Algebraic and combinatorial structures on decorated cliques

Samuele Giraudo

Laboratoire d'Informatique Gaspard-Monge, Université Paris-Est Marne-la-Vallée, France

Operads

A nonsymmetric operad (abbreviated as operad) is a graded vector space

$$\mathcal{O} := \bigoplus_{n \geqslant 1} \mathcal{O}(n)$$

endowed with a map

$$\circ_i: \mathcal{O}(n) \otimes \mathcal{O}(m) \to \mathcal{O}(n+m-1), \qquad n, m \geqslant 1, i \in [n],$$

satisfying, for all $x \in \mathcal{O}(n)$, $y \in \mathcal{O}(m)$, and $z \in \mathcal{O}$, the axioms

• for any $i \in [n], j \in [m]$,

(Asso)
$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z),$$

• for any $1 \leqslant i < j \leqslant n$,

(Comm)

$$(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y,$$

▶ there exists $\mathbb{1} \in \mathcal{O}(1)$ such that, for any $i \in [n]$,

(Unit) $\mathbb{1}\circ_1 x = x = x \circ_i \mathbb{1}.$

Operads provide an abstraction of the notion of operations with several

inputs and their composition:

Axiom (Asso)
says that
there are two
ways to form
the operation

Axiom (Comm) says that there are two ways to form the operation

Axiom (Unit) says that the operation 1 behaves as an identity map

Some definitions:

- ▶ if $x \in \mathcal{O}(n)$, n is the arity |x| of x;
- \circ_i is the partial composition map of \mathcal{O} ;
- ▶ 1 is the unit of \mathcal{O} ;
- when all the spaces $\mathcal{O}(n)$, $n \ge 1$, are finite dimensional, the Hilbert series of $\mathcal O$ is the series

$$\mathcal{H}_{\mathcal{O}}(t) := \sum_{n \geqslant 1} \dim \mathcal{O}(n) \ t^n;$$

- ▶ an operad morphism is a map $\phi : \mathcal{O}_1 \to \mathcal{O}_2$ respecting the arities and commuting with the partial composition map;
- suboperads, ideals, and quotients of operads are defined in the usual algebraic way;
- ▶ a presentation of an operad \mathcal{O} consists in a graded set $\mathfrak{G}_{\mathcal{O}}$ of generators and a space $\mathcal{R}_{\mathcal{O}}$ of relations between the generators.

Decorated cliques

Let $(\mathcal{M}, \star, \mathbb{1}_{\mathcal{M}})$ be a unitary magma, that is a set \mathcal{M} endowed with a binary operation \star satisfying $a \star \mathbb{1}_{\mathcal{M}} = a = \mathbb{1}_{\mathcal{M}} \star a$.

An \mathcal{M} -clique \mathfrak{p} of size n is a complete graph on the set [n+1] of vertices such that each arc (x,y) is decorated by an element $\mathfrak{p}(x,y)$ of \mathcal{M} .

An arc (x, y) is solid if $\mathfrak{p}(x, y) \neq \mathbb{1}_{\mathcal{M}}$.

Example

Here is a $\mathbb{Z}/_{3\mathbb{Z}}$ -clique \mathfrak{p} of size 4. Only the solid arcs of \mathfrak{p} are shown:

Let C be the functor from the category of unitary magmas to the category of graded vector spaces defined by

$$CM := \bigoplus_{n \geqslant 1} CM(n),$$

where $\mathsf{C}\mathcal{M}(1)$ is the space generated by -, and for any $n\geqslant 2$, $\mathsf{C}\mathcal{M}(n)$ is the linear span of all \mathcal{M} -cliques of size n.

We endow $\mathsf{C}\mathcal{M}$ with the partial composition map \circ_i defined by

Example

In
$$\mathbb{C}\mathbb{Z}$$
, one has

When \mathcal{M} is finite, the Hilbert series of $\mathcal{C}\mathcal{M}$ is, with $m:=\#\mathcal{M}$,

$$\mathcal{H}_{\mathsf{C}\mathcal{M}}(t) = t + \sum_{n\geqslant 2} m^{\binom{n+1}{2}} t^n.$$

Theorem

The construction C is a functor from the category of unitary magmas to the category of nonsymmetric operads.

An \mathcal{M} -clique \mathfrak{p} is prime if for any of its diagonal (x,y), there is a solid diagonal crossing (x,y).

Example

Here is a prime $\mathbb{Z}/_{2\mathbb{Z}}$ -clique of size 7:

Proposition

The set of all prime \mathcal{M} -cliques is a minimal generating set of $\mathcal{C}\mathcal{M}$.

As a consequence, except when $\mathcal M$ is trivial, $\mathsf C\mathcal M$ is not finitely generated and has generators for any arity $n\geqslant 2.$

Substructures and quotients

In order to construct substructures of CM whose bases are indexed by particular M-cliques, we use the following ideas:

Idea A. construct quotients of CM by

- 1. considering a family X of \mathcal{M} -cliques;
- 2. setting \mathcal{R}_X as the linear span of all the \mathcal{M} -cliques of \bar{X} ;
- 3. when \mathcal{R}_X is an operad ideal of \mathcal{CM} , the quotient

 $\mathsf{C}\mathcal{M}/_{\mathcal{R}_X}$

is a an operad on the linear span of X;

Idea B. if \mathcal{R}_1 and \mathcal{R}_2 are operad ideals of an operad \mathcal{O} , $\mathcal{R}_1 + \mathcal{R}_2$ is an operad ideal of \mathcal{O} and $\mathcal{O}/_{\mathcal{R}_1 + \mathcal{R}_2}$ is a quotient of \mathcal{O} .

One obtains (among others) the operads fitting in the following diagram (arrows \rightarrow (resp. \rightarrow) are injective (resp. surjective) morphisms of operads):

The degree deg(p) of an \mathcal{M} -clique p is the greatest degree of among the vertices of the graph formed by the solid arcs of p.

Let $\mathcal{R}_{\mathrm{Deg}_k\mathcal{M}}$ be the linear span of all \mathcal{M} -cliques of degrees greater than k. As a quotient space,

$$\mathrm{Deg}_k\mathcal{M}:=\mathsf{C}\mathcal{M}/_{\mathrm{Deg}_k\mathcal{M}}$$

is the linear span of all \mathcal{M} -cliques of degrees at most k.

Proposition

When \mathcal{M} has no nontrivial unit divisors, $\operatorname{Deg}_k \mathcal{M}$ is a quotient operad of $\operatorname{C}\mathcal{M}$.

Example

For
$$\mathbb{D} := (\{1,0\}, \times, 1)$$
, one has in $\underline{\mathsf{Deg}}_3\mathbb{D}$,

The crossing $\operatorname{cro}(\mathfrak{p})$ of an \mathcal{M} -clique \mathfrak{p} is the greatest number of solid diagonals crossing (x,y) among all solid diagonals (x,y) of \mathfrak{p} .

Let $\mathcal{R}_{\text{Cro}_k}\mathcal{M}$ be the linear span of all \mathcal{M} -cliques of crossing greater than k. As a quotient space,

$$\operatorname{Cro}_k \mathcal{M} := \mathbf{C} \mathcal{M} /_{\operatorname{Cro}_k \mathcal{M}}$$

is the linear span of all $\mathcal{M}\text{-cliques}$ of crossings at most k.

Proposition

The space $Cro_k\mathcal{M}$ is both a suboperad and a quotient operad of $C\mathcal{M}$.

Example

In $\text{Cro}_2\mathbb{Z}/_{4\mathbb{Z}}$, one has

A Motzkin configuration is a diagram with only noncrossing and disjoint arcs. In other terms, a \mathbb{D} -clique is a Motzkin configuration if its degree is 0 or 1, and its crossing is 0.

Example

The \mathbb{D} -clique

is a Motzkin configuration of size 9.

Proposition

The space

$$\mathrm{Mot}\mathbb{D}:=\mathsf{C}\mathbb{D}/_{\mathcal{R}_{\mathrm{Cro}_0}\mathbb{D}}+\mathcal{R}_{\mathrm{Deg}_1\mathbb{D}}$$

is a quotient operad of $\mathbb{C}\mathbb{D}$ whose bases are indexed by Motzkin configurations.

A bunch of other similar structures fits as substructures of CM, as *e.g.*, operads on bubbles, acyclic graphs, nesting free diagrams, forests of trees, dissections of polygons, and Lucas configurations.

Noncrossing decorated cliques

Let $NCM := Cro_0M$ be the operad of noncrossing configurations.

Proposition

The set

 $\mathfrak{G}_{\mathrm{NC}\mathcal{M}} := \left\{ \begin{smallmatrix} \mathfrak{p}_1 & \mathfrak{p}_2 \\ -\mathfrak{p}_0 - \end{smallmatrix} : \mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_2 \in \mathcal{M} \right\}$

of all \mathcal{M} -triangles is a minimal generating set of NCM.

Hence, unlike CM, NCM is a binary operad. Moreover, NCM admits two

particular properties. Indeed, NCM is

1. the smallest suboperad of CM containing all the M-triangles;

2. the biggest binary suboperad of CM.

Proposition

When \mathcal{M} is finite, the Hilbert series of $\operatorname{NC}\mathcal{M}$ satisfies

 $t + (m^3 - 2m^2 + 2m - 1) t^2 + (2m^2t - 3mt + 2t - 1) \mathcal{H}_{NCM}(t) + (m - 1) \mathcal{H}_{NCM}(t)^2 = 0,$ where $m := \#\mathcal{M}$.

Moreover, when \mathcal{M} is finite, for all $n \geqslant 2$,

$$\dim \mathbb{NCM}(n) = \sum_{0 \leqslant k \leqslant n-2} m^{n+k+1} (m-1)^{n-k-2} \frac{1}{k+1} \binom{n-2}{k} \binom{n-1}{k}.$$

Theorem

When \mathcal{M} is finite, $\overset{NC}{\mathcal{M}}$ admits the presentation $(\mathfrak{G}_{NC\mathcal{M}}, \mathcal{R}_{NC\mathcal{M}})$ were $\mathcal{R}_{NC\mathcal{M}}$ is generated by

Hence, NCM is binary and quadratic. For this reason, NCM admits a Koszul dual $NCM^!$.

Proposition

When \mathcal{M} is finite, $\operatorname{NC}\mathcal{M}!$ admits the presentation $(\mathfrak{G}_{\operatorname{NC}\mathcal{M}}, \mathcal{R}^!_{\operatorname{NC}\mathcal{M}})$ where $\mathcal{R}^!_{\operatorname{NC}\mathcal{M}}$ is generated by

$$\sum_{\substack{\mathfrak{p}_1,\mathfrak{q}_0\in\mathcal{M}\\\mathfrak{p}_1\star\mathfrak{q}_0=\delta}} \mathfrak{p}_1, \quad \mathfrak{p}_2 \circ_1, \quad \mathfrak{q}_1, \quad \mathfrak{q}_2 \circ_1, \quad \mathfrak{p}_0, \quad \mathfrak{p}_2, \quad \mathfrak{q}_1, \quad \mathfrak{q}_2 \circ_1, \quad \mathfrak{q}_1 \circ_2, \quad \mathfrak{q}_1 \circ_1, \quad \mathfrak{q}_2 \circ_2, \quad \mathfrak{q}_1, \quad \mathfrak{q}_2 \circ_1, \quad \mathfrak{q}_2 \circ_2, \quad \mathfrak{q}_1, \quad \mathfrak{q}_2 \circ_1, \quad \mathfrak{q}_2 \circ_2, \quad \mathfrak{q}_1, \quad \mathfrak{q}_2 \circ_2, \quad \mathfrak{q}_1, \quad \mathfrak{q}_2 \circ_1, \quad \mathfrak{q}_2 \circ_2, \quad \mathfrak{q}_1, \quad \mathfrak{q}_2 \circ$$

$$\sum_{\substack{\mathfrak{p}_{1},\mathfrak{q}_{0}\in\mathcal{M}\\\mathfrak{p}_{1}\star\mathfrak{q}_{0}=\mathbb{1}_{\mathcal{M}}}} \mathfrak{p}_{1} \stackrel{\mathfrak{p}_{2}}{\downarrow_{0}} \circ_{1} \stackrel{\mathfrak{q}_{1}}{\downarrow_{1}} \stackrel{\mathfrak{q}_{2}}{\downarrow_{0}} - \stackrel{\mathfrak{q}_{1}}{\downarrow_{0}} \stackrel{\mathfrak{p}_{1}}{\downarrow_{0}} \circ_{2} \stackrel{\mathfrak{q}_{2}}{\downarrow_{1}} \stackrel{\mathfrak{p}_{2}}{\downarrow_{0}}, \qquad \mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{q}_{1}, \mathfrak{q}_{2} \in \mathcal{M}, \delta \in \mathcal{M} \setminus \{\mathbb{1}_{\mathcal{M}}\}.$$

Proposition When Mais fi

When \mathcal{M} is finite, the Hilbert series of $\mathbb{NC}\mathcal{M}^!$ satisfies

when \mathcal{M} is finite, the finbert series of NO \mathcal{M} satisfies $t + (m-1)t^2 + \left(2m^2t - 3mt + 2t - 1\right)\mathcal{H}_{\text{NC}\mathcal{M}!}(t) + \left(m^3 - 2m^2 + 2m - 1\right)\mathcal{H}_{\text{NC}\mathcal{M}!}(t)^2 = 0,$ where $m := \#\mathcal{M}$.

Moreover, when \mathcal{M} is finite, for all $n \geq 2$,

$$\dim \mathbb{NCM}^!(n) = \sum_{0 \leqslant k \leqslant n-2} m^{n+1} (m(m-1)+1)^k (m(m-1))^{n-k-2} \frac{1}{k+1} \binom{n-2}{k} \binom{n-1}{k}.$$

A dual \mathcal{M} -clique is an \mathcal{M}^2 -clique such that all edges are decorated by pairs $(a, a) \in \mathcal{M}^2$, and all solid diagonals by pairs $(a, b) \in \mathcal{M}^2$ with $a \neq b$.

Example

The \mathbb{Z}^2 -clique

is a dual \mathbb{Z} -clique.

Proposition

When \mathcal{M} is finite, the bases of $\operatorname{NC}\mathcal{M}^!$ are indexed by dual \mathcal{M} -cliques.