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5 bd Descartes – 77454 Marne-la-Vallée Cedex 2 – France

1. Motivation and goals
I Many combinatorial objects like permutations, binary trees, integer compositions and partitions are endowed with

a combinatorial Hopf algebra structure.

I An approach to construct most of these structures in a unified way relies on the definition of a plactic-like
congruence on words satisfying some structure conditions.

I Every congruence on words leads to the definition of a monoid of combinatorial objects, and, in addition to
the construction of combinatorial Hopf algebras, this construction often comes with partial orders, combinatorial
algorithms and Robinson-Schensted-like algorithms.

I The goal of this work is to construct similar structures on Baxter permutations.

2. Baxter permutations, pairs of twin binary trees
I A Baxter permutation is a permutation avoiding the generalized permutation patterns 2− 41− 3 and 3− 14− 2.

For example, 436975128 is a Baxter permutation but 42173856 is not.

I A pair (TL,TR) of binary trees with the same number of nodes is a pair of twin binary trees if the canopies (i.e.
the orientation of internal leaves in binary trees) of TL and TR are complementary.

I There is a bijection between Baxter permutations and pairs of twin binary trees.

I First numbers of Baxter permutations by size are 1, 1, 2, 6, 22, 92, 422, 2074, 10754, 58202, 326240.

3. The Baxter monoid
I Let A := {a1 < a2 < . . .} be a totally ordered infinite alphabet and let A∗ be the free monoid spanned by A.

Definition

The Baxter monoid is the quotient of A∗ by the congruence ≡B , that is the transitive closure of the adjacency
relations �B and 
B defined for u, v ∈ A∗ and a, b, c, d ∈ A by:

c u ad v b�B c u da v b where a ≤ b < c ≤ d,

b u da v c
B b u ad v c where a < b ≤ c < d.

I Examples:

214563

241563

245163

245613

(a) The ≡B -equivalence class of

the permutation 214563.
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2141424

2144124 2411424
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(b) The ≡B -equivalence class of the word

2114424.

2153674

2156374 2513674

2156734 2516374

2516734 2561374

2561734

2567134

(c) The ≡B -equivalence class of the permutation

2153674.

Figure: Some ≡B -equivalence classes. Edges represent adjacency relations.

I The Baxter monoid satisfies some structure properties:

Proposition

The Baxter monoid is compatible with the destandardization process, i.e., for all u, v ∈ A∗, u≡B v iff
std(u)≡B std(v) and eval(u) = eval(v).

Proposition

The Baxter monoid is compatible with the restriction of alphabet intervals, i.e., for all interval I of A and for
all u, v ∈ A∗, u≡B v implies u|I ≡B v|I .

Proposition

The Baxter monoid is compatible with the Schützenberger involution, i.e., for all u, v ∈ A∗, u≡B v implies
u#≡B v#.

4. A Robinson-Schensted-like algorithm
I Given an A-labeled pair of twin binary trees (TL,TR), one can insert a letter a ∈ A into (TL,TR) with the

following algorithm:

Algorithm: Insertion((TL,TR), a)

1. Make a leaf insertion of a into the binary tree TL.

2. Make a root insertion of a into the binary tree TR .

I The P-symbol of a word u ∈ A∗ is the A-labeled pair of twin binary trees obtained by iteratively inserting, from
left to right, the letters of u into the empty pair of twin binary trees (⊥,⊥).

I The P-symbol algorithm allows to decide if two words are ≡B -equivalent:

Proposition

Let u, v ∈ A∗. Then, u≡B v iff P(u) = P(v).

I Example:
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Figure: Steps of the computation of the P-symbol of the word 2516374.

5. The Baxter lattice
I The quotient of the permutohedron by the Baxter equivalence relation defines a lattice over the set of pairs of twin

binary trees of a given size.

Proposition

The Baxter equivalence relation is a lattice congruence of the permutohedron, i.e., every ≡B -equivalence class
of permutations is an interval of the permutohedron, and for all permutations σ, ν such that σ ≤P ν, the minimal
(resp. maximal) elements σ′ and ν′ of the ≡B -equivalence classes of σ and ν satisfy σ′ ≤P ν

′.

I Covering relations are similar to those of the Tamari lattice and can be described using left and right binary tree
rotations: We have (TL,TR) ≤B (T ′L,T

′
R) if T ′L (resp. T ′R) can be obtained from TL (resp. TR) by performing left

(resp. right) binary tree rotations.
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(a) The permutohedron of order 4 and the two non-singleton ≡B -equivalence classes. (b) An interval of the lattice of pairs of twin binary trees of

order 5.

Figure: Some pictures about the Baxter lattice.

I Baxter permutations and ≡B -equivalence classes of permutations are equinumerous:

Theorem

For all n ≥ 0, each equivalence class of Sn/≡B contains exactly one Baxter permutation.

6. The Hopf algebra Baxter
I The family {Fσ}σ∈S forms the fundamental basis of FQSym, the combinatorial Hopf algebra of permutations. Its

product and its coproduct are defined as follows:

Fσ · Fν :=
∑

π∈σ�ν
Fπ, ∆ (Fσ) :=

∑
u.v=σ

Fstd(u) ⊗ Fstd(v).

I Let us define the following elements of FQSym, indexed by pairs of twin binary trees:

PJ :=
∑
P(σ)=J

Fσ.

I Examples:
P = F2143 + F2413, P = F542163 + F542613 + F546213.

I Since ≡B is a congruence compatible with the destandardization process and also with the restriction of alphabet
intervals, we have the following theorem:

Theorem

The family {PJ}J∈T BT spans a Hopf subalgebra of FQSym, namely the Hopf algebra Baxter.

I The product of Baxter is deduced from the product of FQSym and is expressed as follows:

PJ0
· PJ1

=
∑

P(σ)=J0,P(ν)=J1

π∈(σ�ν)∩SB

PP(π).

I In the same way, the coproduct of Baxter is expressed as follows:

∆(PJ) =
∑

P(u.v)=J

σ:=std(u),ν:=std(v)∈SB

PP(σ) ⊗ PP(ν).

I Examples:

P · P = P + P + P + P + P + P ,

∆P = 1⊗ P + P ⊗ P + P ⊗ P + P ⊗ P

+ P ⊗ P + P ⊗ P + P ⊗ P + P ⊗ 1.

I We can use the above order relation over pairs of twin binary trees to build multiplicative bases of Baxter:

EJ :=
∑
J≤BJ

′
PJ ′ and HJ :=

∑
J ′≤BJ

PJ ′.

Proposition

The bases {EJ}J∈T BT and {HJ}J∈T BT are multiplicative. Indeed, for all J0, J1 ∈ T BT , we have

EJ0
· EJ1

= EJ0�J1
and HJ0

·HJ1
= HJ0�J1

.

I The operations � and � are kind of grafting of pairs of twin binary trees:

E · E = E , H ·H = H .

I Main consequence is

Proposition

The Hopf algebra Baxter is free on the elements EJ where J is a pair of twin binary trees such that all
permutations σ satisfying P(σ) = J are connected.

I First dimensions of algebraic generators of Baxter are 1, 1, 1, 3, 11, 47, 221, 1113, 5903, 32607, 186143.
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