Cliff posets and algebras

Samuele Giraudo

LIGM, Université Gustave Eiffel

Joint work with Camille Combe

Séminaire ALGO GREYC, Caen

April 1, 2020

Outline

- 1. Algebras and orders
- 2. Posets on cliffs

- 3. Algebras on cliffs
- 4. Some open questions

Outline

1. Algebras and orders

Malvenuto-Reutenauer algebra

The Malvenuto-Reutenauer algebra [Malvenuto, Reutenauer, 1995] $(\mathbf{FQSym}, \cdot, 1)$ is the unital associative algebra defined as follows.

- **FQSym** is the \mathbb{K} -linear span $\mathbb{K} \langle \mathfrak{S} \rangle$ of all permutations. The set $\{\mathsf{F}_{\sigma} : \sigma \in \mathfrak{S}\}$ is the fundamental basis of **FQSym**.
- is the shifted shuffle product, the associative product defined by

$$\mathsf{F}_{\sigma} \cdot \mathsf{F}_{\nu} := \sum_{\pi \in \sigma \boxtimes \nu} \mathsf{F}_{\pi}.$$

■ 1 is defined as F_{ϵ} where ϵ is the empty permutation.

- Example -

$$\begin{aligned} \mathsf{F}_{312} \cdot \mathsf{F}_{21} &= \mathsf{F}_{31254} + \mathsf{F}_{31524} + \mathsf{F}_{31542} + \mathsf{F}_{35124} + \mathsf{F}_{35142} \\ &+ \mathsf{F}_{35412} + \mathsf{F}_{53124} + \mathsf{F}_{53142} + \mathsf{F}_{53412} + \mathsf{F}_{53412} + \mathsf{F}_{53412} \end{aligned}$$

Right weak order

The right weak order is the order relation \leq on $\mathfrak{S}(n)$ defined as the reflexive and transitive closure of the relation \leq satisfying

 $uabv \leqslant ubav$

where $u, v \in \mathbb{N}^*$, and a and b are letters such that a < b.

Product of FQSym and right weak order

Let / and \setminus be the two operations on $\mathfrak S$ defined by

$$\sigma \wedge \nu := \sigma \uparrow_{|\sigma|}(\nu)$$
 and $\sigma \setminus \nu := \uparrow_{|\sigma|}(\nu) \sigma$.

- Example -

312 / 21 = 31254

- Example -

 $312 \setminus 21 = 54312$

- Proposition -

For any permutations σ and ν ,

$$\mathsf{F}_{\sigma} \cdot \mathsf{F}_{\nu} = \sum_{\substack{\pi \in \mathfrak{S} \\ \sigma / \nu \preccurlyeq \pi \preccurlyeq \sigma \searrow \nu}} \mathsf{F}_{\pi}.$$

– Example –

 $\mathsf{F}_{312} \cdot \mathsf{F}_{21}$ is the formal sum of all the F_{π} where $\pi \in [312 \ / \ 21, 312 \ \backslash \ 21] = [31254, 54312]$.

Multiplicative bases

A basis is multiplicative if the product of two basis element is a single basis element.

The right weak order can be used to build multiplicative bases of FQSym.

Let

$$\mathsf{E}_\sigma := \sum_{\substack{\nu \in \mathfrak{S} \\ \sigma \preccurlyeq \nu}} \mathsf{F}_\nu \qquad \text{and} \qquad \mathsf{H}_\sigma := \sum_{\substack{\nu \in \mathfrak{S} \\ \nu \preccurlyeq \sigma}} \mathsf{F}_\nu.$$

- Example -

$$\mathsf{E}_{4123} = \mathsf{F}_{4123} + \mathsf{F}_{4132} + \mathsf{F}_{4213} + \mathsf{F}_{4231} + \mathsf{F}_{4312} + \mathsf{F}_{4321}$$

- Proposition -

For any permutations σ and ν ,

$$\mathsf{E}_{\sigma} \cdot \mathsf{E}_{\nu} = \mathsf{E}_{\sigma / \nu}$$
 and $\mathsf{H}_{\sigma} \cdot \mathsf{H}_{\nu} = \mathsf{H}_{\sigma \setminus \nu}$.

Generators and relations

A subset $\mathcal G$ of an associative algebra $\mathcal A$ is a minimal generating set of $\mathcal A$ if the smallest subalgebra of $\mathcal A$ containing $\mathcal G$ is $\mathcal A$ itself and $\mathcal G$ is minimal for set inclusion.

A permutation σ is connected if $\sigma \neq \epsilon$ and no proper prefix of σ is a permutation.

– Example –

Example –

The permutation 43257816 is connected.

The permutation 4325176 = 43251 / 21 is not.

- Theorem [Duchamp, Hivert, Thibon, 2002] -

The set $\mathcal G$ of all $\mathsf E_\sigma$ such that σ is connected is a minimal generating set of $\mathbf F \mathbf Q \mathbf S \mathbf y \mathbf m$.

Moreover, \mathbf{FQSym} is free as a unital associative algebra and $\mathbf{FQSym} \simeq \mathbb{K} \langle \mathcal{G} \rangle$.

This is a consequence of the fact that any permutation σ decomposes in a unique way as $\sigma = \nu^{(1)} / \cdots / \nu^{(\ell)}$ where all $\nu^{(i)}$ are connected.

Subalgebras and subposets

FQSym admits a lot of subalgebras:

- FSym, the algebra of standard Young tableaux[Poirier, Reutenauer, 1995], [Duchamp, Hivert, Thibon, 2002];
- PBT, the algebra of binary trees [Loday, Ronco, 1998], [Hivert, Novelli, Thibon, 2005];
- Sym, the algebra of integer compositions
 [Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, 1995];
- Baxter, the algebra of pairs of twin binary trees [Law, Reading, 2012], [G., 2012];
- Bell, the algebra of set partitions [Rey, 2007].

Each one is constructed from a surjective map $\theta : \mathfrak{S} \to C$, where C is one of the previous sets of objects, as the subalgebra spanned by the elements

$$\mathsf{F}_x := \sum_{\substack{\sigma \in \mathfrak{S} \\ \theta(\sigma) = x}} \mathsf{F}_{\sigma}.$$

There are also posets (C, \preccurlyeq) and operations \nearrow and \searrow on C such that

$$\mathsf{F}_x \cdot \mathsf{F}_y = \sum_{\substack{z \in C \\ x \, / \, y \preccurlyeq z \preccurlyeq x \, \backslash \, y}} \mathsf{F}_z.$$

Diagram of algebras

These algebras fit into the following diagram of injective algebra morphisms:

Note that these algebras are also endowed with coproducts so that they are in fact Hopf bialgebras.

Algebra of binary trees — Tamari order

Let BT be the set of all binary trees.

It is known that $\mathrm{BT}(n)$ is in one-to-one correspondence with the set of permutations avoiding the pattern 132.

The restriction of the right weak order on these permutations is the Tamari order [Hivert, Novelli, Thibon, 2005].

Algebra of binary trees — Product

Let / and \setminus be the two operations on BT defined as follows. For any $t, s \in BT, t / s$ (resp. $t \setminus s$) is the binary tree obtained by grafting the root of t (resp. s) onto the first (resp. last) leaf of s (resp. t).

The product in **PBT** of two basis elements F_t and F_s is the formal sum of the elements of the Tamari interval $[t/s, t \setminus s]$.

Motivation: a new order on permutations

The objectives of this work are to

- 1. introduce a new order relation on permutations;
- 2. consider the analog of FQSym w.r.t. this alternative order;
- 3. try to construct a similar hierarchy of algebras.

For this, we consider an order extension of the right weak order and generalizations of permutations.

- Example -

Here are both the Hasse diagrams of the right weak order on permutations of size 3 and of the considered order extension:

Outline

2. Posets on cliffs

Cliffs and posets

A range map is a map $\delta := \mathbb{N} \setminus \{0\} \to \mathbb{N}$.

A δ -cliff of size n is a word $u \in \mathbb{N}^n$ such that for all $i \in [n]$, $0 \le u_i \le \delta(i)$.

The graded collection of all δ -cliffs is denoted by Cl_{δ} .

Let \leq be the partial order relation on each $\mathsf{Cl}_\delta(n)$ wherein $u \leq v$ if $u_i \leq v_i$ for all $i \in [n]$.

For any $m \geqslant 0$, let \mathbf{m} be the map defined by $\mathbf{m}(i) := m(i-1)$.

The posets $Cl_1(n)$ have been studied in [Denoncourt, 2013].

Lehmer codes

Let leh be the map sending any permutation σ to the 1-cliff u wherein u_i is the number of letters a at the right of i in σ such that i>a. This is a variation of the Lehmer code [Lehmer, 1960] of a permutation.

This map leh : $\mathsf{Cl}_{\mathbf{1}}(n) \to \mathfrak{S}(n)$ is a bijection.

Example –

leh(436512) = 002323

A map $\phi: \mathcal{P}_1 \to \mathcal{P}_2$ is a poset morphism if $x \preccurlyeq_1 y$ implies $\phi(x) \preccurlyeq_2 \phi(y)$.

A poset \mathcal{P}_2 is an order extension of a poset \mathcal{P}_1 if there is a bijective poset morphism $\phi: \mathcal{P}_1 \to \mathcal{P}_2$.

Proposition –

For any $n \geqslant 1$, leh is a bijective poset morphism between the right weak order $(\mathfrak{S}(n), \preccurlyeq)$ and $(\mathsf{Cl_1}(n), \preccurlyeq)$.

Subposets

The partial order $\mathsf{Cl}_\delta(n)$ has a very simple structure since

$$\mathsf{Cl}_{\delta}(n) \simeq [\delta(1) + 1] \times \cdots \times [\delta(n) + 1].$$

Its main interest lies in the fact that it contains a lot of subposets.

Let $\mathcal S$ be a subset of CI, endowed with the same componentwise order relation \preccurlyeq .

Let us introduce the following combinatorial properties. We say that ${\mathcal S}$ is

- straight if its covering relation \lessdot_S is such that when $u \lessdot_S v$ then u and v differ by exactly one letter;
- closed by prefix if for any $u \in \mathcal{S}$, all prefixes of u belong to \mathcal{S} ;
- minimally (resp. maximally) extendable if for any $u \in \mathcal{S}$, $u0 \in \mathcal{S}$ (resp. $u\delta(|u|+1) \in \mathcal{S}$).

Geometric realizations

A geometric realization of a poset $\mathcal P$ refers to a way to see $\mathcal P$ as a geometrical object in $\mathbb R^k$ for a certain $k\geqslant 0$.

Let $\mathfrak{C}(\mathcal{S}(n))$ be the geometric object on the set of points

$$\{(u_1,\ldots,u_n)\in\mathbb{R}^n:u\in\mathcal{S}(n)\}$$

where there is an edge between u and v provided that $u \lessdot_{\mathcal{S}} v$.

When S is straight, each edge is parallel to a line passing by the origin and a point of the form $(0, \ldots, 0, 1, 0, \ldots, 0)$. In this case, we call $\mathfrak{C}(S(n))$ the cubic realization of S(n).

This realization raises the following questions.

- 1. Describe the general shape of $\mathfrak{C}(\mathcal{S}(n))$;
- 2. Count the cells of $\mathfrak{C}(\mathcal{S}(n))$ of a given dimension;
- 3. Compute the volume $\operatorname{vol}\left(\mathfrak{C}(\mathcal{S}(n))\right)$ of $\mathfrak{C}(\mathcal{S}(n))$.

Hill posets

Let Hi_{δ} be the subset of Cl_{δ} containing all δ -hills that are weakly increasing δ -cliffs.

The posets Hi₁ are the Stanley lattices [Stanley, 1975].

Properties of Hill posets

- When δ is weakly increasing, all $Hi_{\delta}(n)$ are sublattices of $CI_{\delta}(n)$.
- For any $m \ge 0$ and $n \ge 0$, the cardinality of $\operatorname{Hi}_{\mathbf{m}}(n)$ is the n-th m-Fuss-Catalan number

$$\operatorname{cat}_{m}(n) = \frac{1}{mn+1} \binom{mn+n}{n}.$$

- For any $n \ge 0$, $\text{Hi}_{\delta}(n)$ is EL-shellable.
- When δ is weakly increasing, all $\operatorname{Hi}_{\delta}(n)$ are constructible by interval doubling.
- For any $m \ge 1$ and $n \ge 0$, the realization $\mathfrak{C}(\mathsf{Hi}_{\mathbf{m}}(n))$ is cubic, has dimension n-1, and satisfies

$$\operatorname{vol}\left(\mathfrak{C}\left(\operatorname{\mathsf{Hi}}_{\mathbf{m}}(n)\right)\right) = \operatorname{cat}_{m-1}(n).$$

Canyon posets

Let Ca_δ be the subset of Cl_δ containing all δ -canyons that are δ -cliffs u such that $u_{i-j}\leqslant u_i-j$, for all $i\in[|u|]$ and $j\in[u_i]$ satisfying $i-j\geqslant 1$.

– Example –

A 2-canyon of size 15:

– Example –

A 2-cliff of size 15 which is not a 2-canyon:

- Example -

The Hasse diagrams of $Ca_1(3)$, $Ca_2(3)$, and $Ca_1(4)$ are

Properties of Canyon posets

- The posets Ca₁ are the Tamari lattices [Tamari, 1962].
- For any $m \ge 0$, $\#\mathsf{Ca}_{\mathbf{m}}(n) = \mathsf{cat}_m(n)$.
- When δ is increasing, all $\mathsf{Ca}_{\delta}(n)$ are lattices but not sublattices of $\mathsf{Cl}_{\delta}(n)$.

- Example -

In Ca₂, there is an algorithm to compute the join:

$$0124010 \lor 0205001 = (0225011)' = 0235012$$

- For any $n \ge 0$, $Ca_{\delta}(n)$ is EL-shellable.
- When δ is increasing, all $Ca_{\delta}(n)$ are constructible by interval doubling.
- For any $m \ge 1$ and $n \ge 0$, the realization $\mathfrak{C}(\mathsf{Ca_m}(n))$ is cubic, has dimension n-1, and satisfies

$$\operatorname{vol}\left(\mathfrak{C}\left(\mathsf{Ca}_{\mathbf{m}}(n)\right)\right) = \operatorname{vol}\left(\mathfrak{C}\left(\mathsf{Cl}_{\mathbf{m}}(n)\right)\right) = m^{n-1}(n-1)!.$$

Constructibility by interval doubling

Sequence of interval contractions (reverse of interval doubling) from ${\sf Ca_2}(4)$ to ${\sf Ca_2}(3)$:

Interactions between canyon and hill posets

- Proposition -

For any $m \ge 1$ and $n \ge 0$, there is a poset embedding from $\operatorname{Hi}_{\mathbf{m}-1}(n)$ to $\operatorname{Ca}_{\mathbf{m}}(n)$.

Interactions between canyon and hill posets

- Theorem -

For any $m\geqslant 1$ and $n\geqslant 0$, there is a bijective poset morphism from ${\sf Ca_m}(n)$ to ${\sf Hi_m}(n)$.

- Example -

Bijective morphism from $Ca_3(3)$ to $Hi_3(3)$:

Outline

3. Algebras on cliffs

Algebras on cliffs

Let \mathbf{Cl}_{δ} be the \mathbb{K} -linear span of all δ -cliffs.

The set $\{F_u : u \in Cl_{\delta}\}$ is a basis of Cl_{δ} .

Let $r_{\delta}: \mathbb{N}^n \to \mathsf{Cl}_{\delta}(n)$ be the δ -reduction map defined for any $u \in \mathbb{N}^n$ and $i \in [n]$ by $(r_{\delta}(u))_i := \min\{u_i, \delta(i)\}$.

- Example -

 $r_1(212066) = 012045$

– Example –

 $r_2(212066) = 012066$

Let \cdot be the product on \mathbf{Cl}_{δ} defined by

$$\mathsf{F}_u \cdot \mathsf{F}_v := \sum_{\substack{uv' \in \mathsf{Cl}_\delta \\ \mathsf{r}_\delta\left(v'\right) = v}} \mathsf{F}_{uv'}.$$

– Example –

In Cl₁,

 $\mathsf{F}_{00} \cdot \mathsf{F}_{011} = \mathsf{F}_{00011} + \mathsf{F}_{00021} + \mathsf{F}_{00031} + \mathsf{F}_{00111} + \mathsf{F}_{00121} + \mathsf{F}_{00131} + \mathsf{F}_{00211} + \mathsf{F}_{00221} + \mathsf{F}_{00231}.$

Associativity

In general, the product of \mathbf{Cl}_{δ} is not associative.

– Example –

For $\delta := 102^{\omega}$, we have

$$(\mathsf{F}_1 \cdot \mathsf{F}_0) \cdot \mathsf{F}_1 = \mathsf{F}_{10} \cdot \mathsf{F}_1 = \mathsf{F}_{101} + \mathsf{F}_{102}$$

and

$$\mathsf{F}_1\cdot(\mathsf{F}_0\cdot\mathsf{F}_1)=\mathsf{F}_1\cdot 0=0.$$

A range map is valley-free (or unimodal) if there is no $i_1 \leqslant i_2 \leqslant i_3$ such that $\delta(i_1) > \delta(i_2) < \delta(i_3)$.

- Theorem -

The product \cdot of \mathbf{Cl}_{δ} is associative iff δ is a valley-free range map.

Over and under operations

Let

$$/: \mathbb{N}^n \times \mathbb{N}^m \to \mathbb{N}^{n+m}$$
 and $: \mathbb{N}^n \times \mathbb{N}^m \to \mathbb{N}^{n+m}$,

be the two operations defined by $u \,\diagup\, v := uv$ and $u \,\diagdown\, v := uv'$ where v' is the word of length |v| satisfying, for any $i \in [|v|]$,

$$v_i' = \begin{cases} \delta(|u|+i) & \text{if } v_i = \delta(i), \\ v_i & \text{otherwise.} \end{cases}$$

- Example -

For $\delta = 112334^{\omega}$, 010 / 1021 = 0101021 and $010 \setminus 1021 = 0103041$.

– Example –

For $\delta = 210^{\omega}$, $21 \setminus 11 = 2110$. This word is not a δ -cliff.

Product and cliff posets

For $w \in \mathbb{N}^*$, let $\chi_{\delta}(w)$ defined as $1 \in \mathbb{K}$ if w is a δ -cliff and as $0 \in \mathbb{K}$ otherwise.

- Theorem -

For any $u, v \in \mathsf{Cl}_{\delta}$, we have in Cl_{δ} ,

$$\mathsf{F}_{u} \cdot \mathsf{F}_{v} = \chi_{\delta} \left(u / v \right) \sum_{\substack{w \in \mathsf{Cl}_{\delta} \\ u / v \preccurlyeq w \preccurlyeq u \setminus v}} \mathsf{F}_{w}.$$

- Example -

In Cl_{01120}^{ω} , since $01/010 = 01010 \in Cl_{01120}^{\omega}$,

$$\mathsf{F}_{01} \cdot \mathsf{F}_{010} = \mathsf{F}_{01010} + \mathsf{F}_{01020} + \mathsf{F}_{01110} + \mathsf{F}_{01120}.$$

– Example –

In $Cl_{01120}\omega$, since $01/011 = 01011 \notin Cl_{01120}\omega$,

$$F_{01} \cdot F_{011} = 0.$$

Multiplicative bases

Let

$$\mathsf{E}_u := \sum_{\substack{v \in \mathsf{Cl}_\delta \\ u \preccurlyeq v}} \mathsf{F}_v \qquad \text{and} \qquad \mathsf{H}_u := \sum_{\substack{v \in \mathsf{Cl}_\delta \\ v \preccurlyeq u}} \mathsf{F}_v.$$

- Examples -

For $\delta := 1021^{\omega}$,

$$\mathsf{E}_{10010} = \mathsf{F}_{10010} + \mathsf{F}_{10011} + \mathsf{F}_{10110} + \mathsf{F}_{10111} + \mathsf{F}_{10210} + \mathsf{F}_{10211},$$

and

$$\mathsf{H}_{10010} = \mathsf{F}_{10010} + \mathsf{F}_{10000} + \mathsf{F}_{00010} + \mathsf{F}_{00000}.$$

By triangularity, $\{E_u : u \in Cl_{\delta}\}$ and $\{H_u : u \in Cl_{\delta}\}$ are bases of Cl_{δ} .

- Proposition -

For any $u, v \in \mathsf{Cl}_{\delta}$, we have in Cl_{δ} ,

$$\mathsf{E}_u \cdot \mathsf{E}_v = \chi_\delta \left(u \mathop{/} v \right) \mathsf{E}_{u \mathop{/} v} \qquad \text{and} \qquad \mathsf{H}_u \cdot \mathsf{H}_v = \mathsf{H}_{\mathsf{r}_\delta \left(u \mathop{\backslash} v \right)}.$$

Minimal generating set

A nonempty δ -cliff u is δ -prime if the decomposition $u=v \not w$ with $v,w \in \mathsf{Cl}_\delta$ implies $(v,w) \in \{(\epsilon,u),(u,\epsilon)\}.$

The set of all these elements is denoted by \mathcal{P}_{δ} .

Examples –

Let $\delta := 021^{\omega}$.

The δ -cliffs 0, 01, and 021111 are δ -prime.

The $\delta\text{-cliff}\,0210=021\,/\,0$ is not.

– Lemma –

Any nonempty δ -cliff admits exactly one suffix which is δ -prime.

- Proposition -

The set $\{E_u : u \in \mathcal{P}_{\delta}\}$ is a minimal generating set of the magmatic algebra Cl_{δ} .

This is a consequence of the fact that, by the previous lemma, any δ -cliff decomposes as a **fully bracketed** expression on the described set of elements.

Nontrivial relations

Let the alphabet $\mathbb{A}_{\mathcal{P}_{\delta}} := \{a_u : u \in \mathcal{P}_{\delta}\}$ and $\mathbb{K} \langle \mathbb{A}_{\mathcal{P}_{\delta}} \rangle$ be the algebra of noncommutative polynomials on $\mathbb{A}_{\mathcal{P}_{\delta}}$.

Given $u \in \operatorname{Cl}_{\delta}$, let a^u be the monomial $a_{u^{(1)}} \dots a_{u^{(k)}}$ where $u = u^{(1)} / \dots / u^{(k)}$ is the unique factorization of u on \mathcal{P}_{δ} .

– Example –

For $\delta = 0110^{\omega}$, $a^{00100} = a_0 a_{01} a_0 a_0$.

- Theorem -

If δ is valley-free, then \mathbf{Cl}_{δ} is isomorphic to $\mathbb{K}\left\langle \mathbb{A}_{\mathcal{P}_{\delta}}\right\rangle /_{\mathcal{R}_{\delta}}$ where \mathcal{R}_{δ} is the associative algebra ideal of \mathbf{Cl}_{δ} generated by the set

$$\min_{\leq_{\mathbf{x}}} \left\{ a^u a_v : u \in \mathsf{Cl}_{\delta}, v \in \mathcal{P}_{\delta}, \text{ and } uv \notin \mathsf{Cl}_{\delta} \right\}.$$

- Example -

For $\delta=0110^{\omega}$, $\mathbb{A}_{\mathcal{P}_{\delta}}=\{a_0,a_{01},a_{011}\}$ and $a^{00}a_{01}$ and $a^{01}a_{01}$ are two nontrivial relations of \mathbf{Cl}_{δ} (among a total of 8 nontrivial relations).

Presentation by generators and relations

A range map δ is 1-dominated if there is a $k \geqslant 1$ such that for all $k' \geqslant k$, $\delta(1) \geqslant \delta(k')$.

- Proposition -

Let δ be a valley-free range map.

(A) If δ is constant, then

$$\delta = 0$$

and $\mathbb{A}_{\mathcal{P}_{\delta}}$ is finite and \mathcal{R}_{δ} is the zero space;

(B) Otherwise, if δ is weakly increasing, then

$$\delta = \inf_{\text{official}}$$

and $\mathbb{A}_{\mathcal{P}_{\delta}}$ is infinite and \mathcal{R}_{δ} is the zero space;

(C) Otherwise, if δ is 1-dominated, then

$$\delta = \delta$$

and $\mathbb{A}_{\mathcal{P}_{\delta}}$ is finite and \mathcal{R}_{δ} is finitely generated;

(D) Otherwise,

$$\delta = \text{ for all }$$

and $\mathbb{A}_{\mathcal{P}_{\delta}}$ is infinite and \mathcal{R}_{δ} is infinitely generated.

Examples — Types A and B

■ For any $k \ge 0$, $\mathbf{Cl}_{k^{\omega}}$ is the free associative algebra over the k+1 generators a_0, a_1, \ldots, a_k .

■ Cl₁:

- First dimensions: 1, 1, 2, 6, 24, 120, 720, 5040.
- \blacksquare First dimensions of generators: 0, 1, 1, 3, 13, 71, 461, 3447 (A003319).
- First generators: a_0 , a_{01} , a_{002} , a_{011} , a_{012} , a_{0003} , a_{0013} , a_{0021} , a_{0022} , a_{0023} , a_{0102} , a_{0103} , a_{0111} , a_{0112} , a_{0113} , a_{0121} , a_{0122} , a_{0123} .
- Since Cl_1 and FQSym are both free as associative algebras and they have the same Hilbert series, $Cl_1 \simeq FQSym$.

■ Cl₂:

- First dimensions: 1, 1, 3, 15, 105, 945, 10395, 135135 (A001147).
- First dimensions of generators: 0, 1, 2, 10, 74, 706, 8162, 110410 (A000698).
- First generators: a_0 , a_{01} , a_{02} , a_{003} , a_{004} , a_{011} , a_{012} , a_{013} , a_{014} , a_{021} , a_{022} , a_{023} , a_{024} .

Examples — Types C and D

- $\mathbf{Cl}_{010^{\omega}} \simeq \mathbb{K} \langle a_0, a_{01} \rangle /_{\mathcal{R}_{010^{\omega}}}$ where $\mathcal{R}_{010^{\omega}}$ is generated by the two monomials a_0a_{01} , $a_{01}a_{01}$.
- $\mathbf{Cl}_{0110^{\omega}} \simeq \mathbb{K} \langle a_0, a_{01}, a_{011} \rangle / \mathcal{R}_{0110^{\omega}}$ where $\mathcal{R}_{0110^{\omega}}$ is generated by the eight monomials $a_0a_0a_{01}$, $a_{01}a_{01}$, $a_{01}a_0a_{01}$, $a_{011}a_{01}$, $a_{011}a_{011}$, $a_{011}a_{011}$, $a_{011}a_{011}$.
- $\mathbf{Cl}_{210^{\omega}} \simeq \mathbb{K} \langle a_0, a_1, a_2 \rangle /_{\mathcal{R}_{210^{\omega}}}$ where $\mathcal{R}_{210^{\omega}}$ is generated by the seven monomials $a_0a_0a_1$, $a_0a_1a_1$, $a_1a_0a_1$, $a_1a_1a_1$, $a_2a_0a_1$, $a_2a_1a_1$, a_0a_2 , a_1a_2 , a_2a_2 .
- Cl₀₂₁ $\omega \simeq \mathbb{K} \langle a_0, a_{01}, a_{02}, a_{011}, a_{021}, a_{0111}, a_{0211}, a_{01111}, a_{02111}, \dots \rangle / \mathcal{R}_{021\omega}$ where $\mathcal{R}_{021^{\omega}}$ is generated by the infinitely many monomials a_0a_{02} , $a_{01}a_{02}$, $a_{02}a_{02}$, $a_{011}a_{02}$, $a_{021}a_{02}$, $a_{02}a_{021}$, $a_{02}a_{021}$, $a_{02}a_{021}$, $a_{02}a_{021}$, ...

Quotient algebras

For any graded subset $\mathcal S$ of \rm Cl_{δ} , let $\text{\rm Cl}_{\mathcal S}$ be the quotient space of \rm Cl_{δ} defined by

$$\mathbf{Cl}_{\mathcal{S}} := \mathbf{Cl}_{\delta}/_{\mathcal{V}_{\mathcal{S}}}$$

such that $\mathcal{V}_{\mathcal{S}}$ is the linear span of the set

$$\{\mathsf{F}_u: u \in \mathsf{Cl}_\delta \setminus \mathcal{S}\}$$
.

By definition, the set $\{F_u : u \in \mathcal{S}\}$ is a basis of $\mathbf{Cl}_{\mathcal{S}}$.

The set S is closed by suffix reduction if for any $u \in S$, for all suffixes u' of $u, r_{\delta}(u') \in S$.

- Proposition -

If δ is valley-free and $\mathcal S$ is closed by prefix and by suffix reduction, then $\mathbf{Cl}_{\mathcal S}$ is a quotient of the associative algebra \mathbf{Cl}_{δ} .

Quotient algebra products and intervals

The associative algebra $\mathbf{Cl}_{\mathcal{S}}$ has the interval condition if the support of any product $\mathsf{F}_u \cdot \mathsf{F}_v$ is empty or is an interval of a poset $\mathcal{S}(n), n \geqslant 0$.

When for any $n\geqslant 0,$ $\mathcal{S}(n)$ is a join semi-lattice, we denote by $\vee_{\mathcal{S}}$ its join operation.

In this case, $\mathcal S$ is join-stable if, for any $n\geqslant 0$ and any $u,v\in \mathcal S(n)$, the relation $u_i=v_i$ for an $i\in [n]$ implies that the i-th letter of $u\vee_{\mathcal S} v$ is equal to u_i .

- Theorem -

If δ is valley-free and S is closed by prefix and by suffix reduction, and at least one the following conditions is satisfied:

- 1. for any $n \ge 0$, all posets S(n) are sublattices of $Cl_{\delta}(n)$;
- 2. for any $n \ge 0$, the posets S(n) is a meet semi-sublattice of $Cl_{\delta}(n)$, maximally extendable, and join-stable;

then Cls has the interval condition.

\mathbf{Hi}_m algebras

let \mathbf{Hi}_m be the quotient space $\mathbf{Cl}_{\mathsf{Hi}_m}$.

Since Hi_m is closed by prefix and by suffix reduction, Hi_m is an associative algebra quotient of Cl_m .

Since moreover for each $n \geqslant 0$, $\operatorname{Hi}_{\mathbf{m}}(n)$ is a sublattice of $\operatorname{Cl}_{\mathbf{m}}(n)$, Hi_m has the interval condition.

- Examples -

In
$$\mathbf{Hi}_1$$
,

$$\begin{split} F_{01} \cdot F_{01} &= F_{0111} + F_{0112} + F_{0113} + F_{0122} + F_{0123}, \\ F_{01} \cdot F_{00} &= 0, \\ F_{001} \cdot F_{0122} &= F_{0011122} + F_{0011222} + F_{0012222}. \end{split}$$

- Examples -

In
$$\mathbf{Hi}_2$$
,

$$\begin{split} \mathsf{F}_{02} \cdot \mathsf{F}_{023} &= \mathsf{F}_{02223} + \mathsf{F}_{02233} + \mathsf{F}_{02333}, \\ \mathsf{F}_{011} \cdot \mathsf{F}_{01} &= \mathsf{F}_{01111}, \\ \mathsf{F}_{0015} \cdot \mathsf{F}_{014} &= 0. \end{split}$$

Structure of \mathbf{Hi}_m algebras

By computer exploration, minimal generating families of ${\bf Hi_1}$ and ${\bf Hi_2}$ up to degree 5 and 4 are resp.

```
\begin{aligned} \mathsf{F}_0, \quad & \mathsf{F}_{00}, \quad & \mathsf{F}_{001}, \mathsf{F}_{011}, \quad & \mathsf{F}_{0002}, \mathsf{F}_{0011}, \mathsf{F}_{0012}, \mathsf{F}_{0022}, \mathsf{F}_{0112}, \mathsf{F}_{0122}, \\ & \mathsf{F}_{00003}, \mathsf{F}_{00013}, \mathsf{F}_{00023}, \mathsf{F}_{00033}, \mathsf{F}_{00112}, \mathsf{F}_{00113}, \mathsf{F}_{00122}, \mathsf{F}_{00123}, \mathsf{F}_{00133}, \mathsf{F}_{00222}, \\ & \quad & \mathsf{F}_{00223}, \mathsf{F}_{00233}, \mathsf{F}_{01113}, \mathsf{F}_{01122}, \mathsf{F}_{01123}, \mathsf{F}_{01133}, \mathsf{F}_{01223}, \mathsf{F}_{01233}, \end{aligned}
```

and

```
\begin{split} F_0, \quad F_{00}, F_{01}, \quad F_{001}, F_{002}, F_{003}, F_{012}, F_{013}, F_{022}, F_{023}, \\ F_{0004}, F_{0005}, F_{0012}, F_{0013}, F_{0014}, F_{0015}, F_{0022}, F_{0023}, F_{0024}, F_{0025}, F_{0033}, F_{0034}, \\ F_{0035}, F_{0044}, F_{0045}, F_{0114}, F_{0115}, F_{0122}, F_{0123}, F_{0124}, F_{0125}, F_{0133}, F_{0134}, F_{0135}, \\ F_{0144}, F_{0145}, F_{0223}, F_{0224}, F_{0225}, F_{0234}, F_{0235}, F_{0244}, F_{0245}. \end{split}
```

The number of minimal generators of \mathbf{Hi}_1 and \mathbf{Hi}_2 , begin resp. by

and

For any $m \ge 1$, Hi_m is not free as an associative algebra.

\mathbf{Ca}_m algebras

Let Ca_m be the quotient space Cl_{Ca_m} .

Since Ca_m is closed by prefix and by suffix reduction, Ca_m is an associative algebra quotient of Cl_m .

Since moreover $\mathsf{Ca_m}$ is maximally extendable and join-stable, and for each $n \geqslant 0$, $\mathsf{Ca_m}(n)$ is a meet semi-sublattice of $\mathsf{Cl_m}(n)$, Ca_m has the interval condition.

Examples –

In Ca1,

$$F_0 \cdot F_{01} = F_{001} + F_{002} + F_{012}$$

 $\mathsf{F}_{010} \cdot \mathsf{F}_{0020} = \mathsf{F}_{0100020} + \mathsf{F}_{0100030} + \mathsf{F}_{0101030} + \mathsf{F}_{0100050} + \mathsf{F}_{0101050} + \mathsf{F}_{0103050}$

– Examples –

In Ca₂,
$$\begin{aligned} F_{01} \cdot F_{0014} &= 0, \\ F_{020} \cdot F_{02} &= F_{02002} + F_{02005} + F_{02006} + F_{02007} + F_{02008} + F_{02012} + F_{02015} \\ &+ F_{02016} + F_{02017} + F_{02018} + F_{02045} + F_{02046} + F_{02047} + F_{02048} \\ &+ F_{02056} + F_{02057} + F_{02058} + F_{02067} + F_{02068}. \end{aligned}$$

Structure of Ca_m algebras

 \mathbf{Ca}_1 is isomorphic to \mathbf{PBT} . The isomorphism sends \mathbf{F}_u to $\mathbf{F}_{\mathbf{t}}$ where \mathbf{t} is the binary tree having u has Tamari diagram (notion introduced in [Pallo, 1986]).

By computer exploration, minimal generating families of \mathbf{Ca}_1 and \mathbf{Ca}_2 up to respectively up to degree 5 and 4 are resp.

```
\begin{aligned} F_0, \quad F_{00}, \quad F_{000}, F_{0001}, \quad F_{0000}, F_{0001}, F_{0002}, F_{0010}, F_{0012}, \\ F_{00000}, F_{00001}, F_{00002}, F_{00003}, F_{00010}, F_{00012}, F_{00013}, F_{00020}, F_{00023}, F_{00100}, \\ F_{00101}, F_{00103}, F_{00120}, F_{00123}, F_{00123}, F_{00120}, F_{00123}, F_{00120}, F_{00123}, F_{00120}, F_{00123}, F_{00120}, F_{00123}, F_{00120}, F_{00123}, F_{00120}, F_{
```

and

```
\begin{aligned} &F_{00}, &F_{00},F_{01}, &F_{0000},F_{002},F_{003},F_{010},F_{012},F_{013},F_{023}, \\ &F_{0000},F_{0003},F_{0004},F_{0005},F_{0014},F_{0015},F_{0020},F_{0023},F_{0024},F_{0025},F_{0030},F_{0034},F_{0035}, \\ &F_{0045},F_{0100},F_{0104},F_{0105},F_{0120},F_{0124},F_{0125},F_{0130},F_{0134},F_{0135},F_{0145},F_{0204},F_{0205}, \\ &&F_{0230},F_{0234},F_{0235},F_{0245}. \end{aligned}
```

The numbers of minimal generators of Ca_2 begins by

 Ca_0 and Ca_1 are free as associative algebras but Ca_m , $m \ge 2$, is not.

Outline

4. Some open questions

Increasing trees

When $\delta(1) = 0$, δ is rooted.

Given $u \in \mathsf{Cl}_{\delta}(n)$ where δ is rooted and weakly increasing, let $\mathsf{tree}_{\delta}(u)$ be the δ -increasing tree defined recursively as follows:

- If $u = \epsilon$, then $\operatorname{tree}_{\delta}(u)$ is the leaf;
- Otherwise, u=u'a with $0 \leqslant a \leqslant \delta(n)$, and $\mathrm{tree}_{\delta}(u)$ is obtained by grafting on the a+1-st leaf of $\mathrm{tree}_{\delta}\left(u'\right)$ a node labeled by n having $1+\delta(n+1)-\delta(n)$ leaves.

- Example -

For $\delta:=0233579^\omega$ and u:=021042, the $\mathrm{tree}_\delta(u)$ grows as follows:

Alternative posets from increasing trees

Let δ be a rooted and weakly increasing range map.

Let \preccurlyeq' be the reflexive and transitive closure of the relation \lessdot' on $\mathsf{Cl}_\delta(n)$ where $u \lessdot' v$ if v is obtained from u by incrementing a letter u_i when all the children of the node labeled by i in $\mathrm{tree}_\delta(u)$ are leaves excepted possibly the first one.

- Examples -

 $(\mathsf{Cl_1}(n), \preccurlyeq')$ is isomorphic to the right weak order.

The Hasse diagram of $(\operatorname{Cl}_{01122^{\omega}}(4), \preccurlyeq')$ is

– Conjecture –

For any rooted and weakly increasing range map δ and any $n \geqslant 0$, the poset $(\mathsf{Cl}_\delta(n), \preccurlyeq')$ is a lattice.

Dune posets

Let Du_δ be the subset of Cl_δ containing all δ -hills that are δ -cliffs u such that for any $i \in [n-1], |u_i-u_{i+1}| \leqslant |\delta(i)-\delta(i+1)|$.

Cardinalities of $Du_1(n)$: 1, 1, 2, 5, 13, 35, 96, 267, ... (A005773, directed animals).

Cardinalities of $Du_2(n)$: 1, 1, 3, 12, 51, 226, 1025, 4724, ... (A180898, some meanders [Banderier et al., 2016]).

- Example -

The Hasse diagrams of $Du_1(3)$, $Du_2(3)$, and $Du_1(4)$ are

Project -

Study the dune posets and their associative algebras.

Coproducts

As already mentioned, \mathbf{FQSym} and its subalgebras are endowed with a coproduct.

A coproduct on a space \mathcal{A} is a map

$$\Delta: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$$

which, intuitively, splits any element of ${\cal A}$ in two smaller parts, in several different ways.

If (A, \cdot) is an associative algebra, a coproduct Δ is compatible with \cdot if for all $f, g \in \mathcal{A}$,

$$\Delta\left(f\cdot g\right)=\Delta(f)\Delta(g).$$

- Question -

Introduce a (noncocommutative) coproduct on \mathbf{Cl}_{δ} compatible with its product. Determine in what extent this coproduct is still well-defined on its quotients $\mathbf{Cl}_{\mathcal{S}}$.