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Abstract. Diassociative algebras form a categoy of algebras recently introduced by Loday.
A diassociative algebra is a vector space endowed with two associative binary operations
satisfying some very natural relations. Any diassociative algebra is an algebra over the di-
associative operad, and, among its most notable properties, this operad is the Koszul dual
of the dendriform operad. We introduce here, by adopting the point of view and the tools
offered by the theory of operads, a generalization on a nonnegative integer parameter γ
of diassociative algebras, called γ-pluriassociative algebras, so that 1-pluriassociative alge-
bras are diassociative algebras. Pluriassociative algebras are vector spaces endowed with
2γ associative binary operations satisfying some relations. We provide a complete study of
the γ-pluriassociative operads, the underlying operads of the category of γ-pluriassociative
algebras. We exhibit a realization of these operads, establish several presentations by gener-
ators and relations, compute their Hilbert series, show that they are Koszul, and construct
the free objects in the corresponding categories. We also study several notions of units
in γ-pluriassociative algebras and propose a general way to construct such algebras. This
paper ends with the introduction of an analogous generalization of the triassociative operad
of Loday and Ronco.
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Introduction

In the recent years, several algebraic structures on vector spaces based on various sets of
combinatorial objects and endowed with more or less complicated operations on these have
been considered by algebraic combinatorists. As most famous examples, we can cite free pre-
Lie algebras [CL01], which are vector spaces of rooted trees endowed with a grafting product,
and free dendriform algebras [Lod01], which are vector spaces of binary trees endowed with
two products operating by shuffling binary trees. Other well-known examples include free
Zinbiel algebras [Lod95,Lod01] endowing the space of all permutations with a shuffle product,
nonassociative permutative algebras [MY91,Liv06] endowing the space of all rooted trees with
a grafting product at the root, and duplicial algebras [Lod08] endowing the space of all binary
with two grafting operations.

Instead of studying all these algebraic structures separately, it is possible to ask and treat
some general questions about these under a uniform point of view. The theory of operads is
an efficient tool to regard different categories of algebraic structures in a unified manner. This
theory (see [LV12] for a complete exposition and also [Cha08] for an exposition highlighting
the combinatorial aspects of the theory) has been introduced in the context of algebraic topol-
ogy [May72,BV73]. Roughly speaking, an operad is a space of abstract operators consisting
in several inputs and one output that can be composed to form bigger ones. The point is that
any operad encodes a category of algebras and working with an operad amounts to work with
the algebras all together of this category. Moreover, the use of the theory of operads leads
to the discovery of connections between differents sorts of algebras by terms of morphisms of
operads. As a simple example, the well-known fact that any associative algebra gives rise to a
Lie algebra by considering its associator as a Lie bracket comes from the fact that there is a
morphism from the underlying operad of the category of Lie algebras to the underlying operad
of the category of associative algebras.

The present work is concerned with the definition of a coherent generalization of dialgebras,
algebraic structures introduced by Loday in [Lod01]. A dialgebra is a vector space endowed
with two associative binary operations a and ` satisfying some relations. From a combinatorial
point of view, the bases of the free dialgebra over one generator are indexed by ordered pairs
(n, k) of integers, denoted by en,k, and satisfying 1 6 k 6 n. The operations a and ` admit
simple set-theoretic descriptions over this basis [Cha05]. In a previous work [Gir12,Gir15], we
introduced a new construction for the operad Dias, the underlying operad of the category of
diassociative algebras, and we raised the question whether this construction can be extended
to obtain operads generalizing Dias and hence, to obtain generalizations of dialgebras.

Let us give some explanations about our construction of Dias. In [Gir12,Gir15], we defined
a general functorial construction T producing an operad from any monoid. This construction
T sends a monoid M to the operad TM of all words on M , where M is seen as an alphabet.
The arity of a word is its length and the operadic partial composition u◦i v of two words u and
v of TM consists in replacing the ith letter ui of u by a version of v obtained by multpliying
to the left all its letters by ui. The operad Dias is the suboperad of TM , where M is the
multiplicative monoid on {0, 1}, generated by the two words 01 and 10 of arity two. In the
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Operad Objects Dimensions

Diasγ Words on {0, 1, . . . , γ} with exactly one 0 nγn−1

Asγ γ-corollas γ

Triasγ Words on {0, 1, . . . , γ} with at least one 0 (γ + 1)n − γn

Table 1. The main operads defined in this paper. All these operads depend
on a nonnegative integer parameter γ. The shown dimensions are the ones of
the homogeneous components of arities n > 2 of the operads.

present paper, we rely on T to construct a generalization on a nonnegative integer parameter
γ of Dias, denoted by Diasγ , in such a way that Dias1 = Dias and Diasγ is a suboperad of
Diasγ+1 for any γ > 0. The operads Diasγ , called γ-pluriassociative operads, are set-operads
involving words on the alphabet {0, 1, . . . , γ} with exactly one occurrence of 0. Besides, this
work naturally leads to the consideration and the definition of several new operads. Table 1
summarizes some information about these. We provide for instance a generalization on a
nonnegative integer parameter γ of the triassociative operad Trias [LR04], denoted by Triasγ .

The main rationale for this work is to establish the necessary foundations to propose a
generalization on a nonnegative integer parameter γ of dendriform algebras [Lod01]. Since
Dias is the Koszul dual [GK94] of the operad Dendr, the underlying operad of the category of
dendriform algebras, our objective is to propose the definition of the operads Dendrγ , defined
each as the Koszul dual of Diasγ . Moreover, since Dias admits a description far simpler than
Dendr, starting by constructing a generalization of Dias to obtain a generalization of Dendr by
Koszul duality is a convenient path to explore. This strategy is developed in the continutation
of this work [Gir16], where the operads Dendrγ are studied. This lead to new sorts of algebras,
providing analogs of dendriform algebras and different from already existing ones (see for
instance [LR04,AL04,Ler04,Ler07,Nov14]).

This paper is organized as follows. Section 1 contains a conspectus of the tools used in
this paper. We recall here the definition of the construction T [Gir12, Gir15] and provide a
reformulation of results of Hoffbeck [Hof10] and Dotsenko and Khoroshkin [DK10] to prove
that an operad is Koszul by using convergent rewrite rules. Besides, this part provides self-
contained definitions about nonsymmetric operads, algebras over operads, free operads, and
rewrite rules on trees. This section ends by some recalls about the diassociative operad and
diassociative algebras.

Section 2 is devoted to the introduction and the study of the operad Diasγ . We begin by
detailing the construction of Diasγ as a suboperad of the operad obtained by the construction
T applied on the monoidMγ with {0, 1, . . . , γ} as underlying set and with the operation max
as product. More precisely, Diasγ is defined as the suboperad of TMγ generated by the words
0a and a0 for all a ∈ {1, . . . , γ}. We then provide a presentation by generators and relations of
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Diasγ (Theorem 2.2.6), and show that it is a Koszul operad (Theorem 2.3.1). We also establish
some more properties of this operad: we compute its group of symmetries (Proposition 2.3.2),
show that it is a basic operad in the sense of [Val07] (Proposition 2.3.3), and show that it is a
rooted operad in the sense of [Cha14] (Proposition 2.3.3). We end this section by introducing
an alternating basis of Diasγ , the K-basis, defined through a partial ordering relation over
the words indexing the bases of Diasγ . After describing how the partial composition of Diasγ
expresses over the K-basis (Theorem 2.3.7), we provide a presentation of Diasγ over this basis
(Proposition 2.3.8). Despite the fact that this alternative presentation is more complex than
the original one of Diasγ provided by Theorem 2.2.6, the computation of the Koszul dual
Dendrγ of Diasγ from this second presentation leads to a surprisingly plain presentation of
Dendrγ considered later in [Gir16].

In Section 3, algebras over Diasγ , called γ-pluriassociative algebras, are studied. The free
γ-pluriassociative algebra over one generator is described as a vector space of words on the
alphabet {0, 1, . . . , γ} with exactly one occurrence of 0, endowed with 2γ binary operations
(Proposition 3.1.1). We next study two different notions of units in γ-pluriassociative algebras,
the bar-units and the wire-units, that are generalizations of definitions of Loday introduced
into the context of diassociative algebras [Lod01]. We show that the presence of a wire-unit in
a γ-pluriassociative algebra leads to many consequences on its structure (Proposition 3.2.1).
Besides, we describe a general construction M to obtain γ-pluriassociative algebras by starting
from γ-multiprojection algebras, that are algebraic structures with γ associative products and
endowed with γ endomorphisms with extra relations (Theorem 3.3.2). The main interest of
the construction M is that γ-multiprojection algebras are simpler algebraic structures than
γ-pluriassociative algebras. The bar-units and wire-units of the γ-pluriassociative algebras
obtained by this construction are then studied (Proposition 3.3.3). We end this section by
listing five examples of γ-pluriassociative algebras constructed from γ-multiprojection algebras,
including the free γ-pluriassociative algebra over one generator considered in Section 3.1.3.

Finally, by using almost the same tools as the one used in Section 2, we propose in Section 4
a generalization on a nonnegative integer parameter γ of the triassociative operad Trias of
Loday and Ronco [LR04], denoted by Triasγ . This follows a very simple idea: like Diasγ , Triasγ
is defined as a suboperad of TMγ generated by the same generators as those of Diasγ , plus the
word 00. In a previous work [Gir12,Gir15], we showed that Trias1 is the triassociative operad.
We provide here an expression for the Hilbert series of Triasγ obtained from the description of
its elements (Proposition 4.1.1) and a presentation (Theorem 4.2.1).

Acknowledgements. The author would like to thank Jean-Yves-Thibon for its pertinent
remarks and questions about this work when it was in progress. Thanks are addressed to
Frederic Chapoton and Eric Hoffbeck for answering some questions of the author respectively
about the dendriform and diassociative operads, and Koszulity of operads. The author thanks
also Vladimir Dotsenko and Bruno Vallette for pertinent bibliographic suggestions. Finally, the
author warmly thanks the referee for his very careful reading and his suggestions, improving
the quality of the paper.
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Notations and general conventions. All the algebraic structures of this article have a field
of characteristic zero K as ground field. If S is a set, Vect(S) denotes the linear span of the
elements of S. For any integers a and c, [a, c] denotes the set {b ∈ N : a 6 b 6 c} and [n],
the set [1, n]. The cardinality of a finite set S is denoted by #S. If u is a word, its letters are
indexed from left to right from 1 to its length |u|. For any i ∈ [|u|], ui is the letter of u at
position i. If a is a letter and n is a nonnegative integer, an denotes the word consisting in n
occurrences of a. Notice that a0 is the empty word ε.

1. Preliminaries: algebraic structures and main tools

This preliminary section sets our conventions and notations about operads and algebras
over an operad, and describes the main tools we will use. The definitions and some properties
of the diassociative operad are also recalled. This section does not contains new results but it
is a self-contained set of definitions about operads intended to readers familiar with algebra or
combinatorics but not necessarily with operadic theory.

1.1. Operads and algebras over an operad. We list here several staple definitions about
operads and algebras over an operad. We present also an important tool for this work: the
construction T producing operads from monoids.

1.1.1. Operads. A nonsymmetric operad in the category of vector spaces, or a nonsymmetric
operad for short, is a graded vector space O :=

⊕
n>1O(n) together with linear maps

◦i : O(n)⊗O(m)→ O(n+m− 1), n,m > 1, i ∈ [n], (1.1.1)

called partial compositions, and a distinguished element 1 ∈ O(1), the unit of O. This data
has to satisfy the three relations

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z), x ∈ O(n), y ∈ O(m), z ∈ O(k), i ∈ [n], j ∈ [m], (1.1.2a)

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y, x ∈ O(n), y ∈ O(m), z ∈ O(k), i < j ∈ [n], (1.1.2b)

1 ◦1 x = x = x ◦i 1, x ∈ O(n), i ∈ [n]. (1.1.2c)

Since we shall consider in this paper mainly nonsymmetric operads, we shall call these simply
operads. Moreover, all considered operads are such that O(1) has dimension 1.

If x is an element of O such that x ∈ O(n) for a n > 1, we say that n is the arity of x and
we denote it by |x|. An element x of O of arity 2 is associative if x ◦1 x = x ◦2 x. If O1 and O2

are operads, a linear map φ : O1 → O2 is an operad morphism if it respects arities, sends the
unit of O1 to the unit of O2, and commutes with partial composition maps. We say that O2

is a suboperad of O1 if O2 is a graded subspace of O1, and O1 and O2 have the same unit and
the same partial compositions. For any set G ⊆ O, the operad generated by G is the smallest
suboperad of O containing G. When the operad generated by G is O itself and G is minimal
with respect to inclusion among the subsets of O satisfying this property, G is a generating set
of O and its elements are generators of O. An operad ideal of O is a graded subspace I of O
such that, for any x ∈ O and y ∈ I, x ◦i y and y ◦j x are in I for all valid integers i and j.
Given an operad ideal I of O, one can define the quotient operad O/I of O by I in the usual
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way. When O is such that all O(n) are finite for all n > 1, the Hilbert series of O is the series
HO(t) defined by

HO(t) :=
∑
n>1

dimO(n)tn. (1.1.3)

Instead of working with the partial composition maps of O, it is something useful to work
with the maps

◦ : O(n)⊗O(m1)⊗ · · · ⊗ O(mn)→ O(m1 + · · ·+mn), n,m1, . . . ,mn > 1, (1.1.4)

linearly defined for any x ∈ O of arity n and y1, . . . , yn−1, yn ∈ O by

x ◦ (y1, . . . , yn−1, yn) := (. . . ((x ◦n yn) ◦n−1 yn−1) . . . ) ◦1 y1. (1.1.5)

These maps are called composition maps of O.

1.1.2. Set-operads. Instead of being a direct sum of vector spaces O(n), n > 1, O can be a
graded disjoint union of sets. In this context, O is a set-operad. All previous definitions remain
valid by replacing direct sums ⊕ by disjoint unions t, tensor products ⊗ by Cartesian products
×, and vector space dimensions dim by set cardinalities #. Moreover, in the context of set-
operads, we work with operad congruences instead of operad ideals. An operad congruence on a
set-operad O is an equivalence relation ≡ on O such that all elements of a same ≡-equivalence
class have the same arity and for all elements x, x′, y, and y′ of O, x ≡ x′ and y ≡ y′ imply
x ◦i y ≡ x′ ◦i y′ for all valid integers i. The quotient operad O/≡ of O by ≡ is the set-operad
defined in the usual way.

Any set-operad O gives naturally rise to an operad on Vect(O) by extending the partial
compositions of O by linearity. Besides this, any equivalence relation ↔ of O such that all
elements of a same ↔-equivalence class have the same arity induces a subspace of Vect(O)
generated by all x−x′ such that x↔ x′, called space induced by ↔. In particular, any operad
congruence ≡ on O induces an operad ideal of Vect(O).

1.1.3. From monoids to operads. In a previous work [Gir12,Gir15], the author introduced a
construction which, from any monoid, produces an operad. This construction is described as
follows. LetM be a monoid with an associative product • admitting a unit 1. We denote by
TM the operad TM :=

⊕
n>1 TM(n) where for all n > 1,

TM(n) := Vect ({u1 . . . un : ui ∈M for all i ∈ [n]}) . (1.1.6)

The partial composition of two words u ∈ TM(n) and v ∈ TM(m) is linearly defined by

u ◦i v := u1 . . . ui−1 (ui • v1) . . . (ui • vm)ui+1 . . . un, i ∈ [n]. (1.1.7)

The unit of TM is 1 := 1. In other words, TM is the vector space of words on M seen as
an alphabet and the partial composition returns to insert a word v onto the ith letter ui of a
word u together with a left multiplication by ui.
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1.1.4. Algebras over an operad. Any operad O encodes a category of algebras whose objects
are called O-algebras. An O-algebra AO is a vector space endowed with a right action

· : A⊗nO ⊗O(n)→ AO, n > 1, (1.1.8)

satisfying the relations imposed by the structure of O, that are

(e1 ⊗ · · · ⊗ en+m−1) · (x ◦i y) =

(e1 ⊗ · · · ⊗ ei−1 ⊗ (ei ⊗ · · · ⊗ ei+m−1) · y ⊗ ei+m ⊗ · · · ⊗ en+m−1) · x, (1.1.9)

for all e1⊗· · ·⊗en+m−1 ∈ A⊗n+m−1
O , x ∈ O(n), y ∈ O(m), and i ∈ [n]. Notice that, by (1.1.9),

if G is a generating set of O, it is enough to define the action of each x ∈ G on A⊗|x|O to wholly
define ·.

In other words, any element x of O of arity n plays the role of a linear operation

x : A⊗nO → AO, (1.1.10)

taking n elements of AO as inputs and computing an element of AO. By a slight but convenient
abuse of notation, for any x ∈ O(n), we shall denote by x(e1, . . . , en), or by e1 x e2 if x has
arity 2, the element (e1 ⊗ · · · ⊗ en) · x of AO, for any e1 ⊗ · · · ⊗ en ∈ A⊗nO . Observe that
by (1.1.9), any associative element of O gives rise to an associative operation on AO.

Arrows in the category of O-algebras are O-algebra morphisms, that are linear maps φ :
A1 → A2 between two O-algebras A1 and A2 such that

φ(x(e1, . . . , en)) = x(φ(e1), . . . , φ(en)), (1.1.11)

for all e1, . . . , en ∈ A1 and x ∈ O(n). We say that A2 is an O-subalgebra of A1 if A2 is a
subspace of A1 and A1 and A2 are endowed with the same right action of O. If G is a set of
elements of an O-algebra A, the O-algebra generated by G is the smallest O-subalgebra of A
containing G. When the O-algebra generated by G is A itself and G is minimal with respect
to inclusion among the subsets of A satisfying this property, G is a generating set of A and its
elements are generators of A. An O-algebra ideal of A is a subspace I of A such that for all
operation x of O of arity n and elements e1, . . . , en of O, x(e1, . . . , en) is in I whenever there
is a i ∈ [n] such that ei is in I.

The free O-algebra over one generator is the O-algebra FO defined in the following way.
We set FO := ⊕n>1FO(n) := ⊕n>1O(n), and for any e1, . . . , en ∈ FO and x ∈ O(n), the right
action of x on e1 ⊗ · · · ⊗ en is defined by

x(e1, . . . , en) := x ◦ (e1, . . . , en). (1.1.12)

Then, any element x of O(n) endows FO with an operation

x : FO(m1)⊗ · · · ⊗ FO(mn)→ FO(m1 + · · ·+mn) (1.1.13)

respecting the graduation of FO.
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1.2. Free operads, rewrite rules, and Koszulity. We recall here a description of free
operads through syntax trees and presentations of operads by generators and relations. The
Koszul property for operads is a very important notion in this paper and its sequel [Gir16].
We recall it and describe an already known criterion to prove that a set-operad is Koszul by
passing by rewrite rules on syntax trees.

1.2.1. Syntax trees. Unless otherwise specified, we use in the sequel the standard terminology
(i.e., node, edge, root, parent, child, path, ancestor, etc.) about planar rooted trees [Knu97].
Let t be a planar rooted tree. The arity of a node of t is its number of children. An internal
node (resp. a leaf) of t is a node with a nonzero (resp. null) arity. Given an internal node x
of t, due to the planarity of t, the children of x are totally ordered from left to right and are
thus indexed from 1 to the arity of x. If y is a child of x, y defines a subtree of t, that is the
planar rooted tree with root y and consisting in the nodes of t that have y as ancestor. We
shall call ith subtree of x the subtree of t rooted at the ith child of x. A partial subtree of t is
a subtree of t in which some internal nodes have been replaced by leaves and its descendants
has been forgotten. Besides, due to the planarity of t, its leaves are totally ordered from left
to right and thus are indexed from 1 to the arity of t. In our graphical representations, each
tree is depicted so that its root is the uppermost node.

Let S := tn>1S(n) be a graded set. By extension, we say that the arity of an element x
of S is n provided that x ∈ S(n). A syntax tree on S is a planar rooted tree such that its
internal nodes of arity n are labeled on elements of arity n of S. The degree (resp. arity) of
a syntax tree is its number of internal nodes (resp. leaves). For instance, if S := S(2) t S(3)
with S(2) := {a, c} and S(3) := {b},

c

a

b

b

a (1.2.1)

is a syntax tree on S of degree 5 and arity 8. Its root is labeled by b and has arity 3.

1.2.2. Free operads. Let S be a graded set. The free operad Free(S) over S is the operad
wherein for any n > 1, Free(S)(n) is the vector space of syntax trees on S of arity n, the
partial composition s ◦i t of two syntax trees s and t on S consists in grafting the root of t on
the ith leaf of s, and its unit is the tree consisting in one leaf. For instance, if S := S(2)tS(3)
with S(2) := {a, c} and S(3) := {b}, one has in Free(S),

a

a

b ◦3
c

a =
a

a

c
a

b
. (1.2.2)
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We denote by cor : S → Free(S) the inclusion map, sending any x of S to the corolla
labeled by x, that is the syntax tree consisting in one internal node labeled by x attached to a
required number of leaves. In the sequel, if required by the context, we shall implicitly see any
element x of S as the corolla cor(x) of Free(S). For instance, when x and y are two elements
of S, we shall simply denote by x ◦i y the syntax tree cor(x) ◦i cor(y) for all valid integers i.

For any operad O, by seeing O as a graded set, Free(O) is the free operad of the syntax
trees linearly labeled by elements of O. The evaluation map of O is the map

evalO : Free(O)→ O, (1.2.3)

recursively defined by

evalO(t) :=
{
1 if t is the leaf,
x ◦ (evalO(s1), . . . , evalO(sn)) otherwise,

(1.2.4)

where 1 is the unit of O, x is the label of the root of t, and s1, . . . , sn are, from left to right,
the subtrees of the root of t. In other words, any tree t of Free(O) can be seen as a tree-like
expression for an element evalO(t) of O. Moreover, by induction on the degree of t, it appears
that evalO is a well-defined surjective operad morphism.

1.2.3. Presentations by generators and relations. A presentation of an operad O consists in a
pair (G,R) such that G := tn>1G(n) is a graded set, R is a subspace of Free(G), and O is
isomorphic to Free(G)/〈R〉, where 〈R〉 is the operad ideal of Free(G) generated by R. We
call G the set of generators and R the space of relations of O. We say that O is quadratic if
one can exhibit a presentation (G,R) of O such that R is a homogeneous subspace of Free(G)
consisting in syntax trees of degree 2. Besides, we say that O is binary if one can exhibit a
presentation (G,R) of O such that G is concentrated in arity 2.

With knowledge of a presentation (G,R) of O, it is easy to describe the category of the
O-algebras. Indeed, by denoting by π : Free(G)→ Free(G)/〈R〉 the canonical surjection map,
the category of O-algebras is the category of vector spaces AO endowed with maps π(g), g ∈ G,
satisfying for all r ∈ R the relations

r(e1, . . . , en) = 0, (1.2.5)

for all e1, . . . , en ∈ AO, where n is the arity of r.

1.2.4. Rewrite rules. Let S be a graded set. A rewrite rule on syntax trees on S is a binary
relation→ on Free(S) whenever for all trees s and t of Free(S), s→ t only if s and t have the
same arity. When → involves only syntax trees of degree two, → is quadratic. We say that a
syntax tree s′ can be rewritten by → into t′ if there exist two syntax trees s and t satisfying
s → t and s′ has a partial subtree equal to s such that, by replacing it by t in s′, we obtain
t′. By a slight but convenient abuse of notation, we denote by s′ → t′ this property. When a
syntax tree t can be obtained by performing a sequence of →-rewritings from a syntax tree s,
we say that s is rewritable by → into t and we denote this property by s

∗→ t. For instance, for
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S := S(2)tS(3) with S(2) := {a, c} and S(3) := {b}, consider the rewrite rule → on Free(S)
satisfying

b → a
a

and a
c
→

a
c . (1.2.6)

We then have the following sequence of rewritings

b a

c b

c

→ a

c
a

c

a
b → a c

ac

a

b
→

a c
ac

a

a
a .

(1.2.7)

We shall use the standard terminology (confluent, terminating, convergent, normal form, crit-
ical pair, etc.) about rewrite rules (see [BN98]).

Any rewrite rule → on Free(S) defines an operad congruence ≡→ on Free(S) seen as a
set-operad, the operad congruence induced by →, as the finest operad congruence on Free(S)
containing the reflexive, symmetric, and transitive closure of →.

1.2.5. Koszulity. A quadratic operad O is Koszul if its Koszul complex is acyclic [GK94,LV12].
In this work, to prove the Koszulity of an operad O, we shall make use of a combinatorial tool
introduced by Hoffbeck [Hof10] (see also [LV12]) consisting in exhibiting a particular basis of
O, a so-called Poincaré-Birkhoff-Witt basis.

In this paper, we shall use this tool only in the context of set-operads, which reformulates,
thanks to the work of Dotsenko and Khoroshkin [DK10], as follows. A set-operad O is Kosuzl
if there is a graded set S and a rewrite rule → on Free(S) such that O is isomorphic to
Free(S)/≡→ and → is a convergent quadratic rewrite rule. Moreover, the set of normal forms
of → forms a Poincaré-Birkhoff-Witt basis of O.

1.3. Diassociative operad. We recall here, by using the notions presented during the previ-
ous sections, the definition and some properties of the diassociative operad.

The diassociative operad Dias was introduced by Loday [Lod01] as the operad admitting the
presentation (GDias,RDias) where GDias := GDias(2) := {a,`} and RDias is the space induced by
the equivalence relation ≡ satisfying

a ◦1 ` ≡ ` ◦2 a, (1.3.1a)

a ◦1 a ≡ a ◦2 a ≡ a ◦2 `, (1.3.1b)

` ◦1 a ≡ ` ◦1 ` ≡ ` ◦2 ` . (1.3.1c)

Note that Dias is a binary and quadratic operad.
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This operad admits the following realization [Cha05]. For any n > 1, Dias(n) is the linear
span of the en,k, k ∈ [n], and the partial compositions linearly satisfy, for all n,m > 1, k ∈ [n],
` ∈ [m], and i ∈ [n],

en,k ◦i em,` =


en+m−1,k+m−1 if i < k,

en+m−1,k+`−1 if i = k,

en+m−1,k otherwise (i > k).

(1.3.2)

Since the partial composition of two basis elements of Dias produces exactly one basis element,
Dias is well-defined as a set-operad. Moreover, this realization shows that dim Dias(n) = n and
hence, the Hilbert series of Dias satisfies

HDias(t) = t

(1− t)2 . (1.3.3)

From the presentation of Dias, we deduce that any Dias-algebra, also called diassociative
algebra, is a vector space ADias endowed with linear operations a and ` satisfying the relations
encoded by (1.3.1a)—(1.3.1c).

From the realization of Dias, we deduce that the free diassociative algebra FDias over one
generator is the vector space Dias endowed with the linear operations

a,`: FDias ⊗FDias → FDias, (1.3.4)

satisfying, for all n,m > 1, k ∈ [n], ` ∈ [m],

en,k a em,` = (en,k ⊗ em,`) · e2,1 = (e2,1 ◦2 em,`) ◦1 en,k = en+m,k, (1.3.5)

and
en,k ` em,` = (en,k ⊗ em,`) · e2,2 = (e2,2 ◦2 em,`) ◦1 en,k = en+m,n+`. (1.3.6)

As shown in [Gir12,Gir15], the diassociative operad is isomorphic to the suboperad of TM
generated by 01 and 10 where M is the multiplicative monoid on {0, 1}. The concerned
isomorphism sends any en,k of Dias to the word 0k−1 1 0n−k of TM.

2. Pluriassociative operads

In this section, we define the main object of this work: a generalization on a nonnegative
integer parameter γ of the diassociative operad. We provide a complete study of this new
operad.

2.1. Construction and first properties. We define here our generalization of the diasso-
ciative operad using the functor T (whose definition is recalled in Section 1.1.3). We then
describe the elements and establish the Hilbert series of our generalization.
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2.1.1. Construction. For any integer γ > 0, let Mγ be the monoid {0} ∪ [γ] with the binary
operation max as product, denoted by ↑. We define Diasγ as the suboperad of TMγ generated
by

{0a, a0 : a ∈ [γ]}. (2.1.1)

By definition, Diasγ is the vector space of words that can be obtained by partial compositions
of words of (2.1.1). We have, for instance,

Dias2(1) = Vect({0}), (2.1.2)

Dias2(2) = Vect({01, 02, 10, 20}), (2.1.3)

Dias2(3) = Vect({011, 012, 021, 022, 101, 102, 201, 202, 110, 120, 210, 220}), (2.1.4)

and
211201 ◦4 31103 = 2113222301, (2.1.5)

111101 ◦3 20 = 1121101, (2.1.6)

1013 ◦2 210 = 121013. (2.1.7)

It follows immediately from the definition of Diasγ as a suboperad of TMγ that Diasγ is
a set-operad. Indeed, any partial composition of two basis elements of Diasγ gives rises to
exactly one basis element. We then shall see Diasγ as a set-operad over all Section 2.

Notice that Diasγ(2) is the set (2.1.1) of generators of Diasγ . Besides, observe that Dias0 is
the trivial operad and that Diasγ is a suboperad of Diasγ+1. We call Diasγ the γ-pluriassociative
operad.

2.1.2. Elements and dimensions.

Proposition 2.1.1. For any integer γ > 0, as a set-operad, the underlying set of Diasγ is the
set of the words on the alphabet {0} ∪ [γ] containing exactly one occurrence of 0.

Proof. Let us show that any word x of Diasγ satisfies the statement of the proposition by
induction on the length n of x. This is true when n = 1 because we necessarily have x = 0.
Otherwise, when n > 2, there is a word y of Diasγ of length n− 1 and a generator g of Diasγ
such that x = y ◦i g for a i ∈ [n− 1]. Then, x is obtained by replacing the ith letter a of y by
the factor u := u1u2 where u1 := a ↑ g1 and u2 := a ↑ g2. Since g contains exactly one 0, this
operation consists in inserting a nonzero letter of [γ] into y. Since by induction hypothesis y
contains exactly one 0, it follows that x satisfies the statement of the proposition.

Conversely, let us show that any word x satisfying the statement of the proposition belongs
to Diasγ by induction on the length n of x. This is true when n = 1 because we necessarily
have x = 0 and 0 belongs to Diasγ since it is its unit. Otherwise, when n > 2, there is an
integer i ∈ [n − 1] such that xixi+1 ∈ {0a, a0} for an a ∈ [γ]. Let us suppose without loss of
generality that xixi+1 = a0. By setting y as the word obtained by erasing the ith letter of x,
we have x = y ◦i a0. Thus, since by induction hypothesis y is an element of Diasγ , it follows
that x also is. �
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We deduce from Proposition 2.1.1 that the Hilbert series of Diasγ satisfies

HDiasγ (t) = t

(1− γt)2 (2.1.8)

and that for all n > 1, dim Diasγ(n) = nγn−1. For instance, the first dimensions of Dias1,
Dias2, Dias3, and Dias4 are respectively

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, (2.1.9)

1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, (2.1.10)
1, 6, 27, 108, 405, 1458, 5103, 17496, 59049, 196830, 649539, (2.1.11)

1, 8, 48, 256, 1280, 6144, 28672, 131072, 589824, 2621440, 11534336. (2.1.12)
The second one is Sequence A001787, the third one is Sequence A027471, and the last one
is Sequence A002697 of [Slo].

2.2. Presentation by generators and relations. To establish a presentation of Diasγ , we
shall start by defining a morphism wordγ from a free operad to Diasγ . Then, after showing
that wordγ is a surjection, we will show that wordγ induces an operad isomorphism between a
quotient of a free operad by a certain operad congruence ≡γ and Diasγ . The space of relations
of Diasγ of its presentation will be induced by ≡γ .

2.2.1. From syntax trees to words. For any integer γ > 0, let GDiasγ := GDiasγ (2) be the graded
set where

GDiasγ (2) := {aa,`a: a ∈ [γ]}. (2.2.1)

Let t be a syntax tree of Free
(
GDiasγ

)
and x be a leaf of t. We say that an integer a ∈ {0}∪[γ]

is eligible for x if a = 0 or there is an ancestor y of x labeled by aa (resp. `a) and x is in the
right (resp. left) subtree of y. The image of x is its greatest eligible integer. Moreover, let

wordγ : Free
(
GDiasγ

)
(n)→ Diasγ(n), n > 1, (2.2.2)

the map where wordγ(t) is the word obtained by considering, from left to right, the images of
the leaves of t (see Figure 1).

Lemma 2.2.1. For any integer γ > 0, the map wordγ is an operad morphism from Free
(
GDiasγ

)
to Diasγ .

Proof. Let us first show that wordγ is a well-defined map. Let t be a syntax tree of Free
(
GDiasγ

)
of arity n. Observe that by starting from the root of t, there is a unique maximal path obtained
by following the directions specified by its internal nodes (a aa means to go the left child while
a `a means to go to the right child). Then, the leaf at the end of this path is the only leaf
with 0 as image. Others n− 1 leaves have integers of [γ] as images. By Proposition 2.1.1, this
implies that wordγ(t) is an element of Diasγ(n).

To prove that wordγ is an operad morphism, we consider its following alternative description.
If t is a syntax tree of Free

(
GDiasγ

)
, we can consider the tree t′ obtained by replacing in t

each label aa (resp. `a) by the word 0a (resp. a0), where a ∈ [γ]. Then, by a straightforward

http://oeis.org/A001787
http://oeis.org/A027471
http://oeis.org/A002697
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a4

`2

`1

`3

`2

a1

`4

`3

a1

a2

a2

3 4 0

1 2

2

3 3

2 2 4 2

Figure 1. A syntax tree t of Free
(
GDiasγ

)
where images of its leaves are

shown. This tree satisfies wordγ(t) = 340122332242.

induction on the number of internal nodes of t, we obtain that evalDiasγ (t′), where t′ is seen
as a syntax tree of Free (Diasγ(2)), is wordγ(t). It then follows that wordγ is an operad
morphism. �

2.2.2. Hook syntax trees. Let us now consider the map

hookγ : Diasγ(n)→ Free
(
GDiasγ

)
(n), n > 1, (2.2.3)

defined for any word x of Diasγ by

hookγ(x) :=
`u1

`u|u|

av1

av|v|

, (2.2.4)

where x decomposes, by Proposition 2.1.1, uniquely in x = u0v where u and v are words on the
alphabet [γ]. The dashed edges denote, depending on their orientation, a right comb (wherein
internal nodes are labeled, from top to bottom by `u1 , . . . , `u|u|) or a left comb (wherein
internal nodes are labeled, from bottom to top, by av1 , . . . , av|v|). We shall call any syntax
tree of the form (2.2.4) a hook syntax tree.

Lemma 2.2.2. For any integer γ > 0, the map wordγ is a surjective operad morphism from
Free

(
GDiasγ

)
onto Diasγ . Moreover, for any element x of Diasγ , hookγ(x) belongs to the fiber

of x under wordγ .

Proof. The fact that x belongs to the fiber of x under wordγ is an immediate consequence of
the definitions of wordγ and hookγ , and the fact that by Proposition 2.1.1, any word x of Diasγ
decomposes uniquely in x = u0v where u and v are words on the alphabet [γ]. Then, wordγ
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is surjective as a map. Moreover, since by Lemma 2.2.1, wordγ is an operad morphism, it is a
surjective operad morphism. �

2.2.3. A rewrite rule on syntax trees. Let →γ be the quadratic rewrite rule on Free
(
GDiasγ

)
satisfying

`a′ ◦2 aa →γ aa ◦1 `a′ , a, a′ ∈ [γ], (2.2.5a)

aa ◦2 `b →γ aa ◦1 ab, a < b ∈ [γ], (2.2.5b)

`a ◦1 ab →γ `a ◦2 `b, a < b ∈ [γ], (2.2.5c)

aa ◦2 ab →γ ab ◦1 aa, a < b ∈ [γ], (2.2.5d)

`a ◦1 `b →γ `b ◦2 `a, a < b ∈ [γ], (2.2.5e)

ad ◦2 ac →γ ad ◦1 ad, c 6 d ∈ [γ], (2.2.5f)

ad ◦2 `c →γ ad ◦1 ad, c 6 d ∈ [γ], (2.2.5g)

`d ◦1 ac →γ `d ◦2 `d, c 6 d ∈ [γ], (2.2.5h)

`d ◦1 `c →γ `d ◦2 `d, c 6 d ∈ [γ], (2.2.5i)

and denote by ≡γ the operadic congruence on Free
(
GDiasγ

)
induced by →γ .

Lemma 2.2.3. For any integer γ > 0 and any syntax trees t1 and t2 of Free
(
GDiasγ

)
, t1 ≡γ t2

implies wordγ(t1) = wordγ(t2).

Proof. Let us denote by ↔γ the symmetric closure of →γ . In the first place, observe that for
any relation s1 ↔γ s2 where s1 and s2 are syntax trees of Free

(
GDiasγ

)
(3), for any i ∈ [3], the

eligible integers for the ith leaves of s1 and s2 are the same. Besides, by definition of ≡γ , since
t1 ≡γ t2, one can obtain t2 from t1 by performing a sequence of ↔γ-rewritings. According to
the previous observation, a ↔γ-rewriting preserve the eligible integers of all leaves of the tree
on which they are performed. Therefore, the images of the leaves of t2 are, from left to right,
the same as the images of the leaves of t1 and hence, wordγ(t1) = wordγ(t2). �

Lemma 2.2.3 implies that the map

¯wordγ : Free
(
GDiasγ

)
(n)/≡γ → Diasγ(n), n > 1, (2.2.6)

satisfying, for any ≡γ-equivalence class [t]≡γ ,

¯wordγ ([t]γ) = wordγ(t), (2.2.7)

where t is any tree of [t]≡γ is well-defined.

Lemma 2.2.4. For any integer γ > 0, any syntax tree t of Free
(
GDiasγ

)
can be rewritten,

by a sequence of →γ-rewritings, into a hook syntax tree. Moreover, this hook syntax tree is
hookγ(wordγ(t)).
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Proof. In the following, to gain readability, we shall denote by a∗ (resp. `∗) any element aa
(resp. `a) of GDiasγ when taking into account the value of a ∈ [γ] is not necessary. Using this
notation, from (2.2.5a)—(2.2.5i), we observe that →γ expresses as

`∗ ◦2 a∗ →γ a∗ ◦1 `∗, (2.2.8a)

a∗ ◦2 `∗ →γ a∗ ◦1 a∗, (2.2.8b)

`∗ ◦1 a∗ →γ `∗ ◦2 `∗, (2.2.8c)

a∗ ◦2 a∗ →γ a∗ ◦1 a∗, (2.2.8d)

`∗ ◦1 `∗ →γ `∗ ◦2 `∗ . (2.2.8e)

Let us first focus on the first part of the statement of the lemma to show that t is rewritable
by →γ into a hook syntax tree. We reason by induction on the arity n of t. When n 6 2, t is
immediately a hook syntax tree. Otherwise, t has at least two internal nodes. Then, t is made
of a root connected to a first subtree t1 and a second subtree t2. By induction hypothesis, t
is rewritable by →γ into a tree made of a root r of the same label as the one of the root of t,
connected to a first subtree s1 such that t1

∗→γ s1 and a second subtree s2 such that t2
∗→γ s2,

both being hook syntax trees. We have to deal two cases following the number of internal
nodes of t1.

Case 1. If t1 has at least one internal node, we have the two ∗→γ-relations

t
∗→γ

s2

x

r

`∗
`∗

a∗

a∗

∗→γ x

a∗

a∗

`∗
`∗

`∗
`∗ .

(2.2.9)

The first ∗→γ-relation of (2.2.9) has just been explained. The second one comes from the
application of the induction hypothesis on the upper part of the tree of the middle of (2.2.9)
obtained by cutting the edge connecting the node x to its father. When the rightmost tree
of (2.2.9) is not already a hook syntax tree, one has two cases following the label of x.

Case 1.1. If x is labeled by `∗, by (2.2.8e), the bottom part of the rightmost tree of (2.2.9)
consisting in internal nodes labeled by `∗ is rewritable by →γ into a right comb tree wherein
internal nodes are labeled by `∗. Then, the rightmost tree of (2.2.9) is rewritable by →γ into
a hook syntax tree, and then t also is.
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Case 1.2. Otherwise, x is labeled by a∗. By definition of hookγ , the second subtree of x is a
leaf. By (2.2.8c), the bottom part of the rightmost tree of (2.2.9) consisting in x and internal
nodes labeled by `∗ can be rewritten by →γ into a right comb tree wherein internal nodes are
labeled by `∗. Then, the rightmost tree of (2.2.9) is rewritable by→γ into a hook syntax tree,
and then t also is.
Case 2. Otherwise, t1 is the leaf. We then have the ∗→γ-relation

t
∗→γ

s21 s22

r

r′ , (2.2.10)

where s21 is the first subtree of the root of s2, s22 is the second subtree of the root of s2, and
r′ is a node with the same label as the root of s2.
Case 2.1. If r◦2 r

′ is equal to `∗ ◦2 a∗, a∗ ◦2 `∗, or a∗ ◦2 a∗, respectively by (2.2.8a), (2.2.8b),
and (2.2.8d), the rightmost tree of (2.2.10) can be rewritten by →γ into a tree r having a first
subtree with at least one internal node. Hence, r is of the form required to be treated by Case
1., implying that t is rewritable by →γ into a hook syntax tree.
Case 2.2. Otherwise, r ◦2 r

′ is equal to `∗ ◦2 `∗. Since s2 is by hypothesis a hook syntax tree,
it is necessarily a right comb tree whose internal nodes are labeled by `∗. Hence, the rightmost
tree of (2.2.10) is already a hook syntax tree, showing that t is rewritable by →γ into a hook
syntax tree.

Let us finally show the last part of the statement of the lemma. Observe that, by definition of
hookγ and wordγ , if s1 and s2 are two different hook syntax trees, wordγ(s1) 6= wordγ(s2). We
have just shown that t is rewritable by→γ into a hook syntax tree s. Besides, by Lemma 2.2.3,
one has wordγ(t) = wordγ(s). Then, s is necessarily the hook syntax tree hookγ(wordγ(t)). �

2.2.4. Presentation by generators and relations.

Lemma 2.2.5. For any integers γ > 0 and n > 1, the map ¯wordγ defines a bijection between
Free

(
GDiasγ

)
(n)/≡γ and Diasγ(n).

Proof. Let us show that ¯wordγ is injective. Let t1 and t2 be two syntax trees of Free
(
GDiasγ

)
such that wordγ(t1) = wordγ(t2) and let s := hookγ(wordγ(t1)) = hookγ(wordγ(t2)). By
Lemma 2.2.4, one has t1

∗→γ s and t2
∗→γ s, and hence, t1 ≡γ t2. By the definition of the map

¯wordγ from the map wordγ , this show that ¯wordγ is injective. Besides, by Lemma 2.2.2, ¯wordγ
is surjective, whence the statement of the lemma. �

Theorem 2.2.6. For any integer γ > 0, the operad Diasγ admits the following presentation.
It is generated by GDiasγ and its space of relations RDiasγ is the space induced by the equivalence
relation ↔γ satisfying

aa ◦1 `a′ ↔γ `a′ ◦2 aa, a, a′ ∈ [γ], (2.2.11a)

aa ◦1 ab ↔γ aa ◦2 `b, a < b ∈ [γ], (2.2.11b)
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`a ◦1 ab ↔γ `a ◦2 `b, a < b ∈ [γ], (2.2.11c)
ab ◦1 aa ↔γ aa ◦2 ab, a < b ∈ [γ], (2.2.11d)
`a ◦1 `b ↔γ `b ◦2 `a, a < b ∈ [γ], (2.2.11e)

ad ◦1 ad ↔γ ad ◦2 ac ↔γ ad ◦2 `c, c 6 d ∈ [γ], (2.2.11f)
`d ◦1 ac ↔γ `d ◦1 `c ↔γ `d ◦2 `d, c 6 d ∈ [γ]. (2.2.11g)

Proof. By Lemma 2.2.5, the map ¯wordγ is, for any n > 1, a bijection between the sets
Free

(
GDiasγ

)
(n)/≡γ and Diasγ(n). Moreover, by Lemma 2.2.1, wordγ is an operad morphism,

and then ¯wordγ also is. Hence, ¯wordγ is an operad isomorphism between Free
(
GDiasγ

)
/≡γ

and Diasγ . Therefore, since RDiasγ is the space induced by ≡γ , Diasγ admits the stated pre-
sentation. �

The space of relations RDiasγ of Diasγ exhibited by Theorem 2.2.6 can be rephrased in a
more compact way as the space generated by

aa ◦1 `a′ − `a′ ◦2 aa, a, a′ ∈ [γ], (2.2.12a)

aa ◦1 aa↑a′ − aa ◦2 `a′ , a, a′ ∈ [γ], (2.2.12b)
`a ◦1 aa′ − `a ◦2 `a↑a′ , a, a′ ∈ [γ], (2.2.12c)
aa↑a′ ◦1 aa − aa ◦2 aa′ , a, a′ ∈ [γ], (2.2.12d)
`a ◦1 `a′ − `a↑a′ ◦2 `a, a, a′ ∈ [γ]. (2.2.12e)

Observe that, by Theorem 2.2.6, Dias1 and the diassociative operad (see [Lod01] or Sec-
tion 1.3) admit the same presentation. Then, for all integers γ > 0, the operads Diasγ are
generalizations of the diassociative operad.

2.3. Miscellaneous properties. From the description of the elements of Diasγ and its struc-
ture revealed by its presentation, we develop here some of its properties. Unless otherwise
specified, Diasγ is still considered in this section as a set-operad.

2.3.1. Koszulity.

Theorem 2.3.1. For any integer γ > 0, Diasγ is a Koszul operad. Moreover, the set of hook
syntax trees of Free

(
GDiasγ

)
forms a Poincaré-Birkhoff-Witt basis of Diasγ .

Proof. From the definition of hook syntax trees, it appears that no hook syntax tree can be
rewritten by →γ into another syntax tree. Hence, and by Lemma 2.2.4, →γ is a terminating
rewrite rule and its normal forms are hook syntax trees. Moreover, again by Lemma 2.2.4,
since any syntax tree is rewritable by →γ into a unique hook syntax tree, →γ is a confluent
rewrite rule, and hence, →γ is convergent. Now, since by Theorem 2.2.6, the space of relations
of Diasγ is the space induced by the operad congruence induced by →γ , by the Koszulity
criterion [Hof10,DK10,LV12] we have reformulated in Section 1.2.5, Diasγ is a Koszul operad
and the set of of hook syntax trees of Free

(
GDiasγ

)
forms a Poincaré-Birkhoff-Witt basis of

Diasγ . �
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2.3.2. Symmetries. If O1 and O2 are two operads, a linear map φ : O1 → O2 is an operad
antimorphism if it respects arities and anticommutes with partial composition maps, that is,

φ(x ◦i y) = φ(x) ◦n−i+1 φ(y), x ∈ O(n), y ∈ O, i ∈ [n]. (2.3.1)

A symmetry of an operad O is either an automorphism or an antiautomorphism. The set of
all symmetries of O form a group for the composition, called the group of symmetries of O.

Proposition 2.3.2. For any integer γ > 0, the group of symmetries of Diasγ as a set-operad
contains two elements: the identity map and the linear map sending any word of Diasγ to its
mirror image.

Proof. Let us denote by Gγ the set {0a, a0 : a ∈ [γ]}. Since Diasγ is generated by Gγ , any
automorphism or antiautomorphism φ of Diasγ is wholly determined by the images of the
elements of Gγ . Besides let us observe that φ is in particular a permutation of Gγ .

By contradiction, assume that φ is an automorphism of Diasγ different from the identity
map. We have two cases to explore.

Case 1. If there are a, a′ ∈ [γ] satisfying φ(0a) = a′0, since φ is a permutation of Gγ , there are
b, b′ ∈ [γ] satisfying φ(b0) = 0b′. Then, we have at the same time b0 ◦2 0a = b0a = 0a ◦1 b0,

φ(b0 ◦2 0a) = φ(b0) ◦2 φ(0a) = 0b′ ◦2 a
′0 = 0 (b′ ↑ a′) b′, (2.3.2)

and
φ(0a ◦1 b0) = φ(0a) ◦1 φ(b0) = a′0 ◦1 0b′ = a′ (a′ ↑ b′) 0. (2.3.3)

This shows that φ(b0 ◦2 0a) 6= φ(0a ◦1 b0) and hence, φ is not an operad morphism. By a
similar argument, one can show that there are no a, a′ ∈ [γ] such that φ(a0) = 0a′.
Case 2. Otherwise, for all a ∈ [γ], we have φ(0a) = 0a′ and φ(a0) = a′′0 for some a′, a′′ ∈ [γ].
Since, by hypothesis, φ is not the identity map, there exist a 6= a′ ∈ [γ] such that φ(0a) = 0a′

or φ(a0) = a′0. Let us assume, without loss of generality, that φ(0a) = 0a′. Since φ is a
permutation of Gγ , there exist b 6= b′ ∈ [γ] such that φ(0b) = 0b′. One can assume, without loss
of generality, that a < b and b′ < a′. Then, we have at the same time 0a◦2 0b = 0ab = 0b◦1 0a,

φ(0a ◦2 0b) = φ(0a) ◦2 φ(0b) = 0a′ ◦2 0b′ = 0a′a′, (2.3.4)

and
φ(0b ◦1 0a) = φ(0b) ◦1 φ(0a) = 0b′ ◦1 0a′ = 0a′b′. (2.3.5)

This shows that φ(0a ◦2 0b) 6= φ(0b ◦1 0a) and hence, that φ is not an operad morphism. By a
similar argument, one can show that there are no a 6= a′ ∈ [γ] such that φ(a0) = φ(a′0).

We then have shown that if φ is an automorphism of Diasγ , it is necessarily the identity
map.

Finally, by Proposition 2.1.1, if x is an element of Diasγ , its mirror image also is in Diasγ .
Moreover, it is immediate to see that the map sending a word to its mirror image is an
antiautomorphism of Diasγ . Similar arguments as the ones developed previously show that it
is the only. �
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2.3.3. Basic operad. A set-operad O is basic if for all y1, . . . , yn ∈ O, all the maps

◦y1,...,yn : O(n)→ O(|y1|+ · · ·+ |yn|) (2.3.6)

defined by
◦y1,...,yn (x) := x ◦ (y1, . . . , yn), x ∈ O(n), (2.3.7)

are injective. This property for set-operads introduced by Vallette [Val07] is a very relevant
one since there is a general construction producing a family of posets (see [MY91] and [CL07])
from a basic set-operad. This family of posets leads to the definition of an incidence Hopf
algebra by a construction of Schmitt [Sch94].

Proposition 2.3.3. For any integer γ > 0, Diasγ is a basic operad.

Proof. Let n > 1, y1, . . . , yn be words of Diasγ , and x and x′ be two words of Diasγ(n) such
that ◦y1,...,yn(x) = ◦y1,...,yn(x′). Then, for all i ∈ [n] and j ∈ [|yi|], we have xi ↑ yi,j = x′i ↑ yi,j
where yi,j is the jth letter of yi. Since by Proposition 2.1.1, any word yi contains a 0, we have
in particular xi ↑ 0 = x′i ↑ 0 for all i ∈ [n]. This implies x = x′ and thus, that ◦y1,...,yn is
injective. �

2.3.4. Rooted operad. We restate here a property on operads introduced by Chapoton [Cha14].
An operad O is rooted if there is a map

root : O(n)→ [n], n > 1, (2.3.8)

satisfying, for all x ∈ O(n), y ∈ O(m), and i ∈ [n],

root(x ◦i y) =


root(x) +m− 1 if i 6 root(x)− 1,
root(x) + root(y)− 1 if i = root(x),
root(x) otherwise (i > root(x) + 1).

(2.3.9)

We call such a map a root map. More intuitively, the root map of a rooted operad associates a
particular input with any of its elements and this input is preserved by partial compositions.

It is immediate that any operad O is a rooted operad for the root maps rootL and rootR,
which send respectively all elements x of arity n to 1 or to n. For this reason, we say that
an operad O is nontrivially rooted if it can be endowed with a root map different from rootL

and rootR.

Proposition 2.3.4. For any integer γ > 0, Diasγ is a nontrivially rooted operad for the root
map sending any word of Diasγ to the position of its 0.

Proof. Thanks to Proposition 2.1.1, the map of the statement of the proposition is well-defined.
The fact that 0 is the neutral element for the ↑ operation and the fact that any word of Diasγ
contains exactly one 0 imply that this map satisfies (2.3.9). Finally, this map is obviously
different from rootL and rootR, whence the statement of the proposition. �
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2.3.5. Alternative basis. In this section, Diasγ is considered as an operad in the category of
vector spaces.

Let 4γ be the order relation on the underlying set of Diasγ(n), n > 1, where for all words
x and y of Diasγ of a same arity n, we have

x 4γ y if xi 6 yi for all i ∈ [n]. (2.3.10)

This order relation allows to define for all word x of Diasγ the elements

K(γ)
x :=

∑
x4γx′

µγ(x, x′)x′, (2.3.11)

where µγ is the Möbius function of the poset defined by 4γ . For instance,

K(2)
102 = 102− 202, (2.3.12)

K(3)
102 = K(4)

102 = 102− 103− 202 + 203, (2.3.13)

K(3)
23102 = 23102− 23103− 23202 + 23203− 33102 + 33103 + 33202− 33203. (2.3.14)

Since, by Möbius inversion, for any word x of Diasγ one has

x =
∑
x4γx′

K(γ)
x′ , (2.3.15)

the family of all K(γ)
x , where the x are words of Diasγ , forms by triangularity a basis of Diasγ ,

called the K-basis.

If u and v are two words of a same length n, we denote by ham(u, v) the Hamming distance
between u and v that is the number of positions i ∈ [n] such that ui 6= vi. Moreover, for any
word x of Diasγ of length n and any subset J of [n], we denote by Incrγ(x, J) the set of words
obtained by incrementing by one some letters of x smaller than γ and greater than 0 whose
positions are in J . We shall simply denote by Incrγ(x) the set Incrγ(x, [n]). Proposition 2.1.1
ensures that all Incrγ(x, J) are sets of words of Diasγ .

Lemma 2.3.5. For any integer γ > 0 and any word x of Diasγ ,

K(γ)
x =

∑
x′∈Incrγ(x)

(−1)ham(x,x′) x′. (2.3.16)

Proof. Let n be the arity of x. To compute K(γ)
x from its definition (2.3.11), it is enough to

know the Möbius function µγ of the poset P(γ)
x consisting in the words x′ of Diasγ satisfying

x 4γ x′. Immediately from the definition of 4γ , it appears that P(γ)
x is isomorphic to the

Cartesian product poset

T(γ)
x := T (γ − x1)× · · · × T (γ − xr−1)× T(0)× T (γ − xr+1)× · · · × T (γ − xn) , (2.3.17)

where for any nonnegative integer k, T(k) denotes the poset over {0} ∪ [k] with the natural
total order relation, and r is the position of, by Proposition 2.1.1, the only 0 of x. The map
φ

(γ)
x : P(γ)

x → T(γ)
x defined for all words x′ of P(γ)

x by

φ(γ)
x (x′) :=

(
x′1 − x1, . . . , x

′
r−1 − xr−1, 0, x′r+1 − xr+1, . . . , x

′
n − xn

)
(2.3.18)
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is an isomorphism of posets.

Recall that the Möbius function µ of T(k) satisfies, for all a, a′ ∈ T(k),

µ(a, a′) =


1 if a′ = a,

−1 if a′ = a+ 1,
0 otherwise.

(2.3.19)

Moreover, since by [Sta11], the Möbius function of a Cartesian product poset is the product of
the Möbius functions of the posets involved in the product, through the isomorphism φ

(γ)
x , we

obtain that when x′ is in Incrγ(x), µγ(x, x′) = (−1)ham(x,x′) and that when x′ is not in Incrγ ,
µγ(x, x′) = 0. Therefore, (2.3.16) is established. �

Lemma 2.3.6. For any integer γ > 0, any word x of Diasγ , and any nonempty set J of
positions of letters of x that are greater than 0 and smaller than γ,∑

x′∈Incrγ(x,J)

(−1)ham(x,x′) = 0. (2.3.20)

Proof. The statement of the lemma follows by induction on the nonzero cardinality of J . �

To compute a direct expression for the partial composition of Diasγ over the K-basis, we
have to introduce two notations. If x is a word of Diasγ of length nonsmaller than 2, we denote
by min(x) the smallest letter of x among its letters different from 0. Proposition 2.1.1 ensures
that min(x) is well-defined. Moreover, for all words x and y of Diasγ , a position i such that
xi 6= 0, and a ∈ [γ], we denote by x ◦a,i y the word x ◦i y in which the 0 coming from y is
replaced by a instead of xi.

Theorem 2.3.7. For any integer γ > 0, the partial composition of Diasγ over the K-basis
satisfies, for all words x and y of Diasγ of arities nonsmaller than 2,

K(γ)
x ◦i K(γ)

y =


K(γ)
x◦iy if min(y) > xi,∑
a∈[xi,γ] K(γ)

x◦a,iy if min(y) = xi,

0 otherwise (min(y) < xi).

(2.3.21)

Proof. First of all, by Lemma 2.3.5 together with (2.3.15), we obtain

K(γ)
x ◦i K(γ)

y =
∑

x′∈Incrγ(x)
y′∈Incrγ(y)

(−1)ham(x,x′)+ham(y,y′)

 ∑
x′◦iy′4γz

K(γ)
z


=

∑
x◦iy4γz

∑
x′∈Incrγ(x)
y′∈Incrγ(y)
x′◦iy′4γz

(−1)ham(x,x′)+ham(y,y′) K(γ)
z .

(2.3.22)
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Let us denote by n (resp. m) the arity of x (resp. y) and let z be a word of Diasγ such
that x ◦i y 4γ z. Let x′ ∈ Incrγ(x) and y′ ∈ Incrγ(y). We have, by definition of the partial
composition of Diasγ ,

x ◦i y = x1 . . . xi−1 t1 . . . tr−1 xi tr+1 . . . tm xi+1 . . . xn, (2.3.23)

and
x′ ◦i y′ = x′1 . . . x

′
i−1 t

′
1 . . . t

′
r−1 x

′
i t
′
r+1 . . . t

′
m x
′
i+1 . . . x

′
n, (2.3.24)

where r denotes the position of the only, by Proposition 2.1.1, 0 of y and for all j ∈ [m] \ {r},
tj := xi ↑ yj and t′j := x′i ↑ y′j . By (2.3.22), the pair (x′, y′) contributes to the coefficient of
K(γ)
z in (2.3.22) if and only if x ◦i y 4γ x′ ◦i y′ 4 z. To compute this coefficient, we have three

cases to consider following the value of min(y) compared to the value of xi.

Case 1. Assume first that min(y) < xi. Then, there is at least a s ∈ [m]\{r} such that ys < xi.
This implies that ts = xi and that y′s has no influence on t′s and then, on x′ ◦i y′. Thus, the
word y′′ := y′1 . . . y

′
s−1ay

′
s+1 . . . y

′
m where a is the only possible letter such that y′′ ∈ Incrγ(y)

and a 6= y′s satisfies x′ ◦i y′′ = x′ ◦i y′. Therefore, since ham(y′, y′′) = 1, the contribution of
the pair (x′, y′) for the coefficient of K(γ)

z in (2.3.22) is compensated by the contribution of the
pair (x′, y′′). This shows that this coefficient is 0 and hence, K(γ)

x ◦i K(γ)
y = 0.

Case 2. Assume now that min(y) > xi. Then, for all j ∈ [m] \ {r}, we have yj > xi and thus,
tj = yj . When z = x ◦i y, we necessarily have x′ = x and y′ = y. Hence, the coefficient of
K(γ)
x◦iy in (2.3.22) is 1. Else, when z 6= x ◦i y, we have x′ ◦i y′ ∈ Incrγ(x ◦i y, J), where J is the

nonempty set of the positions of letters of z different from letters of x ◦i y. Now, from (2.3.22),
the coefficient of K(γ)

z in (2.3.22) is∑
x′◦iy′∈Incrγ(x◦iy,J)

(−1)ham(x,x′)+ham(y,y′). (2.3.25)

Lemma 2.3.6 implies that this coefficient is 0. This shows that K(γ)
x ◦i K(γ)

y = K(γ)
x◦iy.

Case 3. The last case occurs when min(y) = xi. Then, for all j ∈ [m] \ {r}, we have yj > xi
and thus, tj = yj . Moreover, there is at least a s ∈ [m] \ {r} such that ys = xi. When
z = x◦a,i y with a ∈ [xi, γ], we necessarily have x′ = x and y′ = y. Therefore, for all a ∈ [xi, γ],
the K(γ)

x◦a,i have coefficient 1 in (2.3.22). The same argument as the one exposed for Case
2. shows that when z 6= x ◦a,i y for all a ∈ [xi, γ], the coefficient of K(γ)

z is zero. Hence,
K(γ)
x ◦i K(γ)

y =
∑
a∈[xi,γ] K(γ)

x◦a,iy.
�

We have for instance
K(5)

20413 ◦1 K(5)
304 = K(5)

3240413, (2.3.26)

K(5)
20413 ◦2 K(5)

304 = K(5)
2304413, (2.3.27)

K(5)
20413 ◦3 K(5)

304 = 0, (2.3.28)

K(5)
20413 ◦4 K(5)

304 = K(5)
2043143, (2.3.29)

K(5)
20413 ◦5 K(5)

304 = K(5)
2041334 + K(5)

2041344 + K(5)
2041354. (2.3.30)
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Theorem 2.3.7 implies in particular that the structure coefficients of the partial composition
of Diasγ over the K-basis are 0 or 1. It is possible to define another bases of Diasγ by reversing
in (2.3.11) the relation 4γ and by suppressing or keeping the Möbius function µγ . This gives
obviously rise to three other bases. It worth to note that, as small computations reveal, over
all these additional bases, the structure coefficients of the partial composition of Diasγ can be
negative or different from 1. This observation makes the K-basis even more particular and
interesting. It has some other properties, as next section will show.

2.3.6. Alternative presentation. The K-basis introduced in the previous section leads to state
a new presentation for Diasγ in the following way.

For any integer γ > 0, let




a and 
a, a ∈ [γ], be the elements of Free
(
GDiasγ

)
(2) defined

by




a :=
{
aγ if a = γ,

aa − aa+1 otherwise,
(2.3.31a)

and


a:=
{
`γ if a = γ,

`a − `a+1 otherwise.
(2.3.31b)

Then, since for all a ∈ [γ] we have

aa=
∑

a6b∈[γ]




b (2.3.32a)

and
`a=

∑
a6b∈[γ]


b, (2.3.32b)

by triangularity, the family G′Diasγ := {




a,
a: a ∈ [γ]} forms a basis of Free
(
GDiasγ

)
(2)

and then, generates Free
(
GDiasγ

)
as an operad. This change of basis from Free

(
GDiasγ

)
to

Free(G′Diasγ ) comes from the change of basis from the usual basis of Diasγ to the K-basis. Let
us now express a presentation of Diasγ through the family G′Diasγ .

Proposition 2.3.8. For any integer γ > 0, the operad Diasγ admits the following presentation.
It is generated by G′Diasγ and its space of relations is R′Diasγ is generated by




a◦1 
a′ − 
a′ ◦2




a, a, a′ ∈ [γ], (2.3.33a)


b ◦1 
a, a < b ∈ [γ], (2.3.33b)




b ◦2




a, a < b ∈ [γ], (2.3.33c)


b ◦1




a, a < b ∈ [γ], (2.3.33d)




b◦2 
a, a < b ∈ [γ], (2.3.33e)


a ◦1 
b − 
b ◦2 
a, a < b ∈ [γ], (2.3.33f)




b ◦1




a −




a ◦2




b, a < b ∈ [γ], (2.3.33g)


a ◦1




b− 
a ◦2 
b, a < b ∈ [γ], (2.3.33h)




a ◦1




b −




a◦2 
b, a < b ∈ [γ], (2.3.33i)
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a ◦1 
a −

 ∑
a6b∈[γ]


a ◦2 
b

 , a ∈ [γ], (2.3.33j)

 ∑
a6b∈[γ]




a ◦1




b

− 


a ◦2




a, a ∈ [γ], (2.3.33k)


a ◦1




a −

 ∑
a6b∈[γ]


b ◦2 
a

 , a ∈ [γ], (2.3.33l)

 ∑
a6b∈[γ]




b ◦1




a

− 


a◦2 
a, a ∈ [γ]. (2.3.33m)

Proof. Let us show that R′Diasγ is equal to the space of relations RDiasγ of Diasγ defined in the
statement of Theorem 2.2.6. First of all, recall that the map wordγ : Free

(
GDiasγ

)
→ Diasγ

defined in Section 2.2.1 satisfies wordγ(aa) = 0a and wordγ(`a) = a0 for all a ∈ [γ]. By
Theorem 2.2.6, for any x ∈ Free

(
GDiasγ

)
(3), x is in RDiasγ if and only if wordγ(x) = 0.

Besides, by definition of




a, 
a, a ∈ [γ], and by making use of the K-basis of Diasγ , we have
wordγ(




a) = K(γ)
0a and wordγ(
a) = K(γ)

a0 . By using the partial composition rules for Diasγ
over the K-basis of Theorem 2.3.7, straightforward computations show that wordγ(x) = 0 for
all elements x among (2.3.33a)—(2.3.33m). This implies that R′Diasγ is a subspace of RDiasγ .

Now, one can observe that elements (2.3.33a)—(2.3.33m) are linearly independent. Then,
R′Diasγ has dimension 5γ2 which is also, by Theorem 2.2.6, the dimension of RDiasγ . Hence,
R′Diasγ and RDiasγ are equal. The statement of the proposition follows. �

Despite the apparent complexity of the presentation of Diasγ exhibited by Proposition 2.3.8,
as we will see in Section 2 of [Gir16], the Koszul dual of Diasγ computed from this presentation
has a very simple and manageable expression.

3. Pluriassociative algebras

We now focus on algebras over γ-pluriassociative operads. For this purpose, we construct
free Diasγ-algebras over one generator, and define and study two notions of units for Diasγ-
algebras. We end this section by introducing a convenient way to define Diasγ-algebras and
give several examples of such algebras.

3.1. Category of pluriassociative algebras and free objects. Let us study the category
of Diasγ-algebras and the units for algebras in this category.

3.1.1. Pluriassociative algebras. We call γ-pluriassociative algebra any Diasγ-algebra. From
the presentation of Diasγ provided by Theorem 2.2.6, any γ-pluriassociative algebra is a vec-
tor space endowed with linear operations aa,`a, a ∈ [γ], satisfying the relations encoded
by (2.2.12a)—(2.2.12e).
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3.1.2. General definitions. Let P be a γ-pluriassociative algebra. We say that P is commutative
if for all x, y ∈ P and a ∈ [γ], x aa y = y `a x. Besides, P is pure for all a, a′ ∈ [γ], a 6= a′

implies aa 6=aa′ and `a 6=`a′ .

Given a subset C of [γ], one can keep on the vector space P only the operations aa and `a
such that a ∈ C. By renumbering the indexes of these operations from 1 to #C by respecting
their former relative numbering, we obtain a #C-pluriassociative algebra. We call it the #C-
pluriassociative subalgebra induced by C of P.

3.1.3. Free pluriassociative algebras. Recall that FDiasγ denotes the free Diasγ-algebra over one
generator. By definition, FDiasγ is the linear span of the set of the words on {0} ∪ [γ] with
exactly one occurrence of 0. Let us endow this space with the linear operations

aa,`a: FDiasγ ⊗FDiasγ → FDiasγ , a ∈ [γ], (3.1.1)

satisfying, for any such words u and v,

u aa v := u ha(v) (3.1.2a)

and
u `a v := ha(u) v, (3.1.2b)

where ha(u) (resp. ha(v)) is the word obtained by replacing in u (resp. v) any occurrence of
a letter smaller than a by a.

Proposition 3.1.1. For any integer γ > 0, the vector space FDiasγ of nonempty words on
{0} ∪ [γ] containing exactly one occurrence of 0 endowed with the operations aa, `a, a ∈ [γ],
is the free γ-pluriassociative algebra over one generator.

Proof. The fact that FDiasγ is the stated vector space is a consequence of the description of the
elements of Diasγ provided by Proposition 2.1.1. Since Diasγ is by definition the suboperad
of TMγ generated by {0a, a0 : a ∈ [γ]}, FDiasγ is endowed with 2γ binary operations where
any generator 0a (resp. a0) gives rise to the operation aa (resp. `a) of FDiasγ . Moreover, by
making use of the realization of Diasγ , we have for all u, v ∈ FDiasγ and a ∈ [γ],

u aa v = (u⊗ v) · 0a = (0a ◦2 v) ◦1 u = u ha(v) (3.1.3a)

and
u `a v = (u⊗ v) · a0 = (a0 ◦2 v) ◦1 u = ha(u) v. (3.1.3b)

�

One has for instance in FDias4 ,

101241 a2 203 = 101241223 (3.1.4)

and
101241 `3 203 = 333343203. (3.1.5)
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3.2. Bar and wire-units. Loday has defined in [Lod01] some notions of units in diassociative
algebras. We generalize here these definitions to the context of γ-pluriassociative algebras.

3.2.1. Bar-units. Let P be a γ-pluriassociative algebra and a ∈ [γ]. We say that an element
e of P is an a-bar-unit, or simply a bar-unit when taking into account the value of a is not
necessary, of P if for all x ∈ P,

x aa e = x = e `a x. (3.2.1)
As we shall see below, a γ-pluriassociative algebra can have, for a given a ∈ [γ], several a-bar-
units. The a-halo of P, denoted by Haloa(P), is the set of the a-bar-units of P.

3.2.2. Wire-units. Let P be a γ-pluriassociative algebra and a ∈ [γ]. We say that an element
e of P is an a-wire-unit, or simply a wire-unit when taking into account the value of a is not
necessary, of P if for all x ∈ P,

e aa x = x = x `a e. (3.2.2)
As shows the following proposition, the presence of a wire-unit in P has some implications.

Proposition 3.2.1. Let γ > 0 be an integer and P be a γ-pluriassociative algebra admitting
a b-wire-unit e for a b ∈ [γ]. Then

(i) for all a ∈ [b], the operations aa, ab, `a, and `b of P are equal;
(ii) e is also an a-wire-unit for all a ∈ [b];
(iii) e is the only wire-unit of P;
(iv) if e′ is an a-bar unit for a a ∈ [b], then e′ = e.

Proof. Let us show part (i). By Relation (2.2.12d) of γ-pluriassociative algebras and by the
fact that e is a b-wire-unit of P, we have for all elements y and z of P and all a ∈ [b],

y aa z = e ab (y aa z) = e ab (y `a z) = y `a z. (3.2.3)

Thus, the operations aa and `a of P are equal. Moreover, for the same reasons, we have

y aa z = e ab (y aa z) = (e ab y) ab z = y ab z. (3.2.4)

Then, the operations aa and ab of P are equal, whence (i).
Now, by (i) and by the fact that e is a b-wire-unit, we have for all elements x of P and all

a ∈ [b],
e aa x = e ab x = x = x `b e = x `a e, (3.2.5)

showing (ii).
To prove (iii), assume that e′ is a b′-wire-unit of P for a b′ ∈ [γ]. By (i) and by the fact

that e is a b-wire-unit, one has

e = e `b′ e′ = e ab e′ = e′, (3.2.6)

showing (iii).
To establish (iv), let us first prove that e is a b-bar-unit. By (i) and by the fact that e is a

b-wire-unit, we have for all elements x of P,

e `b x = e ab x = x = x `b e = x ab e. (3.2.7)
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Now, since e′ is an a-bar-unit for an a ∈ [b], by (i) and by the fact that e is a b-wire-unit,

e = e′ `a e = e′ `b e = e′. (3.2.8)

This shows (iv). �

Relying on Proposition 3.2.1, we define the height of a γ-pluriassociative algebra P as zero
if P has no wire-unit, otherwise as the greatest integer h ∈ [γ] such that the unique wire-unit
e of P is a h-wire-unit. Observe that any pure γ-pluriassociative algebra has height 0 or 1.

3.3. Construction of pluriassociative algebras. We now present a general way to con-
struct γ-pluriassociative algebras. Our construction is a natural generalization of some con-
structions introduced by Loday [Lod01] in the context of diassociative algebras. We introduce
in this section new algebraic structures, the so-called γ-multiprojection algebras, which are
inputs of our construction.

3.3.1. Multiassociative algebras. For any integer γ > 0, a γ-multiassociative algebra is a vector
spaceM endowed with linear operations

?a :M⊗M→M, a ∈ [γ], (3.3.1)

satisfying, for all x, y, z ∈M, the relations

(x ?a y) ?b z = (x ?b y) ?a′ z = x ?a′′ (y ?b z) = x ?b (y ?a′′′ z), a, a′, a′′, a′′′ 6 b ∈ [γ]. (3.3.2)

These algebras are obvious generalizations of associative algebras since all of its operations are
associative. Observe that by (3.3.2), all bracketings of an expression involving elements of a
γ-multiassociative algebra and some of its operations are equal. Then, since the bracketings
of such expressions are not significant, we shall denote these without parenthesis. In Section 3
of [Gir16], we will study the underlying operads of the category of γ-multiassociative algebras,
called Asγ , for a very specific purpose.

If M1 and M2 are two γ-multiassociative algebras, a linear map φ : M1 → M2 is a γ-
multiassociative algebra morphism if it commutes with the operations ofM1 andM2. We say
that M is commutative when all operations of M are commutative. Besides, for an a ∈ [γ],
an element 1 of M is an a-unit, or simply a unit when taking into account the value of a is
not necessary, of M if for all x ∈ M, 1 ?a x = x = x ?a 1. When M admits a unit, we say
that M is unital. As shows the following proposition, the presence of a unit in M has some
implications.

Proposition 3.3.1. Let γ > 0 be an integer andM be a γ-multiassociative algebra admitting
a b-unit 1 for a b ∈ [γ]. Then

(i) for all a ∈ [b], the operations ?a and ?b ofM are equal;
(ii) 1 is also an a-unit for all a ∈ [b];
(iii) 1 is the only unit ofM.
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Proof. By Relation (3.3.2) of γ-multiassociative algebras and by the fact that 1 is a b-unit of
M, we have for all elements y and z ofM and all a ∈ [b],

y ?a z = y ?a z ?b 1 = y ?b z ?b 1 = y ?b z. (3.3.3)

Therefore, ?a = ?b, showing (i).
Now, by (i) and by the fact that 1 is a b-unit, we have for all elements x of M and all

a ∈ [b],
1 ?a x = 1 ?b x = x = x ?b 1 = x ?a 1, (3.3.4)

showing (ii).
To prove (iii), assume that 1′ is a b′-unit ofM for a b′ ∈ [γ]. By (i) and by the fact that 1

is a b-unit, one has
1 = 1 ?b′ 1′ = 1 ?b 1

′ = 1′, (3.3.5)

establishing (iii). �

Relying on Proposition 3.3.1, similarly to the case of γ-pluriassociative algebras, we define
the height of a γ-multiassociative algebraM as zero ifM has no unit, otherwise as the greatest
integer h ∈ [γ] such that the unit 1 ofM is an h-unit.

3.3.2. Multiprojection algebras. We call γ-multiprojection algebra any γ-multiassociative alge-
braM endowed with endomorphisms

πa :M→M, a ∈ [γ], (3.3.6)

satisfying
πa ◦ πa′ = πa↑a′ , a, a′ ∈ [γ]. (3.3.7)

By extension, the height ofM is its height as a γ-multiassociative algebra. We say thatM
is unital as a γ-multiprojection algebra if M is unital as a γ-multiassociative algebra and its
only, by Proposition 3.3.1, unit 1 satisfies πa(1) = 1 for all a ∈ [h] where h is the height ofM.

3.3.3. From multiprojection algebras to pluriassociative algebras. Next result describes how to
construct γ-pluriassociative algebras from γ-multiprojection algebras.

Theorem 3.3.2. For any integer γ > 0 and any γ-multiprojection algebraM, the vector space
M endowed with binary linear operations aa, `a, a ∈ [γ], defined for all x, y ∈M by

x aa y := x ?a πa(y) (3.3.8a)

and
x `a y := πa(x) ?a y, (3.3.8b)

where the ?a, a ∈ [γ], are the operations of M and the πa, a ∈ [γ], are its endomorphisms, is
a γ-pluriassociative algebra, denoted by M(M).
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Proof. This is a verification of the relations of γ-pluriassociative algebras in M(M). Let x, y,
and z be three elements of M(M) and a, a′ ∈ [γ].

By (3.3.2), we have

(x `a′ y) aa z = πa′(x) ?a′ y ?a πa(z) = x `a′ (y aa z), (3.3.9)

showing that (2.2.12a) is satisfied in M(M).
Moreover, by (3.3.2) and (3.3.7), we have

x aa (y `a′ z) = x ?a πa(πa′(y) ?a′ z)

= x ?a πa↑a′(y) ?a′ πa(z)

= x ?a↑a′ πa↑a′(y) ?a πa(z)

= (x aa↑a′ y) aa z,

(3.3.10)

so that (2.2.12b), and for the same reasons (2.2.12c), check out in M(M).
Finally, again by (3.3.2) and (3.3.7), we have

x aa (y aa′ z) = x ?a πa(y ?a′ πa′(z))

= x ?a πa(y) ?a′ πa↑a′(z)

= x ?a πa(y) ?a↑a′ πa↑a′(z)

= (x aa y) aa↑a′ z,

(3.3.11)

showing that (2.2.12d), and for the same reasons (2.2.12e), are satisfied in M(M). �

WhenM is commutative, since for all x, y ∈ M(M) and a ∈ [γ],

x aa y = x ?a πa(y) = πa(y) ?a x = y `a x, (3.3.12)

it appears that M(M) is a commutative γ-pluriassociative algebra.

WhenM is unital, M(M) has several properties, summarized in the next proposition.

Proposition 3.3.3. Let γ > 0 be an integer, M be a unital γ-multiprojection algebra of
height h. Then, by denoting by 1 the unit ofM and by πa, a ∈ [γ], its endomorphisms,

(i) for any a ∈ [h], 1 is an a-bar-unit of M(M);
(ii) for any a 6 b ∈ [h], Haloa(M(M)) is a subset of Halob(M(M));
(iii) for any a ∈ [h], the linear span of Haloa(M(M)) forms an h−a+1-pluriassociative

subalgebra of the h−a+1-pluriassociative subalgebra of M(M) induced by [a, h];
(iv) for any a ∈ [h], πa is the identity map if and only if 1 is an a-wire-unit of M(M).

Proof. Let us denote by ?a, a ∈ [γ], the operations ofM.
Since 1 is an h-unit ofM, for all elements x of M(M) and all a ∈ [h],

x aa 1 = x ?a πa(1) = x ?a 1 = x = 1 ?a x = πa(1) ?a x = 1 `a x, (3.3.13)

showing (i).
Assume that e is an element of Haloa(M(M)) for an a ∈ [h], that is, e is an a-bar-unit of

M(M). Then, for all elements x of M(M),

x aa e = x ?a πa(e) = x = πa(e) ?a x = e `a x, (3.3.14)
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showing that πa(e) is the unit for the operation ?a on M(M) and therefore, πa(e) = 1. Since
M is unital, we have πb(1) = 1 for all b ∈ [h]. Hence, and by (3.3.7), for all a 6 b ∈ [h],

πb(e) = πb(πa(e)) = πb(1) = 1. (3.3.15)

Then, for all elements x of M(M) and all a 6 b ∈ [h],

x ab e = x ?b πb(e) = x ?b 1 = x = 1 ?b x = πb(e) ?b x = e `b x, (3.3.16)

showing that e is also a b-bar-unit of M(M), whence (ii).

Let a ∈ [γ] and e and e′ be elements of Haloa(M(M)). By (ii), e and e′ are b-bar-units of
M(M) for all a 6 b ∈ [h] and hence,

e ab e′ = e = e′ `b e. (3.3.17)

Therefore, the linear span of Haloa(M(M)) is stable for the operations ab and `b. This
implies (iii).

Finally, assume that πa is the identity map for an a ∈ [h]. Then, for all elements x of M(M),

1 aa x = 1 ?a πa(x) = 1 ?a x = x = x ?a 1 = πa(x) ?a 1 = x `a 1, (3.3.18)

showing that 1 is an a-wire unit of M(M). Conversely, if 1 is an a-wire unit of M(M), for all
elements x of M(M), the relations 1 aa x = x = x `a 1 imply 1 ?a πa(x) = x = πa(x) ?a 1
and hence, πa(x) = x. This shows (iv). �

3.3.4. Examples of constructions of pluriassociative algebras. The construction M of Theo-
rem 3.3.2 allows to build several γ-pluriassociative algebras. Here follows few examples.

The γ-pluriassociative algebra of positive integers. Let γ > 1 be an integer and consider
the vector space Pos of positive integers, endowed with the operations ?a, a ∈ [γ], all equal to
the operation ↑ extended by linearity and with the endomorphisms πa, a ∈ [γ], linearly defined
for any positive integer x by πa(x) := a ↑ x. Then, Pos is a non-unital γ-multiprojection
algebra. By Theorem 3.3.2, M(Pos) is a γ-pluriassociative algebra. We have for instance

2 a3 5 = 5, (3.3.19)

and

1 `3 2 = 3. (3.3.20)

We can observe that M(Pos) is commutative, pure, and its 1-halo is {1}. Moreover, when γ > 2,
M(Pos) has no wire-unit and no a-bar-unit for a > 2 ∈ [γ]. This example is important because
it provides a counterexample for (ii) of Proposition 3.3.3 in the case when the construction M
is applied to a non-unital γ-multiprojection algebra.
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The γ-pluriassociative algebra of finite sets. Let γ > 1 be an integer and consider the
vector space Sets of finite sets of positive integers, endowed with the operations ?a, a ∈ [γ], all
equal to the union operation ∪ extended by linearity and with the endomorphisms πa, a ∈ [γ],
linearly defined for any finite set of positive integers x by πa(x) := x ∩ [a, γ]. Then, Sets is a
γ-multiprojection algebra. By Theorem 3.3.2, M(Sets) is a γ-pluriassociative algebra. We have
for instance

{2, 4} a3 {1, 3, 5} = {2, 3, 4, 5}, (3.3.21)

and
{1, 2, 4} `3 {1, 3, 5} = {1, 3, 4, 5}. (3.3.22)

We can observe that M(Sets) is commutative and pure. Moreover, ∅ is a 1-wire-unit of M(Sets)
and, by Proposition 3.2.1, it is its only wire-unit. Therefore, M(Sets) has height 1. Observe that
for any a ∈ [γ], the a-halo of M(Sets) consists in the subsets of [a− 1]. Besides, since Sets is a
unital γ-multiprojection algebra, M(Sets) satisfies all properties exhibited by Proposition 3.3.3.

The γ-pluriassociative algebra of words. Let γ > 1 be an integer and consider the vector
space Words of the words of positive integers. Let us endow Words with the operations ?a, a ∈
[γ], all equal to the concatenation operation extended by linearity and with the endomorphisms
πa, a ∈ [γ], where for any word x of positive integers, πa(x) is the longest subword of x
consisting in letters greater than or equal to a. Then, Words is a γ-multiprojection algebra.
By Theorem 3.3.2, M(Words) is a γ-pluriassociative algebra. We have for instance

412 a3 14231 = 41243, (3.3.23)

and
11 `2 323 = 323. (3.3.24)

We can observe that M(Words) is not commutative and is pure. Moreover, ε is a 1-wire-
unit of M(Words) and by Proposition 3.2.1, it is its only wire-unit. Therefore, M(Words) has
height 1. Observe that for any a ∈ [γ], the a-halo of M(Words) consists in the words on the
alphabet [a− 1]. Besides, since Words is a unital γ-multiprojection algebra, M(Words) satisfies
all properties exhibited by Proposition 3.3.3.

The γ-pluriassociative algebras M(Sets) and M(Words) are related in the following way.
Let Icom be the subspace of M(Words) generated by the x − x′ where x and x′ are words of
positive integers and have the same commutative image. Since Icom is a γ-pluriassociative
algebra ideal of M(Words), one can consider the quotient γ-pluriassociative algebra CWords :=
M(Words)/Icom . Its elements can be seen as commutative words of positive integers.

Moreover, let Iocc be the subspace of M(CWords) generated by the x − x′ where x and x′

are commutative words of positive integers and for any letter a ∈ [γ], a appears in x if and
only if a appears in x′. Since Iocc is a γ-pluriassociative algebra ideal of M(CWords), one can
consider the quotient γ-pluriassociative algebra M(CWords)/Iocc . Its elements can be seen as
finite subsets of positive integers and we observe that M(CWords)/Iocc = M(Sets).
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The γ-pluriassociative algebra of marked words. Let γ > 1 be an integer and consider
the vector space MWords of the words of positive integers where letters can be marked or not,
with at least one occurrence of a marked letter. We denote by ā any marked letter a and we
say that the value of ā is a. Let us endow MWords with the linear operations ?a, a ∈ [γ], where
for all words u and v of MWords, u?a v is obtained by concatenating u and v, and by replacing
therein all marked letters by c̄ where c := max(u) ↑ a ↑ max(v) where max(u) (resp. max(v))
denotes the greatest value among the marked letters of u (resp. v). For instance,

21̄313̄ ?2 34̄1̄21 = 24̄314̄34̄4̄21, (3.3.25)

and
2̄111̄ ?3 342̄ = 3̄113̄343̄. (3.3.26)

We also endow MWords with the endomorphisms πa, a ∈ [γ], where for any word u of MWords,
πa(u) is obtained by replacing in u any occurrence of a nonmarked letter smaller than a by a.
For instance,

π3
(
22̄144̄35̄

)
= 32̄344̄35̄. (3.3.27)

One can show without difficulty that MWords is a γ-multiprojection algebra. By Theorem 3.3.2,
M(MWords) is a γ-pluriassociative algebra. We have for instance

32̄5 a3 44̄1 = 34̄544̄3, (3.3.28)

and
13̄41̄3 `2 312̄31̄1 = 23̄43̄3313̄33̄1. (3.3.29)

We can observe that M(MWords) is not commutative, pure, and has no wire-units neither
bar-units.

The free γ-pluriassociative algebra over one generator. Let γ > 0 be an integer. We give
here a construction of the free γ-pluriassociative algebra FDiasγ over one generator described
in Section 3.1.3 passing through the following γ-multiprojection algebra and the construction
M. Consider the vector space of nonempty words on the alphabet {0} ∪ [γ] with exactly one
occurrence of 0, endowed with the operations ?a, a ∈ [γ], all equal to the concatenation oper-
ation extended by linearity and with the endomorphisms ha, a ∈ [γ], defined in Section 3.1.3.
This vector space is a γ-multiprojection algebra. Therefore, by Theorem 3.3.2, it gives rise by
the construction M to a γ-pluriassociative algebra and it appears that it is FDiasγ . Besides, we
can now observe that FDiasγ is not commutative, pure, and has no wire-units neither bar-units.

4. Pluritriassociative operads

Our original idea of using the T construction (see Sections 1.1.3 and 2.1.1) to obtain a
generalization of the diassociative operad admits an analogue in the context of the triassociative
operad [LR04]. We describe in this section a generalisation on a nonnegative integer parameter
γ of the triassociative operad.

Since the proofs of the results contained in this section are very similar to the ones of
Section 2, we omit proofs here.
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4.1. Construction and first properties. For any integer γ > 0, we define Triasγ as the
suboperad ofMγ generated by

{0a, 00, a0 : a ∈ [γ]}. (4.1.1)

By definition, Triasγ is the vector space of words that can be obtained by partial compositions
of words of (4.1.1). We have, for instance,

Trias2(1) = Vect({0}), (4.1.2)

Trias2(2) = Vect({00, 01, 02, 10, 20}), (4.1.3)

Trias2(3) = Vect({000, 001, 002, 010, 011, 012, 020, 021,

022, 100, 101, 102, 110, 120, 200, 201, 202, 210, 220}), (4.1.4)

It follows immediately from the definition of Triasγ as a suboperad of TMγ that Triasγ is
a set-operad. Moreover, one can observe that Triasγ is generated by the same generators as
the ones of Diasγ (see (2.1.1)), plus the word 00. Therefore, Diasγ is a suboperad of Triasγ .
Besides, note that Trias0 is the associative operad and that Triasγ is a suboperad of Triasγ+1.
We call Triasγ the γ-pluritriassociative operad.

Proposition 4.1.1. For any integer γ > 0, as a set-operad, the underlying set of Triasγ is the
set of the words on the alphabet {0} ∪ [γ] containing at least one occurrence of 0.

We deduce from Proposition 4.1.1 that the Hilbert series of Triasγ satisfies

HTriasγ (t) = t

(1− γt)(1− γt− t) (4.1.5)

and that for all n > 1, dim Triasγ(n) = (γ + 1)n − γn. For instance, the first dimensions of
Trias1, Trias2, Trias3, and Trias4 are respectively

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, (4.1.6)

1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025, 175099, (4.1.7)

1, 7, 37, 175, 781, 3367, 14197, 58975, 242461, 989527, 4017157, (4.1.8)

1, 9, 61, 369, 2101, 11529, 61741, 325089, 1690981, 8717049, 44633821. (4.1.9)

The first one is Sequence A000225, the second one is Sequence A001047, the third one is
Sequence A005061, and the last one is Sequence A005060 of [Slo].

http://oeis.org/A000225
http://oeis.org/A001047
http://oeis.org/A005061
http://oeis.org/A005060
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4.2. Presentation by generators and relations. We follow the same strategy as the one
used in Section 2.2 to establish a presentation by generators and relations of Triasγ and prove
that it is a Koszul operad. As announced above, we omit complete proofs here but we describe
the analogue for Triasγ of the maps wordγ and hookγ defined in Section 2.2 for the operad
Diasγ .

For any integer γ > 0, let GTriasγ := GTriasγ (2) be the graded set where

GTriasγ (2) := {aa,⊥,`a: a ∈ [γ]}. (4.2.1)

Let t be a syntax tree of Free
(
GTriasγ

)
and x be a leaf of t. We say that an integer

a ∈ {0} ∪ [γ] is eligible for x if a = 0 or there is an ancestor y of x labeled by aa (resp. `a)
and x is in the right (resp. left) subtree of y. The image of x is its greatest eligible integer.
Moreover, let

wordtγ : Free
(
GTriasγ

)
(n)→ Triasγ(n), n > 1, (4.2.2)

the map where wordtγ(t) is the word obtained by considering, from left to right, the images of
the leaves of t (see Figure 2). Observe that wordtγ is an extension of wordγ (see (2.2.2)).

a1

`3

a4

⊥

`2

a3

`4

⊥

`3

`2

a1

3 3

2 4 4 0

4 3

3 2

0

1

Figure 2. A syntax tree t of Free
(
GTriasγ

)
where images of its leaves are

shown. This tree satisfies wordtγ(t) = 332440433201.

Consider now the map

hooktγ : Triasγ(n)→ Free
(
GTriasγ

)
(n), n > 1, (4.2.3)
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defined for any word x of Triasγ by

hooktγ(x) :=

hookγ(u)

⊥

⊥

a
v

(1)
k(1)

a
v

(1)
1

a
v

(`)
k(`)

a
v

(`)
1

, (4.2.4)

where x decomposes, by Proposition 4.1.1, uniquely in x = u0v(1) . . . 0v(`) where u is a word
of Diasγ and for all i ∈ [`], the v(i) are words on the alphabet [γ]. The length |v(i)| of any vi is
denoted by k(i). The dashed edges denote left comb trees wherein internal nodes are labeled as
specified. Observe that hooktγ is an extension of hookγ (see (2.2.3)). We shall call any syntax
tree of the form (4.2.4) an extended hook syntax tree.

Theorem 4.2.1. For any integer γ > 0, the operad Triasγ admits the following presentation.
It is generated by GTriasγ and its space of relations RTriasγ is the space induced by the equivalence
relation ↔γ satisfying

⊥ ◦1 ⊥ ↔γ ⊥ ◦2 ⊥, (4.2.5a)
aa ◦1 ⊥ ↔γ ⊥ ◦2 aa, a ∈ [γ], (4.2.5b)
⊥ ◦1 `a ↔γ `a ◦2 ⊥, a ∈ [γ], (4.2.5c)
⊥ ◦1 aa ↔γ ⊥ ◦2 `a, a ∈ [γ], (4.2.5d)

aa ◦1 `a′ ↔γ `a′ ◦2 aa, a, a′ ∈ [γ], (4.2.5e)
aa ◦1 ab ↔γ aa ◦2 `b, a < b ∈ [γ], (4.2.5f)
`a ◦1 ab ↔γ `a ◦2 `b, a < b ∈ [γ], (4.2.5g)
ab ◦1 aa ↔γ aa ◦2 ab, a < b ∈ [γ], (4.2.5h)
`a ◦1 `b ↔γ `b ◦2 `a, a < b ∈ [γ], (4.2.5i)

ad ◦1 ad ↔γ ad ◦2 ⊥ ↔γ ad ◦2 ac ↔γ ad ◦2 `c, c 6 d ∈ [γ], (4.2.5j)
`d ◦1 ac ↔γ `d ◦1 `c ↔γ `d ◦1 ⊥ ↔γ `d ◦2 `d, c 6 d ∈ [γ]. (4.2.5k)

Observe that, by Theorem 4.2.1, Trias1 and the triassociative operad [LR04] admit the
same presentation. Then, for all integers γ > 0, the operads Triasγ are generalizations of the
triassociative operad.

Theorem 4.2.2. For any integer γ > 0, Triasγ is a Koszul operad. Moreover, the set of
extended hook syntax trees of Free

(
GTriasγ

)
forms a Poincaré-Birkhoff-Witt basis of Triasγ .
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