Algebraic and combinatorial structures on Baxter permutations

Samuele Giraudo

Laboratoire d'Informatique Gaspard-Monge – Université Paris-Est Marne-la-Vallée 5 bd Descartes – 77454 Marne-la-Vallée Cedex 2 – France

UNIVERSITÉ —— PARIS-EST

1. Motivation and goals

- ► Many combinatorial objects like permutations, binary trees, integer compositions and partitions are endowed with a combinatorial Hopf algebra structure.
- ► An approach to construct most of these structures in a unified way relies on the definition of a plactic-like congruence on words satisfying some structure conditions.
- ▶ Every congruence on words leads to the definition of a monoid of combinatorial objects, and, in addition to the construction of combinatorial Hopf algebras, this construction often comes with partial orders, combinatorial algorithms and Robinson-Schensted-like algorithms.
- ▶ The goal of this work is to construct similar structures on Baxter permutations.

2. Baxter permutations, pairs of twin binary trees

- ▶ A Baxter permutation is a permutation avoiding the generalized permutation patterns 2 41 3 and 3 14 2. For example, 436975128 is a Baxter permutation but 42173856 is not.
- A pair (T_L, T_R) of binary trees with the same number of nodes is a pair of twin binary trees if the canopies (i.e. the orientation of internal leaves in binary trees) of T_L and T_R are complementary.
- ▶ There is a bijection between Baxter permutations and pairs of twin binary trees.
- ▶ First numbers of Baxter permutations by size are 1, 1, 2, 6, 22, 92, 422, 2074, 10754, 58202, 326240.

3. The Baxter monoid

▶ Let $A := \{a_1 < a_2 < \ldots\}$ be a totally ordered infinite alphabet and let A^* be the free monoid spanned by A.

Definition

The Baxter monoid is the quotient of A^* by the congruence \equiv_B , that is the transitive closure of the adjacency relations \leftrightharpoons_B and \rightleftharpoons_B defined for $u, v \in A^*$ and $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in A$ by:

$$c \ u \ ad \ v \ b \Longrightarrow_B c \ u \ da \ v \ b$$
 where $a \le b < c \le d$, $b \ u \ da \ v \ c \Longrightarrow_B b \ u \ ad \ v \ c$ where $a < b \le c < d$.

► Examples:

Figure: Some \equiv_{B} -equivalence classes. Edges represent adjacency relations.

► The Baxter monoid satisfies some structure properties:

Proposition

The Baxter monoid is compatible with the destandardization process, *i.e.*, for all $u, v \in A^*$, $u \equiv_B v$ iff $std(u) \equiv_B std(v)$ and eval(u) = eval(v).

Proposition

The Baxter monoid is compatible with the restriction of alphabet intervals, *i.e.*, for all interval I of A and for all $u, v \in A^*$, $u \equiv_B v$ implies $u_{|I} \equiv_B v_{|I}$.

Proposition

The Baxter monoid is compatible with the Schützenberger involution, *i.e.*, for all $u, v \in A^*$, $u \equiv_B v$ implies $u^\# \equiv_B v^\#$.

4. A Robinson-Schensted-like algorithm

▶ Given an A-labeled pair of twin binary trees (T_L, T_R) , one can insert a letter $\mathbf{a} \in A$ into (T_L, T_R) with the following algorithm:

Algorithm: Insertion((T_L, T_R) , a)

- 1. Make a leaf insertion of a into the binary tree T_I .
- 2. Make a root insertion of a into the binary tree T_R .
- ▶ The \mathbb{P} -symbol of a word $u \in A^*$ is the A-labeled pair of twin binary trees obtained by iteratively inserting, from left to right, the letters of u into the empty pair of twin binary trees (\bot, \bot) .
- ▶ The \mathbb{P} -symbol algorithm allows to decide if two words are \equiv_{B} -equivalent:

Proposition

Let $u, v \in A^*$. Then, $u \equiv_{\mathsf{B}} v$ iff $\mathbb{P}(u) = \mathbb{P}(v)$.

► Example:

Figure: Steps of the computation of the \mathbb{P} -symbol of the word 2516374.

5. The Baxter lattice

► The quotient of the permutohedron by the Baxter equivalence relation defines a lattice over the set of pairs of twin binary trees of a given size.

Proposition

The Baxter equivalence relation is a lattice congruence of the permutohedron, i.e., every \equiv_{B} -equivalence class of permutations is an interval of the permutohedron, and for all permutations σ, ν such that $\sigma \leq_{\mathsf{P}} \nu$, the minimal (resp. maximal) elements σ' and ν' of the \equiv_{B} -equivalence classes of σ and ν satisfy $\sigma' \leq_{\mathsf{P}} \nu'$.

▶ Covering relations are similar to those of the Tamari lattice and can be described using left and right binary tree rotations: We have $(T_L, T_R) \leq_B (T'_L, T'_R)$ if T'_L (resp. T'_R) can be obtained from T_L (resp. T_R) by performing left (resp. right) binary tree rotations.

(a) The permutohedron of order 4 and the two non-singleton \equiv_B -equivalence classes.

(b) An interval of the lattice of pairs of twin binary trees of order 5.

Figure: Some pictures about the Baxter lattice.

▶ Baxter permutations and \equiv_B -equivalence classes of permutations are equinumerous:

Theorem

For all $n \geq 0$, each equivalence class of $\mathfrak{S}_n/_{\equiv_{\mathsf{R}}}$ contains exactly one Baxter permutation.

6. The Hopf algebra Baxter

▶ The family $\{\mathbf{F}_{\sigma}\}_{{\sigma} \in \mathfrak{S}}$ forms the fundamental basis of **FQSym**, the combinatorial Hopf algebra of permutations. Its product and its coproduct are defined as follows:

$$\mathbf{F}_{\sigma}\cdot\mathbf{F}_{
u}:=\sum_{\pi\in\sigma\overline{\sqcup}
u}\mathbf{F}_{\pi},\qquad \Delta\left(\mathbf{F}_{\sigma}
ight):=\sum_{u.v=\sigma}\mathbf{F}_{\mathsf{std}\left(u
ight)}\otimes\mathbf{F}_{\mathsf{std}\left(v
ight)}.$$

▶ Let us define the following elements of **FQSym**, indexed by pairs of twin binary trees:

$$\mathbf{P}_J := \sum_{\mathbb{P}(\sigma)=J} \mathbf{F}_{\sigma}.$$

► Examples:

$$\mathbf{P}_{\bullet,\bullet} = \mathbf{F}_{2143} + \mathbf{F}_{2413}, \qquad \mathbf{P}_{\bullet,\bullet} = \mathbf{F}_{542163} + \mathbf{F}_{542613} + \mathbf{F}_{546213}.$$

• Since \equiv_B is a congruence compatible with the destandardization process and also with the restriction of alphabet intervals, we have the following theorem:

Theorem

The family $\{P_J\}_{J\in T\mathcal{B}\mathcal{T}}$ spans a Hopf subalgebra of **FQSym**, namely the Hopf algebra **Baxter**.

▶ The product of Baxter is deduced from the product of FQSym and is expressed as follows:

$$\mathbf{P}_{J_0} \cdot \mathbf{P}_{J_1} = \sum_{\substack{\mathbb{P}(\sigma) = J_0, \mathbb{P}(\nu) = J_1 \\ \pi \in (\sigma \overline{\coprod}
u) \cap \mathfrak{S}^{\mathsf{B}}}} \mathbf{P}_{\mathbb{P}(\pi)}.$$

▶ In the same way, the coproduct of Baxter is expressed as follows:

$$\Delta(\mathbf{P}_{J}) = \sum_{\substack{\mathbb{P}(u.v)=J\\ \sigma := \mathsf{std}(u), \nu := \mathsf{std}(v) \in \mathfrak{S}^{\mathsf{B}}}} \mathbf{P}_{\mathbb{P}(\sigma)} \otimes \mathbf{P}_{\mathbb{P}(\nu)}.$$

► Examples:

► We can use the above order relation over pairs of twin binary trees to build multiplicative bases of **Baxter**:

$$\mathbf{E}_J := \sum_{J \leq_{\mathbf{B}} J'} \mathbf{P}_{J'}$$
 and $\mathbf{H}_J := \sum_{J' \leq_{\mathbf{B}} J} \mathbf{P}_{J'}.$

Proposition

The bases $\{\mathbf{E}_J\}_{J\in\mathcal{TBT}}$ and $\{\mathbf{H}_J\}_{J\in\mathcal{TBT}}$ are multiplicative. Indeed, for all $J_0, J_1\in\mathcal{TBT}$, we have

$$\mathbf{E}_{J_0} \cdot \mathbf{E}_{J_1} = \mathbf{E}_{J_0 \nearrow J_1}$$
 and $\mathbf{H}_{J_0} \cdot \mathbf{H}_{J_1} = \mathbf{H}_{J_0 \searrow J_1}$.

 \blacktriangleright The operations \diagup and \diagdown are kind of grafting of pairs of twin binary trees:

► Main consequence is

Proposition

The Hopf algebra **Baxter** is free on the elements \mathbf{E}_J where J is a pair of twin binary trees such that all permutations σ satisfying $\mathbb{P}(\sigma) = J$ are connected.

► First dimensions of algebraic generators of **Baxter** are 1, 1, 1, 3, 11, 47, 221, 1113, 5903, 32607, 186143.

References

■ Samuele Giraudo, *Algebraic and combinatorial structures on Baxter permutations*, FPSAC, 2011.