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1. Algebras and orders



Malvenuto-Reutenauer algebra

The Malvenuto-Reutenauer algebra [Malvenuto, Reutenauer, 1995]
(FQSym, -, 1) is the unital associative algebra defined as follows.

m FQSym is the K-linear span K (&) of all permutations.
The set {F, : 0 € &} is the fundamental basis of FQSym.

m - is the shifted shuffle product, the associative product defined by

Fo-F,i= Y  Fn

TEoly

m 1is defined as F. where € is the empty permutation.

Fs12 - F21 = F31254 + F31524 + F31542 + F35124 + F35142
+ F35412 + F53124 + F53142 + F53412 + F54312
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Right weak order

The right weak order is the order relation < on &(n) defined as the
reflexive and transitive closure of the relation < satisfying

uabv < ubav

where u, v € N*, and a and b are letters such that a < b.

Hasse diagram of (&(4), <):
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Product of FQSym and right weak order

Let / and \ be the two operations on & defined by
o/vi=o014 (V) and o\v =1, (V) o

312 /21 = 31254 312\ 21 = 54312

For any permutations ¢ and v,

EREVE D D

TES
o /vnt<o \ v

F312 - F21 is the formal sum of all the F where m € [312 21,312\ 21] = [31254, 54312].
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Multiplicative bases

A basis is multiplicative if the product of two basis element is a single basis
element.

The right weak order can be used to build multiplicative bases of FQSym.

Let
E, := Z F, and H,:= Z F..
res res
oV vXo

E4123 = F4123 + Fa132 + Fa213 + F4231 + Fa312 + Fa321

For any permutations ¢ and v,

E, -E,=E,,, and H,-H,=H,\,.
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Generators and relations

A subset G of an associative algebra A is a minimal generating set of A if
the smallest subalgebra of A containing G is A itself and G is minimal for
set inclusion.

A permutation o is connected if o # € and no proper prefix of o is a
permutation.

The permutation 43257816 is connected.  The permutation 4325176 = 43251 /21 is not.

The set G of all E; such that o is connected is a minimal generating set of
FQSym.

Moreover, FQSym is free as a unital associative algebra and FQSym ~ K (G).

This is a consequence of the fact that any permutation ¢ decomposes in a
unique way as o = v(1) /.. /(&) where all v(*) are connected.
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Subalgebras and subposets

FQSym admits a lot of subalgebras:

m FSym, the algebra of standard Young tableaux[Poirier, Reutenauer, 1995],
[Duchamp, Hivert, Thibon, 2002];

m PBT, the algebra of binary trees [Loday, Ronco, 1998],
[Hivert, Novelli, Thibon, 2005];

m Sym, the algebra of integer compositions
[Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, 1995];

m Baxter, the algebra of pairs of twin binary trees [Law, Reading, 2012], [G., 2012];
m Bell, the algebra of set partitions [Rey, 2007].

Each one is constructed from a surjective map 6 : & — C, where C'is one
of the previous sets of objects, as the subalgebra spanned by the elements

Fp = Z F,.

oed
0(o)=z

There are also posets (C, <) and operations / and \ on C such that

F.-Fy= Y F..

zeC
z/ Y<Kz \y
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Diagram of algebras

These algebras fit into the following diagram of injective algebra
morphisms:

FQSym

Baxter Bell

FSym PBT

Note that these algebras are also endowed with coproducts so that they
are in fact Hopf bialgebras.
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Algebra of binary trees — Tamari order

Let BT be the set of all binary trees.

It is known that BT(n) is in one-to-one correspondence with the set of

permutations avoiding the pattern 132.

The restriction of the right weak order on these permutations is the Tamari
order [Hivert, Novelli, Thibon, 2005].

Hasse diagrams of (BT'(4), X):

TN %/5@/#\

SN
TS A F?\TT*“‘}?

g
A\ Ay VAV 2 a

\><></ %?’}L\L?\

N

7 y
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Algebra of binary trees — Product

Let / and \ be the two operations on BT defined as follows. For any
t,s € BT, t /s (resp. t\s) is the binary tree obtained by grafting the root
of t (resp. s) onto the first (resp. last) leaf of s (resp. t).

o 5 g3 Ao rgh= T

The product in PBT of two basis elements F; and Fs is the formal sum of
the elements of the Tamari interval [t /s, t\s].

| -Bample- |
gk g g a fg G
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Motivation: a new order on permutations

The objectives of this work are to
1. introduce a new order relation on permutations;
2. consider the analog of FQSym w.r.t. this alternative order;
3. try to construct a similar hierarchy of algebras.

For this, we consider an order extension of the right weak order and
generalizations of permutations.

Here are both the Hasse diagrams of the right weak order on permutations of size 3 and of
the considered order extension:

123 123
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2. Posets on cliffs
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Cliffs and posets

A range mapisamap d := N\ {0} — N.
A §-cliff of size n is a word u € N™ such that for all i € [n], 0 < u; < 6(i).
The graded collection of all §-cliffs is denoted by Cls.

Let < be the partial order relation on each Cls(n) wherein u < v if u; < v;
for all i € [n].

For any m > 0, let m be the map defined by m(i) := m(i — 1).

The posets Cly (n) have been studied in [Denoncourt, 2013].
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Let leh be the map sending any permutation o to the 1-cliff u wherein u;
is the number of letters a at the right of ¢ in ¢ such that ¢ > a. Thisis a
variation of the Lehmer code [Lehmer, 1960] of a permutation.

This map leh : Cly(n) — &(n) is a bijection.

leh(436512) = 002323

A map ¢ : P; — Pqis a poset morphism if x <1 y implies ¢(z) <2 ¢(y).

A poset Py is an order extension of a poset Py if there is a bijective poset

morphism ¢ : P; — Pa.

For any n > 1, leh is a bijective poset morphism between the right weak order
(6(n), <) and (Clx (n), <).
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The partial order Cls(n) has a very simple structure since
Cls(n) = [6(1) +1] x -+ x [6(n) +1].

Its main interest lies in the fact that it contains a lot of subposets.

Let S be a subset of Cl, endowed with the same componentwise order
relation <.

Let us introduce the following combinatorial properties. We say that S is

m straight if its covering relation <s is such that when u <s v then u
and v differ by exactly one letter;

m closed by prefix if for any u € S, all prefixes of u belong to S;

m minimally (resp. maximally) extendable if for any u € S, u0 € S
(resp. ud(|u] + 1) € S).
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Geometric realizations

A geometric realization of a poset P refers to a way to see P as a
geometrical object in R* for a certain k > 0.

Let €(S(n)) be the geometric object on the set of points
{(u1,...,un) eR*:u e S(n)}

where there is an edge between u and v provided that u <s v.

When S is straight, each edge is parallel to a line passing by the origin and
a point of the form (0,...,0,1,0,...,0). In this case, we call €(S(n)) the
cubic realization of S(n).
This realization raises the following questions.

1. Describe the general shape of €(S(n));

2. Count the cells of €(S(n)) of a given dimension;

3. Compute the volume vol (€(S(n))) of €(S(n)).
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Hill posets

Let His be the subset of Cls containing all o-hills that are weakly
increasing d-cliffs.

The Hasse diagrams of Hi1 (3), Hi2(3), and Hiq (4) are

0000
o)

The posets Hiy are the Stanley lattices [Stanley, 1975].
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Properties of Hill posets

m When 0 is weakly increasing, all His(n) are sublattices of Cls(n).

m Forany m > 0 and n > 0, the cardinality of Hiy, (n) is the n-th
m-Fuss-Catalan number

caty(n) = — (”“”").

mn + 1 n
m Forany n > 0, His(n) is EL-shellable.

m When § is weakly increasing, all His(n) are constructible by interval
doubling.

m Forany m > 1 and n > 0, the realization € (Hiym(n)) is cubic, has
dimension n — 1, and satisfies

vol (€ (Him(n))) = caty,—1(n).
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Canyon posets

Let Cas be the subset of Cl; containing all J-canyons that are d-cliffs
such that u;_; < u; — j, forall i € [Ju|] and j € [u;] satisfying i — j > 1.

Bampie— W eample |

A 2-canyon of size 15: A 2-cliff of size 15 which is not a 2-canyon:

000

002
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Properties of Canyon posets

m The posets Ca; are the Tamari lattices [Tamari, 1962].
m Forany m > 0, #Cay, (n) = cat,, (n).

m When § is increasing, all Cas(n) are lattices but not sublattices of

C|5(n).

In Cag, there is an algorithm to compute the join:
0124010 v 0205001 = (0225011)" = 0235012
m Foranyn > 0, Cas(n) is EL-shellable.

m When § is increasing, all Cas(n) are constructible by interval
doubling.

m Forany m > 1 and n > 0, the realization € (Cay,(n)) is cubic, has
dimension n — 1, and satisfies

vol (€ (Cam(n))) = vol (€ (Clm(n))) = m™ 1 (n — 1)
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Interactions between canyon and hill posets

- Proposition -

For any m > 1 and n > 0, there is a poset embedding from Him—1(n) to Cam(n).

Embedding of Hi1 (4) into Caz(4):
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Interactions between canyon and hill posets

— Theorem -

For any m > 1 and n > 0, there is a bijective poset morphism from Cam(n) to
Him (n).

Bijective morphism from Cag(3) to Hiz(3):

25/47



3. Algebras on cliffs
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Algebras on cliffs

Let Cl; be the K-linear span of all J-cliffs.
The set {F,, : u € Cls} is a basis of Cl;.

Let r5 : N™ — Cls(n) be the d-reduction map defined for any u € N™ and
i € [n] by (rs(u)), := min {u;,5(i)} .

EECTTEE BT

r1(212066) = 012045 r2(212066) = 012066

Let - be the product on Cls defined by

Fu-Foi= > Fu.

uv’ €Clg

rs (v'):u

In Clq,
Foo-Fo11 = Fooo11+Fooo21+Fooo31+Foo111+Foo121+Foo131+Foo211+Foo221 +Foo231-
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Associativity

In general, the product of Cl; is not associative.

For ¢ := 102, we have
(F1-Fo)-F1 =F10-F1 =Fi01 + F102

and
F1-(F0-F1):F1-O:0.

A range map is valley-free (or unimodal) if there is no i; < iy < i3 such
that § (’Ll) >4 (22) <d (’Lg)

The product - of Cl; is associative iff d is a valley-free range map.
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Over and under operations

Let
/s N" x N™ — Nvtm and N N7 x N™ — Nt

be the two operations defined by u /v := uv and u\v := wv’ where v’ is
the word of length |v| satisfying, for any i € [|v|],

y {5(|u|+i) if v; = 6(4),

P =

; otherwise.

For § = 112334%,010 1021 = 0101021 and 010\ 1021 = 0103041.

For § = 210%, 21\ 11 = 2110. This word is not a d-cliff.
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Product and cliff posets

For w € N*, let xs(w) defined as 1 € K if w is a d-cliff and as 0 € K
otherwise.

For any u, v € Cls, we have in Cl;,

Fu:-Fo=xs(u/v) Z Fuo.

weCly
u /vsw<su \ v

In Clg1120w, since 01 /010 = 01010 € Clp1120w,

Fo1 - Foio = Foio10 + Fo1020 + Fo1110 + Fo1120-

In Clg1120w, since 01 /011 = 01011 ¢ Clp1120%,
Fo1 - Fo11 = 0.
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Multiplicative bases

Let
E.:= ) F, and H,:= ) F,
veCls veCls
UV ET)
For § := 1021%,
E10010 = F10010 + F10011 + F10110 + F1o111 + F10210 + F10211,
and

H10010 = F10010 + F10000 + Fooo10 + Fooooo-

By triangularity, {E,, : u € Cls} and {H,, : u € Cls} are bases of Cl;.
For any u, v € Cls, we have in Cls,
Eu'EU:X5 (u/v)Eu/v and Hu'Hv:Hrtg(u\U)'
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Minimal generating set

A nonempty d-cliff w is d-prime if the decomposition u = v /w with
v,w € Cls implies (v, w) € {(e,u), (u,¢€)}.

The set of all these elements is denoted by Ps.

Let § := 021%.

The §-cliffs 0, 01, and 021111 are §-prime. The §-cliff 0210 = 021 /0 is not.

- Lemma -

Any nonempty J-cliff admits exactly one suffix which is §-prime.

The set {E, : u € Ps} is a minimal generating set of the magmatic algebra Cls.

This is a consequence of the fact that, by the previous lemma, any J-cliff

decomposes as a fully bracketed expression on the described set of
elements.
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Nontrivial relations

Let the alphabet Ap, := {a, : u € Ps} and K (Ap,) be the algebra of
noncommutative polynomials on Ap,.

Given u € Cls, let a* be the monomial a,,q) ... a,mx where
uw=ub /.. ,u®) is the unique factorization of u on Pj.

For & = 0110%, a09190 — 44407 agag.

If § is valley-free, then Cls is isomorphic to K (Ap,) /=, where Rs is the
associative algebra ideal of Cls generated by the set

min {a"ay : u € Cls,v € Ps, and uv ¢ Cls}.

| H
j=}
=

For§ = 0110%, Ap, = {ao,a01,a011} and a%%ag1 and a®Lag; are two nontrivial relations

of Cls (among a total of 8 nontrivial relations).
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Presentation by generators and relations

A range map ¢ is I-dominated if there is a k > 1 such that for all &’ > k,

5(1) = 8 (k).

Let 0 be a valley-free range map.

(A) If ¢ is constant, then

= o---0--

and Ap; is finite and Rs is the
zero space;

(B) Otherwise, if § is weakly
increasing, then

F= il
=

and Ap; is infinite and Rs is the
zero space;

(C) Otherwise, if § is 1-dominated,
then

0= Q*’Q\
----o---

and Ap; is finite and R is finitely
generated,;

(D) Otherwise,

o
0= 2" OO
-3

and Ap; is infinite and Rs is
infinitely generated.
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Examples — Types A and B

m Forany k > 0, Cl. is the free associative algebra over the k& + 1
generators ag, a1, ..., Q.
] Clll
m First dimensions: 1,1, 2,6, 24, 120, 720, 5040.
m First dimensions of generators: 0,1,1,3,13,71,461, 3447 ( ).

m First generators: ap, @o1, @oo2, @011, @012,  @0003, 40013, A0021,
a0022, 40023, 40102, @0103, A40111, A0112, @40113, A0121, A0122, A0123-

m Since Cl; and FQSym are both free as associative algebras and they
have the same Hilbert series, Cl; ~ FQSym.

| Clz:
m First dimensions: 1,1, 3, 15,105,945, 10395, 135135 ( ).
m First dimensions of generators: 0, 1,2, 10, 74, 706, 8162, 110410
( )-

m First generators: ap,  @o1, @02, @003, G004, A011, Q0125 G013, A014,
021, 022, 4023, A024-
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Examples — Types C and D

Cloio« ~ K {ag, a01) /Rgy0e Where Ro1o« is generated by the two
monomials agagi, ag1ao1.

Clo110+ ~ K {ag, ao1,a011) /Ro110» Where Ro110« is generated by
the eight monomials apapapl, api1adoi, ap1apdopi, api11ao1,

ap11a0@01, A0G011, 4A01@011, @0114011-

Claige ~ K{(ag, a1, a2) /Ry 00 Where Rojge is generated by the
seven monomials apapay, apaiai, ajapai, aijaijai, a2ap0a1,
a2a10a1, QoG2, 142, a202.

Clo21w =~ K(ao, ao1,a02, @011, @021, 0111, 0211, 01111, @02111; - - - ) /Rgayw
where Ry21w is generated by the infinitely many monomials agags,

@102, ap2a02, @011402, 021002, A0A021, @01Q021, Q020021,
apap2115 - --
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Quotient algebras

For any graded subset S of Cls, let Cls be the quotient space of Cls
defined by
Cls = Cl5/ys

such that Vs is the linear span of the set
{Fu Tu e C|5\S}.

By definition, the set {F, : u € S} is a basis of Cls.

The set S is closed by suffix reduction if for any u € S, for all suffixes v’ of
u,r5 (u') € S.

If 6 is valley-free and S is closed by prefix and by suffix reduction, then Cls is a
quotient of the associative algebra Cl;.
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Quotient algebra products and intervals

The associative algebra Cls has the interval condition if the support of
any product F,, - F, is empty or is an interval of a poset S(n), n > 0.

When for any n > 0, S(n) is a join semi-lattice, we denote by Vs its join
operation.

In this case, S is join-stable if, for any n > 0 and any u,v € S(n), the
relation u; = v; for an i € [n] implies that the i-th letter of u Vs v is equal
to wu;.

If § is valley-free and S is closed by prefix and by suffix reduction, and at least one
the following conditions is satisfied:

. for any n > 0, all posets S(n) are sublattices of Cls(n);

2. forany n > 0, the posets S(n) is a meet semi-sublattice of Cls(n), maximally
extendable, and join-stable;

then Cls has the interval condition.
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Hi,, algebras

let Hi,, be the quotient space Cly;_,.

Since Hin, is closed by prefix and by suffix reduction, Hi,, is an associative

algebra quotient of Cly,.

Since moreover for each n > 0, Hiy, (n) is a sublattice of Cly, (n), Hi,, has

the interval condition.

In Hi,
Fo1 - Fo1 = Fo111 + Fo112 + Fo113 + Fo122 + Fo12s,

Fo1 - Foo = 0,

Foo1 - Fo122 = Foo11122 + Foo11222 + Foo12222-

In Hio,
Fo2 - Fo2s = Fo2223 + Fo2233 + Fo233s,

Fo11 - Fo1 = Fo1111,

Foo1s - Fo14 = 0.
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Structure of Hi,, algebras

By computer exploration, minimal generating families of Hi; and His up
to degree 5 and 4 are resp.

Fo, Foo, Foo1, Fo11, Fooo2, Foo11, Foo12, Foo22, Fo112, Fo122,

Fo00003, Fooo13, Fooo23, Foooss, Foo112, Foo113, Foo122, Foo123, Foo133, Foo222,
Foo223, Foo233, Fo1113, Fo1122, Fo1123, Fo1133, Fo1223, Fo1233,

and

Fo, Foo, Fo1, Foo1, Fooz2, Foos, Fo12, Fo13, Fo2z2, Fo2s,

Fooo4, Fooos, Foo12, Foo1s, Foo14, Foo1s, Foo22, Fooz2s, Fooz4, Foo2s, Fooss, Foosa,

Foo3s, Foo44, Fooas, Fo114, Fo115, Fo122, Fo123, Fo124, Fo125, Fo133, Fo134, Fo13s,

Fo144, Fo145, Fo223, Fo224, Fo225, Fo234, Fo23s, Fo244, Fo245.

The number of minimal generators of Hi; and Hig, begin resp. by

0,1,1,2,6,18,59,196, 669,

and
0,1,2,7,33,168,900, 4980.

For any m > 1, Hi,, is not free as an associative algebra.
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Ca,, algebras

Let Ca,,, be the quotient space Clc,,,,.

Since Cay, is closed by prefix and by suffix reduction, Ca,, is an
associative algebra quotient of Clyy,.

Since moreover Cay, is maximally extendable and join-stable, and for each
n = 0, Cam(n) is a meet semi-sublattice of Cl,y, (n), Ca,, has the interval

condition.

In Caj,
Fo - Fo1 = Foo1 + Foo2 + Fo12,

Fo10 - Foo20 = Fo100020 + Fo100030 + Fo101030 + Fo100050 + Fo101050 + Fo103050

In Caz, Fo1 - Foo14 = 0,
Fo20 - Fo2 = Fo2002 + Fo2005 + Fo2006 + Fo2007 + Fo2008 + Foz2012 + Fo2015
+ Fo2016 + Fo2017 + Fo2018 + Fo2045 + Fo2046 + Fo2047 + Fo2048

+ Fo2056 + Fo2057 + Fo2058 + Fo2067 + Fo206s-
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Structure of Ca,, algebras

Ca; is isomorphic to PBT. The isomorphism sends F,, to F; where t is the
binary tree having u has Tamari diagram (notion introduced in [Pallo, 1986]).
By computer exploration, minimal generating families of Ca; and Cag up
to respectively up to degree 5 and 4 are resp.

Fo, Foo, Fooo, Foo1, Fo0000; Fooo1; Foooz2, Foo1o, Foo12,
Fo00000, Foooo1; Fooooz2, Foooos; Fooo10, Fooo12, Fooo13,; Foooz20, Fooo23: Foo1o00,

Foo101, Foo103; Foo120, Foo123,

and

Fo, Foo, Fo1, Fooo, Fooz2, Foos, Fo1o, Fo12, Fo1s, Foz23,
Fo0000, Foo03, Fooo4, Fooos, Foo14, Foo1s, Fooz20, Foo23, Foo24, Foo2s, Fooso, Foosa, Fooss,

Foo4s, Fo100, Fo104, Fo10s, Fo120, Fo124, Fo12s, Fo130, Fo134, Fo13s, Fo14s, Fo204, Fo20s,

Fo230, Fo234, Fo23s, Fo2as-
The numbers of minimal generators of Cay begins by
0,1,2,7,30,149, 788, 4332.

Cay and Ca; are free as associative algebras but Ca,,, m > 2, is not.

42/47



4. Some open questions
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Increasing trees

When §(1) = 0, d is rooted.
Given u € Cls(n) where ¢ is rooted and weakly increasing, let trees(u) be
the d-increasing tree defined recursively as follows:

m If u = ¢, then trees(u) is the leaf;

m Otherwise, u = u/a with 0 < a < d(n), and trees(u) is obtained by
grafting on the a+1-st leaf of trees (u') a node labeled by n having
14+ 8(n+1)—d(n) leaves.

For § := 0233579 and u := 021042, the trees(u) grows as follows:
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Alternative posets from increasing trees

Let 0 be a rooted and weakly increasing range map.

Let <’ be the reflexive and transitive closure of the relation <’ on Cls(n)
where u <’ v if v is obtained from u by incrementing a letter u; when all
the children of the node labeled by 7 in trees(u) are leaves excepted

possibly the first one.

(Cl1(n), ") is isomorphic to the right weak order.

0000

0001 0100 0010
The Hasse diagram  of /' N/ \/\
0011

N 0002 0101 0110
(Clo1122w (4), ") is
0102 0012 0111

N | 7

0112

For any rooted and weakly increasing range map ¢ and any n > 0, the poset
(Cls(n), <) is a lattice.
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Dune posets

Let Dus be the subset of Cls containing all J-hills that are d-cliffs u such
that for any i € [n — 1], Ju; — ui+1] < 6(¢) — 6(2 + 1)|.

Cardinalities of Du1 (n): 1, 1,2, 5,13, 35,96, 267, ...( , directed animals).
Cardinalities of Duz(n): 1,1, 3,12, 51, 226,1025,4724, ...( , some meanders
[Banderier et al., 2016]).

The Hasse diagrams of Du1 (3), Du2(3), and Du1 (4) are

Study the dune posets and their associative algebras.
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Coproducts

As already mentioned, FQSym and its subalgebras are endowed with a
coproduct.

A coproduct on a space A is a map
A A-ARA

which, intuitively, splits any element of A in two smaller parts, in several
different ways.

If (A,-) is an associative algebra, a coproduct A is compatible with - if for

all f,g € A,
A(f-9)=A()A9)

Introduce a (noncocommutative) coproduct on Cls compatible with its product.

Determine in what extent this coproduct is still well-defined on its quotients Cls.
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