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Malvenuto-Reutenauer algebra

The Malvenuto-Reutenauer algebra [Malvenuto, Reutenauer, 1995]

(FQSym, ·, 1) is the unital associative algebra defined as follows.

FQSym is the K-linear span K 〈S〉 of all permutations.

The set {Fσ : σ ∈ S} is the fundamental basis of FQSym.

· is the shi�ed shu�le product, the associative product defined by

Fσ · Fν :=
∑

π∈σ�ν

Fπ.

1 is defined as Fε where ε is the empty permutation.

– Example –
F312 · F21 = F31254 + F31524 + F31542 + F35124 + F35142

+ F35412 + F53124 + F53142 + F53412 + F54312
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Right weak order

The right weak order is the order relation 4 on S(n) defined as the
reflexive and transitive closure of the relation l satisfying

uabvlubav

where u, v ∈ N∗, and a and b are le�ers such that a < b.

– Example –
Hasse diagram of (S(4),4):

1234

2134 12431324

2314 21433124 14231342

2341 3214 2413 3142 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321
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Product of FQSym and right weak order

Let and be the two operations on S defined by

σ ν := σ ↑|σ|(ν) and σ ν := ↑|σ|(ν) σ.

– Example –
312 21 = 31254

– Example –
312 21 = 54312

– Proposition –
For any permutations σ and ν,

Fσ · Fν =
∑
π∈S

σ ν4π4σ ν

Fπ.

– Example –
F312 · F21 is the formal sum of all the Fπ where π ∈ [312 21, 312 21] = [31254, 54312].
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Multiplicative bases

A basis is multiplicative if the product of two basis element is a single basis
element.

The right weak order can be used to build multiplicative bases of FQSym.

Let
Eσ :=

∑
ν∈S
σ4ν

Fν and Hσ :=
∑
ν∈S
ν4σ

Fν .

– Example –
E4123 = F4123 + F4132 + F4213 + F4231 + F4312 + F4321

– Proposition –
For any permutations σ and ν,

Eσ · Eν = Eσ ν and Hσ · Hν = Hσ ν .
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Generators and relations

A subset G of an associative algebra A is a minimal generating set of A if
the smallest subalgebra of A containing G is A itself and G is minimal for
set inclusion.

A permutation σ is connected if σ 6= ε and no proper prefix of σ is a
permutation.

– Example –
The permutation 43257816 is connected.

– Example –
The permutation 4325176 = 43251 21 is not.

– Theorem [Duchamp, Hivert, Thibon, 2002] –
The set G of all Eσ such that σ is connected is a minimal generating set of
FQSym.

Moreover, FQSym is free as a unital associative algebra and FQSym ' K 〈G〉.

This is a consequence of the fact that any permutation σ decomposes in a
unique way as σ = ν(1) · · · ν(`) where all ν(i) are connected.
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Subalgebras and subposets

FQSym admits a lot of subalgebras:
FSym, the algebra of standard Young tableaux[Poirier, Reutenauer, 1995],
[Duchamp, Hivert, Thibon, 2002];

PBT, the algebra of binary trees [Loday, Ronco, 1998],
[Hivert, Novelli, Thibon, 2005];

Sym, the algebra of integer compositions
[Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, 1995];

Baxter, the algebra of pairs of twin binary trees [Law, Reading, 2012], [G., 2012];

Bell, the algebra of set partitions [Rey, 2007].

Each one is constructed from a surjective map θ : S→ C , where C is one
of the previous sets of objects, as the subalgebra spanned by the elements

Fx :=
∑
σ∈S
θ(σ)=x

Fσ.

There are also posets (C,4) and operations and on C such that

Fx · Fy =
∑
z∈C

x y4z4x y

Fz.
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Diagram of algebras

These algebras fit into the following diagram of injective algebra
morphisms:

FQSym

FSym

BellBaxter

PBT

Sym

Note that these algebras are also endowed with coproducts so that they
are in fact Hopf bialgebras.
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Algebra of binary trees — Tamari order

Let BT be the set of all binary trees.

It is known that BT(n) is in one-to-one correspondence with the set of
permutations avoiding the pa�ern 132.

The restriction of the right weak order on these permutations is the Tamari
order [Hivert, Novelli, Thibon, 2005].

– Example –
Hasse diagrams of (BT(4),4):

1234

2134 ��1243��1324

2314 ��21433124 ��1423��1342

2341 3214 ��2413 ��3142 4123 ��1432

3241 ��2431 3412 4213 ��4132

3421 4231 4312

4321
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Algebra of binary trees — Product

Let and be the two operations on BT defined as follows. For any
t, s ∈ BT, t s (resp. t s) is the binary tree obtained by gra�ing the root
of t (resp. s) onto the first (resp. last) leaf of s (resp. t).

– Example –

=

– Example –

=

The product in PBT of two basis elements Ft and Fs is the formal sum of
the elements of the Tamari interval [t s, t s].

– Example –

F · F = F + F + F + F + F + F

12 / 47



Motivation: a new order on permutations

The objectives of this work are to

1. introduce a new order relation on permutations;

2. consider the analog of FQSym w.r.t. this alternative order;

3. try to construct a similar hierarchy of algebras.

For this, we consider an order extension of the right weak order and
generalizations of permutations.

– Example –
Here are both the Hasse diagrams of the right weak order on permutations of size 3 and of
the considered order extension:

123

132

312

213

231

321

123

132

312

213

231

321
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Cli�s and posets

A range map is a map δ := N \ {0} → N.

A δ-cli� of size n is a word u ∈ Nn such that for all i ∈ [n], 0 6 ui 6 δ(i).

The graded collection of all δ-cli�s is denoted by Clδ .

Let 4 be the partial order relation on each Clδ(n) wherein u 4 v if ui 6 vi
for all i ∈ [n].

For any m > 0, let m be the map defined by m(i) := m(i− 1).

– Example –
The Hasse diagrams of Cl1(3), Cl2(3), and Cl1(4) are

000

001

002

010

011

012

000

001

002

003

004

010

011

012

013

014

020

021

022

023

024

0000

0001

0002

0003

0010

0011

0012

0013

0020

0021

0022

0023

0100

0101

0102

0103

0110

0111

0112

0113

0120

0121

0122

0123

The posets Cl1(n) have been studied in [Denoncourt, 2013]. 15 / 47



Lehmer codes

Let leh be the map sending any permutation σ to the 1-cli� u wherein ui
is the number of le�ers a at the right of i in σ such that i > a. This is a
variation of the Lehmer code [Lehmer, 1960] of a permutation.

This map leh : Cl1(n)→ S(n) is a bijection.

– Example –
leh(436512) = 002323

A map φ : P1 → P2 is a poset morphism if x 41 y implies φ(x) 42 φ(y).

A poset P2 is an order extension of a poset P1 if there is a bijective poset
morphism φ : P1 → P2.

– Proposition –
For any n > 1, leh is a bijective poset morphism between the right weak order
(S(n),4) and (Cl1(n),4).
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Subposets

The partial order Clδ(n) has a very simple structure since

Clδ(n) ' [δ(1) + 1]× · · · × [δ(n) + 1].

Its main interest lies in the fact that it contains a lot of subposets.

Let S be a subset of Cl, endowed with the same componentwise order
relation 4.

Let us introduce the following combinatorial properties. We say that S is

straight if its covering relation lS is such that when ulS v then u
and v di�er by exactly one le�er;

closed by prefix if for any u ∈ S , all prefixes of u belong to S ;

minimally (resp. maximally) extendable if for any u ∈ S , u0 ∈ S
(resp. u δ(|u|+ 1) ∈ S).
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Geometric realizations

A geometric realization of a poset P refers to a way to see P as a
geometrical object in Rk for a certain k > 0.

Let C(S(n)) be the geometric object on the set of points

{(u1, . . . , un) ∈ Rn : u ∈ S(n)}

where there is an edge between u and v provided that ulS v.

When S is straight, each edge is parallel to a line passing by the origin and
a point of the form (0, . . . , 0, 1, 0, . . . , 0). In this case, we call C(S(n)) the
cubic realization of S(n).

This realization raises the following questions.

1. Describe the general shape of C(S(n));

2. Count the cells of C(S(n)) of a given dimension;

3. Compute the volume vol (C(S(n))) of C(S(n)).
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Hill posets

Let Hiδ be the subset of Clδ containing all δ-hills that are weakly
increasing δ-cli�s.

– Example –
The Hasse diagrams of Hi1(3), Hi2(3), and Hi1(4) are

000

001

002011

012

000

001

002

003

004

011

012

013

014

022

023

024

0000

0001

0002

0003

0011

0012

00130022

0023

0111

0112

0113

0122

0123

The posets Hi1 are the Stanley la�ices [Stanley, 1975].
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Properties of Hill posets

When δ is weakly increasing, all Hiδ(n) are subla�ices of Clδ(n).

For any m > 0 and n > 0, the cardinality of Him(n) is the n-th
m-Fuss-Catalan number

catm(n) =
1

mn+ 1

(
mn+ n

n

)
.

For any n > 0, Hiδ(n) is EL-shellable.

When δ is weakly increasing, all Hiδ(n) are constructible by interval
doubling.

For any m > 1 and n > 0, the realization C (Him(n)) is cubic, has
dimension n− 1, and satisfies

vol (C (Him(n))) = catm−1(n).
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Canyon posets

Let Caδ be the subset of Clδ containing all δ-canyons that are δ-cli�s u
such that ui−j 6 ui − j, for all i ∈ [|u|] and j ∈ [ui] satisfying i− j > 1.

– Example –
A 2-canyon of size 15:

0 2 0 1 0 0 4 5 9 0 0 2 3 0 1

– Example –
A 2-cli� of size 15 which is not a 2-canyon:

0 2 0 1 0 0 4 5 8 0 0 2 3 0 1

– Example –
The Hasse diagrams of Ca1(3), Ca2(3), and Ca1(4) are

000

001

002

010

012

000

001

002

003

004

010

012

013

014

020

023

024

0000

0001

0002

0003

0010

0012

0013

0020

0023

0100

0101

0103

0120

0123
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Properties of Canyon posets

The posets Ca1 are the Tamari la�ices [Tamari, 1962].

For any m > 0, #Cam(n) = catm(n).

When δ is increasing, all Caδ(n) are la�ices but not subla�ices of
Clδ(n).

– Example –
In Ca2, there is an algorithm to compute the join:

0124010∨ 0205001 = (0225011)′ = 0235012

For any n > 0, Caδ(n) is EL-shellable.

When δ is increasing, all Caδ(n) are constructible by interval
doubling.

For any m > 1 and n > 0, the realization C (Cam(n)) is cubic, has
dimension n− 1, and satisfies

vol (C (Cam(n))) = vol (C (Clm(n))) = mn−1(n− 1)!.
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Constructibility by interval doubling

Sequence of interval contractions (reverse of interval doubling) from
Ca2(4) to Ca2(3):

0000

0246

→

0000

0005

0015
0025

0035

0045

0105

0125

0135

0145

0205

0235

0245

→

0000

0004

0014

0024

0034

0104

0124

0134

0204

0234

0244

→

0000

0003

0013

0023

0103

0123

0243

→

0000

0002

0012

0242

→

0000

0001

0101

0201

0241

→

0000

0010

0020

0030

0040

0100

0120

0130

0140

0200

0230

0240
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Interactions between canyon and hill posets

– Proposition –
For any m > 1 and n > 0, there is a poset embedding from Him−1(n) to Cam(n).

– Example –
Embedding of Hi1(4) into Ca2(4):

0000

0002

0003

0011

0022

0123

0000

0123

0125

0126

0134

0145

0246
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Interactions between canyon and hill posets

– Theorem –
For any m > 1 and n > 0, there is a bijective poset morphism from Cam(n) to
Him(n).

– Example –
Bijective morphism from Ca3(3) to Hi3(3):

000

006

010

013

026

036

000

006

011

013

026

036
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Algebras on cli�s

Let Clδ be the K-linear span of all δ-cli�s.

The set {Fu : u ∈ Clδ} is a basis of Clδ .

Let rδ : Nn → Clδ(n) be the δ-reduction map defined for any u ∈ Nn and
i ∈ [n] by (rδ(u))i := min {ui, δ(i)} .

– Example –
r1(212066) = 012045

– Example –
r2(212066) = 012066

Let · be the product on Clδ defined by

Fu · Fv :=
∑

uv′∈Clδ
rδ(v′)=v

Fuv′ .

– Example –
In Cl1,

F00·F011 = F00011+F00021+F00031+F00111+F00121+F00131+F00211+F00221+F00231.
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Associativity

In general, the product of Clδ is not associative.

– Example –
For δ := 102ω , we have

(F1 · F0) · F1 = F10 · F1 = F101 + F102

and
F1 · (F0 · F1) = F1 · 0 = 0.

A range map is valley-free (or unimodal) if there is no i1 6 i2 6 i3 such
that δ (i1) > δ (i2) < δ (i3).

– Theorem –
The product · of Clδ is associative i� δ is a valley-free range map.
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Over and under operations

Let

: Nn × Nm → Nn+m and : Nn × Nm → Nn+m,

be the two operations defined by u v := uv and u v := uv′ where v′ is
the word of length |v| satisfying, for any i ∈ [|v|],

v′i =

{
δ(|u|+ i) if vi = δ(i),

vi otherwise.

– Example –
For δ = 112334ω , 010 1021 = 0101021 and 010 1021 = 0103041.

– Example –
For δ = 210ω , 21 11 = 2110. This word is not a δ-cli�.
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Product and cli� posets

For w ∈ N∗, let χδ(w) defined as 1 ∈ K if w is a δ-cli� and as 0 ∈ K
otherwise.

– Theorem –
For any u, v ∈ Clδ , we have in Clδ ,

Fu · Fv = χδ (u v)
∑
w∈Clδ

u v4w4u v

Fw.

– Example –
In Cl01120ω , since 01 010 = 01010 ∈ Cl01120ω ,

F01 · F010 = F01010 + F01020 + F01110 + F01120.

– Example –
In Cl01120ω , since 01 011 = 01011 /∈ Cl01120ω ,

F01 · F011 = 0.
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Multiplicative bases

Let
Eu :=

∑
v∈Clδ
u4v

Fv and Hu :=
∑
v∈Clδ
v4u

Fv.

– Examples –
For δ := 1021ω ,

E10010 = F10010 + F10011 + F10110 + F10111 + F10210 + F10211,

and
H10010 = F10010 + F10000 + F00010 + F00000.

By triangularity, {Eu : u ∈ Clδ} and {Hu : u ∈ Clδ} are bases of Clδ .

– Proposition –
For any u, v ∈ Clδ , we have in Clδ ,

Eu · Ev = χδ (u v)Eu v and Hu · Hv = Hrδ(u v).
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Minimal generating set

A nonempty δ-cli� u is δ-prime if the decomposition u = v w with
v, w ∈ Clδ implies (v, w) ∈ {(ε, u), (u, ε)}.

The set of all these elements is denoted by Pδ .

– Examples –
Let δ := 021ω .

The δ-cli�s 0, 01, and 021111 are δ-prime. The δ-cli� 0210 = 021 0 is not.

– Lemma –
Any nonempty δ-cli� admits exactly one su�ix which is δ-prime.

– Proposition –
The set {Eu : u ∈ Pδ} is a minimal generating set of the magmatic algebra Clδ .

This is a consequence of the fact that, by the previous lemma, any δ-cli�
decomposes as a fully bracketed expression on the described set of
elements.
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Nontrivial relations

Let the alphabet APδ := {au : u ∈ Pδ} and K 〈APδ〉 be the algebra of
noncommutative polynomials on APδ .

Given u ∈ Clδ , let au be the monomial au(1) . . . au(k) where
u = u(1) · · · u(k) is the unique factorization of u on Pδ .

– Example –
For δ = 0110ω , a00100 = a0a01a0a0.

– Theorem –
If δ is valley-free, then Clδ is isomorphic to K 〈APδ 〉 /Rδ whereRδ is the
associative algebra ideal of Clδ generated by the set

min
6s

{auav : u ∈ Clδ, v ∈ Pδ, and uv /∈ Clδ} .

– Example –
For δ = 0110ω , APδ = {a0, a01, a011} and a00a01 and a01a01 are two nontrivial relations
of Clδ (among a total of 8 nontrivial relations).
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Presentation by generators and relations

A range map δ is 1-dominated if there is a k > 1 such that for all k′ > k,
δ(1) > δ (k′).

– Proposition –
Let δ be a valley-free range map.

(A) If δ is constant, then

δ =

and APδ is finite andRδ is the
zero space;

(B) Otherwise, if δ is weakly
increasing, then

δ =

and APδ is infinite andRδ is the
zero space;

(C) Otherwise, if δ is 1-dominated,
then

δ =

and APδ is finite andRδ is finitely
generated;

(D) Otherwise,

δ =

and APδ is infinite andRδ is
infinitely generated.
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Examples — Types A and B

For any k > 0, Clkω is the free associative algebra over the k + 1

generators a0, a1, . . . , ak .

Cl1:
First dimensions: 1, 1, 2, 6, 24, 120, 720, 5040.

First dimensions of generators: 0, 1, 1, 3, 13, 71, 461, 3447 (A003319).

First generators: a0, a01, a002, a011, a012, a0003, a0013, a0021,
a0022, a0023, a0102, a0103, a0111, a0112, a0113, a0121, a0122, a0123.

Since Cl1 and FQSym are both free as associative algebras and they
have the same Hilbert series, Cl1 ' FQSym.

Cl2:
First dimensions: 1, 1, 3, 15, 105, 945, 10395, 135135 (A001147).

First dimensions of generators: 0, 1, 2, 10, 74, 706, 8162, 110410
(A000698).

First generators: a0, a01, a02, a003, a004, a011, a012, a013, a014,
a021, a022, a023, a024.
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Examples — Types C and D

Cl010ω ' K 〈a0, a01〉 /R010ω
whereR010ω is generated by the two

monomials a0a01, a01a01.

Cl0110ω ' K 〈a0, a01, a011〉 /R0110ω
whereR0110ω is generated by

the eight monomials a0a0a01, a01a01, a01a0a01, a011a01,
a011a0a01, a0a011, a01a011, a011a011.

Cl210ω ' K 〈a0, a1, a2〉 /R210ω
whereR210ω is generated by the

seven monomials a0a0a1, a0a1a1, a1a0a1, a1a1a1, a2a0a1,
a2a1a1, a0a2, a1a2, a2a2.

Cl021ω ' K 〈a0, a01, a02, a011, a021, a0111, a0211, a01111, a02111, . . . 〉 /R021ω

whereR021ω is generated by the infinitely many monomials a0a02,
a01a02, a02a02, a011a02, a021a02, a0a021, a01a021, a02a021,
a0a0211, . . .
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�otient algebras

For any graded subset S of Clδ , let ClS be the quotient space of Clδ
defined by

ClS := Clδ/VS

such that VS is the linear span of the set

{Fu : u ∈ Clδ \ S} .

By definition, the set {Fu : u ∈ S} is a basis of ClS .

The set S is closed by su�ix reduction if for any u ∈ S , for all su�ixes u′ of
u, rδ (u′) ∈ S .

– Proposition –
If δ is valley-free and S is closed by prefix and by su�ix reduction, then ClS is a
quotient of the associative algebra Clδ .
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�otient algebra products and intervals

The associative algebra ClS has the interval condition if the support of
any product Fu · Fv is empty or is an interval of a poset S(n), n > 0.

When for any n > 0, S(n) is a join semi-la�ice, we denote by ∨S its join
operation.

In this case, S is join-stable if, for any n > 0 and any u, v ∈ S(n), the
relation ui = vi for an i ∈ [n] implies that the i-th le�er of u∨S v is equal
to ui.

– Theorem –
If δ is valley-free and S is closed by prefix and by su�ix reduction, and at least one
the following conditions is satisfied:

1. for any n > 0, all posets S(n) are subla�ices of Clδ(n);

2. for any n > 0, the posets S(n) is a meet semi-subla�ice of Clδ(n), maximally
extendable, and join-stable;

then ClS has the interval condition.
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Him algebras

let Him be the quotient space ClHim .

Since Him is closed by prefix and by su�ix reduction, Him is an associative
algebra quotient of Clm.

Since moreover for each n > 0, Him(n) is a subla�ice of Clm(n), Him has
the interval condition.

– Examples –
In Hi1,

F01 · F01 = F0111 + F0112 + F0113 + F0122 + F0123,

F01 · F00 = 0,

F001 · F0122 = F0011122 + F0011222 + F0012222.

– Examples –
In Hi2,

F02 · F023 = F02223 + F02233 + F02333,

F011 · F01 = F01111,

F0015 · F014 = 0.
39 / 47



Structure of Him algebras

By computer exploration, minimal generating families of Hi1 and Hi2 up
to degree 5 and 4 are resp.

F0, F00, F001,F011, F0002,F0011,F0012,F0022,F0112,F0122,

F00003,F00013,F00023,F00033,F00112,F00113,F00122,F00123,F00133,F00222,

F00223,F00233,F01113,F01122,F01123,F01133,F01223,F01233,

and

F0, F00,F01, F001,F002,F003,F012,F013,F022,F023,

F0004,F0005,F0012,F0013,F0014,F0015,F0022,F0023,F0024,F0025,F0033,F0034,

F0035,F0044,F0045,F0114,F0115,F0122,F0123,F0124,F0125,F0133,F0134,F0135,

F0144,F0145,F0223,F0224,F0225,F0234,F0235,F0244,F0245.

The number of minimal generators of Hi1 and Hi2, begin resp. by

0, 1, 1, 2, 6, 18, 59, 196, 669,

and
0, 1, 2, 7, 33, 168, 900, 4980.

For any m > 1, Him is not free as an associative algebra.
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Cam algebras

Let Cam be the quotient space ClCam .

Since Cam is closed by prefix and by su�ix reduction, Cam is an
associative algebra quotient of Clm.

Since moreover Cam is maximally extendable and join-stable, and for each
n > 0, Cam(n) is a meet semi-subla�ice of Clm(n), Cam has the interval
condition.

– Examples –
In Ca1,

F0 · F01 = F001 + F002 + F012,

F010 · F0020 = F0100020 + F0100030 + F0101030 + F0100050 + F0101050 + F0103050

– Examples –
In Ca2, F01 · F0014 = 0,

F020 · F02 = F02002 + F02005 + F02006 + F02007 + F02008 + F02012 + F02015

+ F02016 + F02017 + F02018 + F02045 + F02046 + F02047 + F02048

+ F02056 + F02057 + F02058 + F02067 + F02068.
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Structure of Cam algebras

Ca1 is isomorphic to PBT. The isomorphism sends Fu to Ft where t is the
binary tree having u has Tamari diagram (notion introduced in [Pallo, 1986]).

By computer exploration, minimal generating families of Ca1 and Ca2 up
to respectively up to degree 5 and 4 are resp.

F0, F00, F000, F001, F0000, F0001, F0002, F0010, F0012,

F00000, F00001, F00002, F00003, F00010, F00012, F00013, F00020, F00023, F00100,

F00101, F00103, F00120, F00123,

and
F0, F00, F01, F000, F002, F003, F010, F012, F013, F023,

F0000, F0003, F0004, F0005, F0014, F0015, F0020, F0023, F0024, F0025, F0030, F0034, F0035,

F0045, F0100, F0104, F0105, F0120, F0124, F0125, F0130, F0134, F0135, F0145, F0204, F0205,

F0230, F0234, F0235, F0245.

The numbers of minimal generators of Ca2 begins by

0, 1, 2, 7, 30, 149, 788, 4332.

Ca0 and Ca1 are free as associative algebras but Cam, m > 2, is not.
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Outline

4. Some open questions
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Increasing trees

When δ(1) = 0, δ is rooted.

Given u ∈ Clδ(n) where δ is rooted and weakly increasing, let treeδ(u) be
the δ-increasing tree defined recursively as follows:

If u = ε, then treeδ(u) is the leaf;

Otherwise, u = u′a with 0 6 a 6 δ(n), and treeδ(u) is obtained by
gra�ing on the a+1-st leaf of treeδ (u′) a node labeled by n having
1 + δ(n+ 1)− δ(n) leaves.

– Example –
For δ := 0233579ω and u := 021042, the treeδ(u) grows as follows:

0−→ 1
2−→

2

1 1−→ . . .
2−→ 4

5

2

6

1

3
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Alternative posets from increasing trees

Let δ be a rooted and weakly increasing range map.

Let 4′ be the reflexive and transitive closure of the relation l′ on Clδ(n)

where ul′ v if v is obtained from u by incrementing a le�er ui when all
the children of the node labeled by i in treeδ(u) are leaves excepted
possibly the first one.

– Examples –
(Cl1(n),4′) is isomorphic to the right weak order.

The Hasse diagram of
(Cl01122ω (4),4′) is

0000

0001 0100 0010

0002 0101 0110 0011

0102 0012 0111

0112

– Conjecture –
For any rooted and weakly increasing range map δ and any n > 0, the poset
(Clδ(n),4′) is a la�ice.
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Dune posets

Let Duδ be the subset of Clδ containing all δ-hills that are δ-cli�s u such
that for any i ∈ [n− 1], |ui − ui+1| 6 |δ(i)− δ(i+ 1)|.
Cardinalities of Du1(n): 1, 1, 2, 5, 13, 35, 96, 267, . . . (A005773, directed animals).

Cardinalities of Du2(n): 1, 1, 3, 12, 51, 226, 1025, 4724, . . . (A180898, some meanders

[Banderier et al., 2016]).

– Example –
The Hasse diagrams of Du1(3), Du2(3), and Du1(4) are

000

001010

011

012

000

001

002

010

011

012

013

020

021

022

023

024

0000

00010010

0011

0012

0100

01010110

0111

0112

0121

0122

0123

– Project –
Study the dune posets and their associative algebras.
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Coproducts

As already mentioned, FQSym and its subalgebras are endowed with a
coproduct.

A coproduct on a space A is a map

∆ : A → A⊗A

which, intuitively, splits any element of A in two smaller parts, in several
di�erent ways.

If (A, ·) is an associative algebra, a coproduct ∆ is compatible with · if for
all f, g ∈ A,

∆ (f · g) = ∆(f)∆(g).

– �estion –
Introduce a (noncocommutative) coproduct on Clδ compatible with its product.

Determine in what extent this coproduct is still well-defined on its quotients ClS .
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