Associative algebras of cliffs

Samuele Giraudo

LIGM, Université Gustave Eiffel

Joint work with Camille Combe

Séminaire Talgo DI ENS, Paris

April 24, 2020

Outline

1. Algebras and orders

2. Algebras on cliffs

3. Some open questions

Outline

1. Algebras and orders

Malvenuto-Reutenauer algebra

The Malvenuto-Reutenauer algebra [Malvenuto, Reutenauer, 1995] ($\mathbf{FQSym}, \cdot, 1$) is the unital associative algebra defined as follows.

■ **FQSym** is the \mathbb{K} -linear span $\mathbb{K}\langle\mathfrak{S}\rangle$ of all permutations. The set $\{\mathsf{F}_{\sigma}: \sigma \in \mathfrak{S}\}$ is the fundamental basis of **FQSym**.

– Example –

The linear combination $\frac{1}{2}\mathsf{F}_{312}-\mathsf{F}_{43512}+2\mathsf{F}_{\epsilon}-\mathsf{F}_{21}$ is an element of \mathbf{FQSym} .

• is the shifted shuffle product, the associative product defined by

$$\mathsf{F}_{\sigma} \cdot \mathsf{F}_{\nu} := \sum_{\pi \in \sigma \boxtimes \nu} \mathsf{F}_{\pi}.$$

■ 1 is defined as F_{ϵ} where ϵ is the empty permutation.

Example –

$$\begin{aligned} \mathsf{F}_{312} \cdot \mathsf{F}_{21} &= \mathsf{F}_{31254} + \mathsf{F}_{31524} + \mathsf{F}_{31542} + \mathsf{F}_{35124} + \mathsf{F}_{35142} \\ &+ \mathsf{F}_{35412} + \mathsf{F}_{53124} + \mathsf{F}_{53142} + \mathsf{F}_{53412} + \mathsf{F}_{54312} \end{aligned}$$

Right weak order

The right weak order is the order relation \leq on $\mathfrak{S}(n)$ defined as the reflexive and transitive closure of the relation \leq satisfying

$$u \mathsf{ab} v \lessdot u \mathsf{ba} v$$

where $u, v \in \mathbb{N}^*$, and a and b are letters such that a < b.

- Example -

Since $41352 \lessdot 41532 \lessdot 45132 \lessdot 45312$, one has $41352 \preccurlyeq 45312$.

– Example –

Hasse diagram of $(\mathfrak{S}(4), \preccurlyeq)$:

Product of FQSym and right weak order

Let / and \setminus be the two operations on \mathfrak{S} defined by

$$\sigma \wedge \nu := \sigma \uparrow_{|\sigma|}(\nu)$$
 and $\sigma \setminus \nu := \uparrow_{|\sigma|}(\nu) \sigma$.

- Example -

312 / 21 = 31254

- Example -

 $312 \setminus 21 = 54312$

- Proposition -

For any permutations σ and ν ,

$$\mathsf{F}_{\sigma} \cdot \mathsf{F}_{\nu} = \sum_{\substack{\pi \in \mathfrak{S} \\ \sigma / \nu \preccurlyeq \pi \preccurlyeq \sigma \searrow \nu}} \mathsf{F}_{\pi}.$$

– Example –

 $\mathsf{F}_{312} \cdot \mathsf{F}_{21}$ is the formal sum of all the F_{π} where $\pi \in [312 \ / \ 21, 312 \ \backslash \ 21] = [31254, 54312]$.

Multiplicative bases

A basis is multiplicative if the product of two basis element is a single basis element.

The right weak order can be used to build multiplicative bases of FQSym.

Let

$$\mathsf{E}_\sigma := \sum_{\substack{\nu \in \mathfrak{S} \\ \sigma \preccurlyeq \nu}} \mathsf{F}_\nu \qquad \text{and} \qquad \mathsf{H}_\sigma := \sum_{\substack{\nu \in \mathfrak{S} \\ \nu \preccurlyeq \sigma}} \mathsf{F}_\nu.$$

- Example -

$$\mathsf{E}_{4123} = \mathsf{F}_{4123} + \mathsf{F}_{4132} + \mathsf{F}_{4213} + \mathsf{F}_{4231} + \mathsf{F}_{4312} + \mathsf{F}_{4321}$$

- Proposition -

For any permutations σ and ν ,

$$\mathsf{E}_{\sigma} \cdot \mathsf{E}_{\nu} = \mathsf{E}_{\sigma / \nu}$$
 and $\mathsf{H}_{\sigma} \cdot \mathsf{H}_{\nu} = \mathsf{H}_{\sigma \setminus \nu}$.

Generators and relations

A subset $\mathcal G$ of an associative algebra $\mathcal A$ is a minimal generating set of $\mathcal A$ if the smallest subalgebra of $\mathcal A$ containing $\mathcal G$ is $\mathcal A$ itself and $\mathcal G$ is minimal for set inclusion.

A permutation σ is connected if $\sigma \neq \epsilon$ and no proper prefix of σ is a permutation.

– Example –

– Example –

The permutation 43257816 is connected.

The permutation 4325176 = 43251 / 21 is not.

- Theorem [Duchamp, Hivert, Thibon, 2002] -

The set \mathcal{G} of all E_σ such that σ is connected is a minimal generating set of \mathbf{FQSym} .

Moreover, \mathbf{FQSym} is free as a unital associative algebra and $\mathbf{FQSym} \simeq \mathbb{K}\langle \mathcal{G} \rangle$.

This is a consequence of the fact that any permutation σ decomposes in a unique way as $\sigma = \nu^{(1)} / \cdots / \nu^{(\ell)}$ where all $\nu^{(i)}$ are connected.

Subalgebras and subposets

FQSym admits a lot of subalgebras:

- FSym, the algebra of standard Young tableaux[Poirier, Reutenauer, 1995], [Duchamp, Hivert, Thibon, 2002];
- PBT, the algebra of binary trees [Loday, Ronco, 1998], [Hivert, Novelli, Thibon, 2005];
- Sym, the algebra of integer compositions
 [Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, 1995];
- Baxter, the algebra of pairs of twin binary trees [Law, Reading, 2012], [G., 2012];
- Bell, the algebra of set partitions [Rey, 2007].

Each one is constructed from a surjective map $\theta : \mathfrak{S} \to C$, where C is one of the previous sets of objects, as the subalgebra spanned by the elements

$$\mathsf{F}_x := \sum_{\substack{\sigma \in \mathfrak{S} \\ \theta(\sigma) = x}} \mathsf{F}_{\sigma}.$$

There are also posets (C, \preccurlyeq) and operations \nearrow and \searrow on C such that

$$\mathsf{F}_x \cdot \mathsf{F}_y = \sum_{\substack{z \in C \\ x \, / \, y \preccurlyeq z \preccurlyeq x \, \backslash \, y}} \mathsf{F}_z.$$

Diagram of algebras

These algebras fit into the following diagram of injective algebra morphisms:

Note that these algebras are also endowed with coproducts so that they are in fact Hopf bialgebras.

Algebra of binary trees — Construction

Let $\theta: \mathfrak{S} \to \mathrm{BT}$ be the right to left insertion algorithm in binary search trees.

- Theorem [Hivert, Novelli, Thibon, 2005] -

The family $\{F_t : t \in \mathrm{BT}\}$ where

$$\mathsf{F}_{\mathsf{t}} := \sum_{\substack{\sigma \in \mathfrak{S} \\ \theta(\sigma) = \mathsf{t}}} \mathsf{F}_{\sigma}$$

span a subalgebra of FQSym.

– Example –

- Example -

$$\mathsf{F} = \mathsf{F}_{2143} + \mathsf{F}_{2413} + \mathsf{F}_{4213}$$

Algebra of binary trees — Tamari order

Let BT be the set of all binary trees.

It is known that $\mathrm{BT}(n)$ is in one-to-one correspondence with the set of permutations avoiding the pattern 132.

The restriction of the right weak order on these permutations is the Tamari order [Tamari, 1962], [Hivert, Novelli, Thibon, 2005].

Algebra of binary trees — Product

For any $t, s \in BT$, $t \not s$ (resp. $t \setminus s$) is the binary tree obtained by grafting the root of t (resp. s) onto the first (resp. last) leaf of s (resp. t).

The product in **PBT** of two basis elements F_t and F_s is the formal sum of the elements of the Tamari interval $[t/s, t \setminus s]$.

Motivation: a new order on permutations

The objectives of this work are to

- 1. introduce a new order relation on permutations;
- 2. consider the analog of **FQSym** w.r.t. this alternative order;
- 3. try to construct a similar hierarchy of algebras.

For this, we consider an order extension of the right weak order and generalizations of permutations.

- Example -

Here are both the Hasse diagrams of the right weak order on permutations of size 3 and of the considered order extension:

Outline

2. Algebras on cliffs

Cliffs and posets

A range map is a map $\delta := \mathbb{N} \setminus \{0\} \to \mathbb{N}$.

A δ -cliff of size n is a word $u \in \mathbb{N}^n$ such that for all $i \in [n]$, $0 \le u_i \le \delta(i)$.

The graded collection of all δ -cliffs is denoted by Cl_{δ} .

Let \leq be the partial order relation on each $\mathsf{Cl}_\delta(n)$ wherein $u \leq v$ if $u_i \leq v_i$ for all $i \in [n]$.

For any $m \geqslant 0$, let \mathbf{m} be the map defined by $\mathbf{m}(i) := m(i-1)$.

The posets $Cl_1(n)$ have been studied in [Denoncourt, 2013].

Lehmer codes

Let leh be the map sending any permutation σ to the 1-cliff u wherein u_i is the number of letters a at the right of i in σ such that i>a. This is a variation of the Lehmer code [Lehmer, 1960] of a permutation.

This map leh : $\mathfrak{S}(n) \to \mathsf{Cl}_1(n)$ is a bijection.

- Example -

$$leh(436512) = 002323$$

A poset \mathcal{P}_2 is an order extension of a poset \mathcal{P}_1 if there is a bijective map $\phi: \mathcal{P}_1 \to \mathcal{P}_2$ such that $x \preccurlyeq_1 y$ implies $\phi(x) \preccurlyeq_2 \phi(y)$.

Proposition –

For any $n \ge 0$, the poset $(\mathsf{Cl_1}(n), \preccurlyeq)$ is an order extension of the right weak order on $\mathfrak{S}(n)$ for the map leh.

Algebras on cliffs

Let Cl_{δ} be the \mathbb{K} -linear span of all δ -cliffs and $\{F_u : u \in Cl_{\delta}\}$ a basis.

The δ -reduction of a word $w \in \mathbb{N}^n$ is the δ -cliff $r_{\delta}(w)$ satisfying

$$(\mathbf{r}_{\delta}(w))_i = \min\{w_i, \delta(i)\}.$$

- Example -

 $r_1(212066) = 012045$

- Example -

 $r_2(212066) = 012066$

Let \cdot be the product on \mathbf{Cl}_{δ} defined by

$$\mathsf{F}_u \cdot \mathsf{F}_v := \sum_{\substack{uv' \in \mathsf{Cl}_\delta \\ \mathsf{r}_\delta(v') = v}} \mathsf{F}_{uv'}.$$

– Example –

In Cl_2 ,

$$\mathsf{F}_{00} \cdot \mathsf{F}_{\mathbf{0}11} = \mathsf{F}_{00\mathbf{0}11} + \mathsf{F}_{00\mathbf{1}11} + \mathsf{F}_{00\mathbf{2}11} + \mathsf{F}_{00\mathbf{3}11} + \mathsf{F}_{00\mathbf{4}11}.$$

Associativity

In general, the product of \mathbf{Cl}_{δ} is not associative.

- Example -

For $\delta := 102^{\omega}$, we have

$$(\mathsf{F}_1 \cdot \mathsf{F}_0) \cdot \mathsf{F}_1 = \mathsf{F}_{10} \cdot \mathsf{F}_1 = \mathsf{F}_{101} + \mathsf{F}_{102}$$

and

$$\mathsf{F}_1\cdot(\mathsf{F}_0\cdot\mathsf{F}_1)=\mathsf{F}_1\cdot 0=0.$$

A range map is valley-free (or unimodal) if there is no $i_1 \le i_2 \le i_3$ such that $\delta(i_1) > \delta(i_2) < \delta(i_3)$.

- Theorem -

The product \cdot of \mathbf{Cl}_{δ} is associative iff δ is a valley-free range map.

Over and under operations

Let

$$/, : \mathsf{Cl}_{\delta}(n) \times \mathsf{Cl}_{\delta}(m) \to \mathbb{N}^{n+m}$$

be the two operations defined by $u \wedge v := uv$ and $u \setminus v := uv'$ where v' is the word of length |v| satisfying, for any $i \in [|v|]$,

$$v_i' = \begin{cases} \delta(|u|+i) & \text{if } v_i = \delta(i), \\ v_i & \text{otherwise.} \end{cases}$$

– Example –

For $\delta = 112334^{\omega}$, 010 / 1021 = 0101021 and $010 \setminus 1021 = 0103041$.

- Example -

For $\delta = 210^{\omega}$, $21 \setminus 11 = 2110$. This word is not a δ -cliff.

Product and cliff posets

For $w \in \mathbb{N}^*$, let $\chi_{\delta}(w)$ defined as $1 \in \mathbb{K}$ if w is a δ -cliff and as $0 \in \mathbb{K}$ otherwise.

- Theorem -

For any $u, v \in \mathsf{Cl}_{\delta}$, we have in Cl_{δ} ,

$$\mathsf{F}_u \cdot \mathsf{F}_v = \chi_{\delta}(u / v) \sum_{\substack{w \in \mathsf{Cl}_{\delta} \\ u / v \preccurlyeq w \preccurlyeq u \setminus v}} \mathsf{F}_w.$$

- Example -

In $Cl_{01120}\omega$, since $01/010 = 01010 \in Cl_{01120}\omega$,

$$\mathsf{F}_{01} \cdot \mathsf{F}_{010} = \mathsf{F}_{01010} + \mathsf{F}_{01020} + \mathsf{F}_{01110} + \mathsf{F}_{01120}.$$

- Example -

In $Cl_{01120}\omega$, since $01/011 = 01011 \notin Cl_{01120}\omega$,

$$F_{01} \cdot F_{011} = 0.$$

Multiplicative bases

Let

$$\mathsf{E}_u := \sum_{\substack{v \in \mathsf{Cl}_\delta \ u \preccurlyeq v}} \mathsf{F}_v \qquad ext{and} \qquad \mathsf{H}_u := \sum_{\substack{v \in \mathsf{Cl}_\delta \ v \preccurlyeq u}} \mathsf{F}_v.$$

- Examples -

For $\delta := 1021^{\omega}$,

$$\mathsf{E}_{10010} = \mathsf{F}_{10010} + \mathsf{F}_{10011} + \mathsf{F}_{10110} + \mathsf{F}_{10111} + \mathsf{F}_{10210} + \mathsf{F}_{10211},$$

and

$$\mathsf{H}_{10010} = \mathsf{F}_{10010} + \mathsf{F}_{10000} + \mathsf{F}_{00010} + \mathsf{F}_{00000}.$$

By triangularity, $\{E_u : u \in Cl_{\delta}\}$ and $\{H_u : u \in Cl_{\delta}\}$ are bases of Cl_{δ} .

- Proposition -

For any $u, v \in \mathsf{Cl}_{\delta}$, we have in Cl_{δ} ,

$$\mathsf{E}_u \cdot \mathsf{E}_v = \chi_\delta(u \,\diagup\, v) \mathsf{E}_u \,\diagup\, v \qquad \text{and} \qquad \mathsf{H}_u \cdot \mathsf{H}_v = \mathsf{H}_{\mathrm{r}_\delta\left(u \,\diagdown\, v\right)}.$$

Minimal generating set

A nonempty δ -cliff u is δ -prime if the decomposition $u=v \not w$ with $v,w \in \mathsf{Cl}_\delta$ implies $(v,w) \in \{(\epsilon,u),(u,\epsilon)\}.$

The set of all these elements is denoted by \mathcal{P}_{δ} .

- Examples -

Let $\delta := 021^{\omega}$.

The δ -cliffs 0, 01, and 021111 are δ -prime.

The δ -cliff 0210 = 021 / 0 is not.

– Lemma –

Any nonempty δ -cliff admits exactly one suffix which is δ -prime.

- Proposition -

The set $\{\mathsf{E}_u:u\in\mathcal{P}_\delta\}$ is a minimal generating set of the magmatic algebra $\mathsf{Cl}_\delta.$

This is a consequence of the fact that, by the previous lemma, any δ -cliff decomposes as a **fully bracketed** expression on the described set of elements.

Nontrivial relations

- Proposition -

If δ is valley-free, any nontrivial relation of the associative algebra \mathbf{Cl}_{δ} express as

$$\mathsf{E}_{u^{(1)}} \cdot \ldots \cdot \mathsf{E}_{u^{(k)}} \cdot \mathsf{E}_{v}$$

where $k \geqslant 1, u^{(i)} \in \mathcal{P}_{\delta}$ for all $i \in [k], v \in \mathcal{P}_{\delta}, u^{(1)} / \ldots / u^{(k)} \in \mathsf{Cl}_{\delta}$, and $u^{(1)} / \ldots / u^{(k)} / v \notin \mathsf{Cl}_{\delta}$.

A nontrivial relation is minimal if for all $j \in [2, k]$,

$$\mathsf{E}_{u^{(j)}} \cdot \ldots \cdot \mathsf{E}_{u^{(k)}} \cdot \mathsf{E}_v$$

is not a nontrivial relation.

Let \mathcal{R}_{δ} be the set of all minimal nontrivial relations of \mathbf{Cl}_{δ} .

– Example –

For $\delta=0110^\omega$, one has $\mathcal{P}_\delta=\{0,01,011\}$, and \mathcal{R}_δ contains

$$\mathsf{E}_{00} \cdot \mathsf{E}_{01}, \quad \mathsf{E}_{01} \cdot \mathsf{E}_{01}, \quad \mathsf{E}_{011} \cdot \mathsf{E}_{0} \cdot \mathsf{E}_{01}$$

among a total of height minimal nontrivial relations.

Classification

A range map δ is 1-dominated if there is a $k \geqslant 1$ such that for all $k' \geqslant k$, $\delta(1) \geqslant \delta(k')$.

- Theorem -

Let δ be a valley-free range map.

(A) If δ is constant, then

$$\delta = \bullet - \bullet - \bullet$$

and \mathcal{P}_{δ} is finite and $\mathcal{R}_{\delta} = \emptyset$;

(B) Otherwise, if δ is weakly increasing, then

$$\delta = \inf_{\text{o'}} \delta$$

and \mathcal{P}_{δ} is infinite and $\mathcal{R}_{\delta} = \emptyset$;

(C) Otherwise, if δ is 1-dominated, then

$$\delta = \delta$$

and \mathcal{P}_{δ} and \mathcal{R}_{δ} are both finite;

(D) Otherwise,

$$\delta = \text{ for all } [$$

and \mathcal{P}_{δ} and \mathcal{R}_{δ} are both infinite.

Examples — Types A and B

■ For any $k \ge 0$, $\mathbf{Cl}_{k^{\omega}}$ is the free associative algebra over the k+1 generators $\mathsf{E}_0, \mathsf{E}_1, \dots, \mathsf{E}_k$.

■ Cl₁:

- First dimensions: 1, 1, 2, 6, 24, 120, 720, 5040.
- \blacksquare First dimensions of generators: 0, 1, 1, 3, 13, 71, 461, 3447 (A003319).
- First generators: E_0 , E_{01} , E_{002} , E_{011} , E_{012} , E_{0003} , E_{0013} , E_{0021} , E_{0022} , E_{0023} , E_{0102} , E_{0103} , E_{0111} , E_{0112} , E_{0113} , E_{0121} , E_{0122} , E_{0123} .
- Since Cl₁ and FQSym are both free as associative algebras and they have the same Hilbert series, Cl₁ ≃ FQSym.

■ Cl₂:

- First dimensions: 1, 1, 3, 15, 105, 945, 10395, 135135 (A001147).
- First dimensions of generators: 0, 1, 2, 10, 74, 706, 8162, 110410 (A000698).
- First generators: E_0 , E_{01} , E_{02} , E_{003} , E_{004} , E_{011} , E_{012} , E_{013} , E_{014} , E_{021} , E_{022} , E_{023} , E_{024} .

Examples — Types C and D

■ Cl₀₁₀ω:

- Generators: E_0 , E_{01} .
- Relations: $E_0 \cdot E_{01}$, $E_{01} \cdot E_{01}$.

■ Cl₀₁₁₀ω:

- Generators: E_0 , E_{01} , E_{011} .
- $\begin{array}{l} \blacksquare \mbox{ Relations: } E_0 \cdot E_0 \cdot E_{01}, \ E_{01} \cdot E_{01}, \ E_{01} \cdot E_0 \cdot E_{01}, \ E_{011} \cdot E_{01}, \\ E_{011} \cdot E_0 \cdot E_{01}, \ E_0 \cdot E_{011}, \ E_{01} \cdot E_{011}, \ E_{011} \cdot E_{011}. \end{array}$

■ Cl₂₁₀ω:

- Generators: E_0 , E_1 , E_2 .
- $$\begin{split} & \blacksquare \ \, \text{Relations; } \mathsf{E}_0 \cdot \mathsf{E}_0 \cdot \mathsf{E}_1, \ \, \mathsf{E}_0 \cdot \mathsf{E}_1 \cdot \mathsf{E}_1, \ \, \mathsf{E}_1 \cdot \mathsf{E}_0 \cdot \mathsf{E}_1, \ \, \mathsf{E}_1 \cdot \mathsf{E}_1 \cdot \mathsf{E}_1, \\ & \mathsf{E}_2 \cdot \mathsf{E}_0 \cdot \mathsf{E}_1, \ \, \mathsf{E}_2 \cdot \mathsf{E}_1 \cdot \mathsf{E}_1, \ \, \mathsf{E}_0 \cdot \mathsf{E}_2, \ \, \mathsf{E}_1 \cdot \mathsf{E}_2, \ \, \mathsf{E}_2 \cdot \mathsf{E}_2. \end{split}$$

Cl₀₂₁ω:

- Generators: E_0 , E_{01} , E_{02} , E_{011} , E_{021} , E_{0111} , E_{0211} , E_{01111} , E_{0211} ,
- Relations E_{02} , $E_{01} \cdot E_{02}$, $E_{02} \cdot E_{02}$, $E_{011} \cdot E_{02}$, $E_{021} \cdot E_{02}$, $E_0 \cdot E_{021}$, $E_{01} \cdot E_{021}$, $E_{02} \cdot E_{021}$, $E_0 \cdot E_{021}$, $E_0 \cdot E_{021}$,

Quotient algebras

Let S be a graded subset of Cl_{δ} .

Let

$$\mathbf{Cl}_{\mathcal{S}} := \mathbf{Cl}_{\delta}/_{\mathcal{V}_{\mathcal{S}}}$$

be the quotient space of \mathbf{Cl}_δ where $\mathcal{V}_\mathcal{S}$ is the linear span of the set

$$\{\mathsf{F}_u: u \in \mathsf{Cl}_\delta \setminus \mathcal{S}\}.$$

By definition, the set $\{F_u : u \in \mathcal{S}\}$ is a basis of $\mathbf{Cl}_{\mathcal{S}}$.

The set S is

- closed by prefix if for any $u \in \mathcal{S}$, for all prefixes u' of $u, u' \in \mathcal{S}$;
- closed by suffix reduction if for any $u \in \mathcal{S}$, for all suffixes u' of u, $r_{\delta}(u') \in \mathcal{S}$.

Proposition –

If δ is valley-free and S is closed by prefix and by suffix reduction, then \mathbf{Cl}_{S} is a quotient of the associative algebra \mathbf{Cl}_{δ} .

Canyon and canyon posets

Let Ca_{δ} be the subset of Cl_{δ} containing all δ -canyons that are δ -cliffs u such that $u_{i-j} \leqslant u_i - j$, for all $i \in [|u|]$ and $j \in [u_i]$ satisfying $i - j \geqslant 1$.

The posets Ca₁ are the Tamari lattices [Pallo, 1986].

\mathbf{Ca}_m algebras

Let Ca_m be the quotient space Cl_{Ca_m} .

Since Ca_m is closed by prefix and by suffix reduction, Ca_m is an associative algebra quotient of Cl_m .

Examples –

In Ca_1 ,

$$\mathsf{F}_0 \cdot \mathsf{F}_{01} = \mathsf{F}_{001} + \mathsf{F}_{002} + \mathsf{F}_{012},$$

 $\mathsf{F}_{010} \cdot \mathsf{F}_{0020} = \mathsf{F}_{0100020} + \mathsf{F}_{0100030} + \mathsf{F}_{0101030} + \mathsf{F}_{0100050} + \mathsf{F}_{0101050} + \mathsf{F}_{0103050}$

- Examples -

In Ca_2 ,

$$F_{01} \cdot F_{0014} = 0$$
,

$$\begin{split} F_{020} \cdot F_{02} &= F_{02002} + F_{02005} + F_{02006} + F_{02007} + F_{02008} + F_{02012} + F_{02015} \\ &+ F_{02016} + F_{02017} + F_{02018} + F_{02045} + F_{02046} + F_{02047} + F_{02048} \\ &+ F_{02056} + F_{02057} + F_{02058} + F_{02067} + F_{02068}. \end{split}$$

Structure of Ca_m algebras

 Ca_1 is isomorphic to PBT.

By computer exploration, minimal generating families of \mathbf{Ca}_1 and \mathbf{Ca}_2 up to respectively up to degree 5 and 4 are resp.

```
\begin{aligned} & F_0, \quad F_{00}, \quad F_{000}, F_{0001}, \quad F_{0000}, F_{0001}, F_{0002}, F_{0010}, F_{0012}, \\ & F_{00000}, F_{00001}, F_{00002}, F_{00003}, F_{00010}, F_{00012}, F_{00013}, F_{00020}, F_{00023}, F_{00100}, \\ & \quad F_{00101}, F_{00103}, F_{00120}, F_{00123}, \\ \end{aligned}
```

and

$$\begin{aligned} &F_{00}, \quad F_{00}, F_{01}, \quad F_{000}, F_{002}, F_{003}, F_{010}, F_{012}, F_{013}, F_{023}, \\ &F_{0000}, F_{0003}, F_{0004}, F_{0005}, F_{0014}, F_{0015}, F_{0020}, F_{0023}, F_{0024}, F_{0025}, F_{0030}, F_{0034}, \\ &F_{0035}, F_{0045}, F_{0100}, F_{0104}, F_{0105}, F_{0120}, F_{0124}, F_{0125}, F_{0130}, F_{0134}, F_{0135}, F_{0145}, \\ &F_{0204}, F_{0205}, F_{0230}, F_{0234}, F_{0235}, F_{0245}. \end{aligned}$$

The numbers of minimal generators of Ca_2 begin by

 Ca_0 and Ca_1 are free as associative algebras but Ca_m , $m \ge 2$, are not.

Outline

3. Some open questions

From cliffs to increasing trees

When $\delta(1) = 0$, δ is rooted.

Given $u \in \mathsf{Cl}_{\delta}(n)$ where δ is rooted and weakly increasing, let $\mathsf{tree}_{\delta}(u)$ be the δ -increasing tree defined recursively as follows:

- If $u = \epsilon$, then $\text{tree}_{\delta}(u)$ is the leaf;
- Otherwise, u = u'a and $\mathrm{tree}_{\delta}(u)$ is obtained by grafting on the a+1-st leaf of $\mathrm{tree}_{\delta}(u')$ a node labeled by n having $1 + \delta(n+1) \delta(n)$ leaves.

- Example -

For $\delta := 0233579^{\omega}$ and u := 021042, the $\mathrm{tree}_{\delta}(u)$ grows as follows:

Alternative posets from increasing trees

Let δ be a rooted and weakly increasing range map.

Let \preccurlyeq' be the reflexive and transitive closure of the relation \lessdot' on $\mathsf{Cl}_\delta(n)$ where $u \lessdot' v$ if v is obtained from u by incrementing a letter u_i when all the children of the node labeled by i in $\mathrm{tree}_\delta(u)$ are leaves excepted possibly the first one.

- Example -

 $(Cl_1(n), \preccurlyeq')$ is isomorphic to the right weak order.

- Conjecture -

For any rooted and weakly increasing range map δ and any $n\geqslant 0$, the poset $(\mathsf{Cl}_\delta(n), \preccurlyeq')$ is a lattice.

Dune posets

Let Du_δ be the subset of Cl_δ containing all δ -dunes that are δ -cliffs u such that for any $i \in [n-1], |u_i-u_{i+1}| \leq |\delta(i)-\delta(i+1)|$.

Cardinalities of $Du_1(n)$: 1, 1, 2, 5, 13, 35, 96, 267, ...(A005773, directed animals).

Cardinalities of $Du_2(n)$: 1, 1, 3, 12, 51, 226, 1025, 4724, ... (A180898, some meanders [Banderier et al., 2016]).

- Example -

The Hasse diagrams of $Du_1(3)$, $Du_2(3)$, and $Du_1(4)$ are

Project -

Study the dune posets and their associative algebras.

Coproducts

As already mentioned, \mathbf{FQSym} and its subalgebras are endowed with a coproduct.

A coproduct on a space \mathcal{A} is a map

$$\Delta: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$$

which, intuitively, splits any element of ${\cal A}$ in two smaller parts, in several different ways.

If (A, \cdot) is an associative algebra, a coproduct Δ is compatible with \cdot if for all $f, g \in \mathcal{A}$,

$$\Delta(f \cdot g) = \Delta(f)\Delta(g).$$

- Question -

Introduce a (noncocommutative) coproduct on \mathbf{Cl}_{δ} compatible with its product. Determine in what extent this coproduct is still well-defined on its quotients $\mathbf{Cl}_{\mathcal{S}}$.