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Operator structures

Informally, an operator structure is a set S of operators closed w.r.t. a set of composition
operations.

There are a lot of kinds of operator structures, each dealing with a particular type of operators:
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Operator structures and compositions

These operators can be composed in different ways.

Operads:
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Objects as operators

By seeing combinatorial objects as operators, we obtain ways to compose them. Schematically,
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is an abstract composition of an object of size 5 with an object of size 2 at the 2-nd position.

– Examples –

Composition of Motzkin paths: ◦4 = .

Composition of permutations: •
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•
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Main topics

In this lecture, we shall focus on nonsymmetric operads.

We will

describe free operads;

introduce presentations of operads;

present planar term rewrite systems and tools to establish presentations;

study algebras over operads;

present two general constructions of operads;

give some combinatorial applications.
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Planar operators and composition

A planar operator is an entity f having n ⩾ 0 inputs and one single output, drawn as

f

1 n. . .

.
This planar operator denotes amap (x1, . . . , xn) 7→ f (x1, . . . , xn).
The arity |f | of f is its number n of inputs, numbered from 1 to n.

Composing a planar operator f of arity n with n planar operators g1, . . . , gn consists in grafting all
the outputs of the gi to the inputs i of f .

This produces the new operator f ◦[g1, . . . , gn] of arity m1 + · · ·+mn, drawn as

f

1 n. . .

◦

 g1

1 m1. . .

, . . . , gn

1 mn. . .

 =
f

. . .g1

1 . . .

gn

m1+· · ·+mn. . .

and denoting the map

(x1, . . . , xm1+···+mn) 7→ f
(
g1(x1, . . . , xm1), . . . , gn

(
xm1+···+mn−1+1, . . . , xm1+···+mn

))
.
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Operads

Nonsymmetric operads provide a formalization of planar operators and their composition.

A nonsymmetric set-operad (or operad for short in this lecture) is a triple (O, ◦, 1) where

O is a graded set
O =

⊔
n∈N

O(n);

◦ is amap
◦ : O(n)×O(m1)× · · · × O(mn) → O(m1 + · · ·+mn)

called full composition map;

1 is an element of O(1) called unit.

This data has to satisfy some relations.
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Operad relations

The following relations have to be satisfied:

(OpU) For all x ∈ O, 1 ◦[x] = x = x ◦[1, . . . , 1].

1

x

1 n. . .

= x

1 n. . .

=
x

. . .1

1

1

n

This says that 1 is the identity operator.

(OpA) For all x ∈ O(n), yi ∈ O(mi), and zi,j ∈ O,

(x ◦[y1, . . . , yn]) ◦[z1,1, . . . , z1,m1 , . . . , zn,1, . . . , zn,mn ]

= x ◦[y1 ◦[z1,1, . . . , z1,m1 ], . . . yn ◦[zn,1, . . . , zn,mn ]].

x

. . .y1

. . .

yn

. . .z1,1

1 k1,1. . .

z1,m1

. . .

zn,1

. . .

zn,mn

. . .

This says that the two ways to form an opera-
tor having three layers (by starting from the
top or by starting from the bottom) coincide.

12 / 90



Partial composition maps

A partial composition map on O is any map

◦i : O(n)×O(m) → O(n+m− 1), i ∈ [n].

The partial composition map ◦i of a full composition map ◦ is defined by

x ◦i y := x ◦[
i−1︷ ︸︸ ︷

1, . . . , 1, y,
n−i︷ ︸︸ ︷

1, . . . , 1].

Pictorially, by using Relation (OpU),

x

1 ni. . . . . .

◦i y

1 n. . .

=
x

1 n+m−1. . . . . .y

i i+m−1. . .

.

Conversely, the full composition map ◦ of a partial composition map ◦i is defined by

x ◦[y1, . . . , yn] := (. . . ((x ◦n yn) ◦n−1 yn−1) . . .) ◦1 y1.
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Partial composition maps and relations

The two relations satisfied by ◦ lead to the following three relations for the partial composition map ◦i:

(OpU’) For any x ∈ O(n) and i ∈ [n], 1 ◦1 x = x = x ◦i 1.

1 = This says that 1 is the identity operator.

(OpAS) For any x ∈ O(n), y ∈ O(m), z ∈ O(k), i ∈ [n] and j ∈ [m], (x ◦i y) ◦i+j−1 z = x ◦i(y ◦j z).

x

1 n+m+k−2. . . . . .y

i i+m+k−2. . . . . .z

i+ j−1 i+ j+k−2. . .

This says that the two ways to form an operator
in series (by starting from the top or by starting
from the bottom) coincide.

(OpAP) For any x ∈ O(n), y ∈ O(m), z ∈ O(k), j ∈ [n] and i ∈ [j − 1], (x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y.

x

1 n+m+k−2. . . . . .
. . .y

i i+m−1. . .

z

j+m+k−2j+m−1 . . .

This says that the two ways to form an operator in
parallel (by starting from the left or by starting
from the right) coincide.
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Equivalence between full and partial composition maps

– Proposition –
LetO be a graded set and 1 ∈ O(1).

1. If ◦ is a full composition map satisfying Relations (OpU) and (OpA), then
(a) the partial composition map ◦i of ◦ satisfies Relations (OpAS), (OpAP), and (OpU’);
(b) the full composition map of ◦i is ◦.

2. If ◦i is a partial composition map satisfying Relations (OpAs), (OpAP), and (OpU’), then
(a) the full composition map ◦ of ◦i satisfies Relations (OpU) and (OpA);
(b) the partial composition map of ◦ is ◦i .

– Exercise –
Show the previous proposition.

Therefore, operads can equivalently be defined and studied through their full or partial
composition maps.
It is often important to have expressions for both these compositions.
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Morphisms and quotients

A map ϕ : O1 → O2 between two operads (O1, ◦1i , 11) and (O2, ◦2i , 12) is an operad morphism if
for any x ∈ O1(n), ϕ(x) ∈ O2(n);
ϕ(11) = 12;
for any x, y ∈ O1, ϕ(x ◦1i y) = ϕ(x) ◦2i ϕ(y).

An equivalence relation ≡ on (O, ◦i, 1) is an operad congruence if
by denoting by [x]≡ the ≡-equivalence class of x ∈ O, for all x′ ∈ [x]≡, |x′| = |x|;
for any x, x′, y, y′ ∈ O such that x≡ x′ and y≡ y′, x ◦i y≡ x′ ◦i y′.

Given an operad congruence ≡ of O, (O/≡, ◦≡i , 1≡) is the quotient operad of O. It is defined in
the following way:

O/≡(n) := {[x]≡ : x ∈ O(n)};
[x]≡ ◦≡i [y]≡ := [x′ ◦i y′]≡ where x′ is any element of [x]≡ and y′ is any element of [y]≡;
the unit 1≡ is ≡-equivalence class of the unit 1 of O.
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Suboperads and generating sets

Let (O, ◦i, 1) be an operad.

When for any n ∈ N, O(n) is finite, O is combinatorial. In this case, the Hilbert series of O is the
generating series

HO(z) :=
∑
n∈N

#O(n) zn.

A suboperad of O is any subset of O containing the unit 1 of O and closed w.r.t. ◦i.

Given a subset G of O, OG is the suboperad generated by G, that is the smallest suboperad of O
containing G.

If G is such that OG = O, then G is a generating set of O. When none of the proper subsets of G
satisfy this property, G is minimal.

– Usual questions –
Given an operadO and a (finite) subset G ofO, study the suboperadOG.

Given an operadO, describe the minimal generating sets ofO.
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The duplicial operad

The duplicial operad Dup is the operad wherein

Dup(0) = ∅ and for any n ⩾ 1, Dup(n) is the set of the binary trees with n internal nodes;

t ◦i s is obtained by replacing the i-th internal node u of t (w.r.t. the infix traversal) by a copy
of s and by grafting the left (resp. right) subtree of u to the first (resp. last) leaf of the copy;

the unit 1 is the unique element of Dup(1).

– Examples –

∈ Dup(7)

◦6 =

1 =

– Exercise –
1. Show that Dup is an operad.

2. Describe the full composition map of Dup.
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The Motz operad

The operad of Motzkin paths Motz is the operad wherein

Motz(0) = ∅ and for any n ⩾ 1,Motz(n) is the set of the Motzkin paths with n points;

u ◦i v is obtained by replacing the i-th point of u by a copy of v;

the unit 1 is the unique element ofMotz(1).

– Examples –

∈ Motz(8)

◦4 =

1 =

– Exercise –
1. Show that Motz is an operad.

2. Describe the full composition map of Motz.
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The Per operad

The operad of permutations Per is the operad wherein

Per(0) = ∅ and for any n ⩾ 1, Per(n) is the set of the permutations on [n], seen through their
permutation matrices;

σ ◦i ν is obtained by replacing the i-th point of σ by a copy of ν;

the unit 1 is the unique element of Per(1).

– Examples –

•
•
•

•
•
∈ Per(5)

•
•
•

•
•
◦3 •

•
• =

•

•

•
•
•

•
•

1 = •

– Exercise –
1. Show that Per is an operad.

2. Describe the full composition map of Per.
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Planar terms

A signature is a set G :=
⊔
n∈N

G(n) where each a ∈ G(n) is a constant of arity n.

A planar G-term is

either the leaf ;

or a pair (a, (t1, . . . , tn)) where a ∈ G(n) and each ti is a planar G-term.

The set of planar G-terms is TP(G).

– Example –

d

d

a c

c

a

b

This is the tree representation of the planar G-term

(c, ((a, ( , )), (b, ((a, ((d, ()), )), (d, ()))), (c, ( , , ))))

where G is the signature such that G = G(0) ⊔G(2) ⊔G(3) with G(0) := {d},
G(2) := {a, b} and G(3) := {c}.
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Free operads

Let G be a signature.
The free operad on G is the operad TP(G) where

for any n ∈ N, TP(G)(n) is the set of planar G-terms with n leaves;

the planar G-term t ◦i s is obtained by replacing the i-th leaf of t by a copy of s;

1 is the planar G-term .

– Example –
By settingG := G(2)⊔G(3) whereG(2) := {a, b}
and G(3) := {c}, we have in the free operad TP(G),

c

a

b
◦3

b
c

=
c b

b

c

a

.

For any signature G, any operad O, and any map
f : G → O preserving the arities, there exists a
unique operad morphism ϕ : TP(G) → O such
that f = ϕ ◦ c.

G O

TP(G)

f

c ϕ
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Presentation by generators and relations

Let O be an operad.

A presentation of O is a pair (G,R) where

G is a signature;

R is an equivalence relation on TP(G);

by denoting by ≡R the smallest operad congruence of TP(G) containing R, we have

O ≃ TP(G)/≡R
.

A presentation (G,R) is

minimal if G and R are minimal w.r.t. set inclusion;

binary if G = G(2);

quadratic if (t, t′) ∈ R implies that both t and t′ have exactly two internal nodes.
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Presentation of Dup

– Proposition –
The duplicial operad Dup admits the presentation (G,R) where

G :=

{
,

}
and R satisfies

◦1 R ◦2 ,

◦1 R ◦2 ,

◦1 R ◦2 .

This presentation is minimal, binary, and quadratic.

– Exercise –
Show this presentation of Dup.
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Presentation of Motz

– Proposition –
The operad Motz admits the presentation (G,R) where

G :=
{

,
}

and R satisfies
◦1 R ◦2 ,

◦1 R ◦2 ,

◦1 R ◦3 ,

◦1 R ◦3 .

This presentation is minimal, not binary, and quadratic.

– Exercise –
Show this presentation of Motz.
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Realizations

On the other way round, it is possible to define operads through presentations.

In this way, a presentation specifies a quotient of a free operad.

A realization of a presentation (G,R) consists in

a graded set O;

an element 1 ∈ O(1);

an explicit description of the partial compositions map ◦i on O;

such that (O, ◦i, 1) is an operad and admits (G,R) as presentation.

Of course, there can be different realizations O and O′ of (G,R).

In this case, O and O′ are isomorphic operads.
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Realization of the diassociative operad

The diassociative operad Dias is the operad admitting the presentation (G,R) where G is the
graded set G := G(2) := {a, b} and R satisfies

a ◦1 a R a ◦2 a R a ◦2 b,

a ◦1 b R b ◦2 a,

b ◦1 a R b ◦2 b R b ◦1 b.

This operad is realized as the graded set O defined as the set words on {0, 1} having exactly one
occurrence of 0, and where for any u, v ∈ O, u ◦i v is obtained by replacing the i-th letter of u by v
if ui = 0 and by 1|v| otherwise.

– Examples –

10111 ◦4 110 = 1011111

10111 ◦2 110 = 1110111
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Rewrite systems on planar terms 1 / 2

A rewrite relation on TP(G) is a binary relation → on TP(G) such that if t → t′ then |t| = |t′|.

The context closure of→ is the binary relation⇒ satisfying t ⇒ t′ if t′ can be obtained by
replacing in t a connected part (called occurrence) s by s′ whenever s → s′.

– Example –
Let G := G(2) ⊔ G(3) be the signature where G(2) := {a, b} and G(3) := {c}. Let→ be the rewrite relation
defined by

c →
a

a
,

a
b → a

b
.

We have

c a

b c

b

⇒
a

b

a

b

a

c
⇒ a b

ab

a

c

⇒
a b

ab

a

a

a
.

A planar term rewrite system (or PTRS for short) is such a pair (G,→).
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Rewrite systems on planar terms 2 / 2

Let S := (G,→) be a PTRS.

We define
≪ as the reflexive and transitive closure of ⇒ (t ≪ t′ iff t′ can be obtained from t by some
rewrite steps);

GS(t) as the digraph of the binary relation ⇒ on {t′ ∈ TP(G) : t ≪ t′}, called
rewrite graph of t;

≡ as the symmetric closure of≪ (t≡ t′ iff t and t′ belong to the same connected component
of a rewrite graph).

A planar G-term t is a normal form for S if there is no arc from t in GS(t).

The PTRS S can have two important properties:

If for any t ∈ TP(G), there is no infinite path in GS(t), then S is terminating;

If for any t ∈ TP(G), t ≪ s1 and t ≪ s2 implies that there exists t′ such that s1 ≪ t′ and
s2 ≪ t′, then S is confluent.
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An example of a PTRS

– Example –
Let G := G(2) ⊔ G(3) be the signature where G(2) := {a, b} and G(3) := {c}. Let S := (G,→) be the PTRS
where→ satisfies

a → b , and
a

b → c .

Here is a portion of the rewrite graph of a planar G-term:

a

a

c

a

b

a

a

c

b

b
c

c b

a

c

c b

b

a

b

c

a

b
a

c

c

b b

c

c

b

This PTRS S is not confluent.
It is terminating. This is implied by the fact that each rewriting decreases by one the number of internal nodes
labeled by a and there is a finite number of planar G-terms with a given arity.
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Some properties

Let S := (G,→) be a PTRS.

– Proposition (Connection with operads) –

The equivalence relation ≡ is an operad congruence of the free operad TP(G).

Here are some classical properties of PTRS.

– Proposition (System of representative) –
If S is terminating and confluent, then the set of normal forms
of S is a system of representatives of the quotient operad
TP(G)/≡.

Typical rewrite graph of a terminating and conflu-
ent PTRS :

– Proposition (Normal forms and avoidance) –
The set of normal forms of S is the set of planar G-terms having no occurrence of any term appearing as left
member of→.
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Evaluation map and treelike expressions

Let O be an operad. In particular, O is a signature, so that TP(O) is a well-defined free operad.
The evaluation map of O is the map ev : TP(O) → O defined by

ev(t) :=

1 if t = ,

a ◦[ev(t1), . . . , ev(tn)] otherwise, where t = (a, (t1, . . . , tn)).

A treelike expression of x ∈ O is any planar O-term t such that ev(t) = x.

– Example –
In Per, we have

TP(Per) ∋

•
•
•

•

•
•

•
•
•

•
•

ev7−→
•

•
•
•

•
•
•
∈ Per

A relation of O is any pair (t, t′) of planar O-terms such that ev(t) = ev(t′).
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Links with presentations

Let O be an operad, G be a generating set of O, and R be an equivalence relation on TP(G)

containing only relations of O.
A rewrite relation→ on TP(G) is an orientation ofR if→ is a subrelation ofR and for any tR t′,
we have either t → t′ or t′ → t.

– Theorem –
Given suchO, G, R, and→, if

1. the PTRS (G,→) is terminating and confluent;

2. the set of normal forms of (G,→) of arity n are in one-to-one correspondence withO(n) for any n ∈ N,

then (G,R) is a presentation ofO.

– Exercise –
Let a := and c := and G := {a, c}. Let→ be the rewrite relation satisfying

a

a → a

a
, a

c
→

a

c , c

a
→

c

a , c

c
→

c

c ,

and R be the reflexive and symmetric closure of→. Use the theorem to show that (G,R) is a presentation ofMotz.
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Algebras over an operad

An O-algebra is a set S equipped with a map

op : O(n) → (Sn → S),

satisfying the following relations.

By writing simply x(s1, . . . , sn) for op(x)(s1, . . . , sn),

for any s ∈ S, 1(s) = s,

for any x ∈ O(n), y ∈ O(m), i ∈ [n], and s1, . . . , sn+m−1 ∈ S,

(x ◦i y)(s1, . . . , sn+m−1) = x(s1, . . . , si−1, y(si, . . . , si+m−1), si+m, . . . , sn+m−1).

On planar operators, the last relation depicts as

x

s1 sn+m−1. . . . . .y

si si+m−1. . .

= x ◦i y

s1 sn+m−1. . .

.
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Algebras and presentations

If O admits a presentation (G,R), to specify an O-algebra S it is enough to define op on G and
check that for any (t, t′) ∈ R,

ev(t)(s1, . . . , sn) = ev(t′)(s1, . . . , sn).

– Example –
Any Motz-algebra is a set S endowed with two generating operations

: S2 → S and : S3 → S,

satisfying
( (s1, s2), s3) = (s1, (s2, s3)),

( (s1, s2), s3, s4) =
(
s1, (s2, s3, s4)

)
,(

(s1, s2, s3), s4
)
=

(
s1, (s2, s3, s4)

)
,(

(s1, s2, s3), s4, s5
)
=

(
s1, s2, (s3, s4, s5)

)
.
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Categories of algebras

Let O be an operad.

The collection of the O-algebras forms a category where morphisms between two objects S and S′

are maps ϕ : S → S′ satisfying, for any x ∈ O(n),

ϕ(x(s1, . . . , sn)) = x(ϕ(s1), . . . , ϕ(sn)).

– Example –
Let As be the associative operad defined by As(0) := ∅ and for any n ⩾ 1, As(n) := {⋆n}, where ⋆n ◦i ⋆m :=

⋆n+m−1.

A minimal generating set of As is {⋆2}.
Any As-algebra is a set S endowed with the generating operation ⋆2 satisfying

(⋆2 ◦1 ⋆2)(s1, s2, s3) = ⋆2(⋆2(s1, s2), s3)

∥ ∥
(⋆2 ◦2 ⋆2)(s1, s2, s3) = ⋆2(s1, ⋆2(s2, s3)).

Using the infix notation for the binary operation ⋆2, we obtain the relation (s1 ⋆2 s2) ⋆2 s3 = s1 ⋆2 (s2 ⋆2 s3), so that
the category of As-algebras is the category of semigroups.
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Operad morphisms and algebras

– Proposition –
LetO1 andO2 be two operads and ϕ : O1 → O2 be an operad morphism. If S is anO2-algebra, by setting for any
x ∈ O1(n) and s1, . . . , sn ∈ S,

x(s1, . . . , sn) := (ϕ(x))(s1, . . . , sn),

the set S becomes anO1-algebra.

Therefore, any operad morphism from O1 to O2 gives rise to a functor from the category of
O2-algebras to the category of O1-algebras.

– Example –
Let ϕ : Dup→ Dias be the map sending any t ∈ Dup(n) to 1k−101n−k , where k is
the position of the root of t for the infix traversal. For instance,

ϕ7−→ 111011.

Since this map is an operad morphism, any Dias-algebra gives rise to a Dup-algebra.

– Exercise –
Prove that ϕ is an operad
morphism.
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Some references

About the diassociative operad:
J.-L. Loday, Dialgebras, 2001.

F. Chapoton, On some anticyclic operads, 2005.

About realizations of some presentations:
F. Chapoton, M. Livernet, Pre-Lie algebras and the rooted trees operad, 2001.

S. Giraudo, Pluriassociative algebras II: The polydendriform operad and related
operads, 2016.

About term rewrite systems:
F. Baader, T. Nipkow, Term rewriting and all that, 1998.

M. Bezem, J. W. Klop, R. de Vrijer, Terese, Term Rewriting Systems, 2003.

About several examples of algebras over operads:
J.-L. Loday, Encyclopedia of types of algebras 2010, 2012.
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The construction T

Let (M, ·, e) be amonoid and let (TM, ◦i, 1) be the triple such that

TM(0) = ∅ and for any n ⩾ 1, TM(n) is the setMn;

for any u ∈ TM(n), 1 ⩽ i ⩽ n, and v ∈ TM,

u ◦i v := u(1, i − 1) (u(i) · v(1)) . . . (u(i) · v(ℓ(v))) u(i + 1, ℓ(u));

1 is the element e seen as a word of length 1.

– Examples –
SetM := (N,+, 0). We have

20336 ∈ TM(5)

and, in TM,
325112 ◦3 221 = 32 (5+ 2) (5+ 2) (5+ 1) 112 = 32776112.

– Theorem –
For any monoidM, TM is an operad.
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Operads from the construction T

The operads TM are large enough to contain a lot of suboperads realizable through certain
combinatorial families.

As main examples:
For any m ⩾ 0, withM := (N,+, 0),

PRTm, generated by {01, . . . , 0m}, on primitive m-Dyck paths;
FCatm, gen. by {00, 01, . . . , 0m}, on m-trees;
Schrm, gen. by {01, . . . , 0m, 00,m0, . . . , 10}, on some Schröder trees;
Motzm, gen. by {00, 010, . . . , 0m0}, on colored Motzkin paths.

For any m ⩾ 0, withM := (Z/(m+ 1)Z,+, 0),
Compm, gen. by {00, 01, . . . , 0m}, on m-words;
DAm, gen. by {00, 01, . . . , 0(m− 1)}, on some directed animals.

For any m ⩾ 0,M := (N,max, 0),
Diasm, gen. by {01, . . . , 0m,m0, . . . , 10}, is the m-pluriassociative operad;
Triasm, gen. by {01, . . . , 0m, 00,m0, . . . , 10}, is the m-pluritriassociative operad.
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Some partial compositions on combinatorial objects

◦2 = (in PRT1)

◦1 = (in FCat2)

◦6 = (in Schr1)

◦4 = (inMotz1)

◦5 = (in Comp1)
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Full diagram

T(N,+, 0)

T(Z/(m+ 1)Z,+, 0)

T(N,max, 0)

Schrm+1

SchrmFCatm+1

FCatmPRTm+1

PRTm

Motzm+1

Motzm

Motz0

PRT0

Compm

DAm

Diasm

Diasm+1 Triasm

Triasm+1
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Translation algebras

Let (M, ·, e) be a monoid.

– Proposition –
The operad TM admits the presentation (G,R) where G :=M⊔ {ee} and R satisfies

ee ◦1 ee R ee ◦2 ee,

a ◦1 b R a · b, a, b ∈M,

ee ◦[a, a] R a ◦1 ee, a ∈M.

AnM-translation algebra is a set S endowed with a binary operation ⋆ : S × S → S and unary
operations θa : S → S, a ∈ M, satisfying

(TAs) (s1 ⋆ s2) ⋆ s3 = s1 ⋆ (s2 ⋆ s3),

(TAc) θa(θb(s1)) = θa·b(s1),

(TU) θe(s1) = s1,

(TMo) θa(s1 ⋆ s2) = θa(s1) ⋆ θa(s2).

– Proposition –

AnyM-translation algebra is a TM-algebra and any TM-algebra is anM-translation algebra.
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Decorated cliques

Let (M, ·, e) be a monoid.

AnM-clique p is a complete graph on [n+ 1] where each edge (x, y) is decorated by an element
p(x, y) ∈ M. The arity of p is n.

– Example –
SetM := (Z/3Z,+, 0). Here is anM-clique (on the right, the edges decorated by the unit e ofM are not drawn
and this convention is used in the sequel):

0

0

1 1

22 1

0
1

0

1

2

3

4

5

←→

1 1

2

2

1
1

.

The arity of this clique is 4.
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The construction C

Let (M, ·, e) be a monoid and let (CM, ◦i, 1) be the triple such that
CM(0) = ∅ and for any n ⩾ 1, CM(n) is the set of the M-cliques of arity n;
For any p ∈ CM(n) and q ∈ CM(m), p ◦i q is defined by

ai i+1

p ◦i
b

q = ai i+1

p

b

q

= i i+ma · b ;

1 is the M-clique .

– Examples –
SetM := (Z,+, 0). In CM, we have

1
−2

−2
1 ◦2 1

3

1
2 =

1
−2

1 1

1

2

1 ,
1

−2

−2
1 ◦2 1

2

1
2 =

1
−2

1
1

2

1 .

– Theorem –
For any monoidM, CM
is an operad.
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Noncrossing cliques

AnM-clique p is noncrossing if there are no edges (x, y) and (x′, y′) such that
p(x, y) ̸= e ̸= p(x, y) and x < x′ < y < y′ or x′ < x < y′ < y.

– Example –
ForM := (N,+, 0), theM-clique

1

2

1

4
1

2

3

31
2

1

is noncrossing.

– Proposition –

The set of the noncrossingM-cliques is a suboperad of CM.

Let NCM be this operad of noncrossingM-cliques.
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Link with translation algebras

Let (M, ·, e) be a monoid.

– Proposition –
The operad NCM admits the presentation (G,R) where

G := { a : a ∈M} ⊔
{ }

and R satisfies
◦1 R ◦2 ,

a ◦1 b R a · b , a, b ∈M.

As a consequence, any NCM-algebra is a set S endowed with a binary operation ⋆ : S × S → S and
unary operations θa : S → S, a ∈ M satisfying Relations (TAs), (TAc), and (TU) of M-translation
algebras.
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Link with the construction T

The map ϕ : NCM → TM satisfying

ϕ
( )

= ee and ϕ( a ) = a, a ∈ M

extends uniquely into an operad morphism.

– Example –
ForM := (N,+, 0),

1
1

4
1

2

3

3

1

1 ϕ7−→ 264185652.

Since for any u(1) . . . u(n) ∈ TM(n),

u(1)

u(2)
u(3)

u(n)

ϕ7−→ u(1)u(2)u(3) . . . u(n),

this morphism is surjective. Therefore, TM is a quotient operad of NCM.
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Some references

About the construction T:
S. Giraudo, Combinatorial operads from monoids, 2015.

About the construction C:
S. Giraudo, Operads of decorated cliques I: Construction and quotients, 2020.
S. Giraudo, Operads of decorated cliques II: Noncrossing cliques, 2022–.
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The operad FCatm
Recall that FCatm, m ⩾ 0, is the suboperad of T(N,+, 0) generated by Gm := {00, 01, ..., 0m}.

– Examples –
Here are the first sets of elements of FCatm, for m ∈ {1, 2}:

FCat1(0) = ∅, FCat1(1) = {0}, FCat1(2) = {00, 01}, FCat1(3) = {000, 001, 010, 011, 012},
FCat1(4) = {0000, 0001, 0010, 0011, 0012, 0100, 0101, 0110, 0111, 0112, 0120, 0121, 0122, 0123},

FCat2(0) = ∅, FCat2(1) = {0}, FCat2(2) = {00, 01, 02},
FCat2(3) = {000, 001, 002, 010, 011, 012, 013, 020, 021, 022, 023, 024},

FCat2(4) = {0000, 0001, 0002, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0024, 0100, 0101, 0102, 0110, 0111, 0112,
0113, 0120, 0121, 0122, 0123, 0124, 0130, 0131, 0132, 0133, 0134, 0135, 0200, 0201, 0202, 0210, 0211, 0212,

0213, 0220, 0221, 0222, 0223, 0224, 0230, 0231, 0232, 0233, 0234, 0235, 0240, 0241, 0242, 0243, 0244, 0245, 0246}.

– Example –

In FCat2, 013102 ◦4 0232 = 013134302.
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Description of its elements

– Proposition –
The elements of FCatm are exactly the words u of integers satisfying

1. u(1) = 0;

2. 0 ⩽ u(i + 1) ⩽ u(i) + m for all i ∈ [|u| − 1].

Let Fm be the set of the m-trees, that are planar rooted trees such that each internal node has
exactly m+ 1 children. Let ϕ : FCatm → Fm be the map recursively defined by

ϕ(0) is the m-tree consisting in a single internal node;
ϕ(ua) is the planar rooted tree obtained by grafting ϕ(0) on the a-th leaf (indexed from 0 and
from the right) of ϕ(u).

– Example –
Computation of ϕ(00211) for m := 2:

ϕ(0) = 07−→ 27−→ 17−→ 17−→
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Interpretation of FCatm in terms of m-trees

– Proposition –

The map ϕ is a bijection between FCatm and Fm.

Therefore, for any n ⩾ 1,

#FCatm(n) =
(
(m+ 1)n

n

)
1

mn+ 1
.

It is possible to interpret the partial composition of FCatm in terms of m-trees.

– Example –
In FCat2, we have

0202 ◦1 021 = 021202.

By ϕ, this translates as

◦1 = .
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Presentation

– Theorem –
The operad FCatm admits the presentation (Gm,Rm) where Rm satisfies

0(a+ b) ◦1 0a Rm 0a ◦2 0b,

for any a, b ⩾ 0 such that a+ b ⩽ m.

– Exercise –
Show this presentation by FCatm by considering the orientation→m of Rm satisfying

0(a+ b) ◦1 0a →m 0a ◦2 0b.

– Example –
The operad FCat1 admits the presentation (G1,R1) where G1 := {00, 01} and R1 satisfies

00 ◦1 00 R1 00 ◦2 00,

01 ◦1 00 R1 00 ◦2 01,
01 ◦1 01 R1 01 ◦2 00.
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Enumeration of the normal forms

By the previous results, there is a one-to-one correspondence between FCatm(n) and the normal
forms of arity n of the PTRS (Gm,→m).

In the particular case where m = 1, these normal forms are the planar G1-terms avoiding

00

00
,

00

01
,

01

01
.

The formal series FA1 of these normal form expresses as

FA1 = +

FA1

00 +

FA1

FA101

00
+

FA1

01 .
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Enumeration map

For any m ⩾ 0, the enumeration map is the map

en : TP(Gm) → Q[[z, q0, . . . , qm]]

such that
en(t) := z|t| qdeg00(t)0 . . . qdeg0m(t)m .

– Example –

00 02

02

00

01

02 en7−→ z7q20q1q
3
2

This map extends by linearity on the space of formal series of planar G-terms.

If f is a formal series of Gm-terms, then en(f) is the generating series enumerating the terms
appearing in f w.r.t. their arities (parameter z) and their numbers of internal nodes labeled by 0k
(parameters qk).
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Generating series

Let us set FAm := en(FAm).

The previous expression for FA1 leads to the expression

FA1 = z(q0FA1 + 1)(q1FA1 + 1)

for FA1 so that

FA1 =
1− z(q0 + q1)−

√
1− 2z(q0 + q1) + z2(q20 − 2q0q1 + q21)

2zq0q1

and

FA1 = z+ (q0 + q1)z2 +
(
q20 + 3q0q1 + q21

)
z3

+
(
q30 + 6q20q1 + 6q0q21 + q31

)
z4

+
(
q40 + 10q30q1 + 20q20q

2
1 + 10q0q31 + q41

)
z5

+
(
q50 + 15q40q1 + 50q30q

2
1 + 50q20q

3
1 + 15q0q41 + q51

)
z6 + · · · .
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Narayana triangle

The specialization FAm(z, qk) of all parameters of FAm to 1 except z and the parameter qk ,
k ∈ [m], leads to a bi-indexed family of integers.

This produces triangles of integers, wherein the integer at position (i, j), i ⩾ 1, j ⩾ 0, is the
coefficient of ziqjk in FAm(z, qk).

– Examples –
Coefficients of FA1(z, q0):
1
1 1
1 3 1
1 6 6 1
1 10 20 10 1
1 15 50 50 15 1

Coefficients of FA1(z, q1):
1
1 1
1 3 1
1 6 6 1
1 10 20 10 1
1 15 50 50 15 1

This is the same triangle, known as the Triangle of Narayana numbers (Triangle A001263).

It counts binary trees w.r.t. their number of internal nodes and the number of edges oriented to the left (resp. right)
connecting two internal nodes.
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Alternative orientation

The presentation (Gm,Rm) of FCatm where Rm satisfies

0(a+ b) ◦1 0a Rm 0a ◦2 0b,

for any a, b ⩾ 0 such that a+ b ⩽ m admits the alternative orientation

0(a+ b) ◦1 0a →′
m 0a ◦2 0b, if 0 ⩽ a ⩽ b ⩽ m and a+ b ⩽ m,

0a ◦2 0b →′
m 0(a+ b) ◦1 0a, if 0 ⩽ b < a ⩽ m and a+ b ⩽ m.

– Example –
The rewrite relation→′

1 satisfies
00 ◦1 00 →′

1 00 ◦2 00,
01 ◦1 00 →′

1 00 ◦2 01,
01 ◦2 00 →′

1 01 ◦1 01.

– Proposition –

The PTRS (Gm,→′
m) is terminating and confluent.
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Enumeration of the normal forms

There is a one-to-one correspondence between FCatm(n) and the normal forms of arity n of the
PTRS (Gm,→′

m).
In the particular case where m = 1, these normal forms are the planar G1-terms avoiding

00

00
,

00

01
,

01

00
.

The formal series FB1 of these normal forms expresses as

FB1 = +
FB′

1 FB1

00 +
FB′

1 FB′
1

01 ,

where

FB′
1 = +

FB′
1 FB′

1

01 .
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Generating series

Let us set FBm := en(FBm).

The previous expression for FB1 leads to the generating function

FB1 =
1− 2zq0 −

√
1− 4zq1

2(q1 − q0 + zq20)

for FB1 so that

FB1 = z+ (q0 + q1)z2 +
(
q20 + 2q0q1 + 2q21

)
z3

+
(
q30 + 3q20q1 + 5q0q21 + 5q31

)
z4

+
(
q40 + 4q30q1 + 9q20q

2
1 + 14q0q31 + 14q41

)
z5

+
(
q50 + 5q40q1 + 14q30q

2
1 + 28q20q

3
1 + 42q0q41 + 42q51

)
z6 + · · · ,
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Catalan triangle

The specialization FBm(z, qk) of all parameters of FBm to 1 except z and the parameter qk , k ∈ [m],
leads to a bi-indexed family of integers.

This produces again triangles of numbers.

– Examples –
Coefficients of FB1(z, q0):
1
1 1
2 2 1
5 5 3 1
14 14 9 4 1
42 42 28 14 5 1

Coefficients of FB1(z, q1):
1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42

Each triangle is the mirror of the other. They are known as the Catalan Triangle (Triangle A009766).

It counts binary trees w.r.t. their number of internal nodes and the jump-length statistics.
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Some projects

– Research project –
Extends the previous results for any m ⩾ 2 by providing a combinatorial interpretation of the coefficients of the
obtained triangles of integers. More precisely,

1. Provide systems of equations for FAm and FBm;

2. Provide a description of FAm and FBm;

3. Provide a description of the coefficients of FAm(z, qk) and FBm(z, qk) for all k ∈ [m].

– Research project –
Develop a similar study for other operads in order to discover new triangles of integers. This includes the operad
Motzm of Motzkin paths, the operad Schrm of Schröder trees, and the operad DAm of directed animals.
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Some references

About the discovery of statistics through operads:
S. Giraudo, Tree series and pattern avoidance in syntax trees, 2020.

About other interactions between operads and combinatorics:
S. Giraudo, Colored operads, series on colored operads, and combinatorial generating
systems, 2019.

S. Giraudo, Generation of musical patterns through operads, 2020.

C. Chenavier, C. Cordero, S. Giraudo, Quotients of the magmatic operad: lattice
structures and convergent rewrite systems, 2019.

S. Giraudo, Duality of graded graphs through operads, 2021.

C. Combe, S. Giraudo, Cliff operads: a hierarchy of operads on words, 2022–.

F. Fauvet, L. Foissy, D. Manchon, Operads of finite posets, 2018.
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Enumeration of Motzkin paths

AMotzkin path is a path in N2 starting from (0, 0) and ending at (n, 0), made of steps (+1,+1),
(+1,−1), and (+1, 0).

– Example –

With the aid of some elementary reasoning, one can prove that the generating series F(z) of
Motzkin paths, enumerating them w.r.t. their number of points, satisfies

F(z) = z+ zF(z) + zF(z)2

and
F(z) = z+ z2 + 2z3 + 4z4 + 9z5 + 21z6 + 51z7 + 127z8 + 323z9 + · · · .

80 / 90



Composition of Motzkin paths and series of objects

A way to obtain the previous expression for this series consists in following both steps:

1. define a composition operation on the set of Motzkin paths;

2. express the infinite formal sum of all Motzkin paths.

If u and v are two Motzkin paths, the composition u ◦i v is obtained by replacing the i-th point of u
by v.

The infinite formal sum of all Motzkin paths is

f := + + + + + + + + · · · ,

and we can prove that it satisfies the functional equation

f = + ◦[ , f] + ◦[ , f, f].

This is a consequence of a property of the operadMotz of Motzkin paths (and more precisely, the
fact that it is a Koszul operad).
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Generating set of Per

A permutation σ is simple if σ does not admit
any factor of length between 2 and |σ| − 1
which is a segment.

– Examples –
415362 is simple.

3257861 is not simple.

These permutations are enumerated w.r.t. their size by Sequence A111111, beginning by

0, 2, 0, 2, 6, 46, 338, 2926, 28146, 298526.

– Proposition –

The set of the simple permutations is a minimal generating set of Per.

– Exercise –
Show the previous proposition.

The operad Per admits neither binary nor quadratic presentation.
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Factors in planar terms

Let t, s ∈ TP(G).

The planar term s is a factor of t if there exist
r, r1, . . . , r|s| ∈ TP(G) and i ∈ [|r|] such that

t = r ◦i
(
s ◦

[
r1, . . . , r|s|

])
.

This property is denoted by s ≼ t.

– Example –

c

b
≼

a

b

a

b

c

c

b

b

When s�≼t, t avoids s.

– Exercise –
Show that for any signature G, ≼ is a partial order relation on TP(G).
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Operad of maps and morphisms

Let S be a set. The operad of S-maps MapS is the operad wherein

MapS(n) is the set of the maps from Sn to S;

f ◦i g is the map satisfying

(f ◦i g)(s1, . . . , sn+m−1) = f (s1, . . . , si−1, g(si, . . . , si+m−1), si+m, . . . , sn+m−1);

the unit 1 is the identity map on S.

Alternatively, any O-algebra S can be specified by an operad morphism

ϕ : O → MapS.

This map ϕ is in fact the map op introduced previously.
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Free algebras over operads

If O is an operad and A is a nonempty set, let O(A) be the set of the pairs (x, u) where x ∈ O(n)
and u ∈ An.

Let op be the map defined for any x ∈ O(n) and (yi, ui) ∈ O(A) by

x((y1, u1), . . . , (yn, un)) := (x ◦[y1, . . . , yn], u1 . . . un).

– Example –
ForO := Motz and A := {a, b},(

( , ab),
(

, aaba
)
, ( , b)

)
=

(
, abaabab

)
.

– Proposition –
The set O(A) is an O-algebra.
It is moreover free as an O-
algebra.

For any set A, anyO-algebra S, and any map
f : A → S, there exists a unique O-algebra
morphism ϕ : O(A)→ S such that f = ϕ ◦ c,
where ι : A→ O(A) is the map a 7→ (1, a).

A S

O(A)

f

ι ϕ
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The construction A

Let (P,≼) be a poset. Given a, b ∈ P , a and b are comparable if a ≼ b or b ≼ a. In this case, the
smallest element among a and b is denoted by a ↑ b.

Let AP be the operad admitting the presentation (G,R) where G is the graded set
G := G(2) := P and R satisfies

a ◦1 b R (a ↑ b) ◦2(a ↑ b), a, b ∈ P when a and b are comparable,

(a ↑ b) ◦1(a ↑ b) R a ◦2 b, a, b ∈ P when a and b are comparable.

– Example –
By considering the poset P having the Hasse diagram on the right, the operad AP
admits the presentation (G,R) where G := G(2) := {1, 2, 3, 4} and R satisfies P :=

1 2
3 4

1 ◦1 1 R 1 ◦1 3 R 3 ◦1 1 R 3 ◦2 1 R 1 ◦2 3 R 1 ◦2 1,
2 ◦1 2 R 2 ◦1 3 R 2 ◦1 4 R 3 ◦1 2 R 4 ◦1 2 R 4 ◦2 2 R 3 ◦2 2 R 2 ◦2 4 R 2 ◦2 3 R 2 ◦2 2,

3 ◦1 3 R 3 ◦2 3,
4 ◦1 4 R 4 ◦2 4.
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P-alternating Schröder trees

A P-alternating Schröder tree is a planar rooted tree t such that
each internal node of t has two or more children;

each internal node of t is decorated on P ;

if u and v are two internal nodes of t such that v is a child of u, then the decorations of u and
of v are incomparable in P .

– Example –
Here are a poset P and a P-alternating Schröder tree t:

P :=
1

2 3
4

5
, t := 2 3

54

5

2
.

Let not denote by AP the graded set of the P-alternating Schröder trees where the arity of such a
tree is its number of leaves.
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Forest posets and realization of AP
A poset P is a forest poset if for any a, b, c ∈ P , if a ≼ c and b ≼ c, then a = c or b = c. In other
terms, the Hasse diagram of P is a rooted forest, where the roots are the minimal elements.

– Example –
Here is a forest poset:

1
2 3

4

5
.

– Example –
Here is a poset which is not a forest poset:

1 2
3 4

.

For any t, s ∈ AP , t ◦i s is obtained by grafting a copy of s on the i-th leaf of t, and by iteratively
contracting each edge between two internal nodes decorated by two comparable elements a and b
to form an internal node labeled by a ↑ b.

– Example –
Here are a poset P and a partial composition in AP :

P :=
1

2 3
4
5
6
, 1

4
◦1 5

2
3

=
5

2
3

1
4 →

5
1
3 4

→
5

1
4
.
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Forest posets and realization of AP

– Theorem –
If P is a forest poset, then AP is a realization of the operad AP .

– Open question –

Build a realization of AP for any poset P .

Reference about the construction A:
S. Giraudo, Operads from posets and Koszul duality, 2016.
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