Arbres binaires de recherche : algorithmique et algèbre

Samuele Giraudo

Université de Marne-la-Vallée École doctorale MSTIC

10 juin 2010

Concepts de base

► Algorithmique

► Algèbre

Concepts de base

- ► Algorithmique : science de la définition, de la conception et de l'analyse des algorithmes.
 - → Algorithme : liste finie d'instructions qui permet la résolution d'un problème donné.
- Algèbre

Concepts de base

- Algorithmique : science de la définition, de la conception et de l'analyse des algorithmes.
 - → Algorithme : liste finie d'instructions qui permet la résolution d'un problème donné.

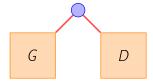
- Algèbre : branche des mathématiques qui porte sur l'étude des structures algébriques.
 - → Structure algébrique : ensemble muni de lois de composition.

Buts de l'exposé

► Introduire les arbres binaires.

Buts de l'exposé

- ► Introduire les arbres binaires.
- ► Présenter quelques algorithmes basés sur les arbres binaires de recherche.


Buts de l'exposé

- Introduire les arbres binaires.
- ► Présenter quelques algorithmes basés sur les arbres binaires de recherche.
- Glisser vers le coté algébrique des arbres binaires.

Arbres binaires

Un arbre binaire est

- ▶ soit l'arbre vide ∅;
- ▶ soit un nœud attaché par des arêtes / à deux autres arbres binaires :

où G (resp. D) est le sous-arbre gauche (resp. droit) de l'arbre binaire.

Quelques arbres binaires

Taille	Arbres binaires
0	\emptyset
1	•
2	
3	
4	

Soit E un ensemble. On souhaite répondre aux problèmes suivants.

▶ Appartenance : étant donné un élément x, a-t-on $x \in E$?

- Appartenance: étant donné un élément x, a-t-on $x \in E$?
- ► Minimum (resp. maximum) : calcul de min E (resp. max E).

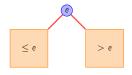
- ▶ Appartenance : étant donné un élément x, a-t-on $x \in E$?
- ► Minimum (resp. maximum) : calcul de min E (resp. max E).
- Ajout : placer un élément x dans E.

- ▶ Appartenance : étant donné un élément x, a-t-on $x \in E$?
- ► Minimum (resp. maximum) : calcul de min E (resp. max E).
- Ajout : placer un élément x dans E.
- ► Suppression : supprimer un élément x de E.

Soit E un ensemble. On souhaite répondre aux problèmes suivants.

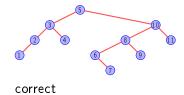
- Appartenance: étant donné un élément x, a-t-on $x \in E$?
- ► Minimum (resp. maximum) : calcul de min E (resp. max E).
- Ajout : placer un élément x dans E.
- ► Suppression : supprimer un élément x de E.

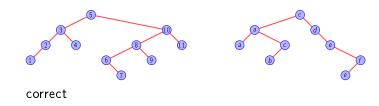
Unique hypothèse : il est possible de comparer toute paire d'éléments de E.

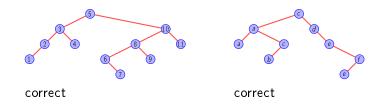

Une réponse algorithmique : les ABR

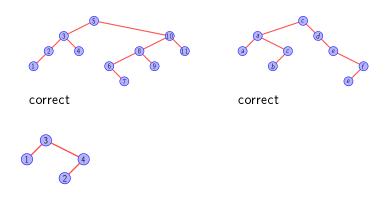
Les arbres binaires de recherche (ABR) sont d'excellents objets pour répondre à ces problèmes!

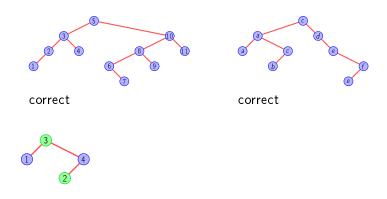
Une réponse algorithmique : les ABR

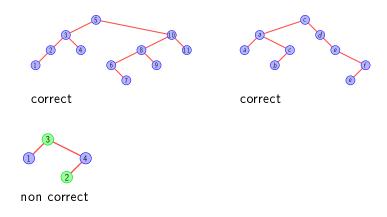

Les arbres binaires de recherche (ABR) sont d'excellents objets pour répondre à ces problèmes!

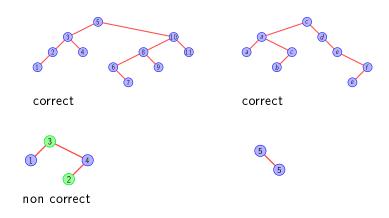

ABR : arbre binaire dont les nœuds sont étiquetés par les éléments de *E* avec la contrainte :

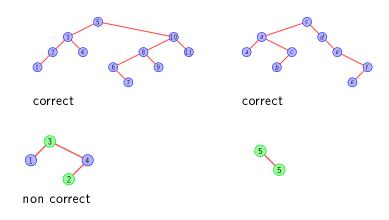


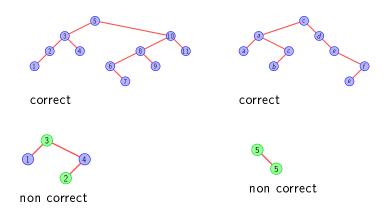

Pour tout nœud e, les éléments de son sous-arbre gauche (resp. droit) sont tous $\leq e$ (resp. > e).









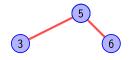


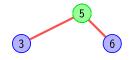
Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

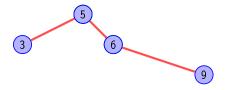
Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

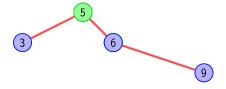
Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

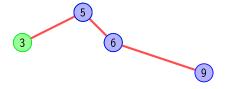

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

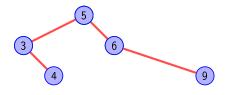

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

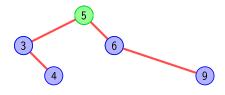
Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

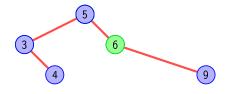

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

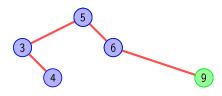

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

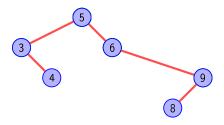

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

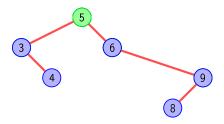

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

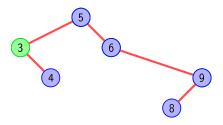

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

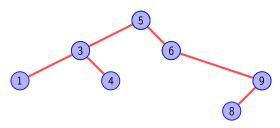

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

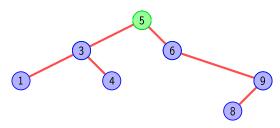

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

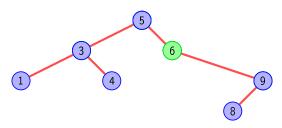

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

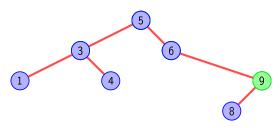

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

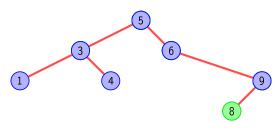

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

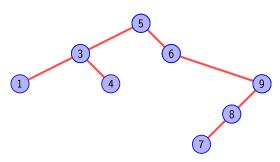

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

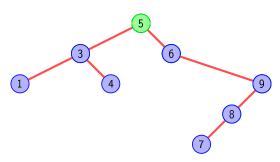

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.


Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

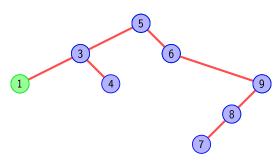

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

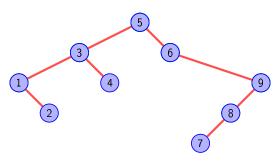

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.


Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

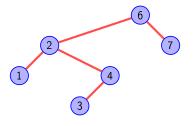

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

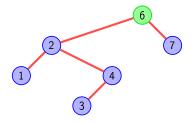
Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

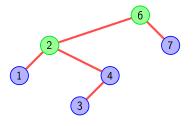

Soit $\sigma = 271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

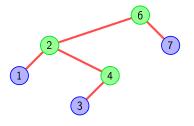

Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

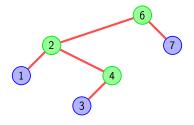
Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.


Soit $\sigma=271849365$ une permutation qui encode les éléments de l'ensemble à représenter.

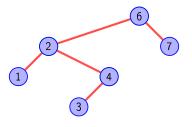

Soit l'ABR qui représente l'ensemble $E=\{1,2,3,4,6,7\}$ construit à partir de la permutation $\sigma=341276$:


Soit l'ABR qui représente l'ensemble $E=\{1,2,3,4,6,7\}$ construit à partir de la permutation $\sigma=341276$:

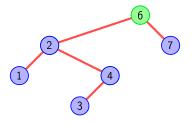

Soit l'ABR qui représente l'ensemble $E=\{1,2,3,4,6,7\}$ construit à partir de la permutation $\sigma=341276$:


Soit l'ABR qui représente l'ensemble $E=\{1,2,3,4,6,7\}$ construit à partir de la permutation $\sigma=341276$:

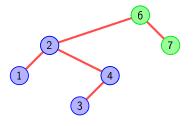
Soit l'ABR qui représente l'ensemble $E=\{1,2,3,4,6,7\}$ construit à partir de la permutation $\sigma=341276$:



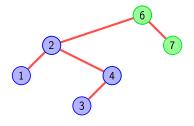
Soit l'ABR qui représente l'ensemble $E=\{1,2,3,4,6,7\}$ construit à partir de la permutation $\sigma=341276$:


Est-ce que l'élément 4 appartient à $E? \Rightarrow oui!$

Soit l'ABR qui représente l'ensemble $E=\{1,2,3,4,6,7\}$ construit à partir de la permutation $\sigma=341276$:


Est-ce que l'élément 4 appartient à E? \Rightarrow oui! Est-ce que l'élément 8 appartient à E?

Soit l'ABR qui représente l'ensemble $E=\{1,2,3,4,6,7\}$ construit à partir de la permutation $\sigma=341276$:


Est-ce que l'élément 4 appartient à E? \Rightarrow oui! Est-ce que l'élément 8 appartient à E?

Soit l'ABR qui représente l'ensemble $E=\{1,2,3,4,6,7\}$ construit à partir de la permutation $\sigma=341276$:

Est-ce que l'élément 4 appartient à E? \Rightarrow oui! Est-ce que l'élément 8 appartient à E?

Soit l'ABR qui représente l'ensemble $E=\{1,2,3,4,6,7\}$ construit à partir de la permutation $\sigma=341276$:

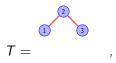
Est-ce que l'élément 4 appartient à $E? \Rightarrow$ oui! Est-ce que l'élément 8 appartient à $E? \Rightarrow$ non.

Soit $\sigma=4312$ et $\nu=2143$ deux permutations. L'ABR correspondant à σ est

$$T =$$
,

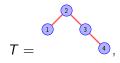
$$U =$$

Soit $\sigma=4312$ et $\nu=2143$ deux permutations. L'ABR correspondant à σ est


$$T =$$

$$U =$$

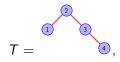
Soit $\sigma=4312$ et $\nu=2143$ deux permutations. L'ABR correspondant à σ est


$$U =$$

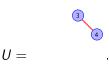
Soit $\sigma=4312$ et $\nu=2143$ deux permutations. L'ABR correspondant à σ est

$$U =$$

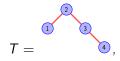
Soit $\sigma=4312$ et $\nu=2143$ deux permutations. L'ABR correspondant à σ est


$$U =$$

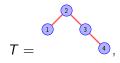
Soit $\sigma=4312$ et $\nu=2143$ deux permutations. L'ABR correspondant à σ est

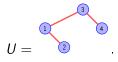


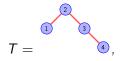
$$U =$$

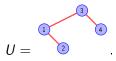

Soit $\sigma=4312$ et $\nu=2143$ deux permutations. L'ABR correspondant à σ est

celui de ν est

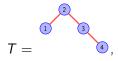

Soit $\sigma=4312$ et $\nu=2143$ deux permutations. L'ABR correspondant à σ est


celui de u est

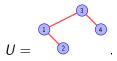

Soit $\sigma=4312$ et $\nu=2143$ deux permutations. L'ABR correspondant à σ est


celui de u est

Soit $\sigma=4312$ et $\nu=2143$ deux permutations. L'ABR correspondant à σ est



celui de ν est



Clairement, T et U représentent le même ensemble, mais $T \neq U$.

Soit $\sigma=4312$ et $\nu=2143$ deux permutations. L'ABR correspondant à σ est

celui de ν est

Clairement, T et U représentent le même ensemble, mais $T \neq U$.

Conclusion ⇒ les forme des ABR dépend de l'ordre dans lequel les éléments sont insérés.

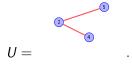
Soit $\sigma=$ 346125 et $\nu=$ 613425 deux permutations. L'ABR correspondant à σ est

$$T =$$
,

$$U =$$

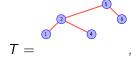
Soit $\sigma=346125$ et $\nu=613425$ deux permutations. L'ABR correspondant à σ est

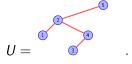
$$T =$$

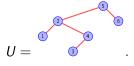

$$U =$$

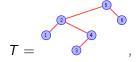
Soit $\sigma=$ 346125 et $\nu=$ 613425 deux permutations. L'ABR correspondant à σ est


Soit $\sigma=346125$ et $\nu=613425$ deux permutations. L'ABR correspondant à σ est

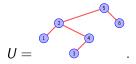



Soit $\sigma=346125$ et $\nu=613425$ deux permutations. L'ABR correspondant à σ est

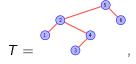

Soit $\sigma=346125$ et $\nu=613425$ deux permutations. L'ABR correspondant à σ est



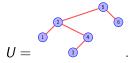
Soit $\sigma=346125$ et $\nu=613425$ deux permutations. L'ABR correspondant à σ est



Soit $\sigma=346125$ et $\nu=613425$ deux permutations. L'ABR correspondant à σ est



L'ABR correspondant à ν est



Les éléments ont été insérés dans un ordre différent mais T=U.

Soit $\sigma=346125$ et $\nu=613425$ deux permutations. L'ABR correspondant à σ est

L'ABR correspondant à ν est

Les éléments ont été insérés dans un ordre différent mais T=U.

Conclusion ⇒ deux permutations différentes peuvent donner le même ABR.

Soit

$$F_T = \sum_{\sigma \in P} \sigma$$

où P est l'ensemble des permutations qui, insérées selon l'algorithme ABR donnent l'arbre binaire \mathcal{T} .

Soit

$$F_T = \sum_{\sigma \in P} \sigma$$

où P est l'ensemble des permutations qui, insérées selon l'algorithme ABR donnent l'arbre binaire \mathcal{T} .

Soit

$$\mathbf{F}_T = \sum_{\sigma \in P} \sigma$$

où P est l'ensemble des permutations qui, insérées selon l'algorithme ABR donnent l'arbre binaire \mathcal{T} .

$$F_{\circ}$$
 = 132 + 312
 F_{\circ} = =

Soit

$$\mathbf{F}_T = \sum_{\sigma \in P} \sigma$$

où P est l'ensemble des permutations qui, insérées selon l'algorithme ABR donnent l'arbre binaire \mathcal{T} .

$$F_{\circ}$$
 = 132 + 312
 F_{\circ} = 321
 F_{\circ} =

Soit

$$\mathsf{F}_{\mathcal{T}} = \sum_{\sigma \in P} \sigma$$

où P est l'ensemble des permutations qui, insérées selon l'algorithme ABR donnent l'arbre binaire \mathcal{T} .

Soit

$$\mathsf{F}_{\mathcal{T}} = \sum_{\sigma \in P} \sigma$$

où P est l'ensemble des permutations qui, insérées selon l'algorithme ABR donnent l'arbre binaire \mathcal{T} .

$$F_{\bullet} = 132 + 312$$
 $F_{\bullet} = 321$
 $F_{\bullet} = 13254 + 13524 + 15324 + 31254 + 31524 + 35124 + 53124$
 $= environ 21 millions de permutations!$

Un produit sur les arbres binaires

▶ Notion de produit sur les arbres binaires.

Un produit sur les arbres binaires

- ▶ Notion de produit sur les arbres binaires.
- L'idée : assembler deux éléments pour en former des plus gros.

Un produit sur les arbres binaires

- Notion de produit sur les arbres binaires.
- L'idée : assembler deux éléments pour en former des plus gros.
- Défini par :

$$\mathsf{F}_{T_0}$$
 . $\mathsf{F}_{T_1} = \sum_{T \in M} \mathsf{F}_T$

οù

$$M = \{ T = ABR(\sigma) | \sigma \in \mu \boxtimes \nu, ABR(\mu) = T_0, ABR(\nu) = T_1 \}$$

et III dénote le produit de mélange décalé.

$$F_{\sim}$$
 . F_{\sim} =

$$\mathbf{F}_{\circ}$$
 \cdot \mathbf{F}_{\circ} = $(132 + 312) \, \overline{\coprod} \, 12$

$$F_{\circ} \cdot F_{\circ} = (132 + 312) \, \overline{\coprod} \, 12$$

= $132 \, \overline{\coprod} \, 12 + 312 \, \overline{\coprod} \, 12$

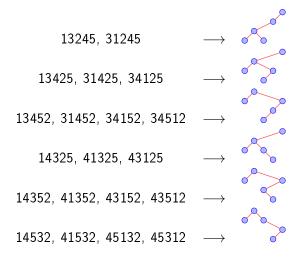
$$F_{\circ, \circ} \cdot F_{\circ, \circ} = (132 + 312) \, \overline{\coprod} \, 12$$

= $132 \, \overline{\coprod} \, 12 + 312 \, \overline{\coprod} \, 12$
= $132 \, \coprod \, 45 + 312 \, \coprod \, 45$

$$F_{\circ, \circ} \cdot F_{\circ, \circ} = (132 + 312) \, \overline{\coprod} \, 12$$

= $132 \, \overline{\coprod} \, 12 + 312 \, \overline{\coprod} \, 12$
= $132 \, \coprod \, 45 + 312 \, \coprod \, 45$

$$F_{\circ, \circ} \cdot F_{\circ, \circ} = (132 + 312) \, \square \, 12$$


$$= 132 \, \square \, 12 + 312 \, \square \, 12$$

$$= 132 \, \square \, 45 + 312 \, \square \, 45$$

$$= 13245 + 13425 + 13452 + 14325 + 14352 + 14532 + 41325 + 41352 + 41532 + 45132 + 31245 + 31425 + 31452 + 34152 + 34512 + 43125 + 43152 + 43512 + 45312$$

F. • • • (132 + 312)
$$\stackrel{.}{\Box}$$
 12
= 132 $\stackrel{.}{\Box}$ 12 + 312 $\stackrel{.}{\Box}$ 12
= 132 $\stackrel{.}{\Box}$ 45 + 312 $\stackrel{.}{\Box}$ 45
= 13245 + 13425 + 13452 + 14325 + 14352 + 14532 + 41325 + 41352 + 41532 + 45132 + 31245 + 31425 + 31452 + 34152 + 34512 + 43125 + 43152 + 43512 + 45312

Il ne reste plus qu'a déterminer les ABR qui correspondent à ces permutations!

Et finalement :

$$\mathsf{F}_{\circ, \bullet} \cdot \mathsf{F}_{\circ} = \mathsf{F}_{\circ, \bullet} + \mathsf{F$$

Et finalement :

$$\mathsf{F}_{\circ,\circ} \cdot \mathsf{F}_{\circ,\circ} = \mathsf{F}_{\circ,\circ} + \mathsf{F$$

Calcul difficilement praticable!

Et finalement :

$$\mathsf{F}_{\diamond,\diamond} \cdot \mathsf{F}_{\diamond} = \mathsf{F}_{\diamond,\diamond} + \mathsf{F}_{\diamond,\diamond} + \mathsf{F}_{\diamond,\diamond} + \mathsf{F}_{\diamond,\diamond} + \mathsf{F}_{\diamond,\diamond} + \mathsf{F}_{\diamond,\diamond}.$$

- Calcul difficilement praticable!
- Il existe cependant d'autres descriptions du produit d'ABR, moins directes, mais avec l'avantage de fournir un procédé de calcul beaucoup plus simple.

Quelques références

- A Aho and J. Ullman, Foundation of Computer Science, W. H. Freeman, 1994
- T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to algorithms, McGraw-Hill, 2003
- J.-L. Loday and M. Ronco, Hopf algebra on the planar binary trees, Advances in Mathematics 139, 293-309, 1998
- F. Hivert, J.-C. Novelli and J.-Y. Thibon, The algebra of binary search trees, arXiv:math/0401089v2 [math.CO], 2004