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ABSTRACT. Bud generating systems, sorts of combinatorial generating systems, are introduced.
They are devices for specifying sets of various kinds of combinatorial objects, called languages.
They can emulate context-free grammars, regular tree grammars, and synchronous grammars,
allowing us to work with all these generating systems in a unified way. The theory of bud
generating systems presented here heavily uses the one of colored operads. Indeed, an object
is generated by a bud generating system if it satisfies a certain equation in a colored operad.
With the aim to compute the generating series of the languages of bud generating systems, we
introduce formal power series on colored operads and several operations on these. Series on
colored operads intervene to express the languages specified by bud generating systems and
allow us to enumerate combinatorial objects with respect to some statistics. Some examples of
bud generating systems are constructed, in particular to specify some sorts of balanced trees and
to obtain recursive formulas enumerating these.
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INTRODUCTION

Coming from theoretical computer science and formal language theory, formal gram-
mars [Har78, HMU06] are powerful tools having many applications in several fields of math-
ematics. A formal grammar is a device which describes—more or less concisely and with
more or less restrictions—a set of words, called a language. There are several variations in
the definitions of formal grammars and some sorts of these are classified by the Chomsky-
Schützenberger hierarchy [Cho59, CS63] according to four different categories, taking into
account their expressive power. In an increasing order of power, there are the classes of
Type-3 to Type-0 grammars, known respectively as regular grammars, context-free gram-
mars, context-sensitive grammars, and unrestricted grammars. One of the most striking
similarities between all these variations of formal grammars is that they work by construct-
ing words by applying rewrite rules [BN98]. Indeed, a word of the language described by a
formal grammar is obtained by considering a starting word and by iteratively altering some
of its factors in accordance with the production rules of the grammar.

Similar mechanisms and ideas are translatable into the world of trees, instead only those of
words. Grammars of trees [CDG+07] are thus the natural counterpart of formal grammars
to describe sets of trees, and here also, there exist several very different types of grammars.
One can cite for instance tree grammars, regular tree grammars [GS84], and synchronous
grammars [Gir12], which are devices providing a way to describe sets of various kinds of
treelike structures. Here also, one of the common points between these grammars is that
they work by applying rewrite rules on trees. In this framework, trees are constructed by
growing from the root to the leaves by replacing some subtrees by other ones.

Furthermore, the theory of operads seems to have virtually no link with the one of formal
grammars. Operads are algebraic structures introduced in the context of algebraic topol-
ogy [May72, BV73] (see also [Mar08, LV12, Mén15] for a modern conspectus of the theory).
This theory has somewhat been almost neglected during the first two decades after its dis-
covery. In the 1990s, the theory of operads enjoyed a renaissance raised by Loday [Lod96]
and, from the 2000s, many links between the theory of operads and combinatorics have been
developed (see, for instance [CL01, Cha08, CG14]). Therefore, in the last years, a lot of oper-
ads involving various sets of combinatorial objects have been defined, so that almost every
classical object can be seen as an element of at least one operad (see the previous references
and for instance [Zin12, Gir15, Gir16a, FFM18]). From an intuitive point of view, an operad is
a set of abstract operators with several inputs and one output that can be composed in many
ways. More precisely, if x is an operator with n inputs and y is an operator with m inputs,
x ◦i y denotes the operator with n+m−1 inputs obtained by gluing the output of y to the i-th
input of x. Operads are algebraic structures related to trees in the same ways as monoids
are algebraic structures related to words. For this reason, the study of operads has many
connections with the one of combinatorial properties of trees.

The initial spark of this work has been caused by the following simple observation. The
partial composition x ◦i y of two elements x and y of an operad O can be regarded as the
application of a rewrite rule on x to obtain a new element of O—the rewrite rule being
encoded essentially by y. This leads to the idea consisting in considering an operad O to
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define grammars generating some subsets of O. In this way, according to the nature of the
elements of O, this provides a way to define grammars which generate objects different than
words (as in the case of formal grammars) and than trees (as in the case of grammars of
trees). We rely in this work on colored operads [BV73,Yau16], a generalization of operads. In
a colored operad C, every input and every output for the elements of C has a color, taken
from a fixed set. These colors lead to the creation of constraints for the partial compositions
of two elements. Indeed, x ◦i y is defined only if the color of the output of y is the same as the
color of the i-th input of x. Colored operads are the suitable devices to our aim of defining
a new kind of grammars since the restrictions provided by the colors allow a precise control
on how the rewrite rules can be applied.

Thus, we introduce in this work a new kind of grammars, the bud generating systems. They
are defined mainly from a ground operad O, a set C of colors, and a set R of production rules.
A bud generating system describes a subset of BudC (O)—the colored operad obtained by
augmenting the elements of O with input and output colors taken from C . The generation of an
element works by iteratively altering an element x of BudC (O) by composing it, if possible, with
an element y of R. In this context, the colors play the role analogous of the one of nonterminal
symbols in the formal grammars and in the grammars of trees. Any bud generating systemB
specifies two sets of objects: its language L(B) and its synchronous language LS(B). Thereby,
bud generating systems can be used to describe several sets of combinatorial objects. For
instance, they can be used to describe sets of Motkzin paths with some constraints, the set of
{2, 3}-perfect trees [MPRS79,CLRS09] and some of its generalizations, and the set of balanced
binary trees [AVL62]. One remarkable fact is that bud generating systems can emulate both
context-free grammars and regular tree grammars, and allow us to see both of these in a
unified manner. In the first case, context-free grammars are emulated by bud generating
systems with the associative operad As as ground operad and in the second case, regular tree
grammars are emulated by bud generating systems with a free operad Free(C) as ground
operad, where C is a suitable set of generators.

A very normal combinatorial question consists, given a bud generating system B, in com-
puting the generating series sL(B)(t) and sLS(B)(t), respectively counting the elements of the
language and of the synchronous language of B with respect to the arity of the elements. To
achieve this objective, we develop a new generalization of formal power series, namely series
on colored operads. Any bud generating system B leads to the definition of three series on
colored operads: its hook generating series hook(B), its syntactic generating series synt(B),
and its synchronous generating series sync(B). The hook generating series allows us to define
analogues of the hook-length statistic of binary trees [Knu98] for objects belonging to the lan-
guage of B, possibly different than trees. The syntactic (resp. synchronous) generating series
leads to obtain functional equations and recurrence formulas to compute the coefficients of
sL(B)(t) and sLS(B)(t).

One has to observe that since the introduction of formal power series, a lot of generaliza-
tions were proposed in order to extend the range of problems they can help to solve. The
most obvious ones are multivariate series allowing us to count objects not only with respect
to their sizes but also with respect to various other statistics. Another one consists in consid-
ering noncommutative series on words [Eil74,SS78,BR10], or even, pushing the generalization
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one step further, on elements of a monoid [Sak09]. Besides, as another generalization, series
on trees have been considered [BR82, Boz01]. Series on (noncolored) operads increase the
list of these generalizations. Chapoton is the first to have considered such series on oper-
ads [Cha02,Cha08,Cha09]. Several authors have contributed to this field by considering slight
variations in the definitions of these series. Among these, one can cite van der Laan [vdL04],
Frabetti [Fra08], and Loday and Nikolov [LN13]. Our notion of series on colored operads
developed in this work is a natural generalization of series on operads.

This paper is organized as follows. Section 1 is devoted to set our notations and definitions
about operads and colored operads, and to introduce the construction BudC (O) producing a
colored operad from a noncolored one O and a set C of colors. Section 2 contains the main
definition on which this work this work is based on: bud generating systems. We establish
some of properties of these. Next, we introduce formal power series on colored operads
in Section 3, define several products on these, and explain how these series can be used to
obtained enumerative results from bud generating systems. This article ends by Section 4
which contains a collection of examples for most of the notions introduced by this work. We
have taken the freedom to put all the examples in this section. For this reason, the reader is
encouraged to consult this section whilst he reads the first ones, by following the references
we shall give.

Acknowledgements. The author would like to thank the anonymous referees for their very
valuable suggestions, improving the presentation of this paper.

General notations and conventions. We denote by δx,y the Kronecker delta function (that
is, for any elements x and y of a same set, δx,y = 1 if x = y and δx,y = 0 otherwise). For
any integers a and c, [a, c] denotes the set {b ∈ N : a 6 b 6 c} and [n], the set [1, n]. The
cardinality of a finite set S is denoted by #S. For any finite multiset S := *s1, . . . , sn+ of
nonnegative integers, we denote by

∑
S the sum

∑
S := s1 + · · ·+ sn (0.0.1)

of its elements and by S! the multinomial coefficient

S! :=
( ∑

S
s1, . . . , sn

)
. (0.0.2)

For any set A, A∗ denotes the set of all finite sequences, called words, of elements of A. We
denote by A+ the subset of A∗ consisting in nonempty words. For any n > 0, An is the set of
all words on A of length n. If u is a word, its letters are indexed from left to right from 1
to its length |u|. For any i ∈ [|u|], ui is the letter of u at position i. If a is a letter and n is a
nonnegative integer, an denotes the word consisting in n occurrences of a. Notice that a0 is
the empty word ε.

In our graphical representations of trees, the uppermost nodes are always roots. Moreover,
internal nodes are represented by circles , leaves by squares , and edges by segments . To
distinguish trees and syntax trees, we shall draw the latter without circles for internal nodes
and without squares for leaves (only the labels of the nodes are depicted).
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In graphical representations of multigraphs, labels of edges denote their multiplicities. All
unlabeled edges have 1 as multiplicity.

1. COLORED OPERADS AND BUD OPERADS

The aim of this section is to set our notations about operads, colored operads, and colored
syntax trees. We also establish some properties of treelike expressions in colored operads
and present a construction producing colored operads from operads.

1.1. Colored operads. Let us recall here the definitions of colored graded collections and
colored operads.

1.1.1. Colored graded collections. Let C be a finite set, called set of colors. A C -colored
graded collection is a graded set

C :=
⊔

n>1
C(n) (1.1.1)

together with two maps out : C → C and in : C(n) → C n, n > 1, respectively sending any
x ∈ C(n) to its output color out(x) and to its word of input colors in(x). The i-th input color
of x is the i-th letter of in(x), denoted by ini(x). For any n > 1 and x ∈ C(n), the arity |x| of
x is n. We say that C is locally finite if for all n > 1, the C(n) are finite sets. A monochrome
graded collection is a C -colored graded collection where C is a singleton. If C1 and C2 are two
C -colored graded collections, a map φ : C1 → C2 is a C -colored graded collection morphism
if it preserves arities. Besides, C2 is a C -colored graded subcollection of C1 if for all n > 1,
C2(n) ⊆ C1(n), and C1 and C2 have the same maps out and in.

1.1.2. Hilbert series. In all this work, we consider that C has cardinal k and that the colors
of C are arbitrarily indexed so that C = {c1, . . . , ck}. Let XC := {xc1 , . . . , xck} and YC :=
{yc1 , . . . , yck} be two alphabets of mutually commutative parameters and N[[XC t YC ]] be the
set of commutative multivariate series on XC t YC with nonnegative integer coefficients. As
usual, if s is a series of N[[XC t YC ]], 〈m, s〉 denotes the coefficient of the monomial m in s.

For any C -colored graded collection C, the Hilbert series hC of C is the series of N[[XC t
YC ]] defined by

hC :=
∑

x∈C



xout(x)
∏

i∈[|x|]
yini(x)



 . (1.1.2)

The coefficient of xayα1
c1
. . . yαkck in hC thus counts the elements of C having a as output color

and αj inputs of color cj for any j ∈ [k]. Note that (1.1.2) is defined only if there are only
finitely many such elements for any a ∈ C and any αj > 0, j ∈ [k]. This is the case when C is
locally finite.

Besides, the generating series of C is the series sC of N[[t]] defined as the specialization of
hC at xa := 1 and ya := t for all a ∈ C . Therefore, for any n > 1 the coefficient 〈tn, sC〉 counts
the elements of arity n in C.
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1.1.3. Colored operads. A nonsymmetric colored set-operad on C , or a C -colored operad
for short, is a colored graded collection C together with partially defined maps

◦i : C(n)× C(m)→ C(n +m− 1), 1 6 i 6 n, 1 6m, (1.1.3)

called partial compositions, and a subset {1a : a ∈ C } of C(1) such that any 1a , a ∈ C , is called
unit of color a and satisfies out (1a) = in (1a) = a. This data has to satisfy, for any x, y, z ∈ C,
the following constraints. First, for any i ∈ [|x|], x ◦i y is defined if and only if out(y) = ini(x).
Moreover, the relations

(x ◦i y) ◦i+j−1 z = x ◦i
(
y ◦j z

)
, 1 6 i 6 |x|, 1 6 j 6 |y|, (1.1.4a)

(x ◦i y) ◦j+|y|−1 z =
(
x ◦j z

)
◦i y, 1 6 i < j 6 |x|, (1.1.4b)

1a ◦1 x = x = x ◦i 1b, 1 6 i 6 |x|, a, b ∈ C , (1.1.4c)

have to hold when they are well-defined.

The complete composition map of C is the partially defined map

◦ : C(n)× C (m1)× · · · × C (mn)→ C (m1 + · · ·+mn) , (1.1.5)

defined from the partial composition maps in the following way. For any x ∈ C(n) and
y1, . . . , yn ∈ C such that out (yi) = ini(y) for all i ∈ [n], we set

x ◦ [y1, . . . , yn] := (. . . ((x ◦n yn) ◦n−1 yn−1) . . . ) ◦1 y1. (1.1.6)

Let C1 and C2 are two C -colored operads. A C -colored graded collection morphism φ :
C1 → C2 is a C -colored operad morphism if it sends any unit of color a ∈ C of C1 to the unit
of color a of C2, if it commutes with partial composition maps and, if for any x, y ∈ C1 and
i ∈ [|x|], if x ◦i y is defined in C1, then φ(x) ◦i φ(y) is defined in C2. Besides, C2 is a colored
suboperad of C1 if C2 is a C -colored graded subcollection of C1 and C1 and C2 have the same
colored units and the same partial composition maps. If G is a C -colored graded subcollection
of C, we denote by CG the C -colored operad generated by G, that is the smallest C -colored
suboperad of C containing G. When the C -colored operad generated by G is C itself, G is
a generating C -colored graded collection of C. Moreover, when G is minimal with respect
to inclusion among the C -colored graded subcollections of C satisfying this property, G is a
minimal generating C -colored graded collection of C. We say that C is locally finite if, as a
colored graded collection, C is locally finite.

A monochrome operad (or an operad for short) O is a C -colored operad with a mono-
chrome graded collection as underlying set. In this case, C is a singleton {c1} and, since for
all x ∈ O(n), we necessarily have out(x) = c1 and in(x) = cn1 , for all x, y ∈ O and i ∈ [|x|],
all partial compositions x ◦i y are defined. In this case, C and its single element c1 do not
play any role. For this reason, in the future definitions of monochrome operads, we shall not
define their set of colors C .

1.2. Free colored operads. Free colored operads and more particularly colored syntax trees
play an important role in this work. We recall here the definitions of these two notions and
establish some of their properties.
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1.2.1. Colored syntax trees. Unless otherwise specified, we use in the sequel the standard
terminology (i.e., node, edge, root, parent, child, path, etc.) about planar rooted trees [Knu97].
Let C be a set of colors and C be a C -colored graded collection. A C -colored C-syntax tree
is a planar rooted tree t such that, for any n > 1, any internal node of t having n children
is labeled by an element of arity n of C and, for any internal nodes u and v of t such that
v is the i-th child of u, out(y) = ini(x) where x (resp. y) is the label of u (resp. v). In our
graphical representations of a C -colored C-syntax tree t, we write the colors of the leaves of
t below them and the color of the edge exiting the root of t above it (see Figure 1).

b
a

c

c
a

1

2 1

2

2 2 1 1 1

(A) The degree of this C -colored C-
syntax tree is 5, its arity is 8, and its
height is 3

b

a

c

a

a

c

b a

1

2 1 2 1 1 1 2 2 1 1 1

(B) A perfect C -colored C-syntax tree.
The degree of this colored syntax tree
is 8, its arity is 11, and its height is 3.

FIGURE 1. Two C -colored C-syntax trees, where C is the set of colors {1, 2} and C is the C -
graded colored collection defined by C := C(2) t C(3) with C(2) := {a,b}, C(3) := {c}, out(a) := 1,
out(b) := 2, out(c) := 1, in(a) := 11, in(b) := 21, and in(c) := 221.

Let t be a C -colored C-syntax tree. The arity of an internal node v of t is its number |v| of
children and its label is the element of C labeling it and denoted by t(v). The degree deg(t)
(resp. arity |t|) of t is its number of internal nodes (resp. leaves). We say that t is a corolla
if deg(t) = 1. The height of t is the length ht(t) of a longest path connecting the root of t to
one of its leaves. For instance, the height of a colored syntax tree of degree 0 is 0 and the
one of a corolla is 1. The set of all internal nodes of t is denoted by N(t). For any v ∈ N(t),
tv is the subtree of t rooted at the node v. We say that t is perfect if all paths connecting the
root of t to its leaves have the same length. Finally, t is a monochrome C-syntax tree if C is
a monochrome graded collection.

1.2.2. Free colored operads. The free C -colored operad over C is the operad Free(C) wherein
for any n > 1, Free(C)(n) is the set of all C -colored C-syntax trees of arity n. For any
t ∈ Free(C), out(t) is the output color of the label of the root of t and in(t) is the word obtained
by reading, from left to right, the input colors of the leaves of t. For any s, t ∈ Free(C), the
partial composition s ◦i t, defined if and only if the output color of t is the input color of the
i-th leaf of s, is the tree obtained by grafting the root of t to the i-th leaf of s. For instance,
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with the C -colored graded collection C defined in Figure 1, one has in Free(C),

a
a

c

1

1 1 2 2 1

◦3 b
a

2

2
1 1

= a
a

b
a

c

1

1 1

2

1 1

2 1
. (1.2.1)

1.2.3. Treelike expressions and finitely factorizing sets. For any C -colored operad C, the
evaluation map of C is the map evC : Free(C)→ C, defined as the unique surjective morphism
of colored operads satisfying evC(t) = x where t is a tree of degree 1 having its root labeled
by x. If S is a colored graded subcollection of C, an S-treelike expression of x ∈ C is a tree t

of Free(C) such that evC(t) = x and all internal nodes of t are labeled on S.

Besides, when S is such that any x ∈ C admits finitely many S-treelike expressions, we say
that S finitely factorizes C. This notion is important in the sequel and is used as sufficient
condition for the well-definition of some formal power series on colored operads.

Lemma 1.2.1. Let C be a locally finite C -colored operad and S be a C -colored graded
subcollection of C such that S(1) finitely factorizes C. Then, S finitely factorizes C.

Proof. Since C is locally finite and S(1) finitely factorizes C, there is a nonnegative integer k
such that k is the degree of a C -colored S(1)-syntax tree with a maximal number of internal
nodes. Let x be an element of C of arity n admitting an S-treelike expression t. Observe
first that t has at most n − 1 non-unary internal nodes and at most 2n − 1 edges. Moreover,
by the pigeonhole principle, if t would have more than (2n − 1)k unary internal nodes, there
would be a chain made of more than k unary internal nodes in t. This cannot happen since,
by hypothesis, it is not possible to form any C -colored S(1)-syntax tree with more than k
nodes. Therefore, we have shown that all S-treelike expressions of x are of degrees at most
n−1+(2n−1)k. Moreover, since C is locally finite and S is a C -colored graded subcollection of
C, all S(m) are finite for all m > 1. Therefore, there are finitely many S-treelike expressions
of x. �

Assume now that C is locally finite and that S is a C -colored graded subcollection of C such
that S(1) finitely factorizes C. For any element x of CS , the colored suboperad of C generated
by S, the S-degree of x is defined by

degS(x) := max {deg(t) : t ∈ Free(S) and evC(t) = x} . (1.2.2)

Thanks to the fact that, by hypothesis, x admits at least one S-treelike expression and, by
Lemma 1.2.1, the fact that x admits finitely many S-treelike expressions, degS(x) is well-
defined.
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1.2.4. Left expressions and hook-length formula. Let S be a C -colored graded subcollection
of C and x ∈ C. An S-left expression of x is an expression for x in C of the form

x =
(
. . .
((
1out(x) ◦1 s1

)
◦i1 s2

)
◦i2 . . .

)
◦i`−1 s` (1.2.3)

where s1, . . . , s` ∈ S and i1, . . . , i`−1 ∈ N. Besides, if t is an S-treelike expression of x such
that N(t) = {e1, . . . , e`}, a sequence (e1, . . . , e` ) is a linear extension of t if the sequence is a
linear extension of the poset induced by t seen as an Hasse diagram where the root of t is
the smallest element.

Lemma 1.2.2. Let C be a locally finite C -colored operad and S be a C -colored graded
subcollection of C. Then, for any x ∈ C, the set of all S-left expressions of x is in one-to-one
correspondence with the set of all pairs (t, e) where t is an S-treelike expression of x and
e is a linear extension of t.

Proof. Let φx be the map sending any S-left expression of the form (1.2.3) of x ∈ C to the pair
(t, e) where t is the colored syntax tree of Free(S) obtained by interpreting (1.2.3) in Free(S),
i.e., by replacing any sj , j ∈ [`], in (1.2.3) by a corolla sj of Free(S) labeled by sj , and where
e is the sequence (e1, . . . , e` ) of the internal nodes of t, where any ej , j ∈ [`], is the node of t

coming from sj . We then have

t =
(
. . .
((
1out(x) ◦1 s1

)
◦i1 s2

)
◦i2 . . .

)
◦i`−1 s` (1.2.4)

and by construction, t is an S-treelike expression of x. Moreover, immediately from the
definition of the partial composition in free C -colored operads, (e1, . . . , e` ) is a linear extension
of t. Therefore, we have shown that φx sends any S-left expression of x to a pair (t, e) where
t is an S-treelike expression of x and e is a linear extension of t.

Let t be an S-treelike expression of x ∈ C and e be a linear extension (e1, . . . , e` ) of t. It
follows by induction on the degree ` of t that t can be expressed by an expression of the
form (1.2.4) where any ej , j ∈ [`], is the node of t coming from sj . Now, the interpretation
of (1.2.4) in C, i.e., by replacing any corolla sj , j ∈ [`], in (1.2.4) by its label sj , is an S-left
expression of the form (1.2.3) for x. Since (1.2.3) is the only antecedent of (t, e) by φx , it
follows that φx , with domain the set of all S-left expressions of x and with codomain the set
of all pairs (t, e) where t is an S-treelike expression of x and e is a linear extension of t, is a
bijection. �

A famous result of Knuth [Knu98], known as the hook-length formula for trees, stated here
in our setting, says that given a C -colored syntax tree t, the number of linear extensions of t
is

deg(t)!∏
v∈N(t)

deg (tv)
. (1.2.5)

When S(1) finitely factorizes C, by Lemma 1.2.1, the number of S-treelike expressions for any
x ∈ C is finite. Hence, in this case, we deduce from Lemma 1.2.2 and (1.2.5) that the number
of S-left expressions of x is

∑

t∈Free(S)
evC(t)=x

deg(t)!∏
v∈N(t)

deg (tv)
. (1.2.6)
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1.3. Bud operads. Let us now present a simple construction producing colored operads from
operads.

1.3.1. From monochrome operads to colored operads. If O is a monochrome operad and C

is a finite set of colors, we denote by BudC (O) the C -colored graded collection defined by

BudC (O)(n) := C × O(n)× C n, n > 1, (1.3.1)

and for all (a, x, u) ∈ BudC (O), out((a, x, u)) := a and in((a, x, u)) := u. We endow BudC (O)
with the partially defined partial composition ◦i satisfying, for all triples (a, x, u) and (b, y, v)
of BudC (O), and i ∈ [|x|] such that out((b, y, v)) = ini((a, x, u)),

(a, x, u) ◦i (b, y, v) := (a, x ◦i y, u Î [i v) , (1.3.2)

where u Î [i v is the word obtained by replacing the i-th letter of u by v. Besides, if O1 and
O2 are two operads and φ : O1 → O2 is an operad morphism, we denote by BudC (φ) the map

BudC (φ) : BudC (O1)→ BudC (O2) (1.3.3)

defined by
BudC (φ)((a, x, u)) := (a, φ(x), u) . (1.3.4)

Proposition 1.3.1. For any set of colors C , the construction (O, φ) 7Ï (BudC (O),BudC (φ)) is
a functor from the category of monochrome operads to the category of C -colored operads.

We omit the proof of Proposition 1.3.1 since it is very straightforward. This result shows
that BudC is a functorial construction producing colored operads from monochrome ones.
We call BudC (O) the C -bud operad of Oa. When C is a singleton, BudC (O) is by definition
a monochrome operad isomorphic to O. For this reason, in this case, we identify BudC (O)
with O.

As a side observation, remark that in general, the bud operad BudC (O) of a free operad
O is not a free C -colored operad. Indeed, consider for instance the bud operad Bud{1,2}(O),
where O := Free(C) and C is the monochrome graded collection defined by C := C(1) := {a}.
Then, a minimal generating set of Bud{1,2}(O) is

{(
1, a , 1

)
,
(

1, a , 2
)
,
(

2, a , 1
)
,
(

2, a , 2
)}

. (1.3.5)

These elements are subjected to the nontrivial relations
(
d, a , 1

)
◦1

(
1, a , e

)
=



d, a
a , e



 =
(
d, a , 2

)
◦1

(
2, a , e

)
, (1.3.6)

where d, e ∈ {1, 2}, implying that Bud{1,2}(O) is not free.

aSee examples of monochrome operads and their bud operads in Section 4.1.
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1.3.2. The associative operad. The associative operad As is the monochrome operad defined
by As(n) := {?n}, n > 1, and wherein partial composition maps are defined by

?n ◦i?m := ?n+m−1, 1 6 i 6 n, 1 6m. (1.3.7)

For any set of colors C , the bud operad BudC (As) is the set of all triples

(a, ?n, u1 . . . un) (1.3.8)

where a ∈ C and u1, . . . , un ∈ C . For C := {1, 2, 3}, one has for instance the partial composi-
tion

(2, ?4, 3112) ◦2 (1, ?3, 233) = (2, ?6, 323312) . (1.3.9)

The associative operad and its bud operads will play an important role in the sequel. For
this reason, to gain readability, we shall simply denote by (a, u) any element

(
a, ?|u|, u

)
of

BudC (As) without any loss of information.

1.3.3. Pruning map. Here, we use the fact that any monochrome operad O can be seen as a
C -colored operad where all output and input colors of its elements are equal to c1, where c1

is the first color of C (see Section 1.1.3). Let

pru : BudC (O)→ O (1.3.10)

be the morphism of C -colored operads defined, for any (a, x, u) ∈ BudC (O), by

pru((a, x, u)) := x. (1.3.11)

We call pru the pruning map on BudC (O).

2. BUD GENERATING SYSTEMS AND COMBINATORIAL GENERATION

In this section, we introduce bud generating systems. A bud generating system relies on
an operad O, a set of colors C , and the bud operad BudC (O). The principal interest of these
objects is that they allow us to specify sets of objects of BudC (O). We shall also establish some
first properties of bud generating systems by showing that they can emulate context-free
grammars, regular tree grammars, and synchronous grammars.

2.1. Bud generating systems. We introduce here the main definitions and the main tools
about bud generating systems.

2.1.1. Bud generating systems. A bud generating system is a tuple B := (O,C ,R, I, T) where
O is an operad called ground operad, C is a finite set of colors, R is a finite C -colored graded
subcollection of BudC (O) called set of rules, I is a subset of C called set of initial colors, and
T is a subset of C called set of terminal colors.

A monochrome bud generating system is a bud generating system whose set C of colors
contains a single color, and whose sets of initial and terminal colors are equal to C . In this
case, as explained in Section 1.3.1, BudC (O) and O are identified. These particular generating
systems are thus simply denoted by pairs (O,R).



12 SAMUELE GIRAUDO

Let us explain how bud generating systems specify, in two different ways, two C -colored
graded subcollections of BudC (O). In what follows, B := (O,C ,R, I, T) is a bud generating
system.

2.1.2. Generation. We say that x2 ∈ BudC (O) is derivable in one step from x1 ∈ BudC (O) if
there is a rule r ∈ R and an integer i such that such that x2 = x1 ◦i r. We denote this property
by x1 → x2. When x1, x2 ∈ BudC (O) are such that x1 = x2 or there are y1, . . . , y`−1 ∈ BudC (O),
` > 1, satisfying

x1 → y1 → · · · → y`−1 → x2, (2.1.1)

we say that x2 is derivable from x1. Moreover, B generates x ∈ BudC (O) if there is a color
a of I such that x is derivable from 1a and all colors of in(x) are in T . The language L(B) of
B is the set of all the elements of BudC (O) generated by B.

The derivation graph of B is the oriented multigraph G(B) with the set of elements deriv-
able from 1a , a ∈ I , as set of vertices. In G(B), for any x1, x2 ∈ L(B) such that x1 → x2, there
are ` edges from x1 to x2, where ` is the number of pairs (i, r) ∈ N×R such that x2 = x1 ◦i rb.

2.1.3. Synchronous generation. We say that x2 ∈ BudC (O) is synchronously derivable in one
step from x1 ∈ BudC (O) if there are rules r1, . . . , r|x1| of R such that x2 = x1 ◦

[
r1, . . . , r|x1|

]
.

We denote this property by x1 ; x2. When x1, x2 ∈ BudC (O) are such that x1 = x2 or there
are y1, . . . , y`−1 ∈ BudC (O), ` > 1, satisfying

x1 ; y1 ; · · ·; y`−1 ; x2, (2.1.2)

we say that x2 is synchronously derivable from x1. Moreover, B synchronously generates
x ∈ BudC (O) if there is a color a of I such that x is synchronously derivable from 1a and all
colors of in(x) are in T . The synchronous language LS(B) of B is the set of all the elements
of BudC (O) synchronously generated by B.

The synchronous derivation graph of B is the oriented multigraph GS(B) with the set
of elements synchronously derivable from 1a , a ∈ I , as set of vertices. In GS(B), for any
x1, x2 ∈ LS(B) such that x1 ; x2, there are ` edges from x1 to x2, where ` is the number of
tuples

(
r1, . . . , r|x1|

)
∈ R|x1| such that x2 = x1 ◦

[
r1, . . . , r|x1|

]
.c.

2.2. First properties. We state now two properties about the languages and the synchronous
languages of bud generating systems.

Lemma 2.2.1. Let B := (O,C ,R, I, T) be a bud generating system. Then, for any x ∈
BudC (O), x belongs to L(B) if and only if x admits an R-treelike expression with output
color in I and all input colors in T.

bSee examples of bud generating systems and derivation graphs in Sections 4.3.1, 4.3.2, and 4.3.3.
cSee examples of bud generating systems and synchronous derivation graphs in Sections 4.3.4 and 4.3.5.
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Proof. Assume that x belongs to L(B). Then, by definition of the derivation relation →, x
admits an R-left expression. Lemma 1.2.2 implies in particular that x admits an R-treelike
expression t. Moreover, since t is a treelike expression for x, t has the same output and input
colors as those of x. Hence, because x belongs to L(B), its output color is in I and all its input
colors are in T . Thus, t satisfies the required properties.

Conversely, assume that x is an element of BudC (O) admitting an R-treelike expression
t with output color in I and all input colors in T . Lemma 1.2.2 implies in particular that x
admits an R-left expression. Hence, by definition of the derivation relation →, x is derivable
from 1out(x) and all its input colors are in T . Therefore, x belongs to L(B). �

Lemma 2.2.2. Let B := (O,C ,R, I, T) be a bud generating system. Then, for any x ∈
BudC (O), x belongs to LS(B) if and only if x admits an R-treelike expression with output
color in I and all input colors in T and which is a perfect tree.

Proof. The proof of the statement of the lemma is very similar to the one of Lemma 2.2.1. The
only difference lies on the fact that the definition of synchronous languages uses the complete
composition map ◦ instead of partial composition maps ◦i , intervening in the definition of
languages. Hence, in this context, R-treelike expressions are perfect trees. �

Proposition 2.2.3. Let B := (O,C ,R, I, T) be a bud generating system. Then, the language
of B satisfies

L(B) =
{
x ∈ BudC (O)R : out(x) ∈ I and in(x) ∈ T+} , (2.2.1)

where BudC (O)R is the colored suboperad of BudC (O) generated by R.

Proof. By definition of suboperads generated by a set, as a C -colored graded collection,
BudC (O)R consists in all the elements obtained by evaluating in BudC (O) all C -colored R-
syntax trees. Therefore, the statement of the proposition is a consequence of Lemma 2.2.1. �

Proposition 2.2.4. Let B := (O,C ,R, I, T) be a bud generating system. Then, the synchro-
nous language of B is a subset of the language of B. Moreover, when R contains all the
colored units of BudC (O), these two languages are equal.

Proof. By Lemma 2.2.1 the language of B is the set of the elements obtained by evaluating
in BudC (O) all C -colored R-syntax trees satisfying some conditions for their output and input
colors. Lemma 2.2.2 says that the synchronous language of B is the set of the elements ob-
tained by evaluating in BudC (O) some C -colored R-syntax trees satisfying at least the previous
conditions. Hence, this implies the statement of the proposition.

The second part of the proposition follows from the fact that, if x1 → x2 for two elements
x1 and x2 of BudC (O), there is by definition r ∈ R and an integer i such that x2 = x1 ◦i r.
Then, one has

x2 = x1 ◦
[
1in1(x1), . . . ,1ini−1(x1), r,1ini+1(x1), . . . ,1in|x1 |(x1)

]
. (2.2.2)

Since by hypothesis, all the colored units of BudC (O) are in R, this implies x1 ; x2. Hence,
as binary relations, → and ; are equal, establishing the second part of the statement of the
proposition. �
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2.3. Links with other generating systems. Context-free grammars, regular tree grammars,
and synchronous grammars are already existing generating systems describing sets of words
for the first, and sets of trees for the last two. We show here that any of these grammars can
be emulated by bud generating systems.

2.3.1. Context-free grammars. A context-free grammar [Har78, HMU06] is a tuple G :=
(V, T, P, s) where V is a finite alphabet of variables, T is a finite alphabet of terminal symbols,
P is a finite subset of V × (V t T)∗ called set of productions, and s is a variable of V called
start symbol. If x1 and x2 are two words of (V t T)∗, x2 is derivable in one step from x1 if
x1 is of the form x1 = uav and x2 is of the form x2 = uwv where u, v ∈ (V t T)∗ and (a,w)
is a production of P. This property is denoted by x1 → x2, so that → is a binary relation on
(V t T)∗. The reflexive and transitive closure of → is the derivation relation. A word x ∈ T∗
is generated by G if x is derivable from the word s. The language of G is the set of all words
generated by G. We say that G is proper if, for any (a,w) ∈ P, w is not the empty word.

If G := (V, T, P, s) is a proper context-free grammar, we denote by CFG(G) the bud gener-
ating system

CFG(G) := (As, V t T,R, {s}, T) (2.3.1)

wherein R is the set of rules

R := {(a, u) ∈ BudVtT (As) : (a, u) ∈ P} . (2.3.2)

Proposition 2.3.1. Let G be a proper context-free grammar. Then, the restriction of the
map in, sending any (a, u) ∈ BudVtT (As) to u, on the domain L(CFG(G)) is a bijection
between L(CFG(G)) and the language of G.

Proof. Let us denote by V the set of variables, by T the set of terminal symbols, by P the set
of productions, and by s the start symbol of G.

Let (a, x) ∈ BudVtT (As), ` > 1, and y1, . . . , y`−1 ∈ (V tT)∗. Then, by definition of CFG, there
are in CFG(G) the derivations

1s → (s, y1)→ · · · → (s, y`−1)→ (a, x) (2.3.3)

if and only if a = s and there are in G the derivations

s → y1 → · · · → y`−1 → x. (2.3.4)

Then, (a, x) belongs to L(CFG(G)) if and only if a = s and x belongs to the language of G.
The fact that in ((s, x)) = x completes the proof. �

2.3.2. Regular tree grammars. Let V := V (0) be a finite graded alphabet of variables and
T :=

⊔
n>0 T(n) be a finite graded alphabet of terminal symbols. For any n > 0 and a ∈ T(n),

the arity |a| of a is n. The tuple (V, T) is called a signature.

A (V, T)-tree is an element of BudVtT(0)(Free(T \ T(0))), where T \ T(0) is seen as a mono-
chrome graded collection. In other words, a (V, T)-tree is a planar rooted tree t such that, for
any n > 1, any internal node of t having n children is labeled by an element of arity n of T ,
and the output and all leaves of t are labeled on V t T(0).
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A regular tree grammar [GS84, CDG+07] is a tuple G := (V, T, P, s) where (V, T) is a
signature, P is a set of pairs of the form (v, s) called productions where v ∈ V and s is a
(V, T)-tree, and s is a variable of V called start symbol. If t1 and t2 are two (V, T)-trees, t2 is
derivable in one step from t1 if t1 has a leaf y labeled by a and the tree obtained by replacing y
by the root of s in t1 is t2, provided that (a, s) is a production of P. This property is denoted by
t1 → t2, so that→ is a binary relation on the set of all (V, T)-trees. The reflexive and transitive
closure of → is the derivation relation. A (V, T)-tree t is generated by G if t is derivable from
the tree 1s consisting in one leaf labeled by s and all leaves of t are labeled on T(0). The
language of G is the set of all (V, T)-trees generated by G.

If G := (V, T, P, s) is a regular tree grammar, we denote by RTG(G) the bud generating
system

RTG(G) := (Free(T \ T(0)), V t T(0),R, {s}, T(0)) (2.3.5)

wherein R is the set of rules

R :=
{
(a, t, u) ∈ BudVtT(0)(Free(T \ T(0))) : (a, ta,u) ∈ P

}
, (2.3.6)

where, for any t ∈ Free(T \ T(0)), a ∈ V t T(0), and u ∈ (V t T(0))|t|, ta,u is the (V, T)-tree
obtained by labeling the output of t by a and by labeling from left to right the leaves of t by
the letters of u.

Proposition 2.3.2. Let G be a regular tree grammar. Then, the map φ : L(RTG(G)) → L
defined by φ((a, t, u)) := ta,u is a bijection between the language of RTG(G) and the language
L of G.

Proof. Let us denote by (V, T) the underlying signature and by s the start symbol of G.

Let (a, t, u) ∈ BudVtT(0)(Free(T \ T(0))), ` > 1, and s(1), . . . , s(`−1) ∈ Free(T \ T(0)), and
v1, . . . , v`−1 ∈ (V t T(0))+. Then, by definition of RTG, there are in RTG(G) the derivations

1s →
(
s, s(1), v1

)
→ · · · →

(
s, s(`−1), v`−1

)
→ (a, t, u) (2.3.7)

if and only if a = s and there are in G the derivations

1s → s(1)
s,v1 → · · · → s(`−1)

s,v`−1 → ta,u. (2.3.8)

Then, (a, t, u) belongs to L(RTG(G)) if and only if a = s and ta,u belongs to the language of G.
The fact that φ((a, t, u)) = ta,u completes the proof. �

2.3.3. Synchronous grammars. In this section, we shall denote by Tree the monochrome
operad defined as the free operad generated by one operation an of arity n for all n > 1. The
elements of this operad are planar rooted trees where internal nodes have an arbitrary arity.
Observe by the way that Tree is not locally finite.

Let B be a finite alphabet. A B-bud tree is an element of BudB(Tree). In other words, a
B-bud tree is a planar rooted tree t such that the output and all leaves of t are labeled on B.
The leaves of a B-bud tree are indexed from 1 from left to right.
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A synchronous grammar [Gir12] is a tuple G := (B,a,R) where B is a finite alphabet of
bud labels, a is an element of B called axiom, and R is a finite set of pairs of the form (b, s)
called substitution rules where b ∈ B and s is a B-bud tree. If t1 and t2 are two B-bud trees
such that t1 is of arity n, t2 is derivable in one step from t1 if there are substitution rules
(b1, s1) , . . . , (bn, sn) of R such that for all i ∈ [n], the i-th leaf of t1 is labeled by bi and t2 is
obtained by replacing the i-th leaf of t1 by si for all i ∈ [n]. This property is denoted by t1 ; t2,
so that ; is a binary relation on the set of all B-bud trees. The reflexive and transitive closure
of ; is the derivation relation. A B-bud tree t is generated by G if t is derivable from the
tree 1a consisting is one leaf labeled by a. The language of G is the set of all B-bud trees
generated by G.

If G := (B,a,R) is a synchronous grammar, we denote by SG(G) the bud generating system

SG(G) := (Tree, B,R, {a}, B) (2.3.9)

wherein R is the set of rules

R := {(b, t, u) ∈ BudB(Tree) : (b, tb,u) ∈ R} , (2.3.10)

where, for any t ∈ BudB(Tree), b ∈ B, and u ∈ B+, tb,u is the B-bud tree obtained by labeling
the output of t by b and by labeling from left to right the leaves of t by the letters of u.

Proposition 2.3.3. Let G be a synchronous grammar. Then, the map φ : LS(SG(G)) → L
defined by φ((b, t, u)) := tb,u is a bijection between the synchronous language of SG(G) and
the language L of G.

Proof. Let us denote by B the set of bud labels and by a the axiom of G.
Let (b, t, u) ∈ BudB(Tree), ` > 1, and s(1), . . . , s(`−1) ∈ Tree, and v1, . . . , v`−1 ∈ B+. Then, by

definition of SG, there are in SG(G) the synchronous derivations

1a ;
(
a, s(1), v1

)
; · · ·;

(
a, s(`−1), v`−1

)
; (b, t, u) (2.3.11)

if and only if b = a and there are in G the derivations

1a ; s(1)
a,v1 ; · · ·; s(`−1)

a,v`−1 ; tb,u. (2.3.12)

Then, (a, t, u) belongs to LS(SG(G)) if and only if b = a and tb,u belongs to the language of G.
The fact that φ((b, t, u)) = tb,u completes the proof. �

3. SERIES ON COLORED OPERADS AND BUD GENERATING SYSTEMS

We introduce in this section the concept of series on colored operads and define two binary
products x and � on these. We then explain how to use bud generating systems as tools to
enumerate families of combinatorial objects. For this purpose, we will define and consider
three series on colored operads extracted from bud generating systems. Each of these series
brings information about their languages or the synchronous languages. One of a key issues
is, given a bud generating system B, to count arity by arity the elements of the language or the
synchronous language of B. In other terms, this amounts to compute the generating series
sL(B) or sLS(B). As we shall see, these generating series can be computed from the series of
colored operads extracted from B.
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From now, K is a field of characteristic zero. Moreover, in all this section, C is a C -colored
operad. Recall that the set C of colors is always considered on the form C = {c1, . . . , ck}.
Besides, B := (O,C ,R, I, T) is a bud generating system.

3.1. Series on colored operads. We introduce here the main definitions about series on
colored operads. We also explain how to encode usual noncommutative multivariate series
and series on monoids by series on colored operads.

3.1.1. Series on colored operads. The linear span of the underlying set of C is denoted by
K 〈C〉. Let K 〈〈C〉〉 be the dual space of K 〈C〉. By definition, the elements of K 〈〈C〉〉 are maps
f : C → K, called C-formal power series (or C-series for short). Let f ∈ K 〈〈C〉〉. The coefficient
of any x ∈ C in f is denoted by 〈x, f〉. The support of f is the set Supp(f) := {x ∈ C : 〈x, f〉 6= 0} .
For any C -colored graded subcollection S of C, the characteristic series of S is the C-series
S̄ defined for any x ∈ C by

〈
x, S̄

〉
:= 1 if x ∈ S, and by

〈
x, S̄

〉
:= 0 otherwise. The series

of colored units of K 〈〈C〉〉 is the series u defined as the characteristic of {1a : a ∈ C }. This
series will play a special role in the sequel. Since C is finite, u is a polynomial. By exploiting
the vector space structure of K 〈〈C〉〉, any C-series f expresses as

f =
∑

x∈C
〈x, f〉 x. (3.1.1)

This notation using potentially infinite sums of elements of C accompanied with coefficients of
K is common in the context of formal power series. In the sequel, we shall define and handle
some C-series using the notation (3.1.1).

Observe that C-series are defined here on fields K instead on the much more general struc-
tures of semirings, as it is the case for series on monoids [Sak09]. We choose to tolerate this
loss of generality because this considerably simplifies the theory. Furthermore, we shall use
in the sequel C-series as devices for combinatorial enumeration, so that it is sufficient to pick
K as the field Q(q0, q1, q2, . . . ) of rational functions in an infinite number of commuting param-
eters with rational coefficients. The parameters q0, q1, q2, . . . intervene in the enumeration of
colored graded subcollections of C with respect to several statisticsd.

3.1.2. Colored operad morphisms and series. If C1 and C2 are two C -colored operads and
φ : C1 → C2 is a morphism of colored operads, φ̄ is the map

φ̄ : K 〈〈C1〉〉 → K 〈〈C2〉〉 (3.1.2)

defined, for any f ∈ K 〈〈C1〉〉 and y ∈ C2, by
〈
y, φ̄(f)

〉
:=

∑

x∈C1
φ(x)=y

〈x, f〉 . (3.1.3)

Observe first that φ̄ is a linear map. Moreover, notice that (3.1.3) could be undefined
for arbitrary colored operads C1 and C2, and an arbitrary morphism of colored operads φ.
However, when all fibers of φ are finite, for any y ∈ C2, the right member of (3.1.3) is well-
defined since the sum has a finite number of terms.

dSee examples of series on the bud operad of the operad Motz of Motzkin paths in Section 4.2.2.
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3.1.3. Pruned series and faithfulness. Let f be a BudC (O)-series. By a slight abuse of notation,
we denote by

pru : K 〈〈BudC (O)〉〉 → K 〈〈O〉〉 (3.1.4)

the map ¯pru. Since C is finite, the series pru(f) is well-defined and is called pruned series of f.
Intuitively, the series pru(f) can be seen as a version of f wherein the colors of the elements
of its support are forgottene. Besides, f is said faithful if all coefficients of pru(f) are equal to
0 or to 1.

We say that B is faithful (resp. synchronously faithful) if the characteristic series of L(B)
(resp. LS(B)) is faithful. Observe that all monochrome bud generating systems are faithful
(resp. synchronously faithful). One of the reasons for requiring faithfulness (resp. synchro-
nous faithfulness) for bud generating systems appears whenB is utilized for specifying objects
of O by pruning the objects of L(B) (resp. LS(B)). In this case, if B is not faithful (resp. syn-
chronously faithful), there would be several distinct elements (a, x, u) of BudC (O) generated
(resp. synchronously generated) by B whose image by pru is x. This could make very hard
the enumeration of the pruned version of the language (resp. synchronous language) of B.

3.1.4. Series of colors. Let
col : C → BudC (As) (3.1.5)

be the morphism of colored operads defined for any x ∈ C by

col(x) := (out(x), in(x)) . (3.1.6)

By a slight abuse of notation, we denote by

col : K 〈〈C〉〉 → K 〈〈BudC (As)〉〉 (3.1.7)

the map ¯col. If f is a C-series, we call col(f) the series of colors of f. Intuitively, the series col(f)
can be seen as a version of f wherein only the colors of the elements of its support are taken
into accountf.

3.1.5. Series of color types. The C -type of a word u ∈ C + is the word type(u) of Nk defined
by

type(u) := |u|c1 . . . |u|ck , (3.1.8)

where for any a ∈ C , |u|a is the number of occurrences of a in u. By extension, we shall
call C -type any word of Nk with at least a nonzero letter and we denote by TC the set of all
C -types. The degree deg(α) of α ∈ TC is the sum of the letters of α. We denote by C α the
word cα1

1 . . . cαkk .

Assume that ZC := {zc1 , . . . , zck} is any alphabet of commutative letters. For any type α, we
denote by ZαC the monomial zα1

c1
. . . zαkck of K [ZC ]. Moreover, for any two types α and β, the

sum α+̇β of α and β is the type satisfying (α+̇β)i := αi + βi for all i ∈ [k]. Observe that with
this notation, ZαCZβC = Zα+̇β

C .

eSee an example of pruned series in Section 4.2.2.
fSee examples of series of colors in Section 4.2.1.
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Consider now the map
colt : K 〈〈C〉〉 → K [[XC t YC ]] , (3.1.9)

defined for all α, β ∈ TC by
〈
Xα

CYβ
C , colt(f)

〉
:=

∑

(a,u)∈BudC (As)
type(a)=α
type(u)=β

〈(a, u), col(f)〉 . (3.1.10)

By the definition of the map col,

colt(f) =
∑

x∈C
〈x, f〉 Xtype(out(x))

C Ytype(in(x))
C . (3.1.11)

Observe that for all α, β ∈ TC such that deg(α) 6= 1, the coefficients of Xα
CYβ

C in colt(f)
are zero. In intuitive terms, the series colt(f), called series of color types of f, can be seen
as a version of col(f) wherein only the output colors and the types of the input colors of the
elements of its support are taken into account, the variables of XC encoding output colors
and the variables of YC encoding input colorsg. In the sequel, we shall be concerned by the
computation of the coefficients of colt(f) for some C-series f.

3.1.6. Elementary series of bud generating systems. We assume here that O is a locally
finite monochrome operad. We shall denote by r the characteristic series of R, by i the
characteristic series of {1a : a ∈ I}, and by t the characteristic series of {1a : a ∈ T}. For all
colors a ∈ C and types α ∈ TC , let

χa,α := # {r ∈ R : (out(r), type(in(r))) = (a, α)} . (3.1.12)

For any a ∈ C , let ga (yc1 , . . . , yck ) be the series of K [[YC ]] defined by

ga (yc1 , . . . , yck ) :=
∑

γ∈TC

χa,γ Yγ
C =

∑

r∈R
out(r)=a

Ytype(in(r))
C . (3.1.13)

Since R is finite, this series is a polynomialh.

In the sequel, we shall use maps φ : C ×TC → N such that φ(a, γ) 6= 0 for a finite number
of pairs (a, γ) ∈ C ×TC , to express in a concise manner some recurrence relations for the
coefficients of series on colored operads. We shall consider the two following notations. If φ
is such a map and a ∈ C , we define φ(a) as the natural number

φ(a) :=
∑

b∈C
γ∈TC

φ(b, γ)γa (3.1.14)

and φa as the finite multiset
φa := *φ(a, γ) : γ ∈ TC + . (3.1.15)

gSee an example of a series of color types in Section 4.2.1.
hSee examples of these definitions in Sections 4.4.4, 4.4.5, and 4.4.6.
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3.2. Products on series. Two binary products x and� on the space of C-series are presented.
The product x is a generalizations to series and to colored operads of a known product on
monochrome operads, and � is a generalization to colored operads of a known product on
series on monochrome operads.

3.2.1. Pre-Lie product. Given two C-series f,g ∈ K 〈〈C〉〉, the pre-Lie product of f and g is the
C-series f x g defined, for any x ∈ C, by

〈x, f x g〉 :=
∑

y,z∈C
i∈[|y|]
x=y◦iz

〈y, f〉 〈z,g〉 . (3.2.1)

Observe that f x g could be undefined for arbitrary C-series f and g on an arbitrary colored
operad C. Besides, notice from (3.2.1) that x is bilinear and that u is a left unit of x. However,
since

f x u =
∑

x∈C
|x| 〈x, f〉 x, (3.2.2)

the C-series u is not a right unit of x. This product is also nonassociative in the general case
since we have, for instance in K 〈〈As〉〉,

(?2 x ?2) x ?2 = 6?4 6= 4?4 = ?2 x (?2 x ?2) . (3.2.3)

Recall that a K-pre-Lie algebra [Vin63,Ger63] (see also [CL01,Man11]) is a K-vector space
V endowed with a bilinear product x satisfying, for all x, y, z ∈ V , the relation

(x x y) x z − x x (y x z) = (x x z) x y − x x (z x y). (3.2.4)

In this case, we say that x is a pre-Lie product. Observe that any associative product satis-
fies (3.2.4), so that associative algebras are pre-Lie algebras.

Proposition 3.2.1. For any locally finite colored operad C, the space K 〈〈C〉〉 endowed with
the binary product x is a pre-Lie algebra.

This product x is a generalization of a pre-Lie product defined in [Ger63] (see also [vdL04,
Cha08]), endowing the K-linear span of the underlying monochrome graded collection of a
monochrome operad with a pre-Lie algebra structure. Proposition 3.2.1 is based on similar
arguments as the ones contained in the previous references.

3.2.2. Composition product. Given two C-series f,g ∈ K 〈〈C〉〉, the composition product of f
and g is the C-series f � g defined, for any x ∈ C, by

〈x, f � g〉 :=
∑

y,z1,...,z|y|∈C
x=y◦[z1,...,z|y|]

〈y, f〉
∏

i∈[|y|]
〈zi,g〉 . (3.2.5)

Observe that f � g could be undefined for arbitrary C-series f and g on an arbitrary colored
operad C. Besides, notice from (3.2.5) that � is linear on the left and that the series u is the
left and right unit of �. However, this product is not linear on the right since we have, for
instance in K 〈〈As〉〉,

?2 �(?2 + ?3) = ?4 + 2 ?5 +?6 6= ?4 + ?6 = ?2 � ?2 + ?2 � ?3. (3.2.6)
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Proposition 3.2.2. For any locally finite colored operad C, the space K 〈〈C〉〉 endowed with
the binary product � and the unit u is a monoid.

This product� is a generalization of the composition product of series on operads of [Cha02,
Cha09] (see also [vdL04, Fra08, Cha08, LV12, LN13]). In the case where C is a monochrome
operad concentrated in arity 1, � coincides with the Cauchy product on series of monoids
considered in [Sak09]. Proposition 3.2.2 is based on similar arguments as the ones contained
in the previous references.

Lemma 3.2.3. Let B := (O,C ,R, I, T) be a bud generating system and f be a BudC (O)-series.
Then, i� f � t is the BudC (O)-series satisfying, for all x ∈ BudC (O),

〈x, i� f � t〉 =
{
〈x, f〉 if out(x) ∈ I and in(x) ∈ T+,
0 otherwise.

(3.2.7)

Proof. By definition of the operation �, composing f with i to the left and with t to the right
with respect to � amounts to annihilate the coefficients of the terms of f that have an output
color which is not in I or an input color which is not in T . This implies the statement of the
lemma. �

3.3. Series and languages. We introduce the Kleene star operation of the pre-Lie product x
in order to define the hook generating series of a bud generating system B. We also study
the inverse of the composition product � in order the define the syntactic generating series
of B. We relate both of these series with the language of B and provide ways to compute its
coefficients.

3.3.1. Pre-Lie star product. For any C-series f ∈ K 〈〈C〉〉 and any ` > 0, let fx` be the C-series
recursively defined by

fx` :=
{

u if ` = 0,
fx`−1 x f otherwise.

(3.3.1)

Immediately from this definition and the definition of the pre-Lie product x, the coefficients
of fx` , ` > 0, satisfy for any x ∈ C,

〈x, fx` 〉 =






δx,1out(x) if ` = 0,
∑
y,z∈C
i∈[|y|]
x=y◦iz

〈y, fx`−1〉 〈z, f〉 otherwise. (3.3.2)

Lemma 3.3.1. Let C be a locally finite C -colored operad and f be a series of K 〈〈C〉〉. Then,
the coefficients of fx`+1 , ` > 0, satisfy for any x ∈ C,

〈x, fx`+1〉 =
∑

y1,...,y`+1∈C
i1,...,i`∈N

x=(...(y1◦i1y2)◦i2 ... )◦i` y`+1

∏

j∈[`+1]
〈yj , f〉 . (3.3.3)

Proof. By Proposition 3.2.1, since C is locally finite, fx`+1 is a well-defined C-series. The
statement of the lemma follows by induction on ` and by using (3.3.2). �
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The x-star of f is the series

fx∗ :=
∑

`>0
fx` = u + f + f x f + (f x f) x f + ((f x f) x f) x f + · · · . (3.3.4)

Observe that fx∗ could be undefined for an arbitrary C-series f.

Proposition 3.3.2. Let C be a locally finite C -colored operad and f be a series of K 〈〈C〉〉
such that Supp(f)(1) finitely factorizes C. Then,

(i) the series fx∗ is well-defined;
(ii) for any x ∈ C, the coefficient of x in fx∗ satisfies

〈x, fx∗〉 = δx,1out(x) +
∑

y,z∈C
i∈[|y|]
x=y◦iz

〈y, fx∗〉 〈z, f〉 ; (3.3.5)

(iii) the equation

x− x x f = u (3.3.6)

admits x = fx∗ as unique solution.

Proof. Let x ∈ C and let us show that the coefficient 〈x, fx∗〉 is well-defined. Since C is
locally finite and Supp(f)(1) is finitely factorizes C, by Lemma 1.2.1, there are finitely many
Supp(f)-treelike expressions for x. Thus, for all ` > degSupp(f)(x) + 1 there is in particular no
expression for x of the form x = (. . . (y1 ◦i1 y2) ◦i2 . . . ) ◦i`−1 y` where y1, . . . , y` ∈ Supp(f) and
i1, . . . , i`−1 ∈ N. This implies, together with Lemma 3.3.1, that 〈x, fx` 〉 = 0. Therefore, by
virtue of this observation and by definition of the x-star operation, the coefficient of x in fx∗

is

〈x, fx∗〉 =
∑

`>0
〈x, fx` 〉 =

∑

06`6degSupp(f)(x)

〈x, fx` 〉 , (3.3.7)

showing that 〈x, fx∗〉 is a sum of a finite number of terms, all well-defined by Lemma 3.3.1.
Thus, fx∗ is well-defined, so that (i) holds.

Point (ii) follows straightforwardly from the definition of the x-star operation and (3.3.2).

By (3.3.6), we have x = u + x x f so that the coefficients of x satisfy, for any x ∈ C,

〈x,x〉 = 〈x,u〉+ 〈x,x x f〉 = δx,1out(x) +
∑

y,z∈C
i∈[|y|]
x=y◦iz

〈y,x〉 〈z, f〉 . (3.3.8)

By (ii), this implies x = fx∗ and the uniqueness of this solution, so that (iii) is established. �

In particular, Point (ii) of Proposition 3.3.2 gives a way, given a C-series f satisfying the
stated constraints, to compute recursively the coefficients of its x-star fx∗ .
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3.3.2. Hook generating series. The hook generating series of B the BudC (O)-series hook(B)
defined by

hook(B) := i� rx∗ � t. (3.3.9)
Observe that (3.3.9) could be undefined for an arbitrary set of rules R of B. Nevertheless,
when r satisfies the conditions of Proposition 3.3.2, that is, when O is a locally finite operad
and R(1) finitely factorizes BudC (O), hook(B) is well-defined.

The aim of the following is to provide an expression to compute the coefficients of hook(B).

Lemma 3.3.3. Let B := (O,C ,R, I, T) be a bud generating system such that O is a locally
finite operad and R(1) finitely factorizes BudC (O). Then, for any x ∈ BudC (O),

〈x, rx∗〉 = δx,1out(x) +
∑

y∈BudC (O)
z∈R
i∈[|y|]
x=y◦iz

〈y, rx∗〉 . (3.3.10)

Proof. Since R(1) finitely factorizes BudC (O), by Point (i) of Proposition 3.3.2, rx∗ is a well-
defined series. Now, (3.3.10) is a consequence of Point (ii) of Proposition 3.3.2 together with
the fact that all coefficients of r are equal to 0 or to 1. �

Proposition 3.3.4. Let B := (O,C ,R, I, T) be a bud generating system such that O is a
locally finite operad and R(1) finitely factorizes BudC (O). Then, for any x ∈ BudC (O) such
that out(x) ∈ I, the coefficient 〈x, rx∗〉 is the number of multipaths from 1out(x) to x in the
derivation graph of B.

Proof. First, since R(1) finitely factorizes BudC (O), by Point (i) of Proposition 3.3.2, rx∗ is a
well-defined series. If x = 1a for an a ∈ I , since 〈1a, rx∗〉 = 1, the statement of the proposition
holds. Let us now assume that x is different from a colored unit and let us denote by λx the
number of multipaths from 1out(x) to x in the derivation graph G(B) of B. By definition of
G(B), by denoting by µy,x the number of edges from y ∈ BudC (O) to x in G(B), we have

λx =
∑

y∈BudC (O)

µy,x λy =
∑

y∈BudC (O)

# {(i, r) ∈ N×R : x = y ◦i r} λy =
∑

y∈BudC (O)
i∈[|y|]
r∈R
x=y◦ir

λy .
(3.3.11)

We observe that Relation (3.3.11) satisfied by the λx is the same as Relation (3.3.10) of Lemma 3.3.3
satisfied by the 〈x, rx∗〉. This implies the statement of the proposition. �

Theorem 3.3.5. Let B := (O,C ,R, I, T) be a bud generating system such that O is a locally
finite operad and R(1) finitely factorizes BudC (O). Then, the hook generating series of B
satisfies

hook(B) =
∑

t∈Free(R)
out(t)∈I
in(t)∈T+

deg(t)!∏
v∈N(t)

deg (tv)
evBudC (O)(t). (3.3.12)

Proof. By definition of L(B) and G(B), any x ∈ L(B) can be reached from 1out(x) by a multipath

1out(x) → y1 → y2 → · · · → y`−1 → x (3.3.13)
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in G(B), where y1, . . . , y`−1 are elements of BudC (O) and 1out(x) ∈ I . Hence, by definition of→,
x admits an R-left expression

x =
(
. . .
((
1out(x) ◦1 r1

)
◦i1 r2

)
◦i2 . . .

)
◦i`−1 r` (3.3.14)

where for any j ∈ [`], rj ∈ R, and for any j ∈ [` − 1],

yj =
(
. . .
((
1out(x) ◦1 r1

)
◦i1 r2

)
◦i2 . . .

)
◦ij−1 rj (3.3.15)

and ij ∈ [|yj |]. This shows that the set of all multipaths from 1out(x) to x in G(B) is in one-
to-one correspondence with the set of all R-left expressions for x. Now, observe that since
R(1) finitely factorizes BudC (O), by Point (i) of Proposition 3.3.2, rx∗ is a well-defined series.
If x = 1a for an a ∈ I , since 〈1a, rx∗〉 = 1, the statement of the proposition holds. Let us
now assume that x is different from a colored unit and let us denote by λx the number of
multipaths from 1out(x) to x in the derivation graph G(B) of B. By d, rx∗ is a well-defined
series. By Proposition 3.3.4, Lemmas 1.2.1 and 1.2.2, and (1.2.6), we obtain that

〈x, rx∗〉 =
∑

t∈Free(R)
evBudC (O)(t)=x

deg(t)!∏
v∈N(t)

deg(tv)
. (3.3.16)

Finally, by Lemma 3.2.3, for any x ∈ BudC (O) such that out(x) ∈ I and in(x) ∈ T+, we have
〈x,hook(B)〉 = 〈x, rx∗〉. This shows that the right member of (3.3.12) is equal to hook(B). �

An alternative way to understand hook(B) thus offered by Theorem 3.3.5 consists is seeing
the coefficient 〈x,hook(B)〉, x ∈ BudC (O), as the number of R-left expressions of x.

The following result establishes a link between the hook generating series of B and its
language.

Proposition 3.3.6. Let B := (O,C ,R, I, T) be a bud generating system such that O is a
locally finite operad and R(1) finitely factorizes BudC (O). Then, the support of the hook
generating series of B is the language of B.

Proof. This is an immediate consequence of Theorem 3.3.5 and Lemma 2.2.1. �

Bud generating systems lead to the definition of analogues of the hook-length statis-
tic [Knu98] for combinatorial objects possibly different than trees in the following way. Let O
be a monochrome operad, G be a generating set of O, and HSO,G := (O,G) be a monochrome
bud generating system depending on O and G, called hook bud generating system. Since G
is a generating set of O, by Propositions 2.2.3 and 3.3.6, the support of hook (HSO,G) is equal
to L (HSO,G). We define the hook-length coefficient of any element x of O as the coefficient
〈x,hook (HSO,G)〉i.

iSee examples of definitions of a hook-length statistics for binary trees, words of Diasγ , and for Motzkin paths in
Sections 4.4.1, 4.4.2, and 4.4.3.
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3.3.3. Invertible elements for the composition product. Since by Proposition 3.2.2, � is an
associative product and u is its unit, the �-inverse of a C-series f is defined as the unique
C-series x satisfying

f � x = u = x� f. (3.3.17)

This series x could be undefined for an arbitrary C-series f. The �-inverse of f is denoted by
f�−1 when it is well-defined.

Immediately from this definition and the definition of the composition product �, the co-
efficients of f�−1 satisfy for any x ∈ C,

〈
x, f�−1

〉
=

δx,1out(x)〈
1out(x), f

〉 − 1〈
1out(x), f

〉
∑

y,z1,...,z|y|∈C
y6=1out(x)

x=y◦[z1,...,z|y|]

〈y, f〉
∏

i∈[|y|]

〈
zi, f�−1

〉
. (3.3.18)

Proposition 3.3.7. Let C be a locally finite colored C -operad and f be a series of K 〈〈C〉〉
such that Supp(f) = {1a : a ∈ C } t S where S is a C -colored graded subcollection of C such
that S(1) is finitely factorizes C. Then,

(i) the series f�−1 is well-defined;
(ii) for any x ∈ C, the coefficient of x in f�−1 satisfies

〈
x, f�−1

〉
= 1〈

1out(x), f
〉

∑

t∈Free(S)
evC(t)=x

(−1)deg(t)
∏

v∈N(t)

〈t(v), f〉∏
j∈[|v|]

〈
1inj (v), f

〉 . (3.3.19)

Proof. Let us first assume that x does not belong to CS , the colored suboperad of C generated
by S. Hence, since there is no t ∈ Free(S) such that evC(t) = x, the right member of (3.3.19)
is equal to zero. Moreover, since x does not belong to CS , for any y ∈ C and z1, . . . , z|y| ∈ C
such that y 6= 1out(x) and x = y ◦

[
z1, . . . , z|y|

]
, we have necessarily y /∈ S or zi /∈ CS for at least

one i ∈ [|y|]. By (3.3.18), this implies that 〈x, f�−1〉 = 0. This hence shows that (3.3.19) holds
when x /∈ CS .

Let us assume that x belongs to CS . By Lemma 1.2.1, since C is locally finite and S(1)
finitely factorizes C, the S-degree degS(x) of x is well-defined. To prove (3.3.19), we proceed by
induction on degS(x) and by using (3.3.18). A straightforward computation shows that (3.3.19)
holds so that (ii) checks out.

Finally, by Lemma 1.2.1, there is a finite number of S-treelike expressions of x. This shows
that (3.3.19) is well-defined and then f�−1 also is. Hence, (i) holds. �

Given a C-series f such that f�−1 is well-defined, Equation (3.3.18) (resp. Proposition 3.3.7)
provides a recursive (resp. direct) way to compute the coefficients of f�−1 .

Besides, the set of all the C-series satisfying the conditions of Proposition 3.3.7 forms a
submonoid of K 〈〈C〉〉 for the composition product which is also a group. This group is a
generalization of the groups constructed from operads of [Cha02, Cha09] (see also [vdL04,
Fra08,Cha08,LV12,LN13]).
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3.3.4. Syntactic generating series. The syntactic generating series of B the BudC (O)-series
synt(B) defined by

synt(B) := i� (u− r)�−1 � t. (3.3.20)

Observe that (3.3.20) could be undefined for an arbitrary set of rules R of B. Nevertheless,
when u − r satisfies the conditions of Proposition 3.3.7, synt(B) is well-defined. Remark that
this condition is satisfied whenever O is locally finite and R(1) factorizes finitely BudC (O).

The aim of this section is to provide an expression to compute the coefficients of synt(B).

Lemma 3.3.8. Let B := (O,C ,R, I, T) be a bud generating system such that O is a locally
finite operad and R(1) finitely factorizes BudC (O). Then, for any x ∈ BudC (O),

〈
x, (u− r)�−1

〉
= δx,1out(x) +

∑

y∈R
z1,...,z|y|∈BudC (O)
x=y◦[z1,...,z|y|]

∏

i∈[|y|]

〈
zi, (u− r)�−1

〉
. (3.3.21)

Proof. Since R(1) finitely factorizes BudC (O), by Point (i) of Proposition 3.3.7, (u − r)�−1 is
a well-defined series. Now, (3.3.21) is a consequence of Point (ii) of Proposition 3.3.7 and
Equation (3.3.18) for the �-inverse, together with the fact that all coefficients of r are equal to
0 or to 1. �

Theorem 3.3.9. Let B := (O,C ,R, I, T) be a bud generating system such that O is a locally
finite operad and R(1) finitely factorizes BudC (O). Then, the syntactic generating series of
B satisfies

synt(B) =
∑

t∈Free(R)
out(t)∈I
in(t)∈T+

evBudC (O)(t). (3.3.22)

Proof. Let, for any x ∈ BudC (O), λx be the number of R-treelike expressions for x. Since R(1)
finitely factorizes BudC (O), by Lemma 1.2.1, all λx are well-defined integers. Moreover, since
R(1) finitely factorizes BudC (O), by Point (i) of Proposition 3.3.7, (u − r)�−1 is a well-defined
series. Let us show that 〈x, (u− r)�−1〉 = λx . First, when x does not belong to BudC (O)R, by
Point (ii) of Proposition 3.3.7, 〈x, (u− r)�−1〉 = 0. Since, in this case λx = 0, the property holds.
Let us now assume that x belongs to BudC (O)R. Again by Lemma 1.2.1, the R-degree of x
is well-defined. Therefore, we proceed by induction on degR(x). By Lemma 3.3.8, when x is
a colored unit 1a , a ∈ C , one has 〈x, (u− r)�−1〉 = 1. Since there is exactly one R-treelike
expression for 1a , namely the syntax tree consisting in one leaf of output and input color a,
λ1a = 1 so that the base case holds. Otherwise, again by Lemma 3.3.8, we have, by using
induction hypothesis,

〈
x, (u− r)�−1

〉
=

∑

y∈R
z1,...,z|y|∈BudC (O)
x=y◦[z1,...,z|y|]

∏

i∈[|y|]
λzi = λx . (3.3.23)

Notice that one can apply the induction hypothesis to state (3.3.23) since one has degR(x) >
1 + degR(zi) for all i ∈ [|y|].
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Now, from (3.3.23) and by using Lemma 3.2.3, we obtain that for all x ∈ BudC (O) such that
out(x) ∈ I and in(x) ∈ T+, 〈x, synt(B)〉 = λx . Denoting by f the series of the right member
of (3.3.22), we have 〈x, f〉 = λx if out(x) ∈ I and in(x) ∈ T+, and 〈x, f〉 = 0 otherwise. This
shows that this expression is equal to synt(B). �

Theorem 3.3.9 explains the name of syntactic generating series for synt(B) because this
series can be expressed following (3.3.22) as a sum of evaluations of syntax trees. An alternative
way to see synt(B) is that for any x ∈ BudC (O), the coefficient 〈x, synt(B)〉 is the number of
R-treelike expressions for x.

The following result establishes a link between the syntactic generating series of B and its
language.

Proposition 3.3.10. Let B := (O,C ,R, I, T) be a bud generating system such that O is a
locally finite operad and R(1) finitely factorizes BudC (O). Then, the support of the syntactic
generating series of B is the language of B.

Proof. This is an immediate consequence of Theorem 3.3.9 and Lemma 2.2.1. �

By Propositions 3.3.6 and 3.3.10, the series hook(B) and synt(B) have the same support.
The main difference between these two series is that the coefficient of an x ∈ BudC (O) in
synt(B) is the number of R-treelike expressions for x, while in hook(B) this coefficient is the
number of ways to generate x in B.

We say that B is unambiguous if all coefficients of synt(B) are equal to 0 or to 1. This
property is important from a combinatorial and enumerative point of view. Indeed, when B is
unambiguous, its syntactic generating series is the characteristic series of its language. As a
consequence, by definition of the series of colors col (see Section 3.1.4) and Proposition 3.3.10,
the coefficient of (a, u) ∈ BudC (As) in the series col(synt(B)) is the number of elements x of
L(B) such that (out(x), in(x)) = (a, u).

As a side remark, observe that Theorem 3.3.9 implies in particular that for any bud gen-
erating system of the form B := (O,C ,R,C ,C ), if synt(B) is unambiguous, then the colored
suboperad of BudC (O) generated by R is free. The converse property does not hold.

Let us now describe the coefficients of colt(synt(B)), the series of color types of the syntactic
series of B, in the particular case when B is unambiguous. We shall give two descriptions:
a first one involving a system of equations of series of K [[YC ]], and a second one involving a
recurrence relation on the coefficients of a series of K [[XC t YC ]].

Lemma 3.3.11. Let B := (O,C ,R, I, T) be an unambiguous bud generating system such
that O is a locally finite operad and R(1) finitely factorizes BudC (O). Then, for all colors
a ∈ I and all types α ∈ TC such that C α ∈ T+, the coefficients 〈xaYα

C , colt(synt(B))〉 count
the number of elements x of L(B) such that (out(x), type(in(x))) = (a, α).

Proof. By Proposition 3.3.10 and sinceB is unambiguous, synt(B) is the characteristic series of
L(B). The statement of the lemma follows immediately from the definition (3.1.10) of colt. �
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Proposition 3.3.12. Let B := (O,C ,R, I, T) be an unambiguous bud generating system
such that O is a locally finite operad and R(1) finitely factorizes BudC (O). For all a ∈ C , let
fa (yc1 , . . . , yck ) be the series of K [[YC ]] satisfying

fa (yc1 , . . . , yck ) = ya + ga (fc1 (yc1 , . . . , yck ) , . . . , fck (yc1 , . . . , yck )) . (3.3.24)

Then, for any color a ∈ I and any type α ∈ TC such that C α ∈ T+, the coefficients
〈xaYα

C , colt(synt(B))〉 and 〈Yα
C , fa〉 are equal.

Proof. Let us set h := (u− r)�−1 and, for all a ∈ C , ha := 1a � h. Since R(1) finitely factorizes
BudC (O), by Point (i) of Proposition 3.3.7, h and ha are well-defined series. Equation (3.3.17)
implies that any ha , a ∈ C , satisfies the relation

ha = 1a + ra � h (3.3.25)

where ra := 1a � r. Observe that for any a ∈ C , colt (ra) = ga (yc1 , . . . , yck ) . Moreover, from
the definitions of colt and the operation �, we obtain that colt (ra � h) can be computed by a
functional composition of the series ga (yc1 , . . . , yck ) with fc1 (yc1 , . . . , yck ), . . . , fck (yc1 , . . . , yck ).
Hence, Relation (3.3.25) leads to

colt(ha) = colt (1a) + colt (ra � h)
= ya + ga (fc1 (yc1 , . . . , yck ) , . . . , fck (yc1 , . . . , yck ))
= fa (yc1 , . . . , yck ) .

(3.3.26)

Finally, Lemma 3.2.3 implies that, when a ∈ I and C α ∈ T+, 〈xaYα
C , colt(synt(B))〉 and 〈Yα

C , fa〉
are equal. �

When B is a bud generating system satisfying the conditions of Proposition 3.3.12, the
generating series of the language of B satisfies

sL(B) =
∑

a∈I
fTa , (3.3.27)

where fTa is the specialization of the series fa (yc1 , . . . , yck ) at yb := t for all b ∈ T and at
yc := 0 for all c ∈ C \ T . Therefore, the resolution of the system of equations given by
Proposition 3.3.12 provides a way to compute the coefficients of sL(B).

Theorem 3.3.13. Let B := (O,C ,R, I, T) be an unambiguous bud generating system such
that O is a locally finite operad and R(1) finitely factorizes BudC (O). Then, the generating
series sL(B) of the language of B is algebraic.

Proof. Proposition 3.3.12 shows that each series fa satisfies an algebraic equation involving
variables of YC and series fb , b ∈ C . Hence, fa is algebraic. Moreover, the fact that, by (3.3.27),
sL(B) is a specialized sum of some fa implies the statement of the theorem. �

Theorem 3.3.14. Let B := (O,C ,R, I, T) be an unambiguous bud generating system such
that O is a locally finite operad and R(1) finitely factorizes BudC (O) Let f be the series of
K [[XC t YC ]] satisfying, for any a ∈ C and any type α ∈ TC ,

〈xaYα
C , f〉 = δα,type(a) +

∑

φ:C×TC→N
α=φ(c1)...φ(ck )

χa,∑φc1 ···
∑
φck

(
∏

b∈C

φb!
)


∏

b∈C
γ∈TC

〈
xbYγ

C , f
〉φ(b,γ)



 . (3.3.28)
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Then, for any color a ∈ I and any type α ∈ TC such that C α ∈ T+, the coefficients
〈xaYα

C , colt(synt(B))〉 and 〈xaYα
C , f〉 are equal.

Proof. First, since R(1) finitely factorizes BudC (O), by Point (i) of Proposition 3.3.7, (u− r)�−1

is a well-defined series. Moreover, by (3.3.17), (u− r)�−1 satisfies the identity of series

(u− r)� (u− r)�−1 = u. (3.3.29)

Since the map col commutes with the addition of series, with the composition product �, and
with the inverse with respect to �, (3.3.29) leads to the equation

col(u− r)� col(u− r)�−1 = col(u). (3.3.30)

By Point (ii) of Proposition 3.3.7, by (3.3.18), and by definition of the composition map of
BudC (As), the coefficients of col(u − r)�−1 satisfy, for all (a, u) ∈ BudC (As), the recurrence
relation
〈
(a, u), col(u− r)�−1

〉
= δu,a +

∑

w∈C +
w6=a

λa,w
∑

v(1),...,v(|w|)∈C +

u=v(1)...v(|w|)

∏

i∈[|w|]

〈(
wi, v(i)

)
, col(u− r)�−1

〉
, (3.3.31)

where λa,w denotes the number of rules r ∈ R such that out(r) = a and in(r) = w. By
definition of colt and by (3.3.31), a straightforward computation shows that the coefficients of
colt ((u− r)�−1 ) express for any α ∈ TC , as

〈
xaYα

C , colt
(
(u− r)�−1

)〉

= δα,type(a) +
∑

γ∈TC

γ6=type(a)

χa,γ
∑

β(1),...,β(deg(γ))∈TC

α=β(1)+̇···+̇β(deg(γ))

∏

i∈[deg(γ)]

〈
xC

γ
i
Yβ(i)

C , colt
(
(u− r)�−1

)〉
. (3.3.32)

Therefore, (3.3.32) provides a recurrence relation for the coefficients of colt ((u− r)�−1 ). By
using the notations introduced in Section 3.1.6 about mappings φ : C × TC → N, we obtain
that the coefficients of colt ((u− r)�−1 ) satisfy the same recurrence relation (3.3.28) as the ones
of f. Finally, Lemma 3.2.3 implies that, when a ∈ I and C α ∈ T+, 〈xaYα

C , colt(synt(B))〉 and
〈xaYα

C , f〉 are equal. �

When B is a bud generating system satisfying the conditions of Theorem 3.3.14 (which are
the same as the ones required by Proposition 3.3.12), one has for any n > 1,

〈
tn, sL(B)

〉
=
∑

a∈I

∑

α∈TC
αi=0,ci∈C \T

〈xaYα
C , f〉 . (3.3.33)

Therefore, this provides an alternative and recursive way to compute the coefficients of sL(B),
different from the one of Proposition 3.3.12j .

jSee an example of computation of a series sL(B) in Section 4.4.4.
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3.4. Series and synchronous languages. We introduce the Kleene star operation of the com-
position product � in order to define the synchronous generating series of a bud generating
system B. We relate this series with the synchronous language of B and provide ways to
compute its coefficients.

Proofs of some results of this section are very similar to ones of Section 3.3. For this
reason, some proofs are sketched here.

3.4.1. Composition star product. For any C-series f ∈ K 〈〈C〉〉 and any ` > 0, let f�` be the
series defined by

f�` :=
∏

16i6`
f, (3.4.1)

where the product of (3.4.1) denotes the iterated version of the composition product �. Ob-
serve that since � is associative (see Proposition 3.2.2), this definition is consistent. Immedi-
ately from this definition and the definition of the composition product �, the coefficient of
f�` , ` > 0, satisfies for any x ∈ C,

〈
x, f�`

〉
=






δx,1out(x) if ` = 0,
∑

y,z1,...,z|y|∈C
x=y◦[z1,...,z|y|]

〈y, f�`−1〉
∏

i∈[|y|]
〈zi, f〉 otherwise. (3.4.2)

Lemma 3.4.1. Let C be a locally finite C -colored operad and f be a series of K 〈〈C〉〉. Then,
the coefficients of f�`+1 , ` > 0, satisfy for any x ∈ C,

〈
x, f�`+1

〉
=

∑

t∈Freeperf (C)
ht(t)=`+1
evC(t)=x

∏

v∈N(t)

〈t(v), f〉 . (3.4.3)

Proof. By Proposition 3.2.2, since C is locally finite, f�`+1 is a well-defined C-series. The state-
ment of the lemma follows by induction on ` and by using (3.4.2). �

The �-star of f is the series

f�∗ :=
∑

`>0
f�` = u + f + f � f + f � f � f + f � f � f � f + · · · . (3.4.4)

Observe that f�∗ could be undefined for an arbitrary C-series f.

Proposition 3.4.2. Let C be a locally finite C -colored operad and f be a series of K 〈〈C〉〉
such that Supp(f)(1) finitely factorizes C. Then,

(i) the series f�∗ is well-defined;
(ii) for any x ∈ C, the coefficient of x in f�∗ satisfies

〈
x, f�∗

〉
= δx,1out(x) +

∑

y,z1,...,z|y|∈C
x=y◦[z1,...,z|y|]

〈
y, f�∗

〉 ∏

i∈[|y|]
〈zi, f〉 ; (3.4.5)

(iii) the equation
x− x� f = u (3.4.6)

admits x = f�∗ as unique solution.
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Proof. The proof is similar to the one of Proposition 3.3.2 and uses (3.4.2) and Lemmas 1.2.1
and 3.4.1. �

In particular, Point (ii) of Proposition 3.4.2 gives a way, given a C-series f satisfying the
stated constraints, to compute recursively the coefficients of its �-star f�∗ .

3.4.2. Synchronous generating series. The synchronous generating series ofB the BudC (O)-
series sync(B) defined by

sync(B) := i� r�∗ � t. (3.4.7)
Observe that (3.4.7) could be undefined for an arbitrary set of rules R of B. Nevertheless,
when r satisfies the conditions of Proposition 3.4.2, that is, when O is a locally finite operad
and R(1) finitely factorizes BudC (O), sync(B) is well-defined.

The aim of the following is to provide an expression to compute the coefficients of sync(B).

Lemma 3.4.3. Let B := (O,C ,R, I, T) be a bud generating system such that O is a locally
finite operad and R(1) finitely factorizes BudC (O). Then, for any x ∈ BudC (O),

〈
x, r�∗

〉
= δx,1out(x) +

∑

y∈BudC (O)
z1,...,z|y|∈R

x=y◦[z1,...,z|y|]

〈
y, r�∗

〉
. (3.4.8)

Proof. The proof is similar to the one of Lemma 3.3.3 and uses Proposition 3.4.2. �

Theorem 3.4.4. Let B := (O,C ,R, I, T) be a bud generating system such that O is a locally
finite operad and R(1) finitely factorizes BudC (O). Then, the synchronous generating series
of B satisfies

sync(B) =
∑

t∈Freeperf (R)
out(t)∈I
in(t)∈T+

evBudC (O)(t). (3.4.9)

Proof. Let, for any x ∈ BudC (O), λx be the number of perfect R-treelike expressions for
x. Since R(1) finitely factorizes BudC (O), by Lemma 1.2.1, all λx are well-defined integers.
Moreover, since R(1) finitely factorizes BudC (O), by Point (i) of Proposition 3.4.2, r�∗ is a well-
defined series. Let us show that 〈x, r�∗〉 = λx . First, when x does not belong to BudC (O)R,
by Lemma 3.4.3, 〈x, r�∗〉 = 0. Since, in this case λx = 0, the property holds. Let us now
assume that x belongs to BudC (O)R. Again by Lemma 1.2.1, the R-degree of x is well-defined.
Therefore, we proceed by induction on degR(x). By Lemma 3.4.3, when x is a colored unit 1a ,
a ∈ C , one has 〈x, r�∗〉 = 1. Since there is exactly one treelike expression which is a perfect
tree for 1a , namely the syntax tree consisting in one leaf of output and input color a, λ1a = 1
so that the base case holds. Otherwise, again by Lemma 3.4.3, we have, by using induction
hypothesis, 〈

x, r�∗
〉

=
∑

y∈BudC (O)
z1,...,z|y|∈R

x=y◦[z1,...,z|y|]

λy = λx . (3.4.10)

Notice that one can apply the induction hypothesis to state (3.4.10) since one has degR(x) >
1 + degR(y).
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Now, from (3.4.10) and by using Lemma 3.2.3, we obtain that for all x ∈ BudC (O) such that
out(x) ∈ I and in(x) ∈ T+, 〈x, sync(B)〉 = λx . By denoting by f the series of the right member
of (3.4.9), we have 〈x, f〉 = λx if out(x) ∈ I and in(x) ∈ T∗, and 〈x, f〉 = 0 otherwise. This shows
that this expression is equal to sync(B). �

Theorem 3.4.4 implies that for any x ∈ BudC (O), the coefficient of 〈x, sync(B)〉 is the
number of R-treelike expressions for x which are perfect trees.

The following result establishes a link between the synchronous generating series of B
and its synchronous language.

Proposition 3.4.5. Let B := (O,C ,R, I, T) be a bud generating system such that O is a locally
finite operad and R(1) finitely factorizes BudC (O). Then, the support of the synchronous
generating series of B is the synchronous language of B.

Proof. This is an immediate consequence of Theorem 3.4.4 and Lemma 2.2.2. �

We say that B is synchronously unambiguous if all coefficients of sync(B) are equal to 0
or to 1. This property is important to describe the coefficients of col(sync(B)) for the same
reasons as the ones concerning the unambiguity property exposed in Section 3.3.4.

Let us now describe the coefficients of colt(sync(B)), the series of colors types of the syn-
chronous series of B, in the particular case when B is unambiguous. We shall give two
descriptions: a first one involving a system of functional equations of series of K [[YC ]], and a
second one involving a recurrence relation on the coefficients of a series of K [[XC t YC ]].

Lemma 3.4.6. Let B := (O,C ,R, I, T) be a synchronously unambiguous bud generating
system such that O is a locally finite operad and R(1) finitely factorizes BudC (O). Then, for
all colors a ∈ I and all types α ∈ TC such that C α ∈ T+, the coefficients 〈xaYα

C , colt(sync(B))〉
count the number of elements x of LS(B) such that (out(x), type(in(x))) = (a, α).

Proof. The proof is similar to the one of Lemma 3.3.11 and uses (3.1.10) and Proposition 3.4.5.
�

Proposition 3.4.7. Let B := (O,C ,R, I, T) be a synchronously unambiguous bud generating
system such that O is a locally finite operad and R(1) finitely factorizes BudC (O). For all
a ∈ C , let fa (yc1 , . . . , yck ) be the series of K [[YC ]] satisfying

fa (yc1 , . . . , yck ) = ya + fa (gc1 (yc1 , . . . , yck ) , . . . ,gck (yc1 , . . . , yck )) . (3.4.11)

Then, for any color a ∈ I and any type α ∈ TC such that C α ∈ T+, the coefficients
〈xaYα

C , colt(sync(B))〉 and 〈Yα
C , fa〉 are equal.

Proof. The proof is similar to the one of Proposition 3.3.12 and uses Lemma 3.2.3 and Propo-
sition 3.4.2. �

When B is a bud generating system satisfying the conditions of Proposition 3.4.7, the
generating series of the synchronous language of B satisfies

sLS(B) =
∑

a∈I
fTa , (3.4.12)
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where fTa is the specialization of the series fa(yc1 , . . . , yck ) at yb := t for all b ∈ T and at yc := 0
for all c ∈ C \T . Therefore, the resolution of the system of equations given by Proposition 3.4.7
provides a way to compute the coefficients of sLS(B). This resolution can be made in most
cases by iteration [BLL97,FS09]k . Moreover, when G is a synchronous grammar [Gir12] (see
also Section 2.3.3 for a description of these grammars) and when SG(G) = B, the system of
functional equations provided by Proposition 3.4.7 and (3.4.12) for sLS(B) is the same as the one
which can be extracted from G.

Theorem 3.4.8. Let B := (O,C ,R, I, T) be a synchronously unambiguous bud generating
system such that O is a locally finite operad and R(1) finitely factorizes BudC (O). Let f be
the series of K [[XC t YC ]] satisfying, for any a ∈ C and any type α ∈ TC ,

〈xaYα
C , f〉 = δα,type(a) +

∑

φ:C×TC→N
α=φ(c1)...φ(ck )

(
∏

b∈C

φb!
)


∏

b∈C
γ∈TC

χφ(b,γ)
b,γ





〈
xa
∏

b∈C

y
∑
φb

b , f
〉
. (3.4.13)

Then, for any color a ∈ I and any type α ∈ TC such that C α ∈ T+, the coefficients
〈xaYα

C , colt(sync(B))〉 and 〈xaYα
C , f〉 are equal.

Proof. The proof is similar to the one of Theorem 3.3.14 and uses Lemma 3.2.3 and Proposi-
tion 3.4.2. �

When B is a bud generating system satisfying the conditions of Theorem 3.4.8 (which are
the same as the ones required by Proposition 3.4.7), one has for any n > 1,

〈
tn, sLS(B)

〉
=
∑

a∈I

∑

α∈TC
αi=0,ci∈C \T

〈xaYα
C , f〉 . (3.4.14)

Therefore, this provides an alternative and recursive way to compute the coefficients of sLS(B),
different from the one of Proposition 3.4.7l .

4. EXAMPLES

This final section is devoted to illustrate the notions and the results contained in the pre-
vious ones. We first define here some monochrome operads, then give examples of series
on colored operads, and construct some bud generating systems. We end this section by ex-
plaining how bud generating systems can be used as tools for enumeration. For this purpose,
we use the syntactic and synchronous generating series of several bud generating systems to
compute the generating series of various combinatorial objects.

4.1. Monochrome operads and bud operads. Let us start by defining three monochrome
operads involving some classical combinatorial objects: binary trees, some words of integers,
and Motzkin paths.

kSee example of a computation of a series sLS(B) by iteration in Section 4.4.6.
lSee examples of computations of series sLS(B) in in Sections 4.4.5 and 4.4.6.
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4.1.1. The magmatic operad. A binary tree is a planar rooted tree t such that any internal
node of t has two children. The magmatic operad Mag is the monochrome operad wherein
Mag(n) is the set of all binary trees with n leaves. The partial composition s ◦i t of two binary
trees s and t is the binary tree obtained by grafting the root of t on the i-th leaf of s. The
only tree of Mag consisting in exactly one leaf is denoted by and is the unit of Mag. Notice
that Mag is isomorphic to the operad Free(C) where C is the monochrome graded collection
defined by C := C(2) := {a}.

For any set C of colors, the bud operad BudC (Mag) is the C -graded colored collection of
all binary trees t where all leaves (inputs) and the root (output) of t are labeled on C . For
instance, in Bud{1,2,3}(Mag), one has

2

2
2 1

1 3

◦4

1

1

3 3
3

=

2

2
2 1 1

3 3
3

3
. (4.1.1)

4.1.2. The pluriassociative operad. Let γ be a nonnegative integer. The γ-pluriassociative
operad Diasγ [Gir16b] is the monochrome operad wherein Diasγ(n) is the set of all words of
length n on the alphabet {0} ∪ [γ] with exactly one occurrence of 0. The partial composition
u ◦i v of two such words u and v consists in replacing the i-th letter of u by v ′, where v ′ is
the word obtained from v by replacing all its letters a by the greatest integer in {a, ui}. For
instance, in Dias4, one has

313321 ◦4 4112 = 313433321. (4.1.2)

Observe that Dias0 is the operad As and that Dias1 is the diassociative operad introduced by
Loday [Lod01].

For any set C of colors, the bud operad BudC (Diasγ) is the C -colored graded collection of
all words u of Diasγ where all letters of u (inputs) and the whole word u (output) are labeled
on C .

4.1.3. The operad of Motzkin paths. The operad of Motzkin paths Motz [Gir15] is a mono-
chrome operad where Motz(n) is the set of all Motzkin paths consisting in n − 1 steps. A
Motzkin path of arity n is a path in N2 connecting the points (0, 0) and (n − 1, 0), and made
of steps (1, 0), (1, 1), and (1, −1). If a is a Motzkin path, the i-th point of a is the point of a of
abscissa i−1. The partial composition a◦i b of two Motzkin paths a and b consists in replacing
the i-th point of a by b. For instance, in Motz, one has

◦4 = . (4.1.3)

For any set C of colors, the bud operad BudC (Motz) is the C -colored graded collection of
all Motzkin paths a where all points of a (inputs) and the whole path a (output) are labeled
on C .
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4.2. Series on colored operads. Here, some examples of series on colored operads are
constructed, as well as examples of series of colors, series of color types, and pruned series.

4.2.1. Series of trees. Let C be the free C -colored operad over C where C := {1, 2} and C is
the C -graded collection defined by C := C(2) t C(3) with C(2) := {a}, C(3) := {b}, out(a) := 1,
out(b) := 2, in(a) := 21, and in(b) := 121. Let fa (resp. fb) be the series of K 〈〈C〉〉 where for any
syntax tree t of C, 〈t, fa〉 (resp. 〈t, fb〉) is the number of internal nodes of t labeled by a (resp.
b). The series fa and fb are of the form

fa = a

1

2 1

+ 2
a

a

1

2
2 1

+ 3
a

a
a

1

2
2

2 1

+ a
b

2

2 1

2 1
+

b
a

2

1 2

2 1

+ b

a

1

1 2 1

1
+ · · · .

(4.2.1a)

fb = b

2

1 2 1

+ a
b

2

2 1

2 1
+

b
a

2

1 2

2 1

+ 2
b

b

2

1

1 2 1

1
+ · · · . (4.2.1b)

The sum fa + fb is the series wherein the coefficient of any syntax tree t of C is its degree.
Let also f|1 (resp. f|2 ) be the series of K 〈〈C〉〉 where for any syntax tree t of C,

〈
t, f|1

〉
(resp.〈

t, f|2
〉
) is the number of inputs colors 1 (resp. 2) of t. The sum f|1 + f|2 is the series wherein

the coefficient of any syntax tree t of C is its arity. Moreover, the series fa + fb + f|1 + f|2 is the
series wherein the coefficient of any syntax tree t of C is its total number of nodes.

The series of colors of fa is of the form

col(fa) = (1, 21) + 2 (1, 221) + 3 (1, 2221) + (2, 2121) + (2, 1221) + (1, 1211) + · · · , (4.2.2)

and the series of color types of f is of the form

colt(fa) = x1y1y2 + 2x1y1y2
2 + x1y3

1y2 + 3x1y1y3
2 + 2x2y2

1y2
2 + · · · . (4.2.3)

4.2.2. Series of Motzkin paths. Let C be the C -bud operad BudC (Motz), where C := {−1, 1}.
Let f be the series of K 〈〈C〉〉 defined for any Motzkin path b, input color a ∈ C , and word of
input colors u ∈ C |b| by

〈(a, b, u), f〉 := 1
2|b|+1




∏

i∈[|b|]
quihtb(i)




a

, (4.2.4)

where htb(i) is the ordinate of the i-th point of b. One has for instance, where the notation 1̄
stands for −1,

〈(
1, , 11̄1111̄1

)
, f
〉

= 1
28

(
q0q 1̄

0q1q1q2q 1̄
1q0

)1
= q0q1q2

28 , (4.2.5a)

〈(
1̄, , 1̄11̄111̄11̄1

)
, f
〉

= 1
210

(
q 1̄

0q1q 1̄
0q1q2q 1̄

2q1q 1̄
1q0

)1̄
= q0

210q2
1
. (4.2.5b)
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Moreover, the coefficients of the pruned series of f satisfy, by definition of pru and f,

〈b, pru(f)〉 =
∑

a∈{1̄,1}
u∈{1̄,1}|b|

〈(a, b, u), f〉 = 1
2|b|+1

∑

u∈{1̄,1}|b|








∏

i∈[|b|]
quihtb(i)



+




∏

i∈[|b|]
q−uihtb(i)







 . (4.2.6)

These coefficients seem to factorize nicely. For instance,

〈 , pru(f)〉 = 1 + q2
0

2q0
, (4.2.7a)

〈 , pru(f)〉 =
(
1 + q2

0
)2

4q2
0

, (4.2.7b)

〈 , pru(f)〉 =
(
1 + q2

0
)3

8q3
0

, (4.2.7c)

〈
, pru(f)

〉
=

(1 + q2
0 )

2 (1 + q2
1
)

8q2
0q1

, (4.2.7d)

〈 , pru(f)〉 =
(
1 + q2

0
)4

16q4
0

, (4.2.7e)

〈
, pru(f)

〉
=
(
1 + q2

0
)3 (1 + q2

1
)

16q3
0q1

, (4.2.7f)

〈
, pru(f)

〉
=
(
1 + q2

0
)3 (1 + q2

1
)

16q3
0q1

, (4.2.7g)

〈
, pru(f)

〉
=
(
1 + q2

0
)2(1 + q2

1
)2

16q2
0q2

1
, (4.2.7h)

〈 , pru(f)〉 =
(
1 + q2

0
)5

32q5
0

, (4.2.7i)

〈
, pru(f)

〉
=
(
1 + q2

0
)4(1 + q2

1
)

32q4
0q1

, (4.2.7j)

〈
, pru(f)

〉
=
(
1 + q2

0
)4(1 + q2

1
)

32q4
0q1

, (4.2.7k)

〈
, pru(f)

〉
=
(
1 + q2

0
)3(1 + q2

1
)2

32q3
0q2

1
, (4.2.7l)

〈
, pru(f)

〉
=
(
1 + q2

0
)4(1 + q2

1
)

32q4
0q1

, (4.2.7m)

〈
, pru(f)

〉
=
(
1 + q2

0
)3(1 + q2

1
)2

32q3
0q2

1
, (4.2.7n)

〈
, pru(f)

〉
=
(
1 + q2

0
)3(1 + q2

1
)2

32q3
0q2

1
, (4.2.7o)

〈
, pru(f)

〉
=
(
1 + q2

0
)2(1 + q2

1
)3

32q2
0q3

1
, (4.2.7p)

〈
, pru(f)

〉
=
(
1 + q2

0
)2(1 + q2

1
)2 (1 + q2

2
)

32q2
0q2

1q2
.

(4.2.7q)
Observe that the specializations at q0 := 1, q1 := 1, and q2 := 1 of all these coefficients are
equal to 1.

4.3. Bud generating systems. We rely on the monochrome operads defined in Section 4.1
to construct several bud generating systems. We review some properties of these, leaving the
proofs to the reader.

4.3.1. Monochrome bud generating systems from Diasγ . Let γ be a nonnegative integer and
consider the monochrome bud generating system Bw,γ :=

(
Diasγ ,Rγ

)
where

Rγ := {0a, a0 : a ∈ [γ]}. (4.3.1)

The derivation graph of Bw,1 is depicted by Figure 2 and the one of Bw,2, by Figure 3.

Proposition 4.3.1. For any γ > 0, the monochrome bud generating system Bw,γ satisfies
the following properties.

(i) It is faithful.
(ii) The set L

(
Bw,γ

)
is equal to the underlying monochrome graded collection of Diasγ .

(iii) The set of rules Rγ(1) factorizes finitely Diasγ .
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FIGURE 2. The derivation graph of Bw,1.
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FIGURE 3. The derivation graph of Bw,2.

Property (i) of Proposition 4.3.1 is a consequence of the fact that Bw,γ is monochrome and
Property (ii) is implied by the fact that Rγ is a generating set of Diasγ [Gir15]. Moreover,
observe that since the word γ0γ of Diasγ(3) admits exactly the two Rγ -treelike expressions
0γ◦1γ0 and γ0◦20γ, by Theorem 3.3.9, 〈γ0γ, synt(Bw,γ)〉 = 2. Hence, Bw,γ is not unambiguous.

4.3.2. A bud generating system for Motzkin paths. Consider the bud generating systemBp :=
(Motz, {1, 2},R, {1}, {1, 2}) where

R :=
{

(1, , 22) ,
(
1, , 111

)}
. (4.3.2)

Figure 4 shows a sequence of derivations in Bp and Figure 5 shows the derivation graph
of Bp.

11 → 1 1 1
→

2 2 1 1
→

2 2 1 1 1 1
→

2 2 1 2 2 1 1
→

2 2 1 2 2 2 2 1

FIGURE 4. A sequence of derivations in Bp. The input colors of the elements of Bud{1,2}(Motz)
are depicted below the paths. The output color of all these elements is 1.

Let LBp be the set of Motzkin paths with no consecutive horizontal steps.

Proposition 4.3.2. The bud generating system Bp satisfies the following properties.
(i) It is faithful.
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11

2 2 1 1 1

2 2 1 1 1 1 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1

2 2 1 2 2

2

FIGURE 5. The derivation graph of Bp. The input colors of the elements of Bud{1,2}(Motz) are
depicted below the paths. The output color of all these elements is 1.

(ii) The restriction of the pruning map pru on the domain L
(
Bp
)

is a bijection between
L
(
Bp
)

and LBp .
(iii) The set of rules R(1) finitely factorizes Bud{1,2}(Motz).

Properties (i) and (ii) of Proposition 4.3.2 together say that the sequence enumerating the
elements of L(Bp) with respect to their arity is the one enumerating the Motzkin paths with
no consecutive horizontal steps. This sequence is Sequence A104545 of [Slo], starting by

1, 1, 1, 3, 5, 11, 25, 55, 129, 303, 721, 1743, 4241, 10415, 25761, 64095. (4.3.3)

Moreover, since the Motzkin path of Motz(5) admits exactly the two R-treelike expres-
sions ◦1 and ◦3 , by Theorem 3.3.9,

〈(
1, , 11111

)
, synt(Bp)

〉
= 2.

Hence Bp is not unambiguous.

4.3.3. A bud generating system for unary-binary trees. Let C be the monochrome graded
collection defined by C := C(1) t C(2) where C(1) := {a,b} and C(2) := {c}. Let Bbu :=
(Free(C), {1, 2},R, {1}, {2}) be the bud generating system where

R :=
{(

1, a , 2
)
,
(

1, b , 2
)
,
(
2, c , 11

)}
. (4.3.4)

Figure 6 shows a sequence of derivations in Bbu.

A unary-binary tree is a planar rooted tree t such that all internal nodes of t are of arities
1 or 2, all nodes of t of arity 1 have a child which is an internal node of arity 2 or is a leaf, and
all nodes of t of arity 2 have two children which are internal nodes of arity 1 or are leaves.

Let LBbu be the set of unary-binary trees with a root of arity 1, all parents of the leaves are
of arity 1, and unary nodes are labeled by a or b.

Proposition 4.3.3. The bud generating system Bbu satisfies the following properties.

http://oeis.org/A104545
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11 → b

2

→
b
c

1 1

→
b
c

a
1

2

→

b
c

a
c

1

1 1

→

b

b

c
a
c

2

1 1

→

b

b
c

a

a
c

2

2

1

→

b

b
c

a

a
c

b
2

2 2

FIGURE 6. A sequence of derivations in Bbu. The input colors of the elements of
Bud{1,2}(Free(C)) are depicted below the leaves. The output color of all these elements is 1.
Since all input colors of the last tree are 2, this tree is in L(Bbu).

(i) It is faithful.
(ii) It is unambiguous.

(iii) The restriction of the pruning map pru on the domain L (Bbu) is a bijection between
L (Bbu) and LBbu .

(iv) The set of rules R(1) finitely factorizes Bud{1,2}(Free(C)).

4.3.4. A bud generating system for B-perfect trees. Let B be a finite set of positive integers
and CB be the monochrome graded collection defined by CB :=

⊔
n∈BCB(n) :=

⊔
n∈B {an} .

We consider the monochrome bud generating system Bbt,B := (Free (CB) ,RB) where RB is
the set of all corollas of Free (CB) (1). Figure 7 shows the synchronous derivation graph of
Bbt,{2,3}.

1

a2 a3

a2

a2

a2 a2

a2

a3 a3

a2

a2 a3

a2

a3 a2

a3

a2 a2 a2

a3

a2 a3 a2

a3

a3 a2 a2

a3

a3 a3 a3

a3

a2 a2 a3

a3

a2 a3 a3 a2

a3

a3 a3 a3

a3

a3

FIGURE 7. The synchronous derivation graph of Bbt,{2,3}.

A B-perfect tree is a planar rooted tree t such that all internal nodes of t have an arity in B
and all paths connecting the root of t to its leaves have the same length. These trees and their
generating series have been studied for the particular case B := {2, 3} [MPRS79,CLRS09] and
appear as data structures in computer science (see [Odl82,Knu98,FS09]).

Proposition 4.3.4. For any finite set B of positive integers, the bud generating system Bbt,B
satisfies the following properties.

(i) It is synchronously faithful.
(ii) It is synchronously unambiguous.

(iii) The synchronous language LS (Bbt,B) of Bbt,B is the set of all B-perfect trees.
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(iv) The set of rules RB(1) finitely factorizes Free (CB).
(v) When 1 /∈ B, the generating series sLS(Bbt,B) of the synchronous language of Bbt,B is

well-defined.

Property (v) of Proposition 4.3.4 is a consequence of the fact that when 1 /∈ B, Free (CB) is
locally finite and therefore there are only finitely many elements in LS (Bbt,B) of a given arity.
By Property (iii) of Proposition 4.3.4, the sequences enumerating the elements of LS(Bbt,B)
with respect to their arity are, for instance, Sequence A014535 of [Slo] for B = {2, 3} which
starts by

1, 1, 1, 1, 2, 2, 3, 4, 5, 8, 14, 23, 32, 43, 63, 97, 149, 224, 332, 489, (4.3.5)
and Sequence A037026 of [Slo] for B = {2, 3, 4} which starts by

1, 1, 1, 2, 2, 4, 5, 9, 15, 28, 45, 73, 116, 199, 345601, 1021, 1738, 2987, 5244. (4.3.6)

4.3.5. A bud generating system for balanced binary trees. Consider the bud generating
system Bbbt := (Mag, {1, 2},R, {1}, {1}) where

R :=
{(

1, , 11
)
,
(

1, , 12
)
,
(

1, , 21
)
, (2, , 1)

}
. (4.3.7)

Figure 8 shows a sequence of synchronous derivations in Bbbt.

1 ;
1 2

;
2 1

1
;

1
1 1

2 1
;

1 2
1 2 1 1

1
2 1

;

1 1
1

1 1
1

1 1 1 1

1 1 1
1 1

FIGURE 8. A sequence of synchronous derivations in Bbbt. The input colors of the elements of
Bud{1,2}(Mag) are depicted below the leaves. The output color of all these elements is 1. Since
all input colors of the last tree are 1, this tree is in LS(Bbbt).

The height of a binary tree t is the height of t seen as a monochrome syntax tree. A
balanced binary tree [AVL62] is a binary tree t wherein, for any internal node x of t, the
difference between the height of the left subtree and the height of the right subtree of x is
−1, 0, or 1.

Proposition 4.3.5. The bud generating system Bbbt satisfies the following properties.
(i) It is synchronously faithful.

(ii) It is synchronously unambiguous.
(iii) The restriction of the pruning map pru on the domain LS (Bbbt) is a bijection between

LS (Bbbt) and the set of balanced binary trees.
(iv) The set of rules R(1) finitely factorizes Bud{1,2}(Mag).

Properties (ii) and (iii) of Proposition 4.3.5 are based upon combinatorial properties of a syn-
chronous grammar G of balanced binary trees defined in [Gir12] and satisfying SG(G) = Bbbt

(see Section 2.3.3 and Proposition 2.3.3). Besides, Properties (i) and (iii) of Proposition 4.3.5
together imply that the sequence enumerating the elements of LS(Bbbt) with respect to their

http://oeis.org/A014535
http://oeis.org/A037026
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arity is the one enumerating the balanced binary trees. This sequence in Sequence A006265
of [Slo], starting by

1, 1, 2, 1, 4, 6, 4, 17, 32, 44, 60, 70, 184, 476, 872, 1553, 2720, 4288, 6312, 9004. (4.3.8)

4.4. Series of bud generating systems. We now consider the bud generating systems con-
structed in Section 4.3 to give some examples of hook generating series. We also put into
practice what we have exposed in Sections 3.3.4 and 3.4.2 to compute the generating series of
languages or synchronous languages of bud generating systems by using syntactic generating
series and synchronous generating series.

4.4.1. Hook coefficients for binary trees. Let us consider the hook bud generating system
HSMag,G where G :=

{ }
. This bud generating system leads to the definition of a statistic

on binary trees, provided by the coefficients of the hook generating series hook
(
HSMag,G

)

which begins by

hook
(
HSMag,G

)
= + + + + + 2 + +

+ + 3 + 2 + 3 + 3 + + 3

+ + + + 2 + + + + · · · . (4.4.1)

Theorem 3.3.5 implies that for any binary tree t, the coefficient
〈
t,hook

(
HSMag,G

)〉
can be

obtained by the usual hook-length formula of binary trees. This explains the name of hook
generating series for hook(B), when B is a bud generating system. Alternatively, the co-
efficient

〈
t,hook

(
HSMag,G

)〉
is the cardinal of the sylvester class [HNT05] of permutations

encoded by t.

4.4.2. Hook coefficients for words of Diasγ . Let us consider the monochrome bud generating
system Bw,γ and its set of rules Rγ introduced in Section 4.3.1. Since, by Proposition 4.3.1,
Rγ generates Diasγ , Bw,γ is a hook bud generating system HSDiasγ ,Rγ (see Section 3.3.2). This
leads to the definition of a statistic on the words of Diasγ , provided by the coefficients of the
hook generating series hook

(
HSDiasγ ,Rγ

)
of HSDiasγ ,Rγ which begins, when γ = 1, by

hook (HSDias1 ,R1 ) = (0) + (01) + (10) + 3 (011) + 2 (101) + 3 (110) + 15 (0111) + 9 (1011)

+ 9 (1101) + 15 (1110) + 105 (01111) + 60 (10111) + 54 (11011) + 60 (11101) + 105 (11110)

+ 945 (011111) + 525 (101111) + 45 (110111) + 450 (111011) + 525 (111101) + 945 (111110) +· · · .
(4.4.2)

http://oeis.org/A006265
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Let us set, for all 0 6 a 6 n − 1, hn,a :=
〈
1a01n−a−1,hook (HSDias1,R1 )

〉
. By Lemmas 3.2.3

and 3.3.3, the hn,a satisfy the recurrence

hn,a =






1 if n = 1,
(2a − 1)hn−1,a−1 if a = n − 1,
(2n − 2a − 3)hn−1,a if a = 0,
(2a − 1)hn−1,a−1 + (2n − 2a − 3)hn−1,a otherwise.

(4.4.3)

The numbers hn,a form a triangle beginning by

1
1 1
3 2 3
15 9 9 15
105 60 54 60 105
945 525 450 450 525 945
10395 5670 4725 4500 4725 5670 10395
135135 72765 59535 55125 55125 59535 72765 135135

. (4.4.4)

These numbers form Sequence A059366 of [Slo].

4.4.3. Hook coefficients for Motkzin paths. It is proven in [Gir15] that G :=
{

,
}

is
a generating set of Motz. Hence, HSMotz,G is a hook generating system. This leads to the
definition of a statistic on Motzkin paths, provided by the coefficients of the hook generating
series hook (HSMotz,G) of HSMotz,G which begins by

hook (HSMotz,G) = + + 2 + + 6 + 2 + 2

+ + 24 + 6 + 6 + 3 + 6

+ 2 + 3 + 2 + + · · · . (4.4.5)

4.4.4. Generating series of some unary-binary trees. Let us consider the bud generating
system Bbu introduced in Section 4.3.3. We have, for all a ∈ {1, 2} and α ∈ T{1,2},

χa,α =






2 if (a, α) = (1, 01),
1 if (a, α) = (2, 20),
0 otherwise,

(4.4.6)

and

g1 (y1, y2) = 2y2, (4.4.7a) g2 (y1, y2) = y2
1. (4.4.7b)

Since, by Proposition 4.3.3, Bbu satisfies the conditions of Proposition 3.3.12, by this last
proposition and (3.3.27), the generating series sL(Bbu) of L(Bbu) satisfies sL(Bbu) = f1(0, t) where

http://oeis.org/A059366
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f1 (y1, y2) = y1 + 2f2 (y1, y2) , (4.4.8a) f2 (y1, y2) = y2 + f1 (y1, y2)2 . (4.4.8b)
We obtain that f1(y1, y2) satisfies the functional equation

y1 + 2y2 − f1 (y1, y2) + 2f1 (y1, y2)2 = 0. (4.4.9)

Hence, sL(Bbu) satisfies
2t − sL(Bbu) + 2s2

L(Bbu) = 0, (4.4.10)

showing that the elements of L (Bbu) are enumerated, arity by arity, by Sequence A052707
of [Slo] starting by

2, 8, 64, 640, 7168, 86016, 1081344, 14057472, 187432960, 2549088256. (4.4.11)

Besides, since by Proposition 4.3.3, Bbu satisfies the conditions of Theorem 3.3.14, by this
last theorem and (3.3.33), sL(Bbu) satisfies, for any n > 1,

〈
tn, sL(Bbu)

〉
= 〈x1yn2 , f〉 , (4.4.12)

where f is the series satisfying, for any a ∈ C and any type α ∈ T{1,2}, the recursive formula

〈xayα1yα2 , f〉 = δα,type(a) + δa,12 〈x2yα1
1 yα2

2 , f〉

+ δa,2
∑

d1,d2,d3,d4∈N
α1=d1+d2
α2=d3+d4

(d1,d3) 6=(0,0)6=(d2,d4)

〈
x1yd1

1 yd3
2 , f

〉〈
x2yd2

1 yd4
2 , f

〉
. (4.4.13)

4.4.5. Generating series of B-perfect trees. Let us consider the monochrome bud generating
system Bbt,B and its set of rules RB introduced in Section 4.3.4. By Proposition 4.3.4, the
generating series sLS(Bbt,B) is well-defined when 1 /∈ B. For this reason, in all this section we
restrict ourselves to the case where all elements of B are greater than or equal to 2. To
maintain here homogeneous notations with the rest of the text, we consider that the set of
colors C of Bbt,B is the singleton {1}. We have, for all α ∈ T{1},

χ1,α =
{

1 if (a, α) = (1, b) with b ∈ B,
0 otherwise,

(4.4.14)

and
g1(y1) =

∑

b∈B
yb1 . (4.4.15)

Since by Proposition 4.3.4, Bbt,B satisfies the conditions of Proposition 3.4.7, by this last
proposition and (3.4.12), the generating series sLS(Bbt,B) of LS (Bbt,B) satisfies sLS(Bbt,B) = f1(t)
where

f1 (y1) = y1 + f1

(
∑

b∈B
yb1

)
. (4.4.16)

This functional equation for the generating series of B-perfect trees, in the case where B =
{2, 3}, is the one obtained in [Odl82,FS09,Gir12] by different methods.

http://oeis.org/A052707


44 SAMUELE GIRAUDO

Besides, since by Proposition 4.3.4, Bbt,B satisfies the conditions of Theorem 3.4.8, by this
last theorem and (3.4.14), sLS(Bbt,B) satisfies, for any n > 1, the recursive formula

〈
tn, sLS(Bbt,B)

〉
= δn,1 +

∑

db∈N,b∈B
n=
∑

b∈B b db

*db : b ∈ B+!
〈
t
∑

b∈B db , sLS(Bbt,B)

〉
(4.4.17)

For instance, for B := {2, 3}, one has
〈
tn, sLS(Bbt,{2,3})

〉
= δn,1 +

∑

d2,d3>0
n=2d2+3d3

(
d2 + d3
d2

)〈
td2+d3 , sLS(Bbt,{2,3})

〉
, (4.4.18)

which is a recursive formula to enumerate the {2, 3}-perfect trees known from [MPRS79],
and for B := {2, 3, 4},

〈
tn, sLS(Bbt,{2,3,4})

〉
= δn,1 +

∑

d2,d3,d4>0
n=2d2+3d3+4d4

*d2, d3, d4+!
〈
td2+d3+d4 , sLS(Bbt,{2,3,4})

〉
. (4.4.19)

Moreover, it is possible to refine the enumeration of B-perfect trees to take into account of
the number of internal nodes with a given arity in the trees. For this, we consider the series
sq satisfying the recurrence

〈tn, sq〉 = δn,1 +
∑

db∈N,b>2
n=
∑

b>2 b db

*db : b > 2+!




∏

b>2
qdbb




〈
t
∑

b>2 db , sq
〉
. (4.4.20)

The coefficient of
(∏

b>2 q
db
b

)
tn in sq is the number of N \ {0, 1}-perfect trees with n leaves

and with db internal nodes of arity b for all b > 2. The specialization of sq at qb := 0 for all
b /∈ B and qb := t for all b ∈ B is equal to the series sLS(Bbt,B).

First coefficients of sq are

〈t, sq〉 = 1, (4.4.21a)
〈
t2, sq

〉
= q2, (4.4.21b)

〈
t3, sq

〉
= q3, (4.4.21c)

〈
t4, sq

〉
= q3

2 + q4, (4.4.21d)
〈
t5, sq

〉
= 2q2

2q3 + q5, (4.4.21e)
〈
t6, sq

〉
= q3

2q3 + q2q2
3 + 2q2

2q4 + q6, (4.4.21f)

〈
t7, sq

〉
= 3q2

2q2
3 + 2q2q3q4 + 2q2

2q5 + q7, (4.4.21g)
〈
t8, sq

〉
= q7

2 + q4
2q4 + 3q2q3

3 + 3q2
2q3q4 + q2q2

4 + 2q2q3q5 + 2q2
2q6 + q8, (4.4.21h)

〈
t9, sq

〉
= 4q6

2q3 + 4q3
2q3q4 + q4

3 + 6q2q2
3q4 + 3q2

2q3q5 + 2q2q4q5 + 2q2q3q6 + 2q2
2q7 + q9. (4.4.21i)

4.4.6. Generating series of balanced binary trees. Let us consider the bud generating system
Bbbt introduced in Section 4.3.5. We have

χa,α =






1 if (a, α) = (1, 20),
2 if (a, α) = (1, 11),
1 if (a, α) = (2, 10),
0 otherwise,

(4.4.22)

and
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g1(y1, y2) = y2
1 + 2y1y2, (4.4.23a) g2(y1, y2) = y1. (4.4.23b)

Since by Proposition 4.3.5, Bbbt satisfies the conditions of Proposition 3.4.7, by this last
proposition and (3.4.12), the generating series sLS(Bbbt) of LS (Bbbt) satisfies sLS(Bbbt) = f1(t, 0)
where

f1 (y1, y2) = y1 + f1
(
y2

1 + 2y1y2, y1
)
. (4.4.24)

This functional equation for the generating series of balanced binary trees is the one obtained
in [BLL88, BLL97, Knu98, Gir12] by different methods. As announced in Section 3.4.2, the
coefficients of f1 (and hence, those of sLS(Bbbt)) can be computed by iteration. This consists in
defining, for any ` > 0, the polynomials f(`)

1 (y1, y2) as

f(`)
1 (y1, y2) :=

{
y1 if ` = 0,
y1 + f(`−1)

1
(
y2

1 + 2y1y2, y1
)

otherwise.
(4.4.25)

Since
f1 (y1, y2) = lim

`→∞
f(`)
1 (y1, y2) , (4.4.26)

Equation (4.4.25) provides a way to compute the coefficients of f1 (y1, y2). First polynomials
f(`)
1 (y1, y2) are

f(0)
1 (y1, y2) = y1, (4.4.27a) f(1)

1 (y1, y2) = y1 + y2
1 + 2y1y2, (4.4.27b)

f(2)
1 (y1, y2) = y1 + y2

1 + 2y1y2 + 2y3
1 + 4y2

1y2 + y4
1 + 4y3

1y2 + 4y2
1y2

2, (4.4.27c)

f(3)
1 (y1, y2) = y1 + y2

1 + 2y1y2 + 2y3
1 + 4y2

1y2 + y4
1 + 4y3

1y2 + 4y2
1y2

2 + 4y5
1

+ 16y4
1y2 + 16y3

1y2
2 + 6y6

1 + 28y5
1y2 + 40y4

1y2
2 + 16y3

1y3
2 + 4y7

1 + 24y6
1y2

+ 48y5
1y2

2 + 32y4
1y3

2 + y8
1 + 8y7

1y2 + 24y6
1y2

2 + 32y5
1y3

2 + 16y4
1y4

2. (4.4.27d)

Besides, since by Proposition 4.3.5, Bbbt satisfies the conditions of Theorem 3.4.8, by this
last theorem and (3.4.14), sLS(Bbbt) satisfies, for any n > 1,

〈
tn, sLS(Bbbt)

〉
=
〈
yn1 y0

2, f
〉
, (4.4.28)

where f is the series satisfying, for any type α ∈ T{1,2}, the recursive formula

〈yα1
1 yα2

2 , f〉 = δα,(1,0) +
∑

d1,d2,d3∈N
α1=2d1+d2+d3

α2=d2

(
d1 + α2
d1

)
2d2
〈

yd1+d2
1 yd3

2 , f
〉
. (4.4.29)

CONCLUSION AND PERSPECTIVES

In this paper, we have presented a framework for the generation of combinatorial objects
by using colored operads. The described devices for combinatorial generation, called bud
generating systems, are generalizations of context-free grammars [Har78,HMU06] generating
words, of regular tree grammars [GS84, CDG+07] generating planar rooted trees, and of
synchronous grammars [Gir12] generating some treelike structures. We have provided tools
to enumerate the objects of the languages of bud generating systems or to define new statistics



46 SAMUELE GIRAUDO

on these by using formal power series on colored operads and several products on these.
There are many ways to extend this work. Here follow some few further research directions.

First, the notion of rationality an recognizability in usual formal power series [Sch61,Sch63,
Eil74,BR88], in series on monoids [Sak09], and in series of trees [BR82] are fundamental. For
instance, a series s ∈ K 〈〈M〉〉 on a monoidM is rational if it belongs to the closure of the set
K 〈M〉 of polynomials on M with respect to the addition, the multiplication, and the Kleene
star operations. Equivalently, s is rational if there exists a K-weighted automaton accepting it.
The equivalence between these two properties for the rationality property is remarkable. We
ask here for the definition of an analogous and consistent notion of rationality for series on
a colored operad C. By consistent, we mean a property of rationality for C-series which can
be defined both by a closure property of the set K 〈C〉 of the polynomials on C with respect
to some operations, and, at the same time, by a acceptance property involving a notion of
a K-weighted automaton on C. The analogous question about the definition of a notion of
recognizable series on colored operads also seems worth investigating.

A second research direction fits mostly in the contexts of computer science and compres-
sion theory. A straight-line grammar (see for instance [ZL78, SS82, Ryt04]) is a context-free
grammar with a singleton as language. There exists also the analogous natural counterpart
for regular tree grammars [LM06]. One of the main interests of straight-line grammars is that
they offer a way to compress a word (resp. a tree) by encoding it by a context-free grammar
(resp. a regular tree grammar). A word u can potentially be represented by a context-free
grammar (as the unique element of its language) with less memory than the direct represen-
tation of u, provided that u is made of several repeating factors. The analogous definition for
bud generating systems could potentially be used to compress a large variety of combinatorial
objects. Indeed, given a suitable monochrome operad O defined on the objects we want to
compress, we can encode an object x of O by a bud generating system B with O as ground
operad and such that the language (or the synchronous language) of B is a singleton {y} and
pru(y) = x. Hence, we can hope to obtain a new and efficient method to compress arbitrary
combinatorial objects.

Let us finally describe a third extension of this work. Pros are algebraic structures which
naturally generalize operads. Indeed, a pro is a set of operators with several inputs and several
outputs, unlike in operads where operators have only one output (see for instance [Mar08]).
Surprisingly, pros appeared earlier than operads in the literature [ML65]. It seems fruitful
to translate the main definitions and constructions of this work (as e.g., bud operads, bud
generating systems, series on colored operads, pre-Lie and composition products of series, star
operations, etc.) with pros instead of operads. We can expect to obtain an even more general
class of grammars and obtain a more general framework for combinatorial generation.
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