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Abstract. Dendriform algebras form a category of algebras recently introduced by Loday.
A dendriform algebra is a vector space endowed with two nonassociative binary operations
satisfying some relations. Any dendriform algebra is an algebra over the dendriform op-
erad, the Koszul dual of the diassociative operad. We introduce here, by adopting the
point of view and the tools offered by the theory of operads, a generalization on a non-
negative integer parameter γ of dendriform algebras, called γ-polydendriform algebras, so
that 1-polydendriform algebras are dendriform algebras. For that, we consider the operads
obtained as the Koszul duals of the γ-pluriassociative operads introduced by the author
in a previous work. In the same manner as dendriform algebras are suitable devices to
split associative operations into two parts, γ-polydendriform algebras seem adapted struc-
tures to split associative operations into 2γ operation so that some partial sums of these
operations are associative. We provide a complete study of the γ-polydendriform operads,
the underlying operads of the category of γ-polydendriform algebras. We exhibit several
presentations by generators and relations, compute their Hilbert series, and construct free
objects in the corresponding categories. We also provide consistent generalizations on a
nonnegative integer parameter of the duplicial, triassociative and tridendriform operads,
and of some operads of the operadic butterfly.
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Introduction

Associative algebras play an obvious and primary role in algebraic combinatorics. In re-
cent years, the study of natural operations on certain sets of combinatorial objects has given
rise to more or less complicated algebraic structures on the vector spaces spanned by these
sets. A primordial point to observe is that these structures maintain furthermore many links
with combinatorics, combinatorial Hopf algebra theory, representation theory, and theoretical
physics. Let us cite for instance the algebra of symmetric functions [Mac95] involving inte-
ger partitions, the algebra of noncommutative symmetric functions [GKL+95] involving integer
compositions, the Malvenuto-Reutenauer algebra of free quasi-symmetric functions [MR95] (see
also [DHT02]) involving permutations, the Loday-Ronco Hopf algebra of binary trees [LR98]
(see also [HNT05]), and the Connes-Kreimer Hopf algebra of forests of rooted trees [CK98].

There are several ways to understand and to gather information about such structures.
A very fruitful strategy consists in splitting their associative products ? into two separate
operations ≺ and � in such a way that ? turns to be the sum of ≺ and �. To be more precise,
if V is a vector space endowed with an associative product ?, splitting ? consists in providing
two operations ≺ and � defined on V and such that for all elements x and y of V,

x ? y = x ≺ y + x � y. (0.0.1)

This splitting property is more concisely denoted by

? =≺ + � . (0.0.2)

One of the most obvious example occurs by considering the shuffle product on words. Indeed,
this product can be separated into two operations according to the origin (first or second
operand) of the last letter of the words appearing in the result [Ree58]. Other main examples
include the split of the shifted shuffle product of permutations of the Malvenuto-Reutenauer
Hopf algebra and of the product of binary trees of the Loday-Ronco Hopf algebra [Foi07]. The
original formalization and the germs of generalization of these notions, due to Loday [Lod01],
lead to the introduction of dendriform algebras. Dendriform algebras are vector spaces endowed
with two operations ≺ and � so that ≺ + � is associative and satisfy few other relations. Since
any dendriform algebra is a quotient of a certain free dendriform algebra, the study of free
dendriform algebras is worthwhile. Besides, the description of free dendriform algebras has a
nice combinatorial interpretation involving binary trees and shuffle of binary trees.

In recent years, several generalizations of dendriform algebras were introduced and stud-
ied. Among these, one can cite dendriform trialgebras [LR04], quadri-algebras [AL04], ennea-
algebras [Ler04], m-dendriform algebras of Leroux [Ler07], and m-dendriform algebras of Nov-
elli [Nov14], all providing new ways to split associative products into more than two pieces.
Besides, free objects in the corresponding categories of these algebras can be described by rela-
tively complex combinatorial objects and more or less tricky operations on these. For instance,
free dendriform trialgebras involve Schröder trees, free quadri-algebras involve noncrossing
connected graphs on a circle, and free m-dendriform algebras of Leroux and free m-dendriform
algebras of Novelli involves planar rooted trees where internal nodes have a constant number
of children.
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The theory of operads (see [LV12] for a complete exposition and also [Cha08]) seems to
be one of the best tools to put all these algebraic structures under a same roof. Informally,
an operad is a space of abstract operators that can be composed. The main interest of this
theory is that any operad encodes a category of algebras and working with an operad amounts
to work with the algebras all together of this category. Moreover, this theory gives a nice
translation of connections that may exist between a priori two very different sorts of algebras.
Indeed, any morphism between operads gives rise to a functor between the both encoded
categories. We have to point out that operads were first introduced in the context of algebraic
topology [May72,BV73] but they are more and more present in combinatorics [Cha08].

The first goal of this work is to define and justify a new generalization of dendriform algebras.
Our long term primary objective is to develop new implements to split associative products
in smaller pieces. Our main tool is the Koszul duality of operads, an important part of the
theory introduced by Ginzburg and Kapranov [GK94]. We use the approach consisting in
considering the diassociative operad Dias [Lod01], the Koszul dual of the dendriform operad
Dendr, rather that focusing on Dendr. For this, we rely on the definition of a generalization
Diasγ on a nonnegative integer parameter γ of the diassociative operad introduced by the
author in [Gir16]. These operads, called γ-pluriassociative operads, satisfy several properties
and are among other set-operads and Koszul operads. We introduce in the present work the
operads Dendrγ as the Koszul dual of the operads Diasγ .

The operads Dendrγ are the underlying operads of the category of γ-polydendriform algebras,
that are algebras with 2γ operations↼a,⇀a, a ∈ [γ], satisfying some relations. Free objects in
these categories involve binary trees where all edges connecting two internal nodes are labeled
on [γ] and the computation of a product of two binary trees admits an inductive description.
Moreover, the introduction of γ-polydendriform algebras offers to split an associative product ?
by

? =↼1 + ⇀1 + · · ·+ ↼γ + ⇀γ , (0.0.3)
with, among others, the stiffening conditions that all partial sums

↼1 + ⇀1 + · · ·+ ↼a + ⇀a (0.0.4)

are associative for all a ∈ {1, . . . , γ}. Moreovoer, this work naturally leads to the consideration
and the definition of numerous new operads. Table 1 summarizes some information about
these.

This article is organized as follows. Section 1 contains the definition of the Koszul duality
for operads and gives some recalls about the dendriform operad and dendriform algebras.

Then, the operad Dendrγ is introduced in Section 2 as the Koszul dual of Diasγ (Theo-
rem 2.1.1). Since Diasγ is a Koszul operad [Gir16], Dendrγ also is, and then, by using results
of Ginzburg and Kapranov [GK94], the alternating versions of the Hilbert series of Diasγ and
Dendrγ are the inverses for each other for series composition. This, toghether with the expres-
sion for the Hilbert series of Diasγ established in [Gir16], leads to an expression for the Hilbert
series of Dendrγ (Proposition 2.1.2). Motivated by the knowledge of the dimensions of Dendrγ ,
we consider binary trees where internal edges are labelled on {1, . . . , γ}, called γ-edge valued
binary trees. These trees form a generalization of the common binary trees indexing the bases
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Operad Objects Dimensions Symm.

Dendrγ γ-edge valued binary trees γn−1 1
n+1

(2n
n

)
No

Asγ γ-corollas γ No

DAsγ γ-alternating Schröder trees
n−2∑
k=0

γk+1(γ − 1)n−k−2 1
k+1
(
n−2
k

)(
n−1
k

)
No

Dupγ γ-edge valued binary trees γn−1 1
n+1

(2n
n

)
No

TDendrγ γ-edge valued Schröder trees
n−1∑
k=0

(γ + 1)kγn−k−1 1
k+1
(
n−1
k

)(
n
k

)
No

Comγ — — Yes

Zinγ — — Yes

Table 1. The main operads defined in this paper. All these operads depend
on a nonnegative integer parameter γ. The shown dimensions are the ones of
the homogeneous components of arities n > 2 of the operads.

of Dendr, and index the bases of Dendrγ . We continue the study of this operad by providing a
new presentation obtained by considering the Koszul dual of Diasγ over its K-basis, introduced
in [Gir16] (Theorem 2.1.4). This presentation of Dendrγ is very compact since its space of
relations can be expressed only by three sorts of relations ((2.1.17a), (2.1.17b), and (2.1.17c)),
each one involving two or three terms. We also describe all the associative elements of Dendrγ
over its two bases (Propositions 2.1.3, 2.1.5, and 2.1.6). We end this section by constructing
the free γ-polydendriform algebra over one generator (Theorem 2.2.3). Its underlying vector
space is the vector space of the γ-edge valued binary trees and is endowed with 2γ products
described by induction. These products are kinds of shuffle of trees, generalizing the shuffle of
trees introduced by Loday [Lod01] intervening in the construction of free dendriform algebras.

Section 3 extends a part of the operadic butterfly [Lod01, Lod06], a diagram of operads
gathering the most classical ones together, including the diassociative, dendriform, and as-
sociative operads. To extends this diagram into our context, we introduce a generalization
Asγ on a nonnegative integer parameter γ of the associative operad As. This operad, called γ-
multiassociative operad, has γ associative generating operations, subjected to precise relations.
We prove that this operad can be seen as a vector space of corollas labeled on {1, . . . , γ} and
that is Koszul (Proposition 3.1.1). Unlike the associative operad which is self-dual for Koszul
duality, Asγ is not when γ > 2. The Koszul dual of Asγ , denoted by DAsγ , is described by
its presentation (Proposition 3.1.2) and is realized by means of γ-alternating Schröder trees,
that are Schröder trees where internal nodes are labeled on {1, . . . , γ} with an alternating
condition (Proposition 3.1.5). In passing, we provide an alternative and simpler basis for the
space of relations of DAsγ than the one obtained directly by considering the Koszul dual of Asγ
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(Proposition 3.1.3). We end this section by establishing a new version of the diagram gathering
the diassociative, dendriform, and associative operads for the operads Diasγ , Asγ , DAsγ , and
Dendrγ (Theorem 3.2.3) by defining appropriate morphisms between these.

Finally, in Section 4, we sustain our previous ideas to propose generalizations on a nonneg-
ative integer parameter γ of some more operads. We start by proposing a new operad Dupγ
generalizing the duplicial operad [Lod08], called γ-multiplicial operad. We prove that Dupγ is
Koszul and, like the bases of Dendrγ , that the bases of Dupγ are indexed by γ-edge valued bi-
nary trees (Proposition 4.1.2). The operads Dendrγ and Dupγ are nevertheless not isomorphic
because there are 2γ associative elements in Dupγ (Proposition 4.1.3) against only γ in Dendrγ .
Then, the free γ-multiplicial algebra over one generator is constructed (Theorem 4.1.6). Its un-
derlying vector space is the vector space of the γ-edge valued binary trees and is endowed with
2γ products, similar to the over and under products on binary trees of Loday and Ronco [LR02].
Next, by using almost the same tools as the ones used in Section 2, we propose a generalization
TDendrγ of the tridendriform operad TDendr [LR04], called γ-polytridendriform operad. The
operad TDendrγ is defined as the Koszul dual of the γ-pluritridendriform operad Triasγ , intro-
duced by the author in [Gir16]. We obtain a presentation of TDendrγ (Theorem 4.2.1) and an
expression for its Hilbert series (Proposition 4.2.2). The dimensions of TDendrγ thus obtained
lead to establish the fact that the bases of TDendrγ are indexed by γ-edge valued Schröder
trees, that are Schröder trees where internal edges are labelled on {1, . . . , γ}. We end this
work by providing generalizations on a nonnegative integer parameter γ integer generalization
of all the operads intervening in the operadic butterfly. We then define the operads Comγ , Lieγ ,
Zinγ , and Leibγ , that are respective generalizations of the commutative operad, the Lie operad,
the Zinbiel operad [Lod95] and the Leibniz operad [Lod93]. We provide analogous versions for
our context of the arrows between the commutative operad and the Zinbiel operad (Propo-
sition 4.3.1), and between the dendriform operad and the Zinbiel operad (Proposition 4.3.2).

Acknowledgements. The author would like to thank, for interesting discussions, Jean-
Christophe Novelli about Koszul duality for operads and Vincent Vong about strategies for con-
structing free objects in the categories encoded by operads. The author thanks also Matthieu
Josuat-Vergès and Jean-Yves-Thibon for their pertinent remarks and questions about this work
when it was in progress. Finally, the author warmly thanks the referee for his very careful read-
ing and his suggestions, improving the quality of the paper.

Notations and general conventions. All the algebraic structures of this article have a field
of characteristic zero K as ground field. For any integers a and c, [a, c] denotes the set {b ∈
N : a 6 b 6 c} and [n], the set [1, n]. We use in all this paper the notations introduced in
Section 1 of [Gir16].

1. Preliminaries: Koszul duality and the dendriform operad

In the present preliminary section, we will recall the notion of Koszul duality and several
properties of the dendriform operad, the Koszul dual of the diassociative operad (see Section 1.3
of [Gir16]).
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1.1. Koszul duality. In [GK94], Ginzburg and Kapranov extended the notion of Koszul dual-
ity of quadratic associative algebras to quadratic operads. Starting with a binary and quadratic
operad O admitting a presentation (G,R), the Koszul dual of O is the operad O!, isomorphic
to the operad admitting the presentation

(
G,R⊥

)
where R⊥ is the annihilator of R in Free(G)

with respect to the scalar product

〈−,−〉 : Free(G)(3)⊗ Free(G)(3)→ K (1.1.1)

linearly defined, for all x, x′, y, y′ ∈ G(2), by

〈x ◦i y, x′ ◦i′ y′〉 :=


1 if x = x′, y = y′, and i = i′ = 1,
−1 if x = x′, y = y′, and i = i′ = 2,
0 otherwise.

(1.1.2)

Then, knowing a presentation of O, one can compute a presentation of O!.

Furthermore, when O and O! are two operads Koszul dual one of the other, and moreover,
when they are Koszul operads and admit Hilbert series, their Hilbert series satisfy [GK94]

HO (−HO!(−t)) = t. (1.1.3)

We shall make use of (1.1.3) to compute the dimensions of Koszul operads defined as Koszul
duals of known ones.

1.2. Dendriform operad. We recall here the definitions and some properties of the dendri-
form operad.

The dendriform operad Dendr was introduced by Loday [Lod01]. It is the operad admitting
the presentation (GDendr,RDendr) where GDendr := GDendr(2) := {≺,�} and RDendr is the vector
space generated by

≺ ◦1 � − � ◦2 ≺, (1.2.1a)

≺ ◦1 ≺ − ≺ ◦2 ≺ − ≺ ◦2 �, (1.2.1b)

� ◦1 ≺ + � ◦1 � − � ◦2 � . (1.2.1c)

Note that Dendr is a binary and quadratic operad.

This operad admits a quite complicated realization [Lod01]. For all n > 1, the Dendr(n) are
vector spaces of binary trees with n internal nodes. The partial composition of two binary trees
can be described by means of intervals of the Tamari order [HT72], a partial order relation
involving binary trees. This realization shows that dim Dendr(n) = cat(n) where

cat(n) := 1
n+ 1

(
2n
n

)
(1.2.2)

is the nth Catalan number, counting the binary trees with respect to their number of internal
nodes. Therefore, the Hilbert series of Dendr satisfies

HDendr(t) = 1−
√

1− 4t− 2t
2t . (1.2.3)
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Throughout this article, we shall graphically represent binary trees in a slightly different
manner than syntax trees. We represent the leaves of binary trees by squares , internal nodes
by circles , and edges by thick segments .

From the presentation of Dendr, we deduce that any Dendr-algebra, also called dendriform
algebra, is a vector space ADendr endowed with linear operations ≺ and � satisfying the relations
encoded by (1.2.1a)—(1.2.1c). Classical examples of dendriform algebras include Rota-Baxter
algebras [Agu00] and shuffle algebras [Lod01].

The operation obtained by summing ≺ and � is associative. Therefore, we can see a
dendriform algebra as an associative algebra in which its associative product has been split
into two parts satisfying Relations (1.2.1a), (1.2.1b), and (1.2.1c). More precisely, we say
that an associative algebra A admits a dendriform structure if there exist two nonzero binary
operations ≺ and � such that the associative operation ? of A satisfies ? =≺ + �, and A
endowed with the operations ≺ and �, is a dendriform algebra

The free dendriform algebra FDendr over one generator is the vector space Dendr of binary
trees with at least one internal node endowed with the linear operations

≺,�: FDendr ⊗FDendr → FDendr, (1.2.4)

defined recursively, for any binary tree s with at least one internal node, and binary trees t1
and t2 by

s ≺ := s =: � s, (1.2.5)
≺ s := 0 =: s � , (1.2.6)

t1 t2
≺ s :=

t1 t2 ≺ s
+

t1 t2 � s
, (1.2.7)

s �
t1 t2

:=
s � t1 t2

+
s ≺ t1 t2

. (1.2.8)

Note that neither ≺ nor � are defined.

We have for instance,

≺ = + + , (1.2.9)

and

� = + + .

(1.2.10)
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As shown in [Lod01], the dendriform operad is the Koszul dual of the diassociative operad.
This can be checked by a simple computation following what is explained in Section 1.1.
Besides that, since theses two operads are Koszul operads, the alternating versions of their
Hilbert series are the inverses for each other for series composition.

We invite the reader to take a look at [LR98,Agu00,Lod02,Foi07,EFMP08,EFM09,LV12]
for a supplementary review of properties of dendriform algebras and of the dendriform operad.

2. Polydendriform operads

We introduce at this point our generalization on a nonnegative integer parameter γ of
the dendriform operad and dendriform algebras. We first construct this operad, compute its
dimensions, and give then two presentations by generators and relations. This section ends by
a description of free algebras over one generator in the category encoded by our generalization.

2.1. Construction and properties. Theorem 2.2.6 of [Gir16], by exhibiting a presentation
of Diasγ , shows that this operad is binary and quadratic. It then admits a Koszul dual, denoted
by Dendrγ and called γ-polydendriform operad.

2.1.1. Definition and presentation. A description of Dendrγ is provided by the following pre-
sentation by generators and relations.

Theorem 2.1.1. For any integer γ > 0, the operad Dendrγ admits the following presentation.
It is generated by GDendrγ := GDendrγ (2) := {↼a,⇀a: a ∈ [γ]} and its space of relations RDendrγ
is generated by

↼a ◦1 ⇀a′ −⇀a′ ◦2 ↼a, a, a′ ∈ [γ], (2.1.1a)

↼a ◦1 ↼b −↼a ◦2 ⇀b, a < b ∈ [γ], (2.1.1b)

⇀a ◦1 ↼b −⇀a ◦2 ⇀b, a < b ∈ [γ], (2.1.1c)

↼a ◦1 ↼b −↼a ◦2 ↼b, a < b ∈ [γ], (2.1.1d)

⇀a ◦1 ⇀b −⇀a ◦2 ⇀b, a < b ∈ [γ], (2.1.1e)

↼d ◦1 ↼d −

∑
c∈[d]

↼d ◦2 ↼c + ↼d ◦2 ⇀c

 , d ∈ [γ], (2.1.1f)

∑
c∈[d]

⇀d ◦1 ⇀c + ⇀d ◦1 ↼c

−⇀d ◦2 ⇀d, d ∈ [γ]. (2.1.1g)



PLURIASSOCIATIVE ALGEBRAS II 9

Proof. By Theorem 2.2.6 of [Gir16], we know that Diasγ is a binary and quadratic operad, and
that its space of relations RDiasγ is the space induced by the equivalence relation ↔γ defined
by (2.2.11a)–(2.2.11g) in [Gir16]. Now, by a straightforward computation, and by identifying
↼a (resp. ⇀a) with aa (resp. `a) for any a ∈ [γ], we obtain that the space RDendrγ of
the statement of the theorem satisfies R⊥Diasγ = RDendrγ . Hence, Dendrγ admits the claimed
presentation. �

Theorem 2.1.1 provides a quite complicated presentation of Dendrγ . We shall below define
a more convenient basis for the space of relations of Dendrγ .

2.1.2. Elements and dimensions.

Proposition 2.1.2. For any integer γ > 0, the Hilbert series HDendrγ (t) of the operad Dendrγ
satisfies

HDendrγ (t) = t+ 2γtHDendrγ (t) + γ2tHDendrγ (t)2. (2.1.2)

Proof. By setting H̄Dendrγ (t) := HDendrγ (−t), from (2.1.2), we obtain

t =
−H̄Dendrγ (t)(

1 + γ H̄Dendrγ (t)
)2 . (2.1.3)

Moreover, by setting H̄Diasγ (t) := HDiasγ (−t), where HDiasγ (t) is the Hilbert series of Diasγ
defined by (2.1.8) in [Gir16], we have

H̄Diasγ
(
H̄Dendrγ (t)

)
=

−H̄Dendrγ (t)(
1 + γ H̄Dendrγ (t)

)2 = t, (2.1.4)

showing that H̄Diasγ (t) and H̄Dendrγ (t) are the inverses for each other for series composition.
Now, since by Theorem 2.3.1 and Proposition 2.1.1 of [Gir16], Diasγ is a Koszul operad and

its Hilbert series is HDiasγ (t), and since Dendrγ is by definition the Koszul dual of Diasγ , the
Hilbert series of these two operads satisfy (1.1.3). Therefore, (2.1.4) implies that the Hilbert
series of Dendrγ is HDendrγ (t). �

By examining the expression for HDendrγ (t) of the statement of Proposition 2.1.2, we observe
that for any n > 1, Dendrγ(n) can be seen as the vector space FDendrγ (n) of binary trees with
n internal nodes wherein its n− 1 edges connecting two internal nodes are labeled on [γ]. We
call these trees γ-edge valued binary trees. In our graphical representations of γ-edge valued
binary trees, any edge label is drawn into a hexagon located half the edge. For instance,

3

3

1

3

4

13

4

4

(2.1.5)

is a 4-edge valued binary tree and a basis element of Dendr4(10).
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We deduce from Proposition 2.1.2 that the Hilbert series of Dendrγ satisfies

HDendrγ (t) = 1−
√

1− 4γt− 2γt
2γ2t

, (2.1.6)

and we also obtain that for all n > 1, dim Dendrγ(n) = γn−1cat(n). For instance, the first
dimensions of Dendr1, Dendr2, Dendr3, and Dendr4 are respectively

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, (2.1.7)

1, 4, 20, 112, 672, 4224, 27456, 183040, 1244672, 8599552, 60196864, (2.1.8)

1, 6, 45, 378, 3402, 32076, 312741, 3127410, 31899582, 330595668, 3471254514, (2.1.9)

1, 8, 80, 896, 10752, 135168, 1757184, 23429120, 318636032, 4402970624, 61641588736. (2.1.10)

The first one is Sequence A000108, the second one is Sequence A003645, and the third one
is Sequence A101600 of [Slo]. Last sequence is not listed in [Slo] at this time.

2.1.3. Associative operations. In the same manner as in the dendriform operad the sum of its
two operations produces an associative operation, in the γ-dendriform operad there is a way
to build associative operations, as shows next statement.

Proposition 2.1.3. For any integers γ > 0 and b ∈ [γ], the element

•b := π

∑
a∈[b]

↼a + ⇀a

 (2.1.11)

of Dendrγ , where π : Free
(
GDendrγ

)
→ Dendrγ is the canonical surjection map, is associative.

Proof. By setting

x :=
∑
a∈[b]

↼a + ⇀a, (2.1.12)

we have

x ◦1 x− x ◦2 x =↼a ◦1 ↼a′ + ↼a ◦1 ⇀a′ + ⇀a ◦1 ↼a′ + ⇀a ◦1 ⇀a′

−↼a ◦2 ↼a′ −↼a ◦2 ⇀a′ −⇀a ◦2 ↼a′ −⇀a ◦2 ⇀a′ . (2.1.13)

We the observe that (2.1.13) is the sum of elements (2.1.1a)—(2.1.1g) which generate, by
Theorem 2.1.1, the space of relations of Dendrγ . Therefore, we have π(x ◦1 x − x ◦2 x) = 0,
implying •b ◦1 •b − •b ◦2 •b = 0 and the associativity of •b. �

http://oeis.org/A000108
http://oeis.org/A003645
http://oeis.org/A101600
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2.1.4. Alternative presentation. For any integer γ > 0, let ≺b and �b, b ∈ [γ], the elements of
Free

(
GDendrγ

)
defined by

≺b:=
∑
a∈[b]

↼a, (2.1.14a)

and
�b:=

∑
a∈[b]

⇀a . (2.1.14b)

Then, since for all b ∈ [γ] we have

↼b=
{
≺1 if b = 1,
≺b − ≺b−1 otherwise,

(2.1.15a)

and

⇀b=
{
�1 if b = 1,
�b − �b−1 otherwise,

(2.1.15b)

by triangularity, the family G′Dendrγ := {≺b,�b: b ∈ [γ]} forms a basis of Free
(
GDendrγ

)
(2)

and then, generates Free
(
GDendrγ

)
as an operad. This change of basis from Free

(
GDendrγ

)
to

Free(G′Dendrγ ) is similar to the change of basis from Free(G′Diasγ ) to Free
(
GDiasγ

)
introduced in

Section 2.3.6 of [Gir16]. Let us now express a presentation of Dendrγ through the familyG′Dendrγ .

Theorem 2.1.4. For any integer γ > 0, the operad Dendrγ admits the following presentation.
It is generated by G′Dendrγ and its space of relations R′Dendrγ is generated by

≺a ◦1 �a′ − �a′ ◦2 ≺a, a, a′ ∈ [γ], (2.1.16a)

≺a ◦1 ≺b − ≺a ◦2 �b − ≺a ◦2 ≺a, a < b ∈ [γ], (2.1.16b)

�a ◦1 �a + �a ◦1 ≺b − �a ◦2 �b, a < b ∈ [γ], (2.1.16c)

≺b ◦1 ≺a − ≺a ◦2 ≺b − ≺a ◦2 �a, a < b ∈ [γ], (2.1.16d)

�a ◦1 ≺a + �a ◦1 �b − �b ◦2 �a, a < b ∈ [γ], (2.1.16e)

≺a ◦1 ≺a − ≺a ◦2 �a − ≺a ◦2 ≺a, a ∈ [γ], (2.1.16f)

�a ◦1 �a + �a ◦1 ≺a − �a ◦2 �a, a ∈ [γ]. (2.1.16g)

Proof. Let us show that R′Dendrγ is equal to the space of relations RDendrγ of Dendrγ defined in
the statement of Theorem 2.1.1. By this last theorem, for any x ∈ Free

(
GDendrγ

)
(3), x is in

RDendrγ if and only if π(x) = 0 where π : Free
(
GDendrγ

)
→ Dendrγ is the canonical surjection

map. By straightforward computations, by expanding any element x of (2.1.16a)—(2.1.16g)
over the elements ↼a, ⇀a, a ∈ [γ], by using (2.1.14a) and (2.1.14b) we obtain that x can be
expressed as a sum of elements of RDendrγ . This implies that π(x) = 0 and hence that R′Dendrγ
is a subspace of RDendrγ .

Now, one can observe that elements (2.1.16a)—(2.1.16f) are linearly independent. Then,
R′Dendrγ has dimension 3γ2 which is also, by Theorem 2.1.1, the dimension of RDendrγ . The
statement of the theorem follows. �
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The presentation of Dendrγ provided by Theorem 2.1.4 is easier to handle than the one
provided by Theorem 2.1.1. The main reason is that Relations (2.1.1f) and (2.1.1g) of the
first presentation involve a nonconstant number of terms, while all relations of this second
presentation always involve only two or three terms. As a very remarkable fact, it is worthwhile
to note that the presentation of Dendrγ provided by Theorem 2.1.4 can be directly obtained by
considering the Koszul dual of Diasγ over the K-basis (see Sections 2.3.5 and 2.3.6 of [Gir16]).
Therefore, an alternative way to establish this presentation consists in computing the Koszul
dual of Diasγ seen through the presentation having R′Dendrγ as space of relations, which is made
of the relations of Diasγ expressed over the K-basis (see Proposition 2.3.8 of [Gir16]).

From now on, ↓ denotes the operation min on integers. Using this notation, the space of
relations R′Dendrγ of Dendrγ exhibited by Theorem 2.1.4 can be rephrased in a more compact
way as the space generated by

≺a ◦1 �a′ − �a′ ◦2 ≺a, a, a′ ∈ [γ], (2.1.17a)

≺a ◦1 ≺a′ − ≺a↓a′ ◦2 ≺a − ≺a↓a′ ◦2 �a′ , a, a′ ∈ [γ], (2.1.17b)

�a↓a′ ◦1 ≺a′ + �a↓a′ ◦1 �a − �a ◦2 �a′ , a, a′ ∈ [γ]. (2.1.17c)

Over the family G′Dendrγ , one can build associative operations in Dendrγ in the following
way.

Proposition 2.1.5. For any integers γ > 0 and b ∈ [γ], the element

�b := π(≺b + �b) (2.1.18)

of Dendrγ , where π : Free(G′Dendrγ )→ Dendrγ is the canonical surjection map, is associative.

Proof. By definition of the ≺b and �b, b ∈ [γ], we have

≺b + �b=
∑
a∈[b]

↼a + ⇀a . (2.1.19)

We hence observe that �b = •b, where •b is the element of Dendrγ defined in the statement of
Proposition 2.1.3. Hence, by this latter proposition, �b is associative. �

Proposition 2.1.6. For any integer γ > 0, any associative element of Dendrγ is proportional
to �b for a b ∈ [γ].

Proof. Let π : Free(G′Dendrγ )→ Dendrγ be the canonical surjection map. Consider the element

x :=
∑
a∈[γ]

αa ≺a +βa �a (2.1.20)

of Free(G′Dendrγ ), where αa, βa ∈ K for all a ∈ [γ], such that π(x) is associative in Dendrγ .
Since we have π(r) = 0 for all elements r of R′Dendrγ (see (2.1.17a), (2.1.17b), and (2.1.17c)),
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the fact that π(x ◦1 x− x ◦2 x) = 0 implies the constraints

αa βa′ = βa′ αa, a, a′ ∈ [γ],

αa αa′ = αa↓a′ αa = αa↓a′ βa′ , a, a′ ∈ [γ],

βa↓a′ αa′ = βa↓a′ βa = βa βa′ , a, a′ ∈ [γ],
(2.1.21)

on the coefficients intervening in x. Moreover, since the syntax trees �b ◦1 �a, �b ◦1 ≺a,
≺b ◦2 ≺a, and ≺b ◦2 �a do not appear in R′Dendrγ for all a < b ∈ [γ] , we have the further
constraints

βb βa = 0, a < b ∈ [γ],

βb αa = 0, a < b ∈ [γ],

αb αa = 0, a < b ∈ [γ],

αb βa = 0, a < b ∈ [γ].

(2.1.22)

These relations imply that there are at most one c ∈ [γ] and one d ∈ [γ] such that αc 6= 0 and
βd 6= 0. In this case, these relations imply also that c = d, and αc = βc. Therefore, x is of the
form x = αa ≺a +αa �a for an a ∈ [γ], whence the statement of the proposition. �

2.2. Category of polydendriform algebras and free objects. The aim of this section is
to describe the category of Dendrγ-algebras and more particularly the free Dendrγ-algebra over
one generator.

2.2.1. Polydendriform algebras. We call γ-polydendriform algebra any Dendrγ-algebra. From
the presentation of Dendrγ provided by Theorem 2.1.1, any γ-polydendriform algebra is a
vector space endowed with linear operations ↼a,⇀a, a ∈ [γ], satisfying the relations encoded
by (2.1.1a)—(2.1.1g). By considering the presentation of Dendrγ exhibited by Theorem 2.1.4,
any γ-polydendriform algebra is a vector space endowed with linear operations ≺a,�a, a ∈ [γ],
satisfying the relations encoded by (2.1.17a)—(2.1.17c).

2.2.2. Two ways to split associativity. Like dendriform algebras, which offer a way to split
an associative operation into two parts, γ-polydendriform algebras propose two ways to split
associativity depending on its chosen presentation.

On the one hand, in a γ-polydendriform algebra D over the operations ↼a, ⇀a, a ∈ [γ], by
Proposition 2.1.3, an associative operation • is split into the 2γ operations ↼a, ⇀a, a ∈ [γ],
so that for all x, y ∈ D,

x • y =
∑
a∈[γ]

x ↼a y + x ⇀a y, (2.2.1)

and all partial sums operations •b, b ∈ [γ], satisfying

x •b y =
∑
a∈[b]

x ↼a y + x ⇀a x, (2.2.2)

also are associative.
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On the other hand, in a γ-polydendriform algebra over the operations ≺a, �a, a ∈ [γ], by
Proposition 2.1.5, several associative operations �a, a ∈ [γ], are each split into two operations
≺a, �a, a ∈ [γ], so that for all x, y ∈ D,

x�a y = x ≺a y + x �a y. (2.2.3)

Therefore, we can observe that γ-polydendriform algebras over the operations ↼a, ⇀a,
a ∈ [γ], are adapted to study associative algebras (by splitting its single product in the way we
have described above) while γ-polydendriform algebras over the operations ≺a, �a, a ∈ [γ],
are adapted to study vectors spaces endowed with several associative products (by splitting
each one in the way we have described above). Algebras with several associative products will
be studied in Section 3.

2.2.3. Free polydendriform algebras. From now, in order to simplify and make uniform next
definitions, we consider that in any γ-edge valued binary tree t, all edges connecting internal
nodes of t with leaves are labeled by ∞. By convention, for all a ∈ [γ], we have a ↓ ∞ = a =
∞ ↓ a.

Let us endow the vector space FDendrγ of γ-edge valued binary trees with linear operations

≺a,�a: FDendrγ ⊗FDendrγ → FDendrγ , a ∈ [γ], (2.2.4)

recursively defined, for any γ-edge valued binary tree s and any γ-edge valued binary trees or
leaves t1 and t2 by

s ≺a := s =: �a s, (2.2.5)

≺a s := 0 =: s �a , (2.2.6)

t1 t2

x y ≺a s :=
t1 t2 ≺a s

x z +
t1 t2 �y s

x z , z := a ↓ y, (2.2.7)

s �a
t1 t2

x y :=
s �a t1 t2

z y +
s ≺x t1 t2

z y , z := a ↓ x. (2.2.8)

Note that neither ≺a nor �a are defined.
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For example, we have

1 3

1 ≺2 1 2 =

1

2

2

2

1

1

+

1

1

2

2

1

1

+

1

1

2

2

1

1 +

1 2

21

1

1

+

1 2

21

1

1 +

1 2

2

3

1

1
,

(2.2.9)
and

1 3

1 �2 1 2 = 1

21

1

1

1

+ 1

21

1

1

1

+ 1

21

3

1

1 + 1

2

2

3

1

1

. (2.2.10)

Lemma 2.2.1. For any integer γ > 0, the vector space FDendrγ of γ-edge valued binary trees
endowed with the operations ≺a, �a, a ∈ [γ], is a γ-polydendriform algebra.

Proof. We have to check that the operations≺a, �a, a ∈ [γ], of FDendrγ satisfy Relations (2.1.17a),
(2.1.17b), and (2.1.17c) of γ-polydendriform algebras. Let r, s, and t be three γ-edge valued
binary trees and a, a′ ∈ [γ].

Denote by s1 (resp. s2) the left subtree (resp. right subtree) of s and by x (resp. y) the
label of the left (resp. right) edge incident to the root of s. We have

(r �a′ s) ≺a t =

r �a′

s1 s2

x y

 ≺a t =


r �a′ s1 s2

z y +
r ≺x s1 s2

z y

 ≺a t

=
r �a′ s1 s2 ≺a t

z t +
r �a′ s1 s2 �y t

z t +
r ≺x s1 s2 ≺a t

z t +
r ≺x s1 s2 �y t

z t
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= r �a′


s1 s2 ≺a t

x t +
s1 s2 �y t

x t

 = r �a′


s1 s2

x y ≺a t

 = r �a′ (s ≺a t),

(2.2.11)

where z := a′ ↓ x and t := a ↓ y. This shows that (2.1.17a) is satisfied in FDendrγ .

We now prove that Relations (2.1.17b) and (2.1.17c) hold by induction on the sum of the
number of internal nodes of r, s, and t. Base case holds when all these trees have exactly one
internal node, and since

(
≺a′

)
≺a − ≺a↓a′

(
≺a

)
− ≺a↓a′

(
�a′

)

= a′ ≺a − ≺a↓a′ a − ≺a↓a′ a′

=
z

a
+

a′

z

−
z

a
−

a′

z

= 0, (2.2.12)

where z := a ↓ a′, (2.1.17b) holds on trees with exactly one internal node. For the same
arguments, we can show that (2.1.17c) holds on trees with exactly one internal node. Denote
now by r1 (resp. r2) the left subtree (resp. right subtree) of r and by x (resp. y) the label of
the left (resp. right) edge incident to the root of r. We have

(r ≺a′ s) ≺a t− r ≺a↓a′ (s ≺a t)− r ≺a↓a′ (s �a′ t)

=


r1 r2

x y ≺a′ s

 ≺a t−
r1 r2

x y ≺a↓a′ (s ≺a t)−
r1 r2

x y ≺a↓a′ (s �a′ t)

=


r1 r2 ≺a′ s

x z +
r1 r2 �y s

x z

 ≺a t

−
r1 r2

x y ≺a↓a′ (s ≺a t)−
r1 r2

x y ≺a↓a′ (s �a′ t)
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=
r1 (r2 ≺a′ s) ≺a t

x t +
r1 (r2 ≺a′ s) �z t

x t +
r1 (r2 �y s) ≺a t

x t +
r1 (r2 �y s) �z t

x t

−
r1 r2 ≺u (s ≺a t)

x t −
r1 r2 �y (s ≺a t)

x t −
r1 r2 ≺u (s �a′ t)

x t −
r1 r2 �y (s �a′ t)

x t ,

(2.2.13)
where z := y ↓ a′, t := z ↓ a = y ↓ a′ ↓ a, and u := a ↓ a′. Now, by induction hypothesis,
Relation (2.1.17b) holds on r2, s, and t. Hence, the sum of the first, fifth, and seventh terms
of (2.2.13) is zero. Again by induction hypothesis, Relation (2.1.17c) holds on r2, s, and t.
Thus, the sum of the second, fourth, and last terms of (2.2.13) is zero. Finally, by what we
just have proven in the first part of this proof, the sum of the third and sixth terms of (2.1.17c)
is zero. Therefore, (2.2.13) is zero and (2.1.17b) is satisfied in FDendrγ .

Finally, for the same arguments, we can show that (2.1.17c) is satisfied in FDendrγ , implying
the statement of the lemma. �

Lemma 2.2.2. For any integer γ > 0, the γ-pluriassociative algebra FDendrγ of γ-edge valued
binary trees endowed with the operations ≺a, �a, a ∈ [γ], is generated by

. (2.2.14)

Proof. First, Lemma 2.2.1 shows that FDendrγ is a γ-polydendriform algebra. Let D be the
γ-polydendriform subalgebra of FDendrγ generated by . Let us show that any γ-edge valued
binary tree t is in D by induction on the number n of its internal nodes. When n = 1, t =
and hence the property is satisfied. Otherwise, let t1 (resp. t2) be the left (resp. right) subtree
of the root of t and denote by x (resp. y) the label of the left (resp. right) edge incident to the
root of t. Since t1 and t2 have less internal nodes than t, by induction hypothesis, t1 and t2
are in D. Moreover, by definition of the operations ≺a, �a, a ∈ [γ], of FDendrγ , one has

(
t1 �x

)
≺y t2 =

t1

x ≺y t2 =
t1 t2

x y = t, (2.2.15)

showing that t also is in D. Therefore, D is FDendrγ , showing that FDendrγ is generated by . �

Theorem 2.2.3. For any integer γ > 0, the vector space FDendrγ of γ-edge valued binary trees
endowed with the operations ≺a, �a, a ∈ [γ], is the free γ-polydendriform algebra over one
generator.

Proof. By Lemmas 2.2.1 and 2.2.2, FDendrγ is a γ-polydendriform algebra over one generator.
Moreover, since by Proposition 2.1.2, for any n > 1, the dimension of FDendrγ (n) is the same

as the dimension of Dendrγ(n), there cannot be relations in FDendrγ (n) involving g that are not
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γ-polydendriform relations (see (2.1.17a), (2.1.17b), and (2.1.17c)). Hence, FDendrγ is free as a
γ-polydendriform algebra over one generator. �

3. Multiassociative operads

There is a well-known diagram, whose definition is recalled below, gathering the diasso-
ciative, associative, and dendriform operads. The main goal of this section is to define a
generalization on a nonnegative integer parameter of the associative operad to obtain a new
version of this diagram, suited to the context of pluriassociative and polydendriform operads.

3.1. Two generalizations of the associative operad. The associative operad is generated
by one binary element. This operad admits two different generalizations generated by γ binary
elements with the particularity that one is the Koszul dual of the other. We introduce and
study in this section these two operads.

3.1.1. Nonsymmetric associative operad. Recall that the nonsymmetric associative operad, or
the associative operad for short, is the operad As admitting the presentation (GAs,RAs), where
GAs := GAs(2) := {?} and RAs is generated by ?◦1?−?◦2?. It admits the following realization.
For any n > 1, As(n) is the vector space of dimension one generated by the corolla of arity n
and the partial composition c1 ◦i c2 where c1 is the corolla of arity n and c2 is the corolla of
arity m is the corolla of arity n+m− 1 for all valid i.

3.1.2. Multiassociative operads. For any integer γ > 0, we define Asγ as the operad admitting
the presentation

(
GAsγ ,RAsγ

)
, where GAsγ := GAsγ (2) := {?a : a ∈ [γ]} and RAsγ is generated

by
?a ◦1 ?b − ?b ◦2?b, a 6 b ∈ [γ], (3.1.1a)

?b ◦1 ?a − ?b ◦2?b, a < b ∈ [γ], (3.1.1b)

?a ◦2 ?b − ?b ◦2?b, a < b ∈ [γ], (3.1.1c)

?b ◦2 ?a − ?b ◦2?b, a < b ∈ [γ]. (3.1.1d)
This space of relations can be rephrased in a more compact way as the space generated by

?a ◦1 ?a′ − ?a↑a′ ◦2?a↑a′ , a, a′ ∈ [γ], (3.1.2a)

?a ◦2 ?a′ − ?a↑a′ ◦2?a↑a′ , a, a′ ∈ [γ]. (3.1.2b)
We call Asγ the γ-multiassociative operad.

It follows immediately that Asγ is a set-operad and that it provides a generalization of the
associative operad. The algebras over Asγ are the γ-multiassociative algebras introduced in
Section 3.3.1 of [Gir16].

Let us now provide a realization of Asγ . A γ-corolla is a rooted tree with at most one
internal node labeled on [γ]. Denote by FAsγ (n) the vector space of γ-corollas of arity n > 1,
by FAsγ the graded vector space of all γ-corollas, and let

? : FAsγ ⊗FAsγ → FAsγ (3.1.3)
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be the linear operation where, for any γ-corollas c1 and c2, c1 ?c2 is the γ-corolla with n+m−1
leaves and labeled by a ↑ a′ where n (resp. m) is the number of leaves of c1 (resp. c2) and a
(resp. a′) is the label of c1 (resp. c2).

Proposition 3.1.1. For any integer γ > 0, the operad Asγ is the vector space FAsγ of γ-
corollas and its partial compositions satisfy, for any γ-corollas c1 and c2, c1 ◦i c2 = c1 ? c2 for
all valid integer i. Besides, Asγ is a Koszul operad and the set of right comb syntax trees of
Free

(
GAsγ

)
where all internal nodes have a same label forms a Poincaré-Birkhoff-Witt basis

of Asγ .

Proof. In this proof, we consider that GAsγ is totally ordered by the relation 6 satisfying
?a 6 ?b whenever a 6 b ∈ [γ]. It is immediate that the vector space FAsγ endowed with the
partial compositions described in the statement of the proposition is an operad. Let us prove
that this operad admits the presentation

(
GAsγ ,RAsγ

)
.

For this purpose, consider the quadratic rewrite rule →γ on Free
(
GAsγ

)
satisfying

?a ◦1?b →γ ?b ◦2 ?b, a 6 b ∈ [γ], (3.1.4a)

?b ◦1?a →γ ?b ◦2 ?b, a < b ∈ [γ], (3.1.4b)

?a ◦2?b →γ ?b ◦2 ?b, a < b ∈ [γ], (3.1.4c)

?b ◦2?a →γ ?b ◦2 ?b, a < b ∈ [γ]. (3.1.4d)

Observe first that the space induced by the operad congruence induced by→γ isRAsγ (see (3.1.1a)—
(3.1.1d)). Moreover, →γ is a terminating rewrite rule and its normal forms are right comb
syntax trees of Free

(
GAsγ

)
where all internal nodes have a same label. Besides, one can show

that for any syntax tree t of Free
(
GAsγ

)
, we have t

∗→γ s with s is a right comb syntax tree
where all internal nodes labeled by the greatest label of t. Therefore, →γ is a convergent
rewrite rule and the operad As, admitting by definition the presentation

(
GAsγ ,RAsγ

)
, has

bases indexed by such trees.
Now, let

φ : Asγ ' Free
(
GAsγ

)
/〈RAsγ 〉 → FAsγ (3.1.5)

be the map satisfying φ(π(?a)) = ca where ca is the γ-corolla of arity 2 with internal node
labeled by a ∈ [γ] and π : Free

(
GAsγ

)
→ Asγ is the canonical surjection map. Since we have

φ(π(x))◦iφ(π(y)) = φ(π(x′))◦i′ φ(π(y′)) for all relations x◦iy →γ x
′◦i′ y′ of (3.1.4a)—(3.1.4d),

φ extends in a unique way into an operad morphism. First, since the set Gγ of all γ-corollas of
arity two is a generating set of FAsγ and the image of φ contains Gγ , φ is surjective. Second,
since by definition of FAsγ , the bases of FAsγ are indexed by γ-corollas, in accordance with
what we have shown in the previous paragraph of this proof, FAsγ and Asγ are isomorphic
as graded vector spaces. Hence, φ is an operad isomorphism, showing that Asγ admits the
claimed realization.

Finally, the existence of the convergent rewrite rule →γ implies, by the Koszulity crite-
rion [Hof10,DK10,LV12] we have reformulated in Section 1.2.5 of [Gir16], that Asγ is Koszul
and that its Poincaré-Birkhoff-Witt basis is the one described in the statement of the propo-
sition. �
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We have for instance in As3,

2 ◦1 1 = 2 , (3.1.6)

and

2 ◦2 3 = 3 . (3.1.7)

We deduce from Proposition 3.1.1 that the Hilbert series of Asγ satisfies

HAsγ (t) = t+ (γ − 1)t2

1− t . (3.1.8)

and that for all n > 2, dim Asγ(n) = γ.

3.1.3. Dual multiassociative operads. Since Asγ is a binary and quadratic operad, its admits a
Koszul dual, denoted by DAsγ and called γ-dual multiassociative operad. The presentation of
this operad is provided by next result.

Proposition 3.1.2. For any integer γ > 0, the operad DAsγ admits the following presentation.
It is generated by GDAsγ := GDAsγ (2) := {◊a : a ∈ [γ]} and its space of relations RDAsγ is
generated by

◊b ◦1 ◊b−◊b ◦2 ◊b +
(∑
a<b

◊a ◦1 ◊b + ◊b ◦1 ◊a −◊a ◦2 ◊b −◊b ◦2 ◊a

)
, b ∈ [γ]. (3.1.9)

Proof. By a straightforward computation, and by identifying ◊a with ?a for any a ∈ [γ], we
obtain that the space RDAsγ of the statement of the proposition satisfies R⊥DAsγ = RAsγ . Hence,
DAs admits the claimed presentation. �

For any integer γ > 0, let �b, b ∈ [γ], the elements of Free
(
GDAsγ

)
defined by

�b :=
∑
a∈[b]

◊a. (3.1.10)

Then, since for all b ∈ [γ] we have

◊b =
{
�1 if b = 1,
�b − �b−1 otherwise,

(3.1.11)

by triangularity, the family G′DAsγ := {�b : b ∈ [γ]} forms a basis of Free
(
GDAsγ

)
(2) and then,

generates Free
(
GDAsγ

)
as an operad. Let us now express a presentation of DAsγ through the

family G′DAsγ .

Proposition 3.1.3. For any integer γ > 0, the operad DAsγ admits the following presentation.
It is generated by G′DAsγ and its space of relations R′DAsγ is generated by

�a ◦1 �a − �a ◦2�a, a ∈ [γ]. (3.1.12)
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Proof. Let us show that R′DAsγ is equal to the space of relations RDAsγ of DAsγ defined in the
statement of Proposition 3.1.2. By this last proposition, for any x ∈ Free

(
GDAsγ

)
(3), x is in

RDAsγ if and only if π(x) = 0 where π : Free
(
GDAsγ

)
→ DAs is the canonical surjection map.

By a straightforward computation, by expanding (3.1.12) over the elements ◊a, a ∈ [γ], by
using (3.1.10) we obtain that (3.1.12) can be expressed as a sum of elements of RDAsγ . This
implies that π(x) = 0 and hence that R′DAsγ is a subspace of RDAsγ .

Now, one can observe that for all a ∈ [γ], the elements (3.1.12) are linearly independent.
Then, R′DAsγ has dimension γ which is also, by Proposition 3.1.2, the dimension of RDAsγ . The
statement of the proposition follows. �

Observe, from the presentation provided by Proposition 3.1.3 of DAsγ , that DAs2 is the
operad denoted by 2as in [LR06].

Notice that the Koszul dual of DAsγ through its presentation
(
G′DAsγ ,R

′
DAsγ

)
of Proposi-

tion 3.1.3 gives rise to the following presentation for Asγ . This last operad admits the pre-
sentation

(
G′Asγ ,R

′
Asγ

)
where G′Asγ := G′Asγ (2) := {4a : a ∈ [γ]} and R′Asγ is generated by

4a ◦1 4a′ , a 6= a′ ∈ [γ], (3.1.13a)

4a ◦2 4a′ , a 6= a′ ∈ [γ], (3.1.13b)

4a ◦1 4a −4a ◦2 4a, a ∈ [γ]. (3.1.13c)

Indeed, R′Asγ is the space RAsγ through the identification

4a =
{
?γ if a = γ,

?a − ?a+1 otherwise.
(3.1.14)

Proposition 3.1.4. For any integer γ > 0, the Hilbert series HDAsγ (t) of the operad DAsγ
satisfies

HDAsγ (t) = t+ tHDAsγ (t) + (γ − 1)HDAsγ (t)2. (3.1.15)

Proof. By setting H̄DAsγ (t) := HDAsγ (−t), from (3.1.15), we obtain

t =
−H̄DAsγ (t) + (γ − 1)H̄DAsγ (t)2

1 + H̄DAsγ (t)
. (3.1.16)

Moreover, by setting H̄Asγ (t) := HAsγ (−t), where HAsγ (t) is defined by (3.1.8), we have

H̄Asγ
(
H̄DAsγ (t)

)
=
−H̄DAsγ (t) + (γ − 1)H̄DAsγ (t)2

1 + H̄DAsγ (t)
= t, (3.1.17)

showing that H̄Asγ (t) and H̄DAsγ (t) are the inverses for each other for series composition.
Now, since by Proposition 3.1.1, Asγ is a Koszul operad and its Hilbert series is HAsγ (t),

and since DAsγ is by definition the Koszul dual of Asγ , the Hilbert series of these two operads
satisfy (1.1.3). Therefore, (3.1.17) implies that the Hilbert series of DAsγ is HDAsγ (t). �
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A Schröder tree [Sta01, Sta11] is a planar rooted tree such that internal nodes have two of
more children. By examining the expression for HDAsγ (t) of the statement of Proposition 3.1.4,
we observe that for any n > 1, DAsγ(n) can be seen as the vector space FDAsγ (n) of Schröder
trees with n internal nodes, all labeled on [γ] such that the label of an internal node is different
from the labels of its children that are internal nodes. We call these trees γ-alternating Schröder
trees. Let us also denote by FDAsγ the graded vector space of all γ-alternating Schröder trees.
For instance,

2

1 3

3

2

1

3

1

2 (3.1.18)

is a 3-alternating Schröder tree and a basis element of DAs3(9).

We deduce also from Proposition 3.1.4 that

HDAsγ (t) =
1−

√
1− (4γ − 2)t+ t2 − t

2(γ − 1) . (3.1.19)

By denoting by nar(n, k) the Narayana number [Nar55] defined by

nar(n, k) := 1
k + 1

(
n− 1
k

)(
n

k

)
, (3.1.20)

we obtain that for all n > 1,

dim DAsγ(n) =
n−2∑
k=0

γk+1(γ − 1)n−k−2 nar(n− 1, k). (3.1.21)

This formula is a consequence of the fact that nar(n− 1, k) is the number of binary trees with
n leaves and with exactly k internal nodes having a internal node as a left child, the fact that
the number schr(n) of Schröder trees with n leaves expresses as

schr(n) =
n−2∑
k=0

2k nar(n− 1, k), (3.1.22)

and the fact that any Schröder tree s with n leaves can be encoded by a binary tree t with
n leaves where any left oriented edge connecting two internal nodes of t is labeled on [2] (s is
obtained from t by contracting all edges labeled by 2).

For instance, the first dimensions of DAs1, DAs2, DAs3, and DAs4 are respectively

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, (3.1.23)

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718, (3.1.24)
1, 3, 15, 93, 645, 4791, 37275, 299865, 2474025, 20819307, 178003815, (3.1.25)

1, 4, 28, 244, 2380, 24868, 272188, 3080596, 35758828, 423373636, 5092965724. (3.1.26)
The second one is Sequence A006318, the third one is Sequence A103210, and the last one
is Sequence A103211 of [Slo].

http://oeis.org/A006318
http://oeis.org/A103210
http://oeis.org/A103211
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Let us now establish a realization of DAsγ .

Proposition 3.1.5. For any nonnegative integer γ, the operad DAsγ is the vector space FDAsγ
of γ-alternating Schröder trees. Moreover, for any γ-alternating Schröder trees s and t, s◦i t is
the γ-alternating Schröder tree obtained by grafting the root of t on the ith leaf x of s and then,
if the father y of x and the root z of t have a same label, by contracting the edge connecting y
and z.

Proof. First, it is immediate that the vector space FDAsγ endowed with the partial compositions
described in the statement of the proposition is an operad.

Let

φ : DAsγ ' Free
(
G′DAsγ

)
/〈

R′
DAsγ

〉 → FDAsγ (3.1.27)

be the map satisfying φ(π(�a)) := ca where ca is the γ-alternating Schröder with two leaves and
one internal node labeled by a ∈ [γ] and π : Free(G′DAsγ ) → DAsγ is the canonical surjection
map. Since we have φ(π(�a)) ◦1 φ(π(�a)) = φ(π(�a)) ◦2 φ(π(�a)) for all a ∈ [γ], φ extends in
a unique way into an operad morphism. First, since the set Gγ of all γ-alternating Schröder
trees with two leaves and one internal node is a generating set of FDAsγ and the image of
φ contains Gγ , φ is surjective. Second, since by definition of FDAsγ , the bases of FDAsγ are
indexed by γ-alternating Schröder trees, by Proposition 3.1.4, FDAsγ and DAsγ are isomorphic
as graded vector spaces. Hence, φ is an operad isomorphism, showing that DAsγ admits the
claimed realization. �

We have for instance in DAs3,

1
12

2
3 ◦4 2

3 = 1 3

12

2

2

3 , (3.1.28)

and

1
12

2
3 ◦5 2

3 = 1 3
12

2

2
. (3.1.29)

3.2. A diagram of operads. We now define morphisms between the operads Diasγ , Asγ ,
DAsγ , and Dendrγ to obtain a generalization of a classical diagram involving the diassociative,
associative, and dendriform operads.
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3.2.1. Relating the diassociative and dendriform operads. The diagram

Dendr As Dias
ηζ

!

!

(3.2.1)

is a well-known diagram of operads, being a part of the so-called operadic butterfly [Lod01,
Lod06] and summarizing in a nice way the links between the dendriform, associative, and
diassociative operads. The operad As, being at the center of the diagram, is it own Koszul
dual, while Dias and Dendr are Koszul dual one of the other.

The operad morphisms η : Dias → As and ζ : As → Dendr are linearly defined through the
realizations of Dias and Dendr recalled respectively in Section 1.3 of [Gir16] and in Section 1.2
by

η(e2,1) := =: η(e2,2) , (3.2.2)

and

ζ

( )
:= + . (3.2.3)

Since Dias is generated by e2,1 and e2,2, and since As is generated by , η and ζ are wholly
defined.

3.2.2. Relating the pluriassociative and polydendriform operads.

Proposition 3.2.1. For any integer γ > 0, the map ηγ : Diasγ → Asγ satisfying

ηγ(0a) = a = ηγ(a0), a ∈ [γ], (3.2.4)

extends in a unique way into an operad morphism. Moreover, this morphism is surjective.

Proof. Theorem 2.2.6 of [Gir16] and Proposition 3.1.5 allow to interpret the map ηγ over the
presentations of Diasγ and Asγ . Then, via this interpretation, one has

ηγ(π(aa)) = π′(?a) = ηγ(π(`a)), a ∈ [γ], (3.2.5)

where π : Free
(
GDiasγ

)
→ Diasγ and π′ : Free

(
GAsγ

)
→ Asγ are canonical surjection maps.

Now, for any element x of Free
(
GDiasγ

)
generating the space of relationsRDiasγ of Diasγ , we can

check that ηγ(π(x)) = 0. This shows that ηγ extends in a unique way into an operad morphism.
Finally, this morphism is a surjection since its image contains the set of all γ-corollas of arity
2, which is a generating set of Asγ . �

By Proposition 3.2.1, the map ηγ , whose definition is only given in arity 2, defines an operad
morphism. Nevertheless, by induction on the arity, one can prove that for any word x of Diasγ ,
ηγ(x) is the γ-corolla of arity |x| labeled by the greatest letter of x.
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Proposition 3.2.2. For any integer γ > 0, the map ζγ : DAsγ → Dendrγ satisfying

ζγ

(
a

)
= a + a , a ∈ [γ], (3.2.6)

extends in a unique way into an operad morphism.

Proof. Propositions 3.1.3 and 3.1.5, and Theorem 2.1.4 allow to interpret the map ζγ over the
presentations of DAsγ and Dendrγ . Then, via this interpretation, one has

ζγ(π(�a)) = π′(≺a + �a), a ∈ [γ], (3.2.7)

where π : Free(G′DAsγ ) → DAsγ and π′ : Free
(
G′Dendrγ

)
→ Dendrγ are canonical surjection

maps. We now observe that the image of π(�a) is �a, where �a is the element of Dendrγ
defined in the statement of Proposition 2.1.5. Then, since by this last proposition this element
is associative, for any element x of Free(G′DAsγ ) generating the space of relations of R′DAsγ of
DAsγ , ζγ(π(x)) = 0. This shows that ζγ extends in a unique way into an operad morphism. �

We have to observe that the morphism ζγ defined in the statement of Proposition 3.2.2 is
injective only for γ 6 1. Indeed, when γ > 2, we have the relation

ζ2

 1
2

1

 + ζ2

 1
2

1

 = ζ2

 1
2

 + ζ2

 1
2

1

 . (3.2.8)

Theorem 3.2.3. For any integer γ > 0, the operads Diasγ , Dendrγ , Asγ , and DAsγ fit into
the diagram

Dendrγ DAsγ Asγ Diasγ
ηγ!ζγ

!

, (3.2.9)

where ηγ is the surjection defined in the statement of Proposition 3.2.1 and ζγ is the operad
morphism defined in the statement of Proposition 3.2.2.

Proof. This is a direct consequence of Propositions 3.2.1 and 3.2.2. �

Diagram (3.2.9) is a generalization of (3.2.1) in which the associative operad split into
operads Asγ and DAsγ .

4. Further generalizations

In this last section, we propose some generalizations on a nonnegative integer parameter of
well-known operads. For this, we use similar tools as the ones used in the first sections of this
paper.
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4.1. Duplicial operad. We construct here a generalization on a nonnegative integer param-
eter of the duplicial operad and describe the free algebras over one generator in the category
encoded by this generalization.

4.1.1. Multiplicial operads. It is well-known [LV12] that the dendriform operad and the du-
plicial operad Dup [Lod08] are both specializations of a same operad Dq with one parameter
q ∈ K. This operad admits the presentation

(
GDq ,RDq

)
, where GDq := GDendr and RDq is the

vector space generated by
≺ ◦1 � − � ◦2 ≺, (4.1.1a)

≺ ◦1 ≺ − ≺ ◦2 ≺ −q ≺ ◦2 �, (4.1.1b)
q � ◦1 ≺ + � ◦1 � − � ◦2 � . (4.1.1c)

One can observe that D1 is the dendriform operad and that D0 is the duplicial operad.

On the basis of this observation, from the presentation of Dendrγ provided by Theorem 2.1.4
and its concise form provided by Relations (2.1.17a), (2.1.17b), and (2.1.17c) for its space of
relations, we define the operad Dq,γ with two parameters, an integer γ > 0 and q ∈ K, in the
following way. We set Dq,γ as the operad admitting the presentation

(
GDq,γ ,RDq,γ

)
, where

GDq,γ := G′Dendrγ and RDq,γ is the vector space generated by

≺a ◦1 �a′ − �a′ ◦2 ≺a, a, a′ ∈ [γ], (4.1.2a)

≺a ◦1 ≺a′ − ≺a↓a′ ◦2 ≺a −q ≺a↓a′ ◦2 �a′ , a, a′ ∈ [γ], (4.1.2b)
q �a↓a′ ◦1 ≺a′ + �a↓a′ ◦1 �a − �a ◦2 �a′ , a, a′ ∈ [γ]. (4.1.2c)

One can observe that D1,γ is the operad Dendrγ .

Let us define the operad Dupγ , called γ-multiplicial operad, as the operad D0,γ . By using
respectively the symbols ←↩a and ↪→a instead of ≺a and �a for all a ∈ [γ], we obtain that the
space of relations RDupγ of Dupγ is generated by

←↩a ◦1 ↪→a′ − ↪→a′ ◦2 ←↩a, a, a′ ∈ [γ], (4.1.3a)

←↩a ◦1 ←↩a′ − ←↩a↓a′ ◦2 ←↩a, a, a′ ∈ [γ], (4.1.3b)
↪→a↓a′ ◦1 ↪→a − ↪→a ◦2 ↪→a′ , a, a′ ∈ [γ]. (4.1.3c)

We denote by GDupγ the set of generators {←↩a, ↪→a: a ∈ [γ]} of Dupγ .

In order to establish some properties of Dupγ , let us consider the quadratic rewrite rule →γ

on Free(GDupγ ) satisfying

←↩a ◦1 ↪→a′ →γ ↪→a′ ◦2 ←↩a, a, a′ ∈ [γ], (4.1.4a)

←↩a ◦1 ←↩a′ →γ ←↩a↓a′ ◦2 ←↩a, a, a′ ∈ [γ], (4.1.4b)
↪→a ◦2 ↪→a′ →γ ↪→a↓a′ ◦1 ↪→a, a, a′ ∈ [γ]. (4.1.4c)

Observe that the space induced by the operad congruence induced by →γ is RDupγ .

Lemma 4.1.1. For any integer γ > 0, the rewrite rule →γ is convergent and the generating
series Gγ(t) of its normal forms counted by arity satisfies

Gγ(t) = t+ 2γtGγ(t) + γ2tGγ(t)2. (4.1.5)
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Proof. Let us first prove that →γ is terminating. Consider the map φ : Free(GDupγ ) → N2

defined, for any syntax tree t by φ(t) := (α + α′, β), where α (resp. α′, β) is the sum, for all
internal nodes of t labeled by ←↩a (resp. ↪→a, ↪→a), a ∈ [γ], of the number of internal nodes in
its right (resp. left, right) subtree. For the lexicographical order 6 on N2, we can check that
for all →γ-rewritings s →γ t where s and t are syntax trees with two internal nodes, we have
φ(s) 6= φ(t) and φ(s) 6 φ(t). This implies that any syntax tree t obtained by a sequence of
→γ-rewritings from a syntax tree s satisfies φ(s) 6= φ(t) and φ(s) 6 φ(t). Then, since the set
of syntax trees of Free(GDupγ ) of a fixed arity is finite, this shows that →γ is a terminating
rewrite rule.

Let us now prove that →γ is convergent. We call critical tree any syntax tree s with three
internal nodes that can be rewritten by →γ into two different trees t and t′. The pair (t, t′) is
a critical pair for →γ . Critical trees for →γ are, for all a, b, c ∈ [γ],

↪→a

↪→b

←↩c
,

↪→a

←↩b
←↩c

,
←↩a

←↩b
←↩c

,

↪→a

↪→b

↪→c

. (4.1.6)

Since →γ is terminating, by the diamond lemma [New42] (see also [BN98]), to prove that →γ

is confluent, it is enough to check that for any critical tree s, there is a normal form r of →γ

such that s →γ t
∗→γ r and s →γ t′

∗→γ r, where (t, t′) is a critical pair. This can be done by
hand for each of the critical trees depicted in (4.1.6).

Let us finally prove that the generating series of the normal forms of →γ is (4.1.5). Since
→γ is terminating, its normal forms are the syntax trees that have no partial subtree equal
to ←↩a ◦1 ↪→a′ , ←↩a ◦1 ←↩a′ , or ↪→a ◦2 ↪→a′ for all a, a′ ∈ [γ]. Then, the normal forms of →γ

are the syntax trees wherein any internal node labeled by ←↩a, a ∈ [γ], has a leaf as left child
and any internal node labeled by ↪→a, a ∈ [γ], has a leaf or an internal node labeled by ←↩a′ ,
a′ ∈ [γ], as right child. Therefore, by denoting by G′γ(t) the generating series of the normal
forms of →γ equal to the leaf or with a root labeled by ←↩a, a ∈ [γ], we obtain

G′γ(t) = t+ γtGγ(t) (4.1.7)

and
Gγ(t) = G′γ(t) + γ Gγ(t)G′γ(t). (4.1.8)

An elementary computation shows that G(t) satisfies (4.1.5). �

Proposition 4.1.2. For any integer γ > 0, the operad Dupγ is Koszul and for any integer
n > 1, Dupγ(n) is the vector space of γ-edge valued binary trees with n internal nodes.

Proof. Since the space induced by the operad congruence induced by →γ is RDupγ , and since
by Lemma 4.1.1, →γ is convergent, by the Koszulity criterion [Hof10, DK10, LV12] we have
reformulated in Section 1.2.5 of [Gir16], Dupγ is a Koszul operad. Moreover, again because
→γ is convergent, as a vector space, Dupγ(n) is isomorphic to the vector space of the normal
forms of →γ with n > 1 internal nodes. Since the generating series Gγ(t) of the normal forms
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of →γ is also the generating series of γ-edge valued binary trees (see Proposition 2.1.2), the
second part of the statement of the proposition follows. �

Since Proposition 4.1.2 shows that the operads Dupγ and Dendrγ have the same underlying
vector space, asking if these two operads are isomorphic is natural. Next result implies that
this is not the case.

Proposition 4.1.3. For any integer γ > 0, any associative element of Dupγ is proportional to
π(←↩a) or π(↪→a) for an a ∈ [γ], where π : Free

(
GDupγ

)
→ Dupγ is the canonical surjection

map.

Proof. Let π : Free
(
GDupγ

)
→ Dupγ be the canonical surjection map. Consider the element

x :=
∑
a∈[γ]

αa ←↩a +βa ↪→a (4.1.9)

of Free
(
GDupγ

)
, where αa, βa ∈ K for all a ∈ [γ], such that π(x) is associative in Dupγ . Since

we have π(r) = 0 for all elements r of RDupγ (see (4.1.3a), (4.1.3b), and (4.1.3c)), the fact that
π(x ◦1 x− x ◦2 x) = 0 implies the constraints

αa βa′ − βa′ αa = 0, a, a′ ∈ [γ],

αa αa′ − αa↓a′ αa = 0, a, a′ ∈ [γ],

βa βa′ − βa↓a′ βa = 0, a, a′ ∈ [γ],
(4.1.10)

on the coefficients intervening in x. Moreover, since the syntax trees ↪→b ◦1 ↪→a, ↪→a ◦1 ←↩a′ ,
←↩b ◦2 ←↩a, and ←↩a ◦2 ↪→a′ do not appear in RDupγ for all a < b ∈ [γ] and a, a′ ∈ [γ], we have
the further constraints

βb βa = 0, a < b ∈ [γ],

βa αa′ = 0, a, a′ ∈ [γ],

αb αa = 0, a < b ∈ [γ],

αa βa′ = 0, a, a′ ∈ [γ].

(4.1.11)

These relations imply that there are at most one c ∈ [γ] and one d ∈ [γ] such that αc 6= 0 and
βd 6= 0. In this case, the relations imply also that αc = 0 or βd = 0, or both. Therefore, x is of
the form x = αa ←↩a or x = βa ↪→a for an a ∈ [γ], whence the statement of the proposition. �

By Proposition 4.1.3 there are exactly 2γ nonproportional associative operations in Dupγ
while, by Proposition 2.1.6 there are exactly γ such operations in Dendrγ . Therefore, Dupγ
and Dendrγ are not isomorphic.
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4.1.2. Free multiplicial algebras. We call γ-multiplicial algebra any Dupγ-algebra. From the
definition of Dupγ , any γ-multiplicial algebra is a vector space endowed with linear operations
←↩a, ↪→a, a ∈ [γ], satisfying the relations encoded by (4.1.3a)—(4.1.3c).

In order the simplify and make uniform next definitions, we consider that in any γ-edge
valued binary tree t, all edges connecting internal nodes of t with leaves are labeled by ∞. By
convention, for all a ∈ [γ], we have a ↓ ∞ = a =∞ ↓ a. Let us endow the vector space FDupγ
of γ-edge valued binary trees with linear operations

←↩a, ↪→a: FDupγ ⊗FDupγ → FDupγ , a ∈ [γ], (4.1.12)

recursively defined, for any γ-edge valued binary tree s and any γ-edge valued binary trees or
leaves t1 and t2 by

s←↩a := s =: ↪→a s, (4.1.13)

←↩a s := 0 =: s ↪→a , (4.1.14)

t1 t2

x y ←↩a s :=
t1 t2 ←↩a s

x z , z := a ↓ y, (4.1.15)

s ↪→a

t1 t2

x y :=
s ↪→a t1 t2

z y , z := a ↓ x. (4.1.16)

Note that neither ≺a nor ↪→a are defined.

These recursive definitions for the operations ←↩a, ↪→a, a ∈ [γ], lead to the following direct
reformulations. If s and t are two γ-edge valued binary trees, t←↩a s (resp. s ↪→a t) is obtained
by replacing each label y (resp. x) of any edge in the rightmost (resp. leftmost) path of t by
a ↓ y (resp. a ↓ x) to obtain a tree t′, and by grafting the root of s on the rightmost (resp.
leftmost) leaf of t′. These two operations are respective generalizations of the operations under
and over on binary trees introduced by Loday and Ronco [LR02].

For example, we have

1 3

1
←↩2 1 2 =

1

2

2

2

1

1

, (4.1.17)

and

1 3

1
↪→2 1 2 = 1

2

2

3

1

1

. (4.1.18)
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Lemma 4.1.4. For any integer γ > 0, the vector space FDupγ of γ-edge valued binary trees
endowed with the operations ←↩a, ↪→a, a ∈ [γ], is a γ-multiplicial algebra.

Proof. We have to check that the operations←↩a, ↪→a, a ∈ [γ], of FDupγ satisfy Relations (4.1.3a),
(4.1.3b), and (4.1.3c) of γ-multiplicial algebras. Let r, s, and t be three γ-edge valued binary
trees and a, a′ ∈ [γ].

Denote by s1 (resp. s2) the left subtree (resp. right subtree) of s and by x (resp. y) the
label of the left (resp. right) edge incident to the root of s. We have

(r ↪→a′ s)←↩a t =

r ↪→a′

s1 s2

x y

←↩a t =


r ↪→a′ s1 s2

z y

←↩a t

=
r ↪→a′ s1 s2 ←↩a t

z t

= r ↪→a′


s1 s2 ←↩a t

x t

 = r ↪→a′


s1 s2

x y ←↩a t

 = r ↪→a′ (s←↩a t), (4.1.19)

where z := a′ ↓ x and t := a ↓ y. This shows that (4.1.3a) is satisfied in FDupγ .

We now prove that Relations (4.1.3b) and (4.1.3c) hold by induction on the sum of the
number of internal nodes of r, s, and t. Base case holds when all these trees have exactly one
internal node, and since

(
←↩a′

)
←↩a − ←↩a↓a′

(
←↩a

)

= a′ ←↩a − ←↩a↓a′ a

=
z

a
−

z

a
= 0, (4.1.20)

where z := a ↓ a′, (4.1.3b) holds on trees with one internal node. For the same arguments, we
can show that (4.1.3c) holds on trees with exactly one internal node. Denote now by r1 (resp.
r2) the left subtree (resp. right subtree) of r and by x (resp. y) the label of the left (resp.
right) edge incident to the root of r. We have

(r←↩a′ s)←↩a t− r←↩a↓a′ (s←↩a t)
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=


r1 r2

x y ←↩a′ s

←↩a t−
r1 r2

x y ←↩a↓a′ (s←↩a t)

=


r1 r2 ←↩a′ s

x z

←↩a t−
r1 r2

x y ←↩a↓a′ (s←↩a t)

=
r1 (r2 ←↩a′ s)←↩a t

x t −
r1 r2 ←↩u (s←↩a t)

x t , (4.1.21)

where z := y ↓ a′, t := z ↓ a = y ↓ a′ ↓ a, and u := a ↓ a′. Now, since by induction hypothesis
Relation (4.1.3b) holds on r2, s, and t, (4.1.21) is zero. Therefore, (4.1.3b) is satisfied in FDupγ .

Finally, for the same arguments, we can show that (4.1.3c) is satisfied in FDupγ , implying
the statement of the lemma. �

Lemma 4.1.5. For any integer γ > 0, the γ-multiplicial algebra FDupγ of γ-edge valued binary
trees endowed with the operations ←↩a, ↪→a, a ∈ [γ], is generated by

. (4.1.22)

Proof. First, Lemma 4.1.4 shows that FDupγ is a γ-multiplicial algebra. Let M be the γ-

multiplicial subalgebra of FDupγ generated by . Let us show that any γ-edge valued binary

tree t is in M by induction on the number n of its internal nodes. When n = 1, t = and
hence the property is satisfied. Otherwise, let t1 (resp. t2) be the left (resp. right) subtree of
the root of t and denote by x (resp. y) the label of the left (resp. right) edge incident to the
root of t. Since t1 and t2 have less internal nodes than t, by induction hypothesis, t1 and t2
are inM. Moreover, by definition of the operations ←↩a, ↪→a, a ∈ [γ], of FDupγ , one has

(
t1 ↪→x

)
←↩y t2 =

t1

x ←↩y t2 =
t1 t2

x y = t, (4.1.23)

showing that t also is inM. Therefore,M is FDupγ , showing that FDupγ is generated by . �

Theorem 4.1.6. For any integer γ > 0, the vector space FDupγ of γ-valued binary trees
endowed with the operations ←↩a, ↪→a, a ∈ [γ], is the free γ-multiplicial algebra over one
generator.

Proof. By Lemmas 4.1.4 and 4.1.5, FDupγ is a γ-multiplicial algebra over one generator.
Moreover, since by Proposition 4.1.2, for any n > 1, the dimension of FDupγ (n) is the

same as the dimension of Dupγ(n), there cannot be relations in FDupγ (n) involving g that are
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not γ-multiplicial relations (see (4.1.3a), (4.1.3b), and (4.1.3c)). Hence, FDupγ is free as a
γ-multiplicial algebra over one generator. �

4.2. Polytridendriform operads. We propose here a generalization TDendrγ on a nonneg-
ative integer parameter γ of the tridendriform operad [LR04]. This last operad is the Koszul
dual of the triassociative operad. We proceed by using an analogous strategy as the one used
to define the operads Dendrγ as Koszul duals of Diasγ . Indeed, we define TDendrγ as the
Koszul dual of the operad Triasγ , called γ-pluritriassociative operad, a generalization of the
triassociative operad defined in [Gir16].

Since the proofs of the results contained in this section are very similar to the ones of
Section 2, we omit proofs here.

Theorem 4.2.1 of [Gir16], by exhibiting a presentation of Triasγ , shows that this operad
is binary and quadratic. It then admits a Koszul dual, denoted by TDendrγ and called γ-
polytridendriform operad.

Theorem 4.2.1. For any integer γ > 0, the operad TDendrγ admits the following presentation.
It is generated by GTDendrγ := GTDendrγ (2) := {↼a,∧,⇀a: a ∈ [γ]} and its space of relations
RTDendrγ is generated by

∧ ◦1 ∧ − ∧ ◦2∧, (4.2.1a)

↼a ◦1 ∧ − ∧ ◦2 ↼a, a ∈ [γ], (4.2.1b)

∧ ◦1 ⇀a −⇀a ◦2∧, a ∈ [γ], (4.2.1c)

∧ ◦1 ↼a − ∧ ◦2 ⇀a, a ∈ [γ], (4.2.1d)

↼a ◦1 ⇀a′ −⇀a′ ◦2 ↼a, a, a′ ∈ [γ], (4.2.1e)

↼a ◦1 ↼b −↼a ◦2 ⇀b, a < b ∈ [γ], (4.2.1f)

⇀a ◦1 ↼b −⇀a ◦2 ⇀b, a < b ∈ [γ], (4.2.1g)

↼b ◦1 ↼a −↼a ◦2 ↼b, a < b ∈ [γ], (4.2.1h)

⇀a ◦1 ⇀b −⇀b ◦2 ⇀a, a < b ∈ [γ], (4.2.1i)

↼d ◦1 ↼d −↼d ◦2 ∧ −

∑
c∈[d]

↼d ◦2 ↼c + ↼d ◦2 ⇀c

 , d ∈ [γ], (4.2.1j)

∑
c∈[d]

⇀d ◦1 ↼c + ⇀d ◦1 ⇀c

+ ⇀d ◦1 ∧ −⇀d ◦2 ⇀d, d ∈ [γ]. (4.2.1k)

Proposition 4.2.2. For any integer γ > 0, the Hilbert series HTDendrγ (t) of the operad
TDendrγ satisfies

HTDendrγ (t) = t+ (2γ + 1)tHTDendrγ (t) + γ(γ + 1)tHTDendrγ (t)2. (4.2.2)
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By examining the expression forHTDendrγ (t) of the statement of Proposition 4.2.2, we observe
that for any n > 1, TDendr(n) can be seen as the vector space FTDendrγ (n) of Schröder trees
with n + 1 leaves wherein its edges connecting two internal nodes are labeled on [γ]. We call
these trees γ-edge valued Schröder trees. For instance,

4

2

1

4

2

4

4

2

1 4

(4.2.3)

is a 4-edge valued Schröder tree and a basis element of TDendr4(16).

We deduce from Proposition 4.2.2 that

HTDendrγ (t) =
1−

√
1− (4γ + 2)t+ t2 − (2γ + 1)t

2(γ + γ2)t . (4.2.4)

Moreover, we obtain that for all n > 1,

dim TDendrγ(n) =
n−1∑
k=0

(γ + 1)kγn−k−1 nar(n, k), (4.2.5)

where nar(n, k) is defined in (3.1.20). For instance, the first dimensions of TDendr1, TDendr2,
TDendr3, and TDendr4 are respectively

1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, 2646723, (4.2.6)

1, 5, 31, 215, 1597, 12425, 99955, 824675, 6939769, 59334605, 513972967, (4.2.7)

1, 7, 61, 595, 6217, 68047, 770149, 8939707, 105843409, 1273241431, 15517824973, (4.2.8)

1, 9, 101, 1269, 17081, 240849, 3511741, 52515549, 801029681, 12414177369, 194922521301.
(4.2.9)

The first one is Sequence A001003 of [Slo]. The others sequences are not listed in [Slo] at this
time.

4.3. Operads of the operadic butterfly. The operadic butterfly [Lod01,Lod06] is a diagram
gathering seven famous operads. We have seen in Section 3.2 that this diagram gathers the
diassociative, associative, and dendriform operads. It involves also the commutative operad
Com, the Lie operad Lie, the Zinbiel operad Zin [Lod95], and the Leibniz operad Leib [Lod93].
It is of the form

Dendr

As

Dias

Com Lie

Zin Leib

!
!

!

!
(4.3.1)

http://oeis.org/A001003
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and as it shows, some operads are Koszul dual of some others (in particular, Com! = Lie and
Zin! = Leib).

We have to emphasize the fact the operads Com, Lie, Zin, and Leib of the operadic butterfly
are symmetric operads. The computation of the Koszul dual of a symmetric operad does not
follows what we have presented in Section 1.1. We invite the reader to consult [GK94] or [LV12]
for a complete description.

For simplicity, in what follows, we shall consider algebras over symmetric operads instead
of symmetric operads.

4.3.1. A generalization of the operadic butterfly. A possible continuation to this work consists
in constructing a diagram

Dendrγ

AsγDAsγ

Diasγ

Comγ Lieγ

Zinγ Leibγ
!

!

!
!

(4.3.2)

where DAsγ is the γ-dual multiassociative operad defined in Section 3.1.3 and Comγ , Lieγ ,
Zinγ , and Leibγ , respectively are generalizations on a nonnegative integer parameter γ of the
operads Com, Lie, Zin, and Leib. Let us now define these operads.

4.3.2. Commutative and Lie operads. The symmetric operad Com is the symmetric operad
describing the category of algebras C with one binary operation �, subjected for any elements
x, y, and z of C to the two relations

x � y = y � x, (4.3.3a)

(x � y) � z = x � (y � z). (4.3.3b)

This operad has the property to be a commutative version of As = DAs1.

We define the symmetric operad Comγ by using the same idea of being a commutative
version of DAsγ . Therefore, Comγ is the symmetric operad describing the category of algebras
C with binary operations �a, a ∈ [γ], subjected for any elements x, y, and z of C to the two
sorts of relations

x �a y = y �a x, a ∈ [γ], (4.3.4a)

(x �a y) �a z = x �a (y �a z), a ∈ [γ]. (4.3.4b)

Moreover, we define the symmetric operad Lieγ as the Koszul dual of Comγ .
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4.3.3. Zinbiel and Leibniz operads. The symmetric operad Zin is the symmetric operad de-
scribing the category of algebras Z with one generating binary operation �, subjected for any
elements x, y, and z of Z to the relation

(x� y)� z = x� (y� z) + x� (z� y). (4.3.5)

This operad has the property to be a commutative version of Dendr = Dendr1. Indeed, Rela-
tion (4.3.5) is obtained from Relations (1.2.1a), (1.2.1b), and (1.2.1c) of dendriform algebras
with the condition that for any elements x and y, x ≺ y = y � x, and by setting x�y := x ≺ y.

We define the symmetric operad Zinγ by using the same idea of having the property to
be a commutative version of Dendrγ . Therefore, Zinγ is the symmetric operad describing the
category of algebras Z with binary operations �a, a ∈ [γ], subjected for any elements x, y,
and z of Z to the relation

(x�a′ y)�a z = x�a↓a′ (y�a z) + x�a↓a′ (z�a′ y), a, a′ ∈ [γ]. (4.3.6)

Relation (4.3.6) is obtained from Relations (2.1.17a), (2.1.17b), and (2.1.17c) of γ-polydendriform
algebras with the condition that for any elements x and y and a ∈ [γ], x ≺a y = y �a x, and
by setting x�a y := x ≺a y. Moreover, we define the symmetric operad Leibγ as the Koszul
dual of Zinγ .

Proposition 4.3.1. For any integer γ > 0 and any Zinγ-algebra Z, the binary operations �a,
a ∈ [γ], defined for all elements x and y of Z by

x �a y := x�a y + y�a x, a ∈ [γ], (4.3.7)

endow Z with a Comγ-algebra structure.

Proof. Since for all a ∈ [γ] and all elements x and y of Z, by (4.3.6), we have

x �a y − y �a x = x�a y + y�a x− y�a x− x�a y = 0, (4.3.8)

the operations �a satisfy Relation (4.3.4a) of Comγ-algebras. Moreover, since for all a ∈ [γ]
and all elements x, y, and z of Z, by (4.3.6), we have

(x �a y) �a z − x �a (y �a z)

= (x�a y + y�a x)�a z + z�a (x�a y + y�a x)

− x�a (y�a z + z�a y)− (y�a z + z�a y)�a x

= (x�a y)�a z + (y�a x)�a z + z�a (x�a y) + z�a (y�a x)

− x�a (y�a z)− x�a (z�a y)− (y�a z)�a x− (z�a y)�a x

= (y�a x)�a z − (y�a z)�a x

= y�a (x�a z) + y�a (z�a x)− y�a (z�a x)− y�a (x�a z)

= 0,

(4.3.9)

the operations �a satisfy Relation (4.3.4b) of Comγ-algebras. Hence, Z is a Comγ-algebra. �
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Proposition 4.3.2. For any integer γ > 0, and any Zinγ-algebra Z, the binary operations
≺a, �a, a ∈ [γ] defined for all elements x and y of Z by

x ≺a y := x�a y, a ∈ [γ], (4.3.10)

and
x �a y := y�a x, a ∈ [γ], (4.3.11)

endow Z with a γ-polydendriform algebra structure.

Proof. Since, for all a, a′ ∈ [γ] and all elements x, y, and z of Z, by (4.3.6), we have
(x �a′ y) ≺a z − x �a′ (y ≺a z)

= (y�a′ x)�a z − (y�a z)�a′ x

= y�a↓a′ (x�a z) + y�a↓a′ (z�a′ x)− y�a↓a′ (z�a′ x)− y�a↓a′ (x�a z)

= 0,
(4.3.12)

the operations ≺a and �a satisfy Relation (2.1.17a) of γ-polydendriform algebras. Moreover,
since for all a, a′ ∈ [γ] and all elements x, y, and z of Z, by (4.3.6), we have
(x ≺a′ y) ≺a z − x ≺a↓a′ (y ≺a z)− x ≺a↓a′ (y �a′ z)

= (x�a′ y)�a z − x�a↓a′ (y�a z)− x�a↓a′ (z�a′ y)

= x�a↓a′ (y�a z) + x�a↓a′ (z�a′ y)− x�a↓a′ (y�a z)− x�a↓a′ (z�a′ y)

= 0,
(4.3.13)

the operations ≺a and �a satisfy Relation (2.1.17b) of γ-polydendriform algebras. Finally,
since for all a, a′ ∈ [γ] and all elements x, y, and z of Z, we have
(x ≺a′ y) �a↓a′ z + (x �a y) �a↓a′ z − x �a (y �a′ z)

= z�a↓a′ (x�a′ y) + z�a↓a′ (y�a x)− (z�a′ y)�a x

= z�a↓a′ (x�a′ y) + z�a↓a′ (y�a x)− z�a↓a′ (y�a x)− z�a↓a′ (x�a′ y)

= 0,
(4.3.14)

the operations ≺a and �a satisfy Relation (2.1.17c) of γ-polydendriform algebras. Hence Z is
a γ-polydendriform algebra. �

The constructions stated by Propositions 4.3.1 and 4.3.2 producing from a Zinγ-algebra re-
spectively a Comγ-algebra and a γ-polydendriform algebra are functors from the category of
Zinγ-algebras respectively to the category of Comγ-algebras and the category of γ-polydendriform
algebras. These functors respectively translate into symmetric operad morphisms from Comγ

to Zinγ and from Dendrγ to Zinγ . These morphisms are generalizations of known morphisms
between Com, Dendr, and Zin of (4.3.1) (see [Lod01,Lod06,Zin12]).

A complete study of the operads Comγ , Lieγ , Zinγ , and Leibγ , and suitable definitions for
all the morphisms intervening in (4.3.2) is worth to interest for future works.
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