$, satisfying

$$(x_1 \star x_2) \star x_3 = x_1 \star (x_2 \star x_3),$$

$$\theta_{\alpha_1}(\theta_{\alpha_2}(x_1)) = \theta_{\alpha_1 \cdot \alpha_2}(x_1),$$

$$\theta_{\epsilon}(x_1 \star x_1) = \theta_{\epsilon}(x_1) \star \theta_{\epsilon}(x_1),$$

$$\theta_{\epsilon}(x_1) = x_1.$$

Such structures (and variations) appear quite often in combinatorics.

- Example -

Let $\mathcal{M} := (\mathbb{N}, \max, 0)$, $S := \mathbb{N}^*$ (the set of sequences of nonnegative integers), \star be the concatenation product, and θ_{α} be the map sending any word to its subword made of the letters nonsmaller than α . For instance,

$$\theta_2(0015213 \star 41200) = \theta_2(001521341200) = 52342.$$

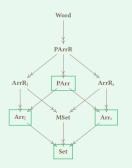
An \mathcal{M} -semigroup is hence a semigroup (S,\star) endowed with semigroups endomorphisms θ_{α} for any $\alpha \in \mathcal{M}$, and such that the map $(x,\alpha) \mapsto \theta_{\alpha}(x)$ is a monoid action of \mathcal{M} on S.

Overview

- Goals -

- Introduce a clone having, as algebras, M-semigroups and provide a combinatorial realization of it.
- Study this clone and understand what it contains (as quotients or sub-clones).

We will use **terms**, **rewrite systems**, and **clone** theory.



Clone	Combinatorial objects	Realized variety
Word	Monochrome words	Semigroups
MSet	Multisets	Commutative semigroups
Arrı	Arrangements	Left-regular bands
Set	Sets	Semilattices
ArrR _l	Arrangements of runs	Ass. and $x_1 x_2 x_1 = x_1 x_1 x_2$
PArr	Pairs of compatible arr.	Regular bands
PArrR	Pairs of comp. arr. of runs	Ass. and $x_1x_1x_2x_3x_1 = x_1x_2x_1x_3x_1 = x_1x_2x_3x_1x_1$

Outline

2. Varieties, clones, and rewrite systems

Terms

A **signature** is a graded set $\mathfrak{G} := \bigsqcup_{n \ge 0} \mathfrak{G}(n)$ wherein each $\mathbf{a} \in \mathfrak{G}(n)$ is an **constant** of arity n.

A **6-term** is

- either a **variable** *x* from the set $\mathbb{X}_k := \{x_1, \dots, x_k\}$ for a $k \ge 0$;
- either a pair $(\mathbf{a}, (\mathfrak{t}_1, \dots, \mathfrak{t}_n))$ where $\mathbf{a} \in \mathfrak{G}(n)$ and each \mathfrak{t}_i is a \mathfrak{G} -term.

The set of all \mathfrak{G} -terms is denoted by $\mathfrak{T}(\mathfrak{G})$.

- Example -

This is the tree representation of the &-term

$$(\mathbf{a}, ((\mathbf{b}, (x_2, x_4)), (\mathbf{b}, ((\mathbf{a}, (x_1, \mathbf{c})), x_1))))$$

where
$$\mathfrak{G} := \mathfrak{G}(0) \sqcup \mathfrak{G}(2)$$
 with $\mathfrak{G}(0) := \{c\}$ and $\mathfrak{G}(2) := \{a, b\}.$

Varieties

A \mathfrak{G} -equation is a pair $(\mathfrak{t},\mathfrak{t}')$ where \mathfrak{t} and \mathfrak{t}' are both \mathfrak{G} -terms.

A **variety** is a pair $(\mathfrak{G}, \mathfrak{R})$ where \mathfrak{G} is a signature and \mathfrak{R} is a set of \mathfrak{G} -equations. We denote by $\mathfrak{t} \, \mathfrak{R} \, \mathfrak{t}'$ the fact that $(\mathfrak{t}, \mathfrak{t}') \in \mathfrak{R}$.

- Example -

The variety of groups is the pair $(\mathfrak{G}, \mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(0) \sqcup \mathfrak{G}(1) \sqcup \mathfrak{G}(2)$ with $\mathfrak{G}(0) := \{1\}$, $\mathfrak{G}(1) := \{i\}$, and $\mathfrak{G}(2) := \{\star\}$, and \mathfrak{R} is the set of \mathfrak{G} -equations satisfying

- Example -

The variety of semilattices is the pair $(\mathfrak{G},\mathfrak{R})$ where $\mathfrak{G}:=\mathfrak{G}(2):=\{\wedge\}$, and \mathfrak{R} is the set of \mathfrak{G} -equations satisfying

Substitutions, interpretations, and evaluations

Let \mathcal{A} be a nonempty set. An \mathcal{A} -substitution is a map $\sigma: \mathbb{X} \to \mathcal{A}$, where $\mathbb{X} := \{x_1, x_2, \ldots\}$. An A-interpretation of a signature \mathfrak{G} is a set

$$\mathfrak{G}_{\mathcal{A}} := \Big\{\mathbf{a}_{\mathcal{A}}: \mathcal{A}^k o \mathcal{A}: \mathbf{a} \in \mathfrak{G}(k), k \geqslant 0\Big\}.$$

The **evaluation** $\operatorname{ev}_{A}^{\sigma}(\mathfrak{t})$ of a \mathfrak{G} -term \mathfrak{t} is the element of \mathcal{A} defined recursively by

$$\operatorname{ev}_{\mathcal{A}}^{\sigma}(\mathfrak{t}) := \begin{cases} \sigma(x) & \text{if } \mathfrak{t} = x \text{ is a variable,} \\ \mathbf{a}_{\mathcal{A}}(\operatorname{ev}_{\mathcal{A}}^{\sigma}(\mathfrak{t}_{1}), \dots, \operatorname{ev}_{\mathcal{A}}^{\sigma}(\mathfrak{t}_{k})) & \text{otherwise, where } \mathfrak{t} = (\mathbf{a}, (\mathfrak{t}_{1}, \dots, \mathfrak{t}_{k})). \end{cases}$$

- Example -

With $\mathcal{A} := \mathbb{N}$, $\mathfrak{G}_{\mathcal{A}}$ defined naturally, and σ satisfying $\mathfrak{t} := \underset{x_2 \ x_3}{\overset{\times}{ \times}} \xrightarrow{\overset{\times}{ \times}} \xrightarrow{\overset{\times}} \xrightarrow{\overset{\times}{ \times}} \xrightarrow{\overset{\times}{ \times}} \xrightarrow{\overset{\times}{ \times}} \xrightarrow{\overset{\times}{ \times}} \xrightarrow{\overset{\times}{ \times}} \xrightarrow$

Algebras of a variety

An algebra of a variety $(\mathfrak{G}, \mathfrak{R})$ is a pair $(\mathcal{A}, \mathfrak{G}_{\mathcal{A}})$ such that, for any $(\mathfrak{t}, \mathfrak{t}') \in \mathfrak{R}$ and any \mathcal{A} -substitution σ , we have $ev_{\mathcal{A}}^{\sigma}(\mathfrak{t}) = ev_{\mathcal{A}}^{\sigma}(\mathfrak{t}')$.

- Example -

Any algebra of the variety $(\mathfrak{G}, \mathfrak{R})$ of groups is a set \mathcal{A} endowed with three operations \mathbb{I} (nullary), i (unary), and \star (binary), such that, for all $x_1, x_2, x_3 \in \mathcal{A}$,

$$(x_1 \star x_2) \star x_3 = x_1 \star (x_2 \star x_3), \qquad x_1 \star \mathbb{1} = x_1 = \mathbb{1} \star x_1, \qquad i(x_1) \star x_1 = \mathbb{1} = x_1 \star i(x_1).$$

Two \mathfrak{G} -terms t and t' are \mathfrak{R} -equivalent if for all algebras $(\mathcal{A}, \mathfrak{G}_{\mathcal{A}})$ of $(\mathfrak{G}, \mathfrak{R})$ and for all \mathcal{A} -substitutions σ , one has $\operatorname{ev}_{\mathcal{A}}^{\sigma}(\mathfrak{t}) = \operatorname{ev}_{\mathcal{A}}^{\sigma}(\mathfrak{t}')$. This property is denoted by $\mathfrak{t} \equiv_{\mathfrak{R}} \mathfrak{t}'$.

- Example -

In the variety of groups,

Clones

Abstract clones [Cohn, 1965] provide a framework to study varieties.

An **abstract clone** is a triple $(C, \odot, \mathbb{1}_{i,n})$ where

- C is a graded set $C = \bigsqcup_{n \geqslant 0} C(n)$;
- \odot is a map \odot : $C(n) \times C(m)^n \to C(m)$ called **superposition map**;
- for each $n \ge 0$ and $i \in [n]$, $\mathbb{1}_{i,n}$ is an element of C(n) called **projection**.

The following relations have to hold:

• for all $x_i \in C(m)$,

$$\mathbb{1}_{i,n} \otimes [x_1,\ldots,x_n] = x_i;$$

• for all $x \in C(n)$,

$$x \odot [\mathbb{1}_{1,n},\ldots,\mathbb{1}_{n,n}] = x;$$

• for all $x \in \mathcal{C}(n)$, $y_i \in \mathcal{C}(m)$, and $z_j \in \mathcal{C}(k)$,

$$(x \otimes [y_1, \ldots, y_n]) \otimes [z_1, \ldots, z_m] = x \otimes [y_1 \otimes [z_1, \ldots, z_m], \ldots, y_n \otimes [z_1, \ldots, z_m]].$$

Free clones

Let \mathcal{G} be a signature.

The **free clone** on \mathfrak{G} is the clone $(\mathfrak{T}(\mathfrak{G}), \odot, \mathbb{1}_{i,n})$ where

- for any $n \ge 0$, $\mathfrak{T}(\mathfrak{G})(n)$ is the set of all \mathfrak{G} -terms on \mathbb{X}_n ;
- \odot is defined as follows. The \mathfrak{G} -term $\mathfrak{t} \odot [\mathfrak{s}_1, \ldots, \mathfrak{s}_n]$ is obtained by replacing each occurrence of a variable x_i of \mathfrak{t} by the root of \mathfrak{s}_i ;
- $\mathbb{1}_{i,n}$ is the term $\frac{1}{x_i}$ of arity n.

- Example -

By setting $\mathfrak{G} := \mathfrak{G}(2) \sqcup \mathfrak{G}(3)$ where $\mathfrak{G}(2) := \{a,b\}$ and $\mathfrak{G}(3) := \{c\}$, in the free clone $\mathfrak{T}(\mathfrak{G})$, one has

$$\begin{bmatrix} c \\ c \\ x_3 x_1 \end{bmatrix} a \odot \begin{bmatrix} c \\ a \\ x_1 x_2 \end{bmatrix} 0 \begin{bmatrix} c \\ a \\ x_1 x_2 \end{bmatrix} 0 \begin{bmatrix} c \\ b \\ x_2 x_1 \end{bmatrix} 0 \begin{bmatrix} c \\ a \\ x_1 x_2 \end{bmatrix} 0 \begin{bmatrix} c \\ a \\ x_1 x_2 \end{bmatrix} 0 \begin{bmatrix} c \\ a \\ x_1 x_2 \end{bmatrix} 0 \begin{bmatrix} c \\ a \\ x_1 x_2 \end{bmatrix} 0 \begin{bmatrix} c \\ a \\ x_1 x_2 \end{bmatrix} 0 \begin{bmatrix} c \\ a \\ x_1 x_2 \end{bmatrix} 0 \begin{bmatrix} c \\ a \\ x_1 x_2 \end{bmatrix} 0 \begin{bmatrix} c \\ a \\ x_1 x_2 \end{bmatrix} 0 \begin{bmatrix} c \\ a \\ x_1 x_2 \end{bmatrix} 0 \begin{bmatrix} c \\ x_1$$

Clone realizations of varieties

A **clone congruence** of a clone C is an equivalence relation \equiv on C compatible with the superposition map, that is, for any $x, x' \in C(n)$ and $y_1, y'_1, \ldots, y_n, y'_n \in C(m)$, if $x \equiv x'$ and $y_1 \equiv y'_1, \ldots, y_n \equiv y'_n$, then

$$x \otimes [y_1, \ldots, y_n] \equiv x' \otimes [y'_1, \ldots, y'_n].$$

For any variety $(\mathfrak{G}, \mathfrak{R})$, the \mathfrak{R} -equivalence relation $\equiv_{\mathfrak{R}}$ is a clone congruence of $\mathfrak{T}(\mathfrak{G})$.

A **presentation** of a clone C is a variety $(\mathfrak{G}, \mathfrak{R})$ such that

$$\mathcal{C}\simeq\mathfrak{T}(\mathfrak{G})/_{\equiv_{\mathfrak{R}}}.$$

Conversely, we say in this case that C is a **clone realization** of $(\mathfrak{G}, \mathfrak{R})$ (see [Neumann, 1970]).

An **algebra** on C is an algebra of the variety $(\mathfrak{G}, \mathfrak{R})$.

Term realizations

Let $(\mathfrak{G}, \mathfrak{R})$ be a variety.

The **term realization** of $(\mathfrak{G}, \mathfrak{R})$ is the clone constructed from an orientation \to of \mathfrak{R} such that

- C(n) is in one-to-one correspondence with the set of the normal forms on X_n for \rightarrow ;
- to compute $\mathfrak{t} \otimes [\mathfrak{s}_1, \ldots, \mathfrak{s}_n]$ in \mathcal{C} , compute this term in the free clone on \mathfrak{G} and then consider the unique normal form for \rightarrow reachable from it;
- $lue{}$ the projections of $\mathcal C$ are the normal forms reachable from the terms consisting in one leaf.

Term realizations allow us to decide the **word problem**: to decide if two \mathfrak{G} -terms are $\equiv_{\mathfrak{R}}$ -equivalent, just compare their normal forms [Baader, Nipkow, 1998]. This can be undecidable.

In this context, completion algorithms are important [Knuth, Bendix, 1970].

They can also be used to construct free objects of the category of the algebras of $(\mathfrak{G},\mathfrak{R})$.

Rewrite systems on terms

A **rewrite relation** on $\mathfrak{T}(\mathfrak{G})$ is a binary relation \to on $\mathfrak{T}(\mathfrak{G})$ such that if $\mathfrak{s} \to \mathfrak{s}'$, then \mathfrak{s} and \mathfrak{s}' are two terms on \mathbb{X}_n for an $n \ge 0$.

The **context closure** of \rightarrow is the binary relation \Rightarrow satisfying $\mathfrak{t} \Rightarrow \mathfrak{t}'$ whenever \mathfrak{t}' is obtained by replacing in \mathfrak{t} a factor \mathfrak{s} by \mathfrak{s}' provided that $\mathfrak{s} \rightarrow \mathfrak{s}'$.

- Example -

For $\mathfrak{G} := \mathfrak{G}(2) := \{a\}$, let the rewrite relation \rightarrow defined by

We have

Termination and confluence

Let \rightarrow be a rewrite relation on $\mathfrak{T}(\mathfrak{G})$.

Let $(\mathfrak{G}, \mathfrak{R})$ be a variety. A rewrite relation \to on $\mathfrak{T}(\mathfrak{G})$ is an **orientation** of \mathfrak{R} if for any $(\mathfrak{t}, \mathfrak{t}') \in \mathfrak{R}$, we have either $\mathfrak{t} \to \mathfrak{t}'$ or $\mathfrak{t}' \to \mathfrak{t}$.

A **normal form** for \rightarrow is a \mathfrak{G} -term \mathfrak{t} such that there is no \mathfrak{G} -term \mathfrak{t}' satisfying $\mathfrak{t} \Rightarrow \mathfrak{t}'$.

When there is no infinite chain $\mathfrak{t}_0\Rightarrow\mathfrak{t}_1\Rightarrow\cdots$, the rewrite relation \to is **terminating**.

If $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}_1$ and $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}_2$ implies the existence of \mathfrak{t}' such that $\mathfrak{s}_1 \stackrel{*}{\Rightarrow} \mathfrak{t}'$ and $\mathfrak{s}_2 \stackrel{*}{\Rightarrow} \mathfrak{t}'$, then \rightarrow is **confluent**.

Some properties:

- For any two \mathfrak{G} -terms \mathfrak{t} and \mathfrak{t}' , $\mathfrak{t} \equiv_{\mathfrak{R}} \mathfrak{t}'$ iff $\mathfrak{t} \stackrel{*}{\Leftrightarrow} \mathfrak{t}'$.
- If \rightarrow is terminating and confluent, then $\mathfrak{t} \equiv_{\mathfrak{R}} \mathfrak{t}'$ iff there is a normal form \mathfrak{s} such that $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}$ and $\mathfrak{t}' \stackrel{*}{\Rightarrow} \mathfrak{s}$.

Example: duplicial algebras

Let the variety $(\mathfrak{G}, \mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\ll, \gg\}$ and \mathfrak{R} is the set \mathfrak{G} -equations satisfying

The algebras of this variety are duplicial algebras [Brouder, Frabetti, 2003].

- Example -

On \mathbb{N}^+ (the set of nonempty sequences of nonnegative integers), let \ll and \gg be the operations defined by

$$u \ll v := u(v \uparrow_{\max(u)}), \qquad u \gg v := u(v \uparrow_{|u|}).$$

Then, for instance,

$$0211 \ll 14 = 021136$$
, $0211 \gg 14 = 021158$.

This structure is a duplicial algebra [Novelli, Thibon, 2013].

Orientation of duplicial relations

Let the orientation \rightarrow of \Re defined by

We have for instance the following sequence of rewritings:

- Proposition [Loday, 2008] -

The rewrite relation \rightarrow is terminating and confluent.

Encoding duplicial operations

- Proposition [Loday, 2008] -

The set of normal forms for \rightarrow with $n \geqslant 0$ inputs is in one-to-one correspondence with the set of all binary trees with n internal nodes where internal nodes are decorated on \mathbb{X} .

A possible bijection puts the following two trees in correspondence:

Therefore, there are

$$\frac{1}{n+1} \binom{2n}{n} k^n$$

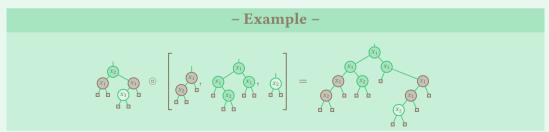
pairwise nonequivalent duplicial operations with *n* inputs on variables of X_k .

Clone realization

Thanks to previous properties, we obtain a clone realization of the variety of duplicial algebras.

Let **Dup** be the clone such that

- for any $n \ge 0$, $\mathbf{Dup}(n)$ is the set of the binary trees where internal nodes are decorated on \mathbb{X}_n ;
- for any such trees \mathfrak{t} and $\mathfrak{s}_1, \ldots, \mathfrak{s}_n$, the superposition $\mathfrak{t} \odot [\mathfrak{s}_1, \ldots, \mathfrak{s}_n]$ is obtained by replacing in \mathfrak{t} each node u labeled by x_i by \mathfrak{s}_i and by grafting onto the leftmost (resp. rightmost) leaf of \mathfrak{s}_i the left (resp. right) child of u.



Outline

3. Clone of colored words

The variety of \mathcal{M} -semigroups

Let $(\mathcal{M}, \cdot, \epsilon)$ be a monoid.

Let the variety $(\mathfrak{G}_{\mathcal{M}}, \mathfrak{R}_{\mathcal{M}})$ defined by

- $lackbox{\bullet} \mathfrak{G}_{\mathcal{M}} := \mathfrak{G}_{\mathcal{M}}(1) \sqcup \mathfrak{G}_{\mathcal{M}}(2) \text{ where } \mathfrak{G}_{\mathcal{M}}(1) := \mathcal{M} \text{ and } \mathfrak{G}_{\mathcal{M}}(2) := \{\star\};$
- \blacksquare $\mathfrak{R}_{\mathcal{M}}$ is the set of $\mathfrak{G}_{\mathcal{M}}$ -equations satisfying

for any $\alpha, \alpha_1, \alpha_2 \in \mathcal{M}$.

This is the variety of \mathcal{M} -semigroups in the sense that any \mathcal{M} -semigroup is an algebra of $(\mathfrak{G}_{\mathcal{M}},\mathfrak{R}_{\mathcal{M}})$ and any algebra of $(\mathfrak{G}_{\mathcal{M}},\mathfrak{R}_{\mathcal{M}})$ is an \mathcal{M} -semigroup.

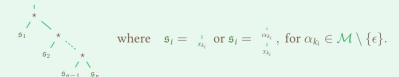
Orientation of the equations

Let the orientation \rightarrow of $\mathfrak{R}_{\mathcal{M}}$ satisfying

- **Proposition** [G., 2020-] -

For any monoid \mathcal{M} , the orientation \to of $\mathfrak{R}_{\mathcal{M}}$ is terminating and confluent.

The set of normal forms for \rightarrow of planar $\mathfrak{G}_{\mathcal{M}}$ -terms is the set of the terms avoiding the left members of \rightarrow . These are the terms of the form



Colored words

Let $(\mathcal{M}, \cdot, \epsilon)$ be a monoid.

Let WM be the graded set of all M-colored words defined for any $n \ge 0$ by

$$\mathrm{W}\mathcal{M}(n) := \bigsqcup_{\ell \geq 1} \Bigl\{ \Bigl(egin{aligned} u \\ c \end{smallmatrix} \Bigr) : (u,c) \in [n]^\ell imes \mathcal{M}^\ell \Bigr\}.$$

- Example -

$$\begin{pmatrix} 1 & 2 & 1 & 6 \\ \epsilon & \mathbf{ab} & \mathbf{bab} & \mathbf{b} \end{pmatrix}$$

is a $(\{\mathbf{a},\mathbf{b}\}^*,.,\epsilon)$ -colored word of arity 6 (or greater).

Let ⊚ be the superposition map defined by

$$\begin{pmatrix} u \\ c \end{pmatrix} \circledcirc \left[\begin{pmatrix} v_1 \\ d_1 \end{pmatrix}, \ldots, \begin{pmatrix} v_n \\ d_n \end{pmatrix} \right] := \begin{pmatrix} v_{u(1)} & \ldots & v_{u(\ell)} \\ \left(c(1)^{\frac{-}{2}} d_{u(1)}\right) & \ldots & \left(c(\ell)^{\frac{-}{2}} d_{u(\ell)}\right) \end{pmatrix}$$

where for any $\alpha \in \mathcal{M}$ and $w \in \mathcal{M}^*$, $\alpha \bar{\ } w := (\alpha \cdot w(1)) \ldots (\alpha \cdot w(|w|))$.

Let also $\mathbb{1}_{i,n} := \binom{i}{\epsilon}$.

Clone of colored words

- Example -

In W($\{\mathbf{a},\mathbf{b}\}^*,.,\epsilon$),

$$\begin{pmatrix} 2 & 2 & 3 \\ \mathbf{ba} \ \mathbf{aa} \ \epsilon \end{pmatrix} \otimes \begin{bmatrix} \begin{pmatrix} 2 & 1 \\ \mathbf{b} \ \mathbf{aa} \end{pmatrix}, \begin{pmatrix} 1 & 1 & 2 \\ \mathbf{bbb} \ \epsilon \ \mathbf{b} \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ \mathbf{aa} \ \mathbf{a} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 \\ \mathbf{ba.bbb} \ \mathbf{ba.} \epsilon \ \mathbf{ba.b} \ \mathbf{aa.bbb} \ \mathbf{aa.} \epsilon \ \mathbf{aa.b} \ \mathbf{aa.} \epsilon \ \mathbf{aa.} \mathbf{b} \quad \epsilon . \mathbf{aa} \ \epsilon . \mathbf{aa} \end{pmatrix}.$$

- Theorem [G., 2020-] -

For any monoid \mathcal{M} , $(W\mathcal{M}, \odot, \mathbb{1}_{i,n})$ is a clone and is a clone realization of the variety $(\mathfrak{G}_{\mathcal{M}}, \mathfrak{R}_{\mathcal{M}})$.

- Example -

Here is a normal for \rightarrow of the variety $(\mathfrak{G}_{\mathcal{M}}, \mathfrak{R}_{\mathcal{M}})$ where \mathcal{M} is the monoid $(\{a,b\}^*,.,\epsilon)$ and the \mathcal{M} -colored word in correspondence:

Clone of monochrome words

Let us focus on the case where \mathcal{M} is the trivial monoid $\{\epsilon\}$.

Let **Word** := $W\{\epsilon\}$. We can forget about the colors of the elements of **Word** without any loss of information.

For any $n \ge 0$, **Word**(n) is the set of the nonempty words on the alphabet [n].

- Example -

In Word,

$$311434 \odot [221, 33, 2, 1] = 2 221 221 1 2 1 = 2221221121$$

- **Proposition** [G., 2020-] -

The clone **Word** admits the presentation $(\mathfrak{G}, \mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\star\}$ and \mathfrak{R} satisfies

Therefore, **Word** is a clone realization of the variety of semigroups.

Congruences on Word

Let \equiv_{st} be the equivalence relation on **Word** wherein $u \equiv_{st} v$ if u and v have both the same **sorted** version.

Let \equiv_{lo} (resp. \equiv_{ro}) be the equivalence relation on **Word** wherein $u \equiv_{\text{lo}} v$ (resp. $u \equiv_{\text{ro}} v$) if the versions of u and v obtained by keeping only the **leftmost** (resp. **rightmost**) among the multiple occurrences of a same letter are equal.

Let \equiv_{ll} (resp. \equiv_{rl}) be the equivalence relation on **Word** wherein $u \equiv_{\text{ll}} v$ (resp. $u \equiv_{\text{rl}} v$) if $u_1 = v_1$ (resp. $u_{|u|} = v_{|v|}$).

- Examples -

 $47 \equiv_{st} 74$, $311322 \equiv_{st} 131232$, $211 \not \equiv_{st} 122$

– Examples –

- Examples -

 $1 \equiv_{ll} 12, \qquad 3114 \equiv_{ll} 32233, \qquad 211535 \equiv_{rl} 5$

- **Proposition** [G., 2020-] -

The equivalence relations $\equiv_{st}, \equiv_{lo}, \equiv_{ro}, \equiv_{ll}$, and \equiv_{rl} are clone congruences of Word.

Multisets

Let $MSet := Word/_{\equiv_{st}}$.

For any $n \ge 0$, the elements of $\mathbf{MSet}(n)$ can be seen as nonempty multisets on [n]. By encoding any such multiset $M = (1^{a(1)}, \dots, n^{a(n)})$ by the tuple $a = (a(1), \dots, a(n))$, the superposition map of \mathbf{MSet} expresses as a matrix multiplication

$$a \odot [b_1, \ldots, b_n] = \begin{pmatrix} a(1) & \ldots & a(n) \end{pmatrix} \begin{pmatrix} b_1(1) & \ldots & b_1(m) \\ \vdots & \ddots & \vdots \\ b_n(1) & \ldots & b_n(m) \end{pmatrix}.$$

- **Proposition** [G., 2020-] -

The clone **MSet** admits the presentation $(\mathfrak{G},\mathfrak{R})$ where $\mathfrak{G}:=\mathfrak{G}(2):=\{\star\}$ and \mathfrak{R} satisfies

Therefore, **MSet** is a clone realization of the variety of **commutative semigroups**.

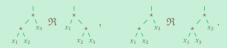
Rooted multisets

Let $\equiv := \equiv_{st} \cap \equiv_{ll}$ and $RMSet_l := Word/\equiv$.

For any $n \ge 0$, the elements of **RMSet**_l(n) can be seen as pairs (M, i) where M is a nonempty multiset on [n] and $i \in M$.

- **Proposition** [G., 2021-] -

The clone **RMSet**₁ admits the presentation $(\mathfrak{G}, \mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\star\}$ and \mathfrak{R} satisfies



Therefore, **RMSet**₁ is a clone realization of the variety of **right-commutative semigroups**, that are semigroups wherein the operation \star satisfies the relation $x_1 \star x_2 \star x_3 = x_1 \star x_3 \star x_2$.

Analog properties hold for the quotient $\mathbf{RMSet}_r := \mathbf{Word}/_{\equiv'}$, where $\equiv' := \equiv_{st} \cap \equiv_{rl}$.

Pairs of integers

Let $\equiv := \equiv_{ll} \cap \equiv_{rl}$ and $PInt := Word/_{\equiv}$.

For any $n \ge 0$, the set **PInt**(n) can be identified with $[n]^2$. The superposition of **PInt** expresses as

$$(i, i') \otimes [(j_1, j'_1), \ldots, (j_n, j'_n)] = (j_i, j'_{i'}).$$

Moreover, #**PInt** $(n) = n^2$.

- **Proposition** [G., 2021-] -

The clone **PInt** admits the presentation $(\mathfrak{G}, \mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\star\}$ and \mathfrak{R} satisfies

Therefore, **PInt** is a clone realization of the variety of **rectangular bands**, that are idempotent semigroups wherein the operation \star satisfies the relation $x_1 \star x_2 \star x_3 = x_1 \star x_3$.

Arrangements

Let $Arr_l := Word/_{\equiv_{lo}}$.

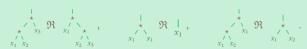
For any $n \ge 0$, the elements of $Arr_1(n)$ can be seen as nonempty arrangements (nonempty words without repetitions) on [n]. Moreover,

$$\#\mathbf{Arr}_{1}(n) = \sum_{0 \leqslant k \leqslant n-1} \frac{n!}{k!}$$

and this sequence starts by 0, 1, 4, 15, 64, 325, 1956, 13699, 109600 (Sequence A007526).

- **Proposition** [G., 2020-] -

The clone Arr_1 admits the presentation $(\mathfrak{G}, \mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\star\}$ and \mathfrak{R} satisfies



Therefore, $\mathbf{Arr_1}$ is a clone realization of the variety of **left-regular bands**, that are idempotent semigroups wherein the operation \star satisfies the relation $x_1 \star x_2 \star x_1 = x_1 \star x_2$.

Analog properties hold for the quotient $Arr_r := Word/_{\equiv_{ro}}$, leading to **right-regular bands**.

Sets

- Lemma [G., 2020-] -

$$\equiv_{st} \circ \equiv_{lo} = \equiv_{lo} \circ \equiv_{st}$$

Therefore, this composition is a clone congruence of **Word**. Let us set it as \equiv_{in} and let $Set := Word/_{\equiv_{in}}$.

For any $n \ge 0$, the elements of $\mathbf{Set}(n)$ can be seen as nonempty subsets of [n]. On such objects, the superposition map of \mathbf{Set} expresses as

$$U \circledcirc [V_1, \ldots, V_n] = \bigcup_{j \in U} V_j.$$

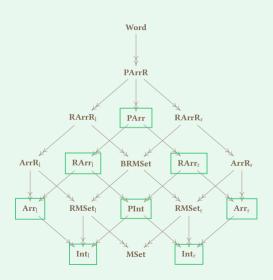
Moreover, $\#\mathbf{Set}(n) = 2^{n} - 1$.

- **Proposition** [G., 2020-] -

The clone **Set** admits the presentation $(\mathfrak{G}, \mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\star\}$ and \mathfrak{R} satisfies

Therefore, **Set** is a clone realization of the variety of **semilattices**.

Diagram of clones



Maps are surjective clone morphisms.

The framed clones are combinatorial.

Congruences on WM

Some of the previous constructions can be generalized at the level of the clone WM.

Let \equiv_{st} , \equiv_{lo} , \equiv_{ro} , \equiv_{ll} , and \equiv_{rl} be the equivalence relations on $W\mathcal{M}$ defined in the same way as before where each color goes with its letter.

- **Proposition** [G., 2021-] -

For any monoid \mathcal{M} , the equivalence relations \equiv_{st} , \equiv_{lo} , \equiv_{ro} , \equiv_{ll} , and \equiv_{rl} are clone congruences of $W\mathcal{M}$.

Let $\equiv_1:=\equiv_{st}\circ\equiv_{lo}$ and $\equiv_2:=\equiv_{lo}\circ\equiv_{st}.$ If $\mathcal M$ has two different elements a and b, one has

$$\begin{pmatrix} 1 & 2 & 1 \\ \mathbf{a} & \mathbf{a} & \mathbf{b} \end{pmatrix} \geqslant 1 \begin{pmatrix} 1 & 2 \\ \mathbf{b} & \mathbf{a} \end{pmatrix}$$

but

$$\begin{pmatrix} 1 & 2 & 1 \\ \mathbf{a} & \mathbf{a} & \mathbf{b} \end{pmatrix} \equiv_2 \begin{pmatrix} 1 & 2 \\ \mathbf{b} & \mathbf{a} \end{pmatrix}.$$

For this reason, in this general case, \equiv_1 and \equiv_2 are not clone congruences of WM.

Monoids on two elements

The two monoids on two elements are $\mathcal{M}_1 := (\mathbb{Z}/2\mathbb{Z}, +, 0)$ and $\mathcal{M}_2 := (\{0, 1\}, \max, 0)$.

The clone $W\mathcal{M}_1$ admits the presentation $(\mathfrak{G},\mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(1) \sqcup \mathfrak{G}(2)$, $\mathfrak{G}(1) := \{\mathbf{1}\}$, $\mathfrak{G}(2) := \{\star\}$, and \mathfrak{R} satisfies

Any algebra on this clone is a semigroup endowed with an **involutive semigroup endomorphism**.

The clone $W\mathcal{M}_2$ admits the presentation $(\mathfrak{G},\mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(1) \sqcup \mathfrak{G}(2)$, $\mathfrak{G}(1) := \{\mathbf{1}\}$, $\mathfrak{G}(2) := \{\star\}$, and \mathfrak{R} satisfies

Any algebra on this clone is a semigroup endowed with an **idempotent semigroup endomorphism**.

Conclusion and future work

In this work,

- we use **clones** as a framework to study **varieties of algebras**;
- we use **rewrite systems on terms** to build term realizations of varieties;
- we introduce a new functorial **construction** W from monoids to clones;
- we build quotients of the clone of monochrome words providing clone realizations of special classes of semigroups.

Future work include

- the discovery of **other congruences** of WM;
- the exploration of the previous constructions for colored words;
- the study of **subclones** of WM generated by finite sets of colored words.

Outline

4. Appendix

Bi-rooted multisets

Let $\equiv := \equiv_{st} \cap \equiv_{ll} \cap \equiv_{rl}$ and **BRMSet** $:= \mathbf{Word}/_{\equiv}$.

For any $n \ge 0$, the elements of **BRMSet**(n) can be seen as triples (M, i, i') where M is a nonempty multiset on [n] and i, $i \in M$.

- **Proposition** [G., 2021-] -

The clone **RMSet**₁ admits the presentation $(\mathfrak{G}, \mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\star\}$ and \mathfrak{R} satisfies

Therefore, **BRMSet** is a clone realization of the variety of **medial semigroups**, that are semigroups wherein the operation \star satisfies the relation $x_1 \star x_2 \star x_3 \star x_1 = x_1 \star x_3 \star x_2 \star x_1$.

Integers

Let $\mathbf{Int}_{l} := \mathbf{Word}/_{\equiv_{ll}}$.

For any $n \ge 0$, the set $\mathbf{Int}_1(n)$ can be identified with [n]. The superposition of \mathbf{Int}_1 expresses as

$$i \odot [j_1,\ldots,j_n] = j_i.$$

Moreover, $\#\mathbf{Int}_{l}(n) = n$.

- **Proposition** [G., 2021-] -

The clone \textbf{Int}_l admits the presentation $(\mathfrak{G},\mathfrak{R})$ where $\mathfrak{G}:=\mathfrak{G}(2):=\{\star\}$ and \mathfrak{R} satisfies

$$\underset{x_1 \\ }{\stackrel{\downarrow}{\star}} \mathfrak{R} \underset{x_1}{\downarrow} .$$

This is the trivial clone.

Therefore, $\mathbf{Int_l}$ is a clone realization of the variety of **left-zero bands**, that are semigroups wherein the operation \star satisfies the relation $x_1 \star x_2 = x_1$.

Analog properties hold for the quotient $Int_r := Word/_{\equiv_d}$, leading to right-zero bands.

Rooted arrangements

Let $\equiv := \equiv_{lo} \cap \equiv_{rl}$ and $\mathbf{RArr}_l := \mathbf{Word}/_{\equiv}$.

For any $n \ge 0$, the elements of $\mathbf{RArr}_1(n)$ can be seen as pairs (a, i) where a is a nonempty arrangement on [n] and i occurs in a. Moreover,

$$\#\mathbf{RArr}_{\mathbf{l}}(n) = \sum_{0 \le k \le n-1} \frac{n!(n-k)}{k!}$$

and this sequence starts by 0, 1, 6, 33, 196, 1305, 9786, 82201, 767208 (Sequence A093964).

- **Proposition** [G., 2021-] -

The clone **RArr**₁ admits the presentation $(\mathfrak{G}, \mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\star\}$ and \mathfrak{R} satisfies

Therefore, **RArr**₁ is a clone realization of the variety of idempotent semigroups wherein the operation \star satisfies the relation $x_1 \star x_2 \star x_1 \star x_3 = x_1 \star x_2 \star x_3$.

Analog properties hold for the quotient $\mathbf{RArr}_r := \mathbf{Word}/_{\equiv'}$ where $\equiv' := \equiv_{ro} \cap \equiv_{ll}$

Rooted sets

Let $\equiv := \equiv_{\text{in}} \cap \equiv_{\text{ll}}$ and $\mathbf{RSet}_{\text{l}} := \mathbf{Word}/_{\equiv}$.

For any $n \ge 0$, the elements of $\mathbf{RSet}_1(n)$ can be seen as pairs (S, i) where S is a nonempty subset of [n] and $i \in S$. Moreover,

$$\#\mathbf{RSet}_{\mathbf{l}}(n) = n \, 2^{n-1}$$

and this sequence starts by 0, 1, 4, 12, 32, 80, 192, 448, 1024 (Sequence A001787).

- **Proposition** [G., 2021-] -

The clone $RSet_l$ admits the presentation $(\mathfrak{G},\mathfrak{R})$ where $\mathfrak{G}:=\mathfrak{G}(2):=\{\star\}$ and \mathfrak{R} satisfies

Therefore, **RSet**₁ is a clone realization of the variety of idempotent semigroups wherein the operation \star satisfies the relation $x_1 \star x_2 \star x_3 = x_1 \star x_3 \star x_2$.

Analog properties hold for the quotient $\mathbf{RSet}_r := \mathbf{Word}/_{\equiv'}$, where $\equiv' := \equiv_{in} \cap \equiv_{rl}$.

Bi-rooted sets

Let $\equiv := \equiv_{\text{in}} \cap \equiv_{\text{ll}} \cap \equiv_{\text{rl}}$ and **BRSet** $:= \text{Word}/_{\equiv}$.

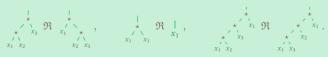
For any $n \ge 0$, the elements of $\mathbf{BRSet}(n)$ can be seen as triples (S, i, i') where S is a nonempty subset of [n] and $i, i' \in S$. Moreover,

$$\#$$
BRSet $(n) = n(n+1) 2^{n-2}$

and this sequence starts by 0, 1, 6, 24, 80, 240, 672, 1792, 4608 (Sequence **A001788**).

- **Proposition** [G., 2021-] -

The clone **BRSet** admits the presentation $(\mathfrak{G},\mathfrak{R})$ where $\mathfrak{G}:=\mathfrak{G}(2):=\{\star\}$ and \mathfrak{R} satisfies



Therefore, **BRSet** is a clone realization of the variety of **normal bands**, that are idempotent semigroups wherein the operation \star satisfies the relation $x_1 \star x_2 \star x_3 \star x_1 = x_1 \star x_3 \star x_2 \star x_1$.

Arrangements of runs

Let $\equiv:=\equiv_{st}\cap\equiv_{lo}$ (stalactite congruence [Hivert, Novelli, Thibon, 2007]) and $\mathbf{Arr}\mathbf{R}_l:=\mathbf{Word}/_{\equiv}$. For any $n\geqslant 0$, the elements of $\mathbf{Arr}\mathbf{R}_l(n)$ can be seen as nonempty arrangements of runs on [n].

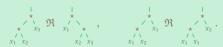
- Examples -

The word 33 1111 55 2 6 is an element of $ArrR_1(9)$.

The word 22222 33311 2 is not an element of $ArrR_{\rm l}.$

- **Proposition** [G., 2020-] -

The clone $ArrR_1$ admits the presentation $(\mathfrak{G},\mathfrak{R})$ where $\mathfrak{G}:=\mathfrak{G}(2):=\{\star\}$ and \mathfrak{R} satisfies



Therefore **ArrR**_l is a clone realization of semigroups wherein the operation \star satisfies the relation $x_1 \star x_2 \star x_1 = x_1 \star x_1 \star x_2$.

Analog properties hold for the quotient $ArrR_r := Word/_{\equiv'}$, where $\equiv' := \equiv_{st} \cap \equiv_{ro}$.

Pairs of compatible arrangements

Let $\equiv := \equiv_{lo} \cap \equiv_{ro}$ and $PArr := Word/_{\equiv}$.

For $n \ge 0$, the elements of **PArr**(n) can be seen as pairs (u, v) such that u and v are nonempty arrangements on [n] with j appears in u iff j appears in v.

- Example -

(3261, 1263) is an element of **PArr**(6).

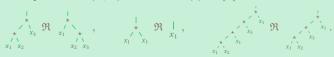
Moreover,

$$\#\mathbf{PArr}(n) = \sum_{k \in [n]} \frac{n! \, k!}{(n-k)!}$$

and this sequence starts by 0, 1, 6, 51, 748, 17685, 614226, 29354311, 1844279256 (linked with Sequence **A046662**).

- **Proposition** [G., 2020-] -

The clone **PArr** admits the presentation $(\mathfrak{G}, \mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\star\}$ and \mathfrak{R} satisfies



Therefore, **PArr** is a clone realization of the variety of **regular bands**.

Pairs of compatible arrangements of runs

Let $\equiv := \equiv_{st} \cap \equiv_{lo} \cap \equiv_{ro}$ and $PArrR := Word/\equiv$.

For any $n \ge 0$, the elements of **PArrR**(n) can be seen as pairs (u, v) such that u and v are nonempty arrangements of runs of repeated letters on [n], with u and v having the same number of occurrences of any letter.

- Example -

(3222611, 22211263) is an element of **PArrR**(6). (221, 12) is not.

- **Proposition** [G., 2020-] -

The clone **PArrR** admits the presentation $(\mathfrak{G}, \mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\star\}$ and \mathfrak{R} satisfies

Therefore, **PArrR** is a clone realization of semigroups wherein the operation \star satisfies the relation $x_1 \star x_1 \star x_2 \star x_3 \star x_1 = x_1 \star x_2 \star x_1 \star x_3 \star x_1 = x_1 \star x_2 \star x_3 \star x_1 \star x_1$.

Rooted arrangements of runs

Let
$$\equiv := \equiv_{st} \cap \equiv_{lo} \cap \equiv_{rl}$$
 and $\mathbf{RArrR}_l := \mathbf{Word}/_{\equiv}$.

For any $n \ge 0$, the elements of $\mathbf{RArrR}_1(n)$ can be seen as nonempty arrangements of runs on [n] wherein the rightmost run is marked or a run of length two or more is marked.

- **Proposition** [G., 2021-] -

The clone \mathbf{RArrR}_1 admits the presentation $(\mathfrak{G}, \mathfrak{R})$ where $\mathfrak{G} := \mathfrak{G}(2) := \{\star\}$ and \mathfrak{R} satisfies

Therefore, **RArrR**₁ is a clone realization of semigroups wherein the operation \star satisfies the relation $x_1x_2x_1x_3 = x_1x_1x_2x_3$.

Analog properties hold for the quotient $\mathbf{RArrR}_r := \mathbf{Word}/_{\equiv'}$, where $\equiv := \equiv_{\mathsf{st}} \cap \equiv_{\mathsf{ro}} \cap \equiv_{\mathsf{ll}}$.