Chapter 1

1.1.
1.2.
1.3.
1.4.

Chapter 2.

2.1.
2.2.
2.3.
2.4.
2.5.

Chapter 3.

3.1.
3.2.

Chapter 4.

4.1.
4.2.
4.3.
4.4.

Introduction to UNIX System Programming

Page number :

: Introduction L 3

Man command = L, 3

System Calls and Library callsc.oooiinnl, 4

Using system calls and library functions 5

Error Handling .. 7

Common C Library Functions —ccooeeiinne.. 10
String Functions ..., 10
Memory Functions ... 11
Some string conversion routinesc.eevveeeneeennn... 11
Standard /O 12
Processing input arguments...............ccevviiiiieiiniannn.. 12
System Information Function Calls 16
Time 16
Machine information ... 17
File I/O and File/Directory Information 19
Introduction L 19
File Access Permission —ccoiiiiiiiiiiiiiniiiinennn 20
File I/O system calls ..., 21
Directory 24

Chapter 5. Process Information ... 27

5.1 Introduction L 27
5.2. Process Control . 29
Chapter 6. Introduction UNIX IPC ..., 34
6.1. Introduction L 34
6.2. File and Record Lockingcooiiiiiiiiiii, 34
6.3. Anonymous Pipes ... 35
6.4. FIFOs 37
6.5. Mmap 38
Chapter 7. System V IPC and Sockets —cooiiiiiiiin... 42
7.1. Introduction e 42
7.2. Message QUEUES ciiiiii e 43
7.3. Semaphores e 49
7.4. Shared Memory e 52
7.5. Sockets (Introduction) ... 54
Chapter 8. Introduction to multithreaded programming 66
8.1. Introduction to threads ..., 66
8.2. Basic thread control routinesccccevvviiiiinn. 69
8.3. Basic synchronization ..., 76
8.4. From POSIX pthreads to Ul threads 81
8.5. References 86

Chapter 9. Signals (Not Available)

Introduction to UNIX System Programming

Chapter 1 : Introduction

1.1. Man command

o an” finds and displays reference manual pages, including

o utilities (or shell commands) : usually in section 1;
e system calls : usually in section 2
e and library calls : usually in section 3.

e Example :
e Use “man -s 2 write” to get the manual for system call
write(2) /* note : In man page, (2) = section 2 */
e But an write” return the 1% section write() function, which

1s write(1);

e Note : some manuals are available in other section number such as
ctime(3c).

e man -k keyword : list one-line summaries of all function calls that
contain the given key word in the manuals (this may return many entries)

e Example = libra% man -k fork

fork fork (2) - create a new process
fork1 fork (2) - create a new process
pthread atfork pthread atfork (3t) - register fork handlers
vfork vfork (2) - spawn new process in a

virtual memory efficiently

e man page allows user to determine the specific of calling the function.
Some important information are :

e NAME /* all functions in this man page */
e SYNOPSIS /* include files + function prototypes */

e DESCRIPTION /* describe the functions in details,
including the usage of parameters */
e RETURN VALUES /* return values of function call */

e ERRORS /* error values and conditions */
e SEE ALSO /* related function calls */
e Example

e |ibra% man -s 2 time

SYNOPSIS

#include <sys/types.h>
#include <time.h>

time_t time(time t *tloc);
e To use this functions, you must
e include the “.h” file in your program
e understand the format of any structures or parameters by
looking at the header file. All header files are in directory
“/usr/include”. If the header file is <sys/XXX>, then it is in

directory “/usr/include/sys/”

e cxample : in file time.h, time t is defined as
typedef long time t;

1.2. System Calls and Library calls

e Function calls that can be invoked in programs.

e Library call : a function in a standard C library
e Example : string functions, standard file I/O functions

e System call : a function call into kernel resident code

e The standard UNIX C library provides a C interface to each
system call.
e Flow of control during a system call :

User Mode
1. Executes a system call open()
2. Library code for open. Executes a trap(n) instruction (code

for open). This causes software interrupt = to kernel mode,
start at specify kernel location

Kernel mode

3. Get the location of pen” code in kernel, goto to the
location of pen”

4. kernel open code : it will access and modify kernel data
structure. When done, switch back to user mode

User mode

5. Continue step 2 /* get the address from stack */
6. Return to the statement after open() calls at step 1

1.3. Using system calls and library functions

e In asystem call, if there is parameter pointing to a data object, you must
allocate space for the object and pass its address in the call, i.e. using &

e Example : time t time(time t *tloc);
To use the time(2) system call,

time tt;
time(&t) /* correct */

time t *t ptr;
time(t_ptr); /* incorrect */

e In alibrary call, if there is parameter pointing to a data object, you may
or may not need to allocate space for the object. Read the man page
carefully. There are three possibilities :

1. It does not allocate space
—> you need to allocate space, e.g. ctime 1(3)

2. It allocates space statically
—> calls to the same function overwrite the previous value, e.g.
ctime(3). You need to copy the data to the local object before
making the same call again.

3. It allocate space dynamically
—> every call return pointer to new object /* multithreaded safe

function calls */

e Example : char *ctime(const time_t *clock);

Correct solution

time _t t;
char timeStr[30], *now;

time(&t);
now = ctime(&t);
strcpy(timeStr, now);

time(&t)
now = ctime(&t) /* note : now points to new time string */
printf(“%s:%s”, timeStr,now);

Incorrect solution

time t t;
char *old, *now;

time(&t);
old = ctime(&t);

time(&t)
now = ctime(&t) /* now and old point to the same string */
printf(“%s:%s”, timeStr,now);

1.4. Error Handling

® CITrono

Most system calls return a value -1 if an error occurs, or a value
greater than or equal to zero if all is OK.

Every system call error sets the global (external) variable "errno"
to a particular value. Note that "errno" contains valid data only if a
system call actually returns -1.

e Perror(3)

The perror() allows you to display an informative error message in
the event of an error.

perror(msg) : print sg: XYZ” to the standard error channel,
where XYZ is a description of the last system error.

Example :
#include <stdio.h>
#include <errno.h>

#include <fentl.h>

main()

int fd;
fd = open("bad.file",O RDONLY);
if (fd==-1)
perror(rror in read”);
else
{ close(fd);
exit(0);
b
b

Sample run :
Error in read : No such file or directory

e strerror(3)

e [t returns a pointer to error string corresponding to its argument
errno.

e Example :

#include <errno.h>
#include <stdio.h>
#include <fentl.h>

main() {
int fd;
fd = open("bad.file",0 RDONLY);
if (fd==-1)

fprintf(stderr, rror : %s : read: line %d : %s\n”,
__FILE , LINE ,strerror(errno));
else { close(fd);
exit(0);
}
b

libra% a.out
Error : try.c : read: line 11 : No such file or directory

e Note: FILE , LINE , DATE , TIME are the predefined
macros including in all programs.

e Find out the cause of error

Sometime, you may want to know what cause the error.
The RRORS” part of a specific system call man page
lists all error numbers (names) with explanations

Look at <sys/errno.h> for the list of all errnos and corresponding
representations.

Example : ERRORS in command an open”

ERRORS
The open() function fails if:

EACCES Search permission is denied on a component of
the path prefix, or the file exists and the
permissions specified by oflag are denied, or

EDQUOT

EEXIST
EINTR

e What do you do when you detect an error?

Use a default value (if you cannot get the value from function call)
Require user intervention

Write an error message (use perror(3) or strerror(3))

Write an error message and exit(2) with non-zero status
Combination of above depending of errorno

Chapter 2. Common C Library Functions (all in section 3)

2.1. String Functions

#include <string.h>

assume one or more characters (non null byte) terminated by a null byte
note : it may not work on binary data

here is the list of functions :

char * strcpy(char *dest, const char *src);

char * strcat(char *dest, const char *src);

size_t strlen(const char *s);

stremp(); strdup(); strncpy(); strncat(); strncmp();

strpbrk(); strstr(); strchr(); /* parsing functions */

e check for existing of specific character(s) or substring in the
given string

e ecxample :

strchr(ello”, ’) = pointerto ”instring ello”
strpbrk(ello”, e0”) = pointerto ” in string
ello”

strstr(ello”, e0”) = null, no match string

strsts(ello”, 1”) =2 pointer to ” in straing ello”

strtok(3) :

parse a string into string tokens

initial call : input original string and a set of separator
characters, return 1* argument

subsequent call : input NULL and a set of separator
characters, return next argument (if no more argument,
return NULL pointer)

10

e prototype :

#include <string.h>
char *strtok(char *s, const char *set);

e cxample :

char *pt, strbuffer[]= am happy”;
cp = strtok(strbuffer, « *); Fep 2> \O” */

cp = strtok(NULL, “ “); [Fep—> m\0” ¥
cp = strtok(NULL, ““ *); /*cp 2> appy\0” */
cp = strtok(NULL, “ *); /*cp==NULL */

2.2. Memory Functions

operate on chunks of memory

e more flexible than string functions

e able to handle binary data (including 0” character)

e may work on whole structure, i.e. copy a structure to another
e casy way to set a chunk of memory toall 0”

e void * memcpy(void *dest, const void *src, size tn);

e void *memset(void *s, int c, size t n);
e memmove(), memcmp(), memset()

2.3. Some string conversion routines

#include <stlib.h>

int atoi(const char *str);
long atol(const char *str);
double atof(const char *str);

11

2.4. Standard 1/0

e here are some standard I/O functions operating on file:

e #include <stdio.h>

e fopen(); fclose(); /* open/close */

o fgetc(), fputc(); /* char-based /O */

e fprintf(); fscanf(); /* formatted /O */

o fgets(); fputs(); /* line-based /O */

e fread(); fwrite(); /* buffer-based I/0*/

o fseek(); ftell(); rewind(); /* repositioning file pointer */
e ferror(); feof(); /* status functions */

e Note : file pointer can be converted to file descriptor and vice
versa, 1.e. fileno() & fdopen()

2.5. Processing input arguments

e Run: program name inputl input2 ... input_n
In your main program : main (int argc, char **argv)
argc =n+1
argv[0] = "program name"
argv[1] = "inputl"
argv[n]= "input_n"
e Program option : each option is preceded by a - and is followed by
additional character. An argument may be followed by option with a
white space in between, e.g. cat -n filename

e Use getopt (3¢) to process input arguments

e Prototype :

12

#include <stdlib.h>

int getopt(int argc, char * const *argv, const char *optstring);
extern char *optarg;

extern int optind, opterr, optopt;

argc, argv : from main()

optstring :
e contain the option letters the command using getopt() will
recognize;

e ifa letter is followed by a colon, the option is expected to have an

argument, or group of arguments, which may be separated
from it by white space.

optarg is set to point to the start of the option argument on return
from getopt().

getopt() places in optind the argv index of the next argument
to be processed.

ERROR in parsing :

e getopt() prints an error message on the standard error and returns

a 7" (question mark) when it encounters an option letter not
included in optstring or no argument after an option that expects
one.

e This error message may be disabled by setting opterr to 0.

e The value of the character that caused the error is in optopt.

When all options have been processed (that is, up to the first
non-option argument), getopt() returns EOF.

e Example : Assume the usage of the following program
"emd [-a] [-b] [-o0 <file>] files..."

#include <stdlib.h>

13

#include <stdio.h>
main (int argc, char **argv)

{

int c;

extern char *optarg;

extern int optind, opterr, optopt;
int count = 0;

char *ofile = NULL;

opterr = 0;
while ((c¢ = getopt(argc, argv, "abo:")) != EOF)
{
count++;
switch (¢) {
case 'a':
printf("get -a in position %d\n", count);
break;
case 'b":
printf("get -b in position %d\n", count);
break;
case 'o":
ofile = optarg;
printf("get -o in position %d and ofile = %s\n",
count, ofile);
count++;
break;
case '?"
fprintf(stderr, "usage: cmd [-a] [-b] [-0 <file>]
files...\n");
fprintf(stderr, "The error option symbol is -
%c," ,optopt);
printf(" it is in position %d\n", count);
exit (2);
b
b
for ('; optind < argc; optind++)
printf("%s\n", argv[optind]);
return 0;

14

e Sample run 1:

libra% cmd -a -o fileXYZ -b -a Filel File2
get -a in position 1

get -0 in position 2 and ofile = fileXYZ
get -b in position 4

get -a in position 5

Filel

File2

e Samplerun2:

libra% cmd -a -o fileXYZ -c -a Filel File2

get -a in position 1

get -0 in position 2 and ofile = fileXYZ

usage: cmd [-a] [-b] [-o <file>] files...

The error option symbol is -c, it is in position 4

e Sample run 3 : set opterr = 1;

libra% cmd -a -o fileXYZ -c -a Filel File2

get -a in position 1

get -0 in position 2 and ofile = fileXYZ

a.out: illegal option -- ¢

usage: cmd [-a] [-b] [-o <file>] files...

The error option symbol is -c, it is in position 4

Chapter 3. System Information Function Calls

15

3.1. Time

e time(2) : return number of seconds since 0:00:00 1/1/1970
e gettimeofday(3) : same as above + microseconds
e ctime(3) : change number of seconds to readable string

e times(2) : get process user and system CPU times

e Example:

#include <sys/time.h>
int gettimeofday(struct timeval *tp, void *);

struct timeval {
time t tv_sec; /* seconds */
long tv usec; /* and microseconds */

#include <time.h>
char *ctime(const time_t *clock);

e Sample program :
#include <sys/time.h>

main()

{

struct timeval rt;

gettimeofday(&rt, NULL);

printf(urrent time: %d secs %d usecs\n”,rt.tv_sec,
rt.tv_usec);

printf(eadable time in secs : %s\n”, ctime(&rt.tv_sec);

16

sample run :
current time: 917395957 secs 235576 usecs
readable time in secs : Tue Jan 26 16:12:37 1999

e ook at manual for other time related functions.

3.2. Machine information

e limit(1) : to obtain system resource limits, including CPU time,
descriptors etc

e getrlimit(2) : system call interface of limit(1)

e setrlimit(2): set system resource limits

e uname(2) : to obtain the OS name, hostname, OS version, etc.

e sysconf(2): to obtain some system limits, e.g. number of CPU, page
size, clock ticks per second

e pathconf(2): to obtain file related limits, e.g. max. length of file name,
pipe buffer size

e getuid(2): to get user ID

e getpwnam(3) : to get password entry by user login

e getpwuid(3) : to get password entry by UID

e password entry includes UID, GID, login name, user name, home

directory & etc.
e Example :

17

#include <sys/utsname.h>
#include <unistd.h>
#include <pwd.h>

main()

{

struct utsname host;
struct passwd *pptr;

uname(&host); /* note : should have error checking */
printf(ostname is : %s\n”, host.nodename);

printf(age size : %d bytes\n”,sysconf(SC PAGESIZE));

pptr = getpwnam(wong”);
printf(our UID is : %d\n”, pptr->pw_uid);
printf("Your home directory is : %s\n", pptr->pw_dir);

b

sample run
hostname is : libra

Page size : 4096 bytes
Your UID is : 319
Your home directory is : /afs/sfsu.edu/f1/jwong

Chapter 4. File 1/0 and File/Directory Information

18

4.1. Introduction

Regular files (ordinary files) contain a stream of bytes. It can be text,
executable programs, or other data.

To access a file, you must first obtain a file descriptor, which is a small
integer used to identify a file that has been opened for I/O.

Most systems provide more than 20 file descriptors per process (0,
1,2, .., max-number -1).

UNIX programs associate file descriptors 0, 1, and 2 with the standard
input, standard output and standard error respectively.

File descriptors are assigned by the kernel when the following system
calls are successful, including open(2), creat(2), dup(2), pipe(2) and
fentl(2).

Every file on the disk has a special fixed-size housekeeping structure
called an inode (index node) associated with it.

An inode contains the following information such as file owner, file
type, permission flags, last modified date, last accessed date, file size and

locations of file (in blocks).

Directory files contain the names and locations of other files (only
accessible via system calls)

Hard link is a directory entry that contains the filename and its inode
number.

A single file in UNIX may have more than one name. You may use the
UNIX Command In(1) or link(2) to create a hard link to a file.

Symbolic Link is a special file that contains a path name as its data. Use
n -s” or symlink(2) to make symbolic links.

19

e Note : you cannot create a hard link to another logical filesystem, but
you can create symbolic link across the filesystem boundaries. Also, you
cannot create a hard link to a directory

4.2. File Access Permission

e Every process has a unique PID. (in the range 0 -> 30000)
e use getpid(2) system call to get PID.

e PID = 0 (the swapper or scheduler), PID = 1 (init) and PID = 2 (page
daemon)

e Every process has a parent process (except 0), and a corresponding
PPID. Use getppid(2) system call to get PPID.

e FEach user is assigned a positive integer Real User ID (UID) and a
positive integer Real Group ID (GID)

e Each file in the system is associated with a UID and a GID

e The file /etc/passwd maintains the mapping between login names and
UIDs

e The file /etc/group maintains the mapping between group names and
GIDs

e FEach process also has a UID and a GID (from the program file)
e Get the UID and GID of the process by calling the getuid(2) and
getgid(2) system call

e FEach process is also assigned a positive integer Effective User ID
(EUID) and a positive integer Effective Group ID (EGID). Use system
call geteuid(2)and getegid(2) to get EUID.

e Normally, EUID and EGID values are the same as UID and GUID.

e (However, if a process execute the program with setuid bit on, the
process EUID and EGID becomes UID and GID of file owner)

e chown(2) changes the owner and group of the indicated file to the
specified owner and group.

e Setuid using chmod(1) :

20

chmod 4755 a.out /* set uid bit */
-rwsr-xr-x 1 cswong diagnost 7744 Jan 29 19:58 a.out

chmod 2755 a.out /* set gid bit */
-rwxr-sr-x 1 cswong diagnost 7744 Jan 29 19:58 a.out

e To determine if a process can access a file :

1. If the EUID = 0 (super user), then OK

2. If the EUID = UID (owner) then OK (check 3 permission bits for User)

3. If the EGID = GID , then OK (check 3 permission bits for Group)

4. If not EUID=UID and not EGID=GID, check 3 permission bits for Other.

e Note : So a process will have PID, PGID, EUID, EGID, UID and PGID
and a file will have UID and GID

e Example :

e when you run passwd command, you want to change an entry in
passwd file.

e The owner of the password file is the root and only the root may
write (change) the password file.

e Now in order to change the password file, the EUID of a process
must be root.

e This can be done by setting the set-user-id bit in passwd program
(the file) using setuid.

e The process (initially EUID = your UID) executes passwd
program, the EUID becomes root, so it may change the passwd
file.

4.3. File 1/O system calls

e stat(2) : retrieve information from inode

e [stat(2) : same as stat(2) but does not follow symbolic links, i.e. it return
information of the link itself.

e fstat(2) : work on file descriptor

e Prototypes :

21

#include <sys/types.h>
#include <sys/stat.h>

int stat(const char *path, struct stat *buf);
int Istat(const char *path, struct stat *buf);
int fstat(int fildes, struct stat *buf);

e The contents of the structure pointed to by buf include the following
members:

mode t st mode; /* File mode */

no t st_ino; /* Inode number */

nlink t st nlink; /* Number of links */

uid t st uid; /* User ID of the file's owner */
gid t st gid; /* Group ID of the file's group */
off t st_size; /* File size in bytes */

time t st atime; /* Time of last access */

time t st mtime; /* Time of last data modification */

e You can use macros to extract fields from the st mode field. <sys/stat.h>
provides many macros.

e Example : Check file type

struct stat ibuf;
stat(yfile”, &ibuf);
if (S_ISDIR(ibuf.st mode)) printf(t is a directory\n”);

e Example : Change file mode chmod(2)

struct stat ibuf;
stat(yfile”, &ibuf);

ibuf.st mode |=S IWUSR | S IWGRP;

if (chmod(yfile”, ibuf.st mode) == -1)
{ perror(hmod”); }

22

e Useful macros in <sys/stat.h>

#define S_ISUID 0x800
#define S _ISGID 0x400

#define S IRWXU 00700
#define S IRUSR 00400
#define S TWUSR 00200
#define S IXUSR 00100

#define S IRWXG 00070
#define S_IRGRP 00040
#define S TIWGRP 00020
#define S IXGRP 00010

#define S IRWXO 00007
#define S IROTH 00004
#define S TIWOTH 00002
#define S IXOTH 00001

/* set user 1d on execution */
/* set group id on execution */

/* read, write, execute: owner */
/* read permission: owner */

/* write permission: owner */
/* execute permission: owner */

/* read, write, execute: group */
/* read permission: group */

/* write permission: group */

/* execute permission: group */

/* read, write, execute: other */
/* read permission: other */
/* write permission: other */
/* execute permission: other */

#define S ISFIFO(mode) (((mode)&0xF000) == 0x1000)
#define S _ISDIR(mode) (((mode)&0xF000) == 0x4000)
#define S ISREG(mode) (((mode)&0xF000) == 0x8000)
#define S ISLNK(mode) (((mode)&0xF000) == 0xa000)
#define S ISSOCK(mode) (((mode)&0xF000) == 0xc000)

e open(2) : Opens the file for reading and/or writing. Returns a file
descriptor.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *path, int oflag, /* mode t mode */ ...);
Note : define mode if O_CREAT in oflag

23

e Useful macro in <fcntl.h>

#define O CREAT /* open with file create (uses third arg) */
#define O TRUNC /* open with truncation */
#define O_EXCL /* exclusive open */

#define O RDONLY
#define O WRONLY
#define O_ RDWR

#define O NDELAY /* non-blocking I/O */
#define O APPEND /* append (writes guaranteed at the end) */
#define O NONBLOCK /* non-blocking I/0O (POSIX) */

read(2) : reads characters
write(2) : writes characters

Iseek(2) : moves the current position of any location
close(2) : closes a file descriptor.

unlink(2) : unlink a file.

umask(2) : set the file creation mask = this affect the creating mode of
files

dup(2) : duplicate the file descriptor (OS find the lowest available file
descriptor, copy the file descriptor, i.e. pointing to same location)
dup2(2) : allow user to specify the new file descriptor ID

fentl(2) : supports a set of miscellaneous operations for open files, e.g.
duplicates file descriptor, returns the file status flags, set file mode or
flags eand etc

fsync(2) : flushes all dirty buffers onto disks.
tmpnam(3) : allocate temporary file

24

e Example : To write standard output to a file.
int fd;
fd=open(yfile”, O CREAT | OWONLY | O TRUNC, 0660);
if (fd ==-1) { perror(pen”; exit(1); }
close(1); /* here close the standard output to screen */

if (dup(fd) !'=1) /* if OK, fd and 1 point to myfile */
{

}

close (fd);
printf(ello world goto myfile!!\n”);

printf(up failed to return 1\n”); exit(1);

4.4. Directory

e getcwd(3) : get the current working directory. See also pwd(1)
e chdir(2) : change the current directory. See also cd(1)

e mknod(2) : makes a file of any type. (e.g. (e.g. device files.)

e mount(2) : mounts the file system onto the specified directory.
e umount(2) : unmount the file system

e mkdir(2) : create a directory

e rmdir(2) : remove a directory

e rename(2) : rename file/directory

e symlink(2) : create symbolic link
e link(2) : create hard link

25

e Note : open(2) and read(2) cannot read the symbolic link (but read the
file). To read symbolic link (i.e. the filename), use readlink(2) = use
Istat to check the file and to get the size of the name in symbolic link

e To access entries in a directory :

#include <direct.h>

typedef struct dirent {
char d name[1]; /* name of file */

/* optional fields */

no t d ino; /* "inode number" of entry */
off t d off; /* offset of disk directory entry */
unsigned short d reclen; /* length of this record */

} dirent _t;

Note : dname][] is variable size, you can use strlen(3) to find out the
size.

e opendir(3C); readdir(3C); closedir(3C);
e telldir(3C); seekdir(3C); rewindir(3C)

Chapter 5. Process Information

26

5.1 Introduction

e A program is an executable file

e The only way a program can be executed is by issuing the exec() system
call

e A process is a program in a state of execution.

e The only way a new process can be created is issuing the fork(2) system
call

e A process has

text (or executable code - usually read only)

data

stack

process management information, including PID, open files, etc.

e Example : Program vs Process virtual address space
int a;

main()

{
int b;
static int c;

b=a*a;
¢ = hello(b);
}
int hello(int d)
{
int e;
e=d+2;
return(e);
}

e Process Virtual Address Space

27

stack

data | a=? c=7?
A —
| main() {... }
text | hello() {...}
|
e A process may
duplicate (fork(2))

replace itself with another program (exec())

terminate (exit(3C))

execute other system calls (open(2), close(2), etc)
communicate with other processes (signal, pipe, IPC etc)

e system calls

getpid(2) : get process ID

getppid(2) : get parent process ID

getenv(3) : get process environment information, e.g. SHOME, $SPATH

putenv(3) :setoradd environment variables
env(1) : get environment information

5.2. Process Control

e Process Creation

28

e casy method =2 system(3)
e create sh process to execute the command line as given in “(“ “)”.
e system(3) returns when the sh has completed.

e Example:
int ind;

if ((ind = system(ho > tempFile”)) == -1)
{

}

printf(rror in system\n”);

/* you can manipulate tempFile here !! */

e fork(2) :fork anew child process (with different PID)

e forkl(2) : same as fork(2), but duplicate calling thread only

e vfork(2) : same as fork(2), but do not duplicate the whole virtual
memory, expect to exec() soon.

e Example:
int ind;
ind = fork();
if (ind ==-1) {

perror(rror, fork”);

} else if (ind == 0) {
printf(hild process ID : %d\n”, getpid());
printf(y parent PID : %d\n”, getppid());
/* usually, exec() here */
exit(0);

} else {
printf(arent ID : %d\n”, getpid());
exit(0);

}

e Sample run :
parent ID : 4829
child process ID : 4830

29

my parent PID : 4829
Process Transmutation (executing a new program)

e A process may replace itself with another program and retain the
same PID by using exec() system call

e There are several exec() system calls available : execl(2),
execv(2), execle(2), execve(2), execlp(2), execvp(2)

Some take list of strings as parameters
Some take an array which stored arguments
Some search for PATH to find program

etc

e Example : Prototype

#include <unistd.h>

int execlp (const char *file, const char *arg0, ..., const char
*argn, char * /*NULL*/);

e From above example :

} else if (ind == 0) {

x =execlp(yProg”, yProg”, “-c”, trl”,
“-F”, (char *) 0);

if (x ==-1)

{

b
exit(0);
} else {

perror(rror : execlp”);

e The file descriptors of the original process are kept during the
exec()

e Example : Program simulates "date > temp"

main()

{
int fd;
fd = open("temp"....);
dup2(fd,1) /* copy stdout to fd */
close(fd);
execl("date"...);

}

e Process Termination
e The process exits by calling exit(3C), i.e. exit(intcode);
¢ intcode is an integer that is returned to the parent for examination
e if the parent is a C-shell, this value is available in $status (do
cho $status”) ; otherwise, the value is available in parent process,

1.e use wait(2).

e The return code is stored in the 2nd rightmost byte of the
parameter.

e Note : usually, use exit(0) to indicate successful termination; look
at <stdlib.h>
#define EXIT FAILURE 1
#define EXIT SUCCESS 0

e atexit(3c) : allow user to register a clean-up function. When
exit(3C) is executed, the clean-up function will be automatically
called.

e Parent cleanup

31

e After the process executes exit(), it becomes a "zombie", waiting
for its parent to accept the return code via wait(2) or waitpid(2).
When the return status is accepted the process finally goes away.

e Ifthe parent does not wait for its child, the child will be adopted
by the init process (PID = 1)

e Example :
main()
{

int 1, PID, retcode;

for (1=1; 1<=2; 1++)

{
if (fork()==0)
{
printf(" [am a child with PID %d and will return
%d\n",
getpid(), 1);
exit(i);
b
b

PID = wait(&retcode);
printf(" A child (PID %d) exited with %d\n",PID, retcode >> 8);
PID = wait(&retcode);
printf(" A child (PID %d) exited with %d\n",PID, retcode >> 8);

e Sample Run :
I am a child with PID 5862 and will return 1
I am a child with PID 5863 and will return 2
A child (PID 5863) exited with 2
A child (PID 5862) exited with 1

e <wait.h> defines some useful macros (look at wstat(5))

32

WIFEXITED(stat) : True if child process exit(3C).
WEXITSTATUS(stat) : return exit(3C) value

WIFSIGNALED(stat) : True, if child process is terminated by a signal
WTERMSIG(stat) : return signal number

WIFSTOPPED(stat) : True, if child process is stopped by a
signal

WSTOPSIG(stat) : return signal number.

e Note : you can replace few lines from above sample program by
#include <wait.h>

if (WIFEXITED(retcode))

{
printf("A child (PID %d) exited with %d\n",PID,

WEXITSTATUS(retcode));

Chapter 6. Introduction UNIX IPC

33

6.1. Introduction

e In single process programming, different modules within the single
process can communicate with each other using global variables,
function calls, etc.

e For multiprogramming operating systems, two processes may want to
synchronize and communicate with each other.

e The operating system must provide some facilities for the Interprocess
Communication (IPC).

e We consider several different methods of IPC in UNIX :

work within the same host

exit status (in previous chapter)

file and record locking

pipes

FIFOs (named pipes)

mmap

signals (in another chapter)
message queues (in another chapter)
semaphores (in another chapter)
shared memory (in another chapter)

work within the same host and network
sockets (in another chapter)
TLI (in another chapter)

6.2. File and Record Locking

e Multiple processes want to share some resource
e Some form of Mutual Exclusion must be provided so that only one
process at a time can access the resource.

34

e There are several system calls may be used to enforce the mutual
exclusion : link(2), creat(2), open(2) /* slow ways */

e Advisory lock : other processes may still write to the file, i.e. other
processes may still open() the file and modify the data.

e Mandatory lock : other processes may not read from or write to the file.

e File locking : locks an entire file
e Record (range) locking : locks the specified range of the file

e lockf(3C) : mandatory file and record locking
e flock(3B) : advisory file locking

6.3. Anonymous Pipes

e Allow transfer of data between processes in a FIFO manner

e One way flow of data (usually, about 4k bytes)
Note : now, UNIX allows bi-directional flow of data

e [t is created by the pipe(2) system call.
Prototype : int pipe (int *fd)

fd is an array of 2 file descriptors (in fd table), fd[0] is for reading, fd[1]

1s for writing
Note : now, both fd[0] and fd[1] can be used for both reading and writing

e Use system calls read(2) and write(2) to access the pipe.

e Read:
if the pipe is empty, the process is blocked (unless the writing fd is
closed = read 0 byte); otherwise, read up to the number of

specified bytes.

e Write :

35

e [fthe pipe is full, the process is blocked until enough spaces are
available to write the entire data. If no reading fd attached, return a
signal IGPIPE”

e Ifthe pipe is not full and the size of write is less than 4k, then the
write is atomic. If the size is > 4k, you should separate into several
writes.

e You may use fentl(2) to set O NDELAY flag on fd, so that the process
will not block in read or write.

e Example : /* should have error checking */

#include <stdio.h>

main()

{
int fd[2];
char ch[11];

pipe(fd); /* creates a pipe */

if (fork() == 0) {
read(fd[0],ch,11);
printf("Child got %s\n",ch);
read(fd[0],ch,11);
printf("Child got %s\n",ch);
exit(0);

} else {
write(fd[1],"hello world",11);
sleep(10);
write(fd[1],"next word",11);
wait(0);
close(fd[0]);
close(fd[1]);

}

Example 2 : simulate date | cat

36

main()

{
int fd[2];
pipe(fd);
if (fork() == 0)
{
close(fd[0]);
dup2(fd[1],1) /* duplicate write end of pipe to stdout */
close(fd[1]);
execl ("/bin/date","date",0);
h
else
{
close(fd[1]);
dup2(fd[0],0) /* duplicate write end of pipe to stdin */
close(fd[0]);
execl ("/bin/cat","cat",0);
b
h
6.4. FIFOs

e Named pipe has a name in the file system
¢ Allows independent processes to communicate.
e C(Create a named pipe by using

e mknod(2)

e mknod(1)

e mkfifo(1)

e Example : mknod("NamedPipel",S IFIFO | 0666,0);
e Note : S_IFIFO (make FIFO)

e After this, you have the NamedPipel in your directory, any number of
processes may use open(2) system call to access the NamedPipel

37

e Use read(2) and write(2) to access the data
e Use rm(1) or unlink(2) to remove the NamePipel.

e For pipes and FIFOs, the data is a stream of bytes
e Reads and writes do not examine the data at all
e When the data consists of variable-length messages, we may want to
know where the message boundaries are so that a single message may
be read.
e you may read or write a structure.

6.5. Mmap

e mmap(2) : allows user to map a file into process address space. After

mapping, the process may access the data using pointer instead of
read(2) and write(2).

e To use the mmap(2), you need to open(2) the file, then use the file
descriptor of the opened file to map the file. Once the file is mapped, you
can close(2) the file.

e munmap : to unmap the file

e Example :
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <stdlib.h>
#include <fcntl.h>
#include <stdio.h>

int main()

{
int fd;
struct stat st;
caddr t base, ptr;

/* open the file */

38

if ((fd = open("myFile", O RDONLY, 0)) <0) {
perror("cannot open my file");
exit(1);

b

/* determine the size of the file */
fstat(fd, &st);
printf("File size: %d\n",st.st_size);

/* map the entire file into memory */

/* 0 : any memory location */

/* st.st_size : size of a file */

/* PROT_READ : "Read" access map pages */

/* MAP_SHARED : may shared among other processes */
/* fd : opened file descriptor */

/* 0 : starting position of mapping ~ */

base = mmap(0, st.st size, PROT READ, MAP SHARED, fd, 0);

if (base == MAP_FAILED) {
perror("map failed");
close(fd);
exit(1);

b

/* no longer need the fd */
close(fd);

/* print the file */
printf("data : |%s|\n", base);

/* unmap the file */
munmap(base, st.st_size);

exit(0);
}

e Sample run :

libra% cat myFile
Hello World

libra% a.out
File size: 12
data : [Hello World

|
libra%

e You need to specify the size of mapping,
if it is more than the file size you will not get an error.
You will get SIGBUS when you are trying to access the locations > file
size.

e Solution : You can use truncate(3C) or ftruncate(3C) to extend the file
size before mapping (must be opened for writing).

e Example : from previous example, you can extend myFile to 4K size as
below :

/* open the file */

if ((fd = open("myFile", O_RDWR, 0)) <0) {
perror("cannot open my file");
exit(1);

}

/* determine the size of the file before ftruncate(3C)*/
fstat(fd, &st);
printf("File size: %d\n",st.st_size);

if (ftruncate(fd, (off_t) 4096) == -1) {
perror("ftruncate error!");
exit(1);

/* determine the size of the file after ftruncated*/
fstat(fd, &st);
printf("File size: %d\n",st.st_size);

40

e Sample run :

libra% a.out

File size: 12

File size: 4096
data : [Hello World

e use msync(2) to flush data into disk.

Chapter 7. System V IPC and Sockets

7.1. Introduction

e System V IPC :

message queues
shared memory
semaphores

ipcs(1) : list all current IPC objects
ipcrm(1) : use to remove [PC object

key tkey : use key value to specific IPC object during create time

key =IPC_PRIVATE
key = some integer number =
all processes know the number can access the same IPC object
key = ftok(3) 2
input a pathname to ftok(3), kernel will return same key for
all processes using the same pathname

id : IPC object returns the identifier to refer to the specific IPC object

e Summary of System V IPC (all system calls are from section 2)

Message Queue Semaphore Shared Memory
include files <sys/msg.h> <sys/sem.h> <sys/shm.h>
create or Ope;lm““m-m"rﬂ;g_; """""""""" 3 ;;1;; """""""" . l'l'm"g"e-t ------
control OpefatlonSmsgcﬂ ---------------- g P
IPC Opefaﬁogl-s- msgsnd ______________ 3 emop """""""" P

msgrev <mhd

e The get system calls create or open an IPC channel, all take a key value
and return an integer identifier.

e The get system calls also take a flag argument.

42

e The rules for whether a new IPC channel is created or whether an
existing one is referenced are :

#include <sys/ipc.h>

e key=IPC PRIVATE (= 0) - creates a new IPC channel

e key !=0and flag=IPC_CREAT | 0640 = creates a new IPC

channel if the key does not already exist. If an existing entry is
found, that entry is returned (if the access permission is OK.)

key != 0 and flag = IPC_CREAT | IPC_EXCL | 0640 = creates a
new IPC channel if the key does not already exist. If an existing
entry is found, an error occurs.

7.2. Message Queues

e Message queues can be viewed as pipes with message-based (instead of
stream based)

e The kernel maintains a structure for every message queue in the system.
It includes the following information (use msgctl(2) to access the info.)

operation permission,

pointers to first and last message

number of bytes and number of messages on queue
maximum number of bytes allowed

pids of last sender and last receiver

times of last sender and last receiver

time of last msgctl

e FEach message on a queue has the following attributes :

#include <sys/msg.h>

struct msgbuf {

43

long mtype; /* message type */
char mtext[1]; /* message text : can be variable length*/

IR
e System calls

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget(key t key, int getFlag);

/* send a message into queue */
int msgsnd(int id, const void *msgptr, size t msgsz, int msgflag);

id : 1d of message queue (returning from get)
msgptr : pointer to msgbuf

msgsz : size of mtext (not including mtype)
msgflag : 0 - blocks (when full) or IPC_ NOWAIT

/* get a message from the queue */
int msgrev(int id, void *msgptr, size t msgsz,
long msgtype, int msgflag);

msgtype : type of message
msgflag : 0 - blocks when empty or specific type
message is not available

e Every message is stamped with a "type" (long), and receiving processes
can restrict incoming messages to those of a specified type.

e When a process wants to receive a message from the queue, it must
specify the "msgtype"

e If "msgtype" = 0, first message on the queue is returned (oldest
message)

44

o If "msgtype" > 0, the first message with a type equal to "msgtype"
1s returned.

e [f"msgtype" <0, the first message with the lowest type that is less
than or equal to the absolute value of "msgtype" is returned.

e msgctl(2) is used to remove the object and get and set the control
information.

e IMPORTANT : Once created, a message queue exists until it is
explicitly removed by creator or superuser. (use magctl(2) or ipcrm(1))

Example :

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

45

typedef struct {

long mesg_type;
char mesg_data[1000];

} Mesg;

main() /* writer */

{

int msgid;
int len;
Mesg mesg;

msgid = msgget(1000, 0600/IPC_CREAT);
mesg.mesg_type = 100;

strecpy(mesg.mesg_data, "message number 1111\0");
len = strlen(mesg.mesg_data);

msgsnd(msgid, (char *) &(mesg), len, 0);

mesg.mesg_type = 300;

strecpy(mesg.mesg_data, "message number 3333\0");
len = strlen(mesg.mesg_data);

msgsnd(msgid, (char *) &(mesg), len, 0);

mesg.mesg_type = 200;

strecpy(mesg.mesg_data, "message number 2222\0");
len = strlen(mesg.mesg_data);

msgsnd(msgid, (char *) &(mesg), len, 0);

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

typedef struct {

long mesg_type;

46

char mesg_data[1000];
} Mesg;

main() /* Reader */

{
int msgid;
int len;
Mesg mesg;

msgid = msgget(1000, 0600/IPC_CREAT);

msgrcv(msgid, (char *) &(mesg), 100, 0, 0);

printf("Get a message type : %od = %s\n",mesg.mesg_type,
mesg.mesg_data);

msgrcv(msgid, (char *) &(mesg), 100, 300, 0);
printf("Get a message type : %od = %s\n",mesg.mesg_type,
mesg.mesg_data);

msgrcv(msgid, (char *) &(mesg), 100, -300, 0);
printf("Get a message type : %od = %s\n",mesg.mesg_type,
mesg.mesg_data);

msgctl(msgid,IPC_RMID,0);

Sample run :

libra% ipcs

IPC status from <running system> as of Wed Jan 27 21:05:00 1999

Message Queue facility not in system.
T ID KEY MODE OWNER GROUP

Shared Memory:
m 0 0x50000d9f --rw-r--r-- root root
Semaphores:

libra% reader &

libra% ipcs

IPC status from <running system> as of Wed Jan 27 21:05:13 1999
T ID KEY MODE OWNER GROUP

Message Queues:

q 0 0x000003e8 -Rrw------- jwong fl

Shared Memory:

m 0 0x50000d9f --rw-r--r-- root root

Semaphores:

Note : Key = 1000 = 0x000003e8 (base 16)
ID=0;

libra% writer &
[2] 24454

< note messages from reader >

Get a message type : 100 = message number 1111
Get a message type : 300 = message number 3333
Get a message type : 200 = message number 2222

7.3. Semaphores

e Semaphores are synchronization primitive (They are not used for

exchanging large amounts of data, as are pipes, FIFOs and message

queues)

e The kernel maintains a structure for every set of semaphores in the

system. It include the following information :

operation permission,

48

pointers to first semaphore in the set
number of semaphores in the set
time of last semop

time of last change

e FEach semaphore of a semaphore set has the following attributes :

#include <sys/sem.h>

struct sem {
ushort semval; /* semaphore value */
pid t sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */

ushort semzent; /* # awaiting semval = 0 */

e System calls

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

e A new set of semaphores is created, or an existing set of
semaphores is accessed with the semget(2) system call.

e semget(2) creates n semaphores, the number is from 0,1,..n-1.
(Initially. semval = 0)

e Using semop(2), a process can increase semval or decrease semval
of semaphores.

e [t can also wait until the semval reaches or exceeds some
minimum value, or until it becomes 0.

e Semaphore operations can be set by using the following structure :

struct sembuf {

ushort t sem num; /* semaphore # */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

49

IR
where : /* read manual about the sem_flg */

e /*increase sem_value */
sem_op >0, sem value = sem value + sem_op

e /* wait until sem_value become 0 */
sem_op = 0, wait until sem_value =0

e /* decrease sem_value, may be block */

sem op < 0, wait until sem_value >= [sem_op|
set sem_value = sem_value + sem_op

e Using semctl(2), a process can obtain and modify status
information about the semaphore. You may fetch and set the
semaphore value of a particular semaphore in the set.

e Example:

op_lock[2]={0,0,0 /* wait until sem#0 to become 0 */
0,-1,0 /* then increment the value by 1 */ }

op_unlock[1]= { 0,1,IPC_ NOWAIT /* set sem#0 value =1 */ }

mylock()

{
semid = semget(KEY,1,IPC_CREAT);

50

semop(semid, &op lock[0],2);

my unlock()
{

b

semop(semid. &op_unlock[0],1);

Note : (1) Need to remove the semaphore when all processes are done
(2) If a process aborts for some reason while it has the lock, the
semaphore value is left at one.

7.4. Shared Memory

e Shared memory is implemented in a very similar way to messages.
e Every shared memory segment in the system has an associated shared
memory identifier (shmid)

e The kernel maintains a structure for every shared memory segment in the
system. It contains the following information :

operation permission

segment size
pid of last operation

51

number of processes attached
others

e System calls

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

e shmget(2) creates a shared memory segment, but does not provide access
to the segment for the calling process.

e Using shmat(2), a process can attach the shared memory segment. This
system call returns the starting address (pointer) of the shared memory
segment (similar to mmap(2))

e When a process is finished with a shared memory segment,it detaches the
segment by calling shmdt(2) system call.

e Again, once the shared memory segment is created, it exists until it is
explicitly removed by creator or superuser. (use shmctl(2) or ipcrm(1))

e Example :

Processl : /* write ello”, read orld” */
#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

typedef struct {
char word[100];
} String;

main()

52

int shmid;
String *pointer;

shmid = shmget(1000, sizeof(String), 0600/I[PC_CREAT);
pointer= (String *) shmat(shmid, 0, 0);
strcpy(pointer->word,"hello\0");
sleep(3);
if ((stremp(pointer->word,"world\0")) == 0)
{

printf("process 1 read world\n");

shmdt(pointer);

b
shmctl(shmid, [IPC_RMID,0);

}

Process2 : /* read ello”, write orld” */ Only partial program

shmid = shmget(1000, sizeof(String), 0600/IPC_CREAT);
pointer= (String *) shmat(shmid, 0, 0);

if ((stremp(pointer->word,"hello\0")) == 0)

{
printf("process 2 read hello\n");
strcpy(pointer->word,"world\0");
}
shmdt(pointer);

7.5. Sockets (Introduction)

e Sockets are a flexible general communication facility supported by
Berkeley UNIX

e Client-server Model :
e A server is a process that is waiting to be contacted by a client
process so that the server can do something for the client.

(Typically, 1 server and at least 1 client)
e Note : A process may be both clients and servers

53

Note : In this chapter, we only cover some basic Socket IPCs

There are several domains across which sockets can operate, including :

e AF UNIX : UNIX domain = among UNIX processes in the same
machine, take filesystem pathname

e AF INET : Internet Domain = among processes in Internet, take
internet address

There are several types of message passing in each domain, including :

e SOCK STREAM : Connection oriented, two way, reliable,
variable length messages, expensive. It uses transmission control
protocol (TCP).

e SOCK DGRAM : Connetionless, not reliable, fixed length (up to
8k), more effieceint. It uses datagram protocol (UDP)

e We only consider the following model in this chapter:

e AF UNIX, SOCK STREAM
e AF INET, SOCK STREAM

Typical sequences of steps to form a socket connection for SOCK_STREAM:

Part I of Server :

1. Create an unnamed socket using socket(3XN)
2. Attach the socket to a name in the file system using bind(3XN)
3. Set the maximum number of pending connection using listen(3XN)
4. Accept connection to the socket using accept(3XN)
. wait until connection from client

Part I of Client :

54

1. Create an unnamed socket using socket(3XN)
2. Try to connect to the named server socket using connect(3XN)
..... Connection Establishment

Part II of Server & Client :

Use the descriptors returned by accept(3XN) in server and
socket(3XN) in client, to communicate using read(2) and write(2) (or
recv()/send() or sendto()/recvirom())

Note : typically, server fork() a new child process or thread to handle
the client request. The parent process can continue to accept() more

requests.

End of communication :

need to close all the descriptor by using close(2)
server needs to unlink the named socket by using unlink(2)

e System calls :

#include <sys/types.h>
#include <sys/socket.h>

¢ int socket(int family, int type, int protocol)

e creates an end point for communication.
e returns a small integer value, called socket descriptor
(sockfd).
e usually protocol = 0 >the default protocol is used.
e bind(int sockfd, struct sockaddr *name, int namelen)

e bind unnamed socket to specific name.

e For AF _UNIX:
struct sockaddr {

55

sa family t sa family; /* address family */
char sa_data[14]; /* up to 14 bytes of
direct address */

55

e For AF INET:
struct sockaddr_in {

sa_family t sin_family;
in_port t sin_port;

struct in_addr sin_addr;
char sin_zero[8];

b

see <netinet/in.h>
assign a port number to unamed socket,
cast it to sockaddr structure.

e o o -~

e listen(int sockfd, int backlog)

e willing to receive connection.
e the backlog specifies how many pending connections the
system allows before refusing the connection.

e int accept(int sockfd, struct sockaddr *addr, int *addrlen)

e accepts a connection on a socket from client.

e it return a new socket descriptor to the server. This new
descriptor can be used to communicate with a specific
client.

e The original descriptor sockfd can be used to accept more
connections.

e [faddr is not empty, it will stored the client socket
information in the structure.

e int connect(int sockfd, struct sockeaddr *name, int *namelen)

e initiates a connection to a server.
e Fill in information of server process

56

e For AF _UNIX : See bind() above

e For AF INET : see <netinet/in.h>
use structure sockaddr in to fill in server information
cast it to sockaddr structure.

e Use read(2) and write(2) to communicate, and close(2) and
unlink(2) to close and remove socket.

e Note :

e You should check the return values of system calls. It is important
that you make sure everything is fine before you move to the next
step.

e For illustration, I skip the error checking in the following two
example.

e Also, make sure to remove socket file before rerun the program,
this will cause errors.

e Example1: AF_UNIX

/*

** SERVER

kk

** In libra, use "cc -o server server.c -lsocket " to compile
kk

*# Usage : server

** Read from client, write to client

*/

#include <sys/types.h>

#include <sys/socket.h>
#include <stdio.h>

main(int argc, char *argv[])

{

struct sockaddr server;
int mySocket, newSocket;
char myBuf[1024];

57

/*

%k
kok
%k
kok
%kk
kok
skek

*/

/* Step 1 */
mySocket = socket(AF _UNIX, SOCK STREAM, 0);

/* Step 2 */

server.sa_family = AF _UNIX; /* domain */
strepy(server.sa_data,”/tmp/MySocket”); /* name */
bind (mySocket, &server, sizeof (server));

/* Step 3 : set max # pending connection */
listen (mySocket, 4);

newSocket = accept(mySocket, 0, 0); /* Step 4 */

/* usually, fork(2) a child to service the request, */
/* parent goes back to accept */

/* Use system calls, read and write, to communicate */
read (newSocket, myBuf, sizeof(myBuf));
printf("%s\n", myBuf);

write (newSocket, "OK! I got it \n" , 20);

/* Close the socket */
close (newSocket);

close (mySocket);
unlink(“/tmp/MySocket”);

CLIENT
In libra, use "cc -o client client.c -Isocket" to compile

Usage : client message

Example : client "hello"
Write to server, read from server

58

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>

main(int argc, char *argv([])

{

struct sockaddr client;
int mySocket;
char myBuf[100];

/* step 1 : make a unamed socket */
mySocket = socket(AF_UNIX, SOCK STREAM, 0); /* Step 1 */

/* Step 2 : connect to named server */

client.sa family = AF _UNIX; /* domain */
strepy(client.sa_data,”/tmp/MySocket™); /* name */
connect (mySocket, &client, sizeof (client));

/* Use system calls, read and write, to communicate */
strcpy(myBuf, argv[1]);

write(mySocket, myBuf, sizeof(myBuf));
read(mySocket, myBuf, sizeof(myBuf));
printf("%s\n",myBuf);

/* close the socket */
close(mySocket);

e For network program, we introduce several system functions :

e Different machine may store the bytes in an integer in different order.

e You should convert to network byte order before sending data,

e and covert the network order to host order when receiving the data

#include <sys/types.h>
#include <netinet/in.h>

htonl(3XN)

59

htons(3XN)
ntohl(3XN)
ntohs(3XN)

e To get the IP address of a host, use

#include <netdb.h>

gethostbyname(3XN)
gethostbyaddress(3XN)

e Both functions return :

struct hostent {

char *h name; /* official name of host */
char **h_aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */

char **h_addr list; /* list of addresses from name server */

55

e To get the host name

#include <sys/utsname.h>
uname(2) = return the hostname

Example 2 : AF_INET

/*

** SERVER

sk

** In libra, use "cc -o server server.c -Isocket -Insl" to compile
sk

** Usage : server

sk

** Read from client, write to client

*/

#include <sys/types.h>

#include <sys/socket.h>

60

#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <sys/utsname.h>

#define PORT NUMBER 1335

main(int argc, char **argv)

{

struct utsname name;
struct sockaddr in sin;

int mySocket, newSocket;
char myBuf[1024];

/* Step 1 */
mySocket = socket(AF_INET, SOCK_STREAM, 0);

/* Step 2 */

uname(&name);

host = gethostbyname(name.nodename);

memcpy((char *) &sin.sin_addr, host->h_addr_list[0],
host->h length);

sin.sin_family = AF_INET;
sin.sin_port =htons(PORT_NUMBER);
bind (mySocket, (struct sockaddr *) &sin, sizeof (sin));

listen (mySocket, 2); /* Step 3 */
newSocket = accept(mySocket, 0, 0); /* Step 4 */

/* Use system calls, read and write, to communicate */
read (newSocket, myBuf, sizeof(myBuf));
printf("%s\n", myBuf);

write (newSocket, "OK! I got it \n" , 20);

/* Close the socket */
close (newSocket);

61

J*
*% CLIENT

** In libra, use "cc -o client client.c -Isocket -Insl" to compile

kK

**% Usage : client hostname message
kk

** Example : client futon "hello"
%k

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define PORT NUMBER 1335

main(int argc, char *argv[])
{

struct hostent *myHost;
struct sockaddr in sin;

int mySocket;

char myBuf[100];

62

/* To change the hostname "futon" to Internet address */
myHost = gethostbyname(argv|[1]);
bcopy(myHost->h addr list[0], &sin.sin addr, myHost->h length):

sin.sin family = AF INET;
sin.sin_port = htons (PORT NUMBER):
strcpy(myBuf, argv[2]);

mySocket = socket(AF _INET, SOCK _STREAM, 0); /* Step 1 */

/* Step 2 */
connect (mySocket, (struct sockaddr *)&sin, sizeof (sin));

/* Use system calls, read and write, to communicate */
write(mySocket, myBuf, sizeof(myBuf));
read(mySocket, myBuf, sizeof(myBuf));
printf("%s\n",myBuf);

/* close the socket */
close(mySocket);

}

e Manage a set of opened file descriptors

e Processes may not want to block in accept(), read() or write()
system calls.

e We can use select(3C) or poll(2) to determine the activities of a set
of file descriptors (for any system calls using file descriptors)

e select(3C):
#include <sys/types.h>

int select(int nfds, fd set *readfds, fd_set *writefds,
void fd_set *execptfds, struct timeval *timeout);

63

nfds
readfds

writefds
execptfds

timeout

: total number of file descriptors in your program
: the file descriptors that are waiting for

incoming data (including accept())

: the file descriptors that are waiting for

writing data

: any error condition may be happen on

file descriptors

: NULL = wait until an event has arrived

0 (in struct) = no blocking
> ((in struct) = return after the given time

select(3C) use one bit to represent a file descriptor. Bit
manipulation on a set of file descriptors can be simplified by using
the following macros

#include <sys/time.h>

/* Initialize the fd_set */
void FD ZERO(fd set *fdset);

/* assign a bit for fd in fd_set */
void FD SET(int fd, fd_set *fdset);

/* remove the assigned bit for fd in fd_set */
void FD_CLR(int fd, fd_set *fdset);

/* check whether the bit for fd in fd_set is set */
int FD _ISSET(int fd, fd set *fdset);

Simple example :

#include <sys/types.h>
#include <sys/time.h>

int fd1, fd2;

fd_set readSet;

fd1 = open(...);
fd2 = open(...);

64

FD ZERO(&readSet);
FD SET(fd1, &readSet);
FD_SET(fd2, &readSet);

select(5, &readSet, NULL, NULL, NULL);
if (FD_ISSET(fd1, &readSET)) {
... fd1 may read data ...

b

if (FD_ISSET(fd2, &readSET)) {
... fd2 may read data ...

b

e Note : before reuse the select() again, you have to make sure to set
all bits to initial state.

65

7.6. Introduction to Named Stream Pipe (SVR4)

e Traditionally, pipes provide a unidirectional communication channel for
parent and children processes.

e FIFOs (named pipe) allow independent processes to communicate by
creating a FIFO file

e Stream pipe was introduced to provide more flexible IPC method.
e [t is a bidirectional (full-duplex) pipe and is created by pipe(2) function.

(Yes, it is same as pipe(2) introducing in 6.3.)
e.g.
int fd[2];
pipe(fd[2]);
both fd[0] and fd[1] can be used to read and write data

e Formally, pipe(2) create two stream heads that are connected to each
other, i.e. one file descriptor per stream head.

fd[0] €—> stream head

| |
fd[1] €—> stream head

e Stream heads allow user to push processing module onto the stream
using ioctl(2) system call. e.g. push processing module on stream fd[1]

fd[0] €~ stream head

| |
fd[1] €—> stream head <—> processing module

e Streams and processing modules are advanced topics and are not covered
here. We focus on a processing module, called onnld”, which allows

creation of named stream pipe.

66

Named stream pipes allow independent processes (clients and server) to
communicate

Here are the major steps of server :

. Create a pipe

. Push onnld” into one end of pipe, fd[1], using ioctl(2).
Example : ioctl(fd[1], I PUSH, "connld");

. Create a file with proper permission (e.g. 666) and use fattach(2) to
attach the pathname to the end of fd[1]. (Note : all clients need to know
the pathname).

Example : fattach(fd[1], "tempFile");

. Use ioctl(2) to wait for a client connection at fd[0].
Example :
struct strrecvfd conversation_info;
int retval, fd_server;
ioctl(fd[0], I RECVFD, &conversation info)
fd server = conversation_info.fd;

< wait for client connection through open(2) -2
e when connected, a new stream pipe is created, one file descriptor,

fd_client, is returned to client (see Client step 1), anothe file
descriptor, fd_server, is returned to server thorugh ioctl(2).

fd client <> stream head
| |
| |
fd server <-> stream head
fd[0] <> stream head
| |
| |
fd[1] <> stream head <> onnld”

67

. Use fd_server to communicate with the client, i.e. use read(2) and
write(2). Server can also wait for other client connection using fd[0] (see
step 4). Here, you may use select() to handle multiple file descriptors.

Here are the major steps of client

. Use open(2) to open the file (created at Server step 3)
Example : fd_client =open("tempFile", O RDWR);

. Use the file descriptor returning from open(2), fd_client, to
communicate with server

68

Chapter 8. Introduction to multithreaded programming

8.1. Introduction to threads

e What are threads

e A UNIX process is a program in execution. It may be view as a
single thread with task (process address space, process control
info. and etc)

e New POSIX Pthreads interface standard and the UNIX
International (UI) interface standard allows more than one thread

within a task.

e Threads share all process memory, e.g. if a thread modifies
certain data, other threads can read the modified data.

e Comparing threads with processes

Threads Processes

in the same task - in different tasks -

share process memory do not share process memory
communicate using regular communicate using [PC
variables in the program (complex to set-up)

faster to create a new thread to create a new process

(around 50 - 300 microsec) (about 1700 microsecs)

69

Threads Processes

complex job in the same may need several processes
environment can be break into

smaller functions for execution by

several threads

signal features are more signal features are simpler in
complex with threads process environment
many library routines and library routines and system

system calls are not thread-safe calls are always OK

shared data = need to handle only need to worry about

thread synchronization within synchronization in multi-process
program environment

need to be careful about local do not have to worry about this

declared automatic variables
when using threads to share
data

Solaris threads scheduling
e User threads
e The kernel do not aware of the existence of user threads. The

management of user threads is done by an applications (a
thread library). It includes the user threads scheduling

70

e Main advantages : Very fast (much faster creating a LWP), do
not require involvement of OS and portability

e Lightweight Process (LWP)

e LWP management are handled by kernel. Each LWP is
associated to one kernel thread that is scheduled by kernel
directly.

e Multiple user threads can share a one or more LWP. User
threads are scheduled (and can be bound) onto LWP by the
threads library

e Problems in multithreaded programming
e thread safe functions

e Functions are thread-safe or reentrant 2 may be called by
more than one thread at a time and still produce correct
solution
(note : race condition by multiple threads may be happen in
some old function calls = not thread-safe)

e Example :
Not thread-safe function : char *ctime(const time t *clock)
—> input a pointer to number (i.e. *clock), return a readable
time in string format.
The returning string is allocated statically = any thread
calls ctime() function again will overwrite the previous

information in the string.

To overcome this problem, should use thread safe function
ctime r() in multithreaded programs.

e To find out whether or not a function is thread-safe :

71

man page should state whether or not a function is thread-

safe. If it is not thread-safe, it should suggest an alternative

function.

e Memory allocation functions, e.g. malloc(), are thread-safe.

e synchronization

e when multiple threads access same common data objects,
race condition may result unexpected results

e several ways may be used to avoid this problem :
e try to allocate data object dynamically, so that every
thread get different data object
e use lock and unlock to synchronize threads

® CITOr

e the library has been updated to allow each thread has its
own errno variable

e your program must include <errno.h>

e compiling with “-D_POSIX C_SOURCE=199506L"
- turns on thread safe definitions of interface.

8.2. Basic thread control routines

e Must include header file : #include <pthread.h>

e To compile pthread program with thread-safe definitions of interfaces
(including errno.h) :

tula% cc pl.c -Ipthread -D_POSIX_C_SOURCE=199506L

72

Zero indicates a successful return and a non-zero value indicates an

€rror

Thread control functions (Please refer to man page for complete

information) :

. Thread Creation : create a new thread. It will start to execute at specified

function and terminate when it reaches the end of function.

e prototype :

int pthread create(

);

pthread t *new_thread ID,
const pthread attr t *attr,
void * (*start_func)(void *),
void *arg

*new_thread ID : pointer to a thread variable. If the function
successfully creates a new thread, this point to the new thread

ID.

pthread attr t *attr : To modify the attributes of new thread.
NULL -> use default set of attributes. Attributes include

contentionscope : use pthread attr setscope() and

pthread attr getscope() functions to set and get this

attribute.

e PTHREAD SCOPE SYSTEM : bound to LWP

e PTHREAD SCOPE PROCESS : unbound thread
(default)

detachstate : use pthread attr setdetachstate() and

pthread attr getdetachstate() functions to set and get this

attribute.

e PTHREAD CREATE DETACHED : create a
detached thread. The thread disappears when it is
done without leaving a trace

73

e PTHREAD CREATE JOINABLE : the thread exit
information is not free until pthread join(3T).
(similar to wait(2) to receive the child process exit
status)

See man page for other attributes.

*start func & *arg :

e The new thread starts by calling the function defined

by start_func with one argument, arg.

e [f more than one argument needs to be passed to
start_func, the arguments can be packed into a
structure, and the address of that structure can be
passed to arg.

e Ifstart func returns, the thread will terminate with
the exit status set to the start func return value
(see pthread exit(3T) or thr exit(3T)).

e Example:

Default thread creation:

pthread t tid;
void *start func(void *), *arg;

pthread create(&tid, NULL, start func, arg);

User-defined thread creation:

To create a thread that is bound to LWP :

pthread attr init(&attr); /* initialize attr with default attributes */

pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
pthread create(&tid, &attr, start func, arg);

e Warning : make sure arg structure is not declared as automatic
variable in the caller function which may exit before the thread is
done referencing it.

74

2. Thread Termination :

e Thread is destroyed when

e it reaches the end of the starting function. The function may

return a pointer value which will become the exit status
OR

e it calls pthread exit(void *status) function

e the exit status is available to other threads using pthread join(3T)

e warning : the exit status should not point to data allocated on the
exiting thread stack = data may be freed and reused when the
thread exits.

3. Waiting for thread termination :

e use pthread join(3T) to get a thread completion status.
e Prototype:

int pthread join(pthread t thread, void **statusp)

e thread : wait for a thread whose ID is thread.

e **statusp : completion status (note : this can be pointed to any
structure, long string, array of structures and strings etc)

4. Get the thread ID : pthread t pthread self()

5. Comparing thread ID : int pthread equal(pthread t t1, pthread t t2)
same thread = return non zero; different threads = return 0

75

Example :

/*
producer thread : read data from file and store into
dynamically allocated buffer
consumer thread : the main thread. It consumes data in buffer
whenever the data is ready
(note : consumer read the Ist set of data)
*/
#include <pthread.h>

#include <unistd.h>

void display data(char *buf ptr);
void *get next file(void *arg);

int main(int argc, char **argv)

{

pthread t producer_thread;
int datafile number;

int total_number;

char *data_buf;

total number = 10; /* can be read using argc and argv */

for (datafile number = 1; datafile number <= total number;
datafile_number ++)

{

if (datafile_ number ==1) {

/* consumer read the 1st data file */
data_buf = get next file((void *)&datafile number);

} else {
pthread join(producer thread, (void **) &data buf);

}

76

if (datafile number < total number) {
pthread create(

&producer_thread,
NULL,
get next_file,
(void *) &datafile number
);

b

display_data(data_buf);

Eeturn(O);
b
void display data(char *buf ptr)
{ /* simulate displaying data */
printf(" In display data : the buffer is : %s\n",buf ptr);
}

void *get next file(void *arg)

{

char *buf;

printf("In get next file : thread ID=%d : arg=%d\n",
pthread self(),*((int *) arg));

/* simulate get data from file */

buf = (char *) malloc(30);

sprintf(buf, "this is string number %d", *((int *) arg));
return(buf);

77

e Sample Run :

libra% cc try.c -Ipthread -D_POSIX C_SOURCE=199506L
libra% a.out
In get next file : thread ID=1 : arg=1

In display data : the buffer is : this is string number 1
In get next file : thread ID=4 : arg=2

In display data : the buffer is : this is string number 2
In get next file : thread ID=5 : arg=3

In display data : the buffer is : this is string number 3
In get next file : thread ID=6 : arg=4

In display data : the buffer is : this is string number 4
In get next file : thread ID=7 : arg=5

In display data : the buffer is : this is string number 5
In get next file : thread ID=8 : arg=6

In display data : the buffer is : this is string number 6
In get next file : thread ID=9 : arg=7

In display data : the buffer is : this is string number 7
In get next file : thread ID=10 : arg=8

In display data : the buffer is : this is string number 8
In get next file : thread ID=11 : arg=9

In display data : the buffer is : this is string number 9
In get next file : thread ID=12 : arg=10

In display data : the buffer is : this is string number 10
libra%

8.3. Basic synchronization

e There are few basic synchronization primitives available in pthread
library. We cover mutual exclusion lock (mutex) and condition variable
(cond) in this section.

e Mutual exclusion lock functions :

1. Header file and default initialize the lock :

e #include <pthread.h>
e pthread mutex t mutex= PTHREAD MUTEX INITIALIZER

/* dynamically allocate mutex */

e pthread mutex t *mutex;
e “*mutex = (pthread mutex t *) malloc(sizeof(pthread mutex t));

2. Initializing mutexes.

e int pthread mutex init(pthread mutex t *mutex,
const pthread mutexattr t *attr);

¢ initialize mutex with attributes specified by attr.

e (see pthread mutex lock for description of attributes)

e you must initialize mutex before using it and should only do it once
e for pthread mutex_init(3T), use NULL for default attribute

3. Destroying mutexes

int pthread mutex destroy(pthread mutex t *mutex);

e destroys the mutex object referenced by mutex;

e the mutex object becomes uninitialized and it can be reused by
reinitializing using pthread mutex_init(3T)

e it is safe to destroy an initialized mutex that is unlocked.

79

e Attempting to destroy a locked mutex results in undefined
behavior.

4. Locking and unlocking mutexes

e int pthread mutex lock(pthread mutex t *mutex);
e int pthread mutex unlock(pthread mutex_ t *mutex);
e int pthread mutex_trylock(pthread mutex t *mutex);

e to lock and unlock mutex
e only the thread which locked the mutex may unlock it

e pthread mutex trylock(3T) is identical to pthread mutex lock
(3T) except that if the mutex object referenced by mutex is

currently locked (by any thread, including the current thread),
the call returns immediately.

e (Condition variable functions :

1. Header file, initializing and destroying condition variables.
e #include <pthread.h>

/* set default attributes */
e pthread cond t cond= PTHREAD COND INITIALIZER;

e int pthread cond init(pthread cond t *cond,
const pthread condattr t *attr);

e See pthread mutex locked cond wait(3T) for description of
attributes

e you must initialize cond before using it and should only do it once

e for pthread cond init(3T), use NULL for default attribute

80

. wait operations :

e int pthread cond wait(pthread cond t *cond,
pthread mutex t *mutex);

e int pthread cond timedwait(pthread cond t *cond,
pthread mutex t *mutex,
const struct timespec *abstime);

e functions are used to block on a condition variable.
e they are called with mutex locked by the calling thread or
undefined behavior will result.

e these functions atomically release mutex and cause the calling
thread to block on the condition variable cond.

(i.e. another thread can lock the mutex after this operation)

e The threads are waken-up by pthread cond signal(3T) or
pthread cond broadcast(3T)

e The pthread cond timedwait() function is returned if the
absolute time specified by abstime passes before the condition
cond is signaled or broadcasted.

e Usually, the usage of cond variable is as follows :

while (<<condition is not true >>)

/* releases mutex, waits in cond (atomic steps)
when it is signaled or broadcasted,
resumes execution, locks mutex (atomic steps),

re-enter while() */

pthread condition wait(cond, mutex);

81

3. signal operations :

e int pthread cond signal(pthread cond t *cond);
e int pthread cond broadcast(pthread cond t *cond);

e These two functions are used to unblock threads blocked on a
condition variable.

e The pthread cond signal() call unblocks at least one of the
threads that are blocked on the specified condition variable
cond (if any threads are blocked on cond). Note : this may
wake-up several threads in multiprocessors environment.

e The pthread cond broadcast() call unblocks all threads
currently blocked on the specified condition variable cond.

Example : threads share and update the counter

#include <unistd.h>
#include <pthread.h>

#define NUM_THREADS 5
#define NUM_LOOP 1000000

int count = 0;
pthread mutex tlock = PTHREAD MUTEX INITIALIZER;

void * count_function(void *arg)

{ .
int n;
for (n=0; n<NUM_LOOP; n++) {
/* pthread_mutex_lock(&lock); */
count++;
/* pthread_mutex_unlock(&lock); */
b
h

[R e S S S Sy SR S
S OO -TANNDWN— o OIS WD~

82

21
22
23
24
25
26
27
28
29

30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

main()

.

int 1;

pthread t threadsfNUM_THREADS];
pthread attr t attr;

printf("There are %d threads\n", NUM_THREADS);
printf("Each thread increases the counter %d times\n", NUM_LOOP);
printf("The expected result is count = %d\n", NUM_THREADS * NUM_LOOP);

/* bind each thread with LWP */
pthread attr init(&attr);
pthread attr setscope(&attr, PTHREAD SCOPE_SYSTEM);

/* start child threads here */
for(i=0; i<NUM_THREADS; i++)
{

b

pthread create(&threads[i], &attr, count function, NULL);

/* main thread wait for tremination of all child threads */
for(i=0; i<NUM_THREADS; i++)
{

}

pthread_join(threads[1], NULL);

/* print the computed result */
printf("The computed result is count = %d\n", count);

h

e Sample Run :

&3

/* use mutex to protect the share counter */

libra% !cc

cc lock.c -D POSIX C SOURCE=199506L -lpthread
libra% a.out

There are 5 threads

Each thread increases the counter 1000000 times

The expected result is count = 5000000

The computed result is count = 5000000

libra%

/* do not use mutex to protect the counter = get incorrect answer */
libra% !c

cc lock.c -D POSIX C SOURCE=199506L -Ipthread

libra% a.out

There are 5 threads

Each thread increases the counter 1000000 times

The expected result is count = 5000000

The computed result is count = 2172084

8.4. From POSIX pthreads to Ul threads

e man pthreads(3T) provide description of POSIX pthreads and UI threads.

e There are many similar functions available in Ul thread interfaces
(actually, you can use mixed system calls in the same program). Here is
the list of system calls covering in this chapter and the corresponding
functions from UI threads

POSIX (libpthread) Solaris (libthread)
pthread create() thr create()
pthread exit() thr _exit()
pthread_join() thr join()
pthread self() thr self()
pthread mutex_init() mutex_init()

84

pthread mutex lock()

pthread mutex _trylock()
pthread mutex unlock()
pthread mutex destroy()

POSIX (libpthread)

mutex_lock()

mutex_trylock()
mutex_unlock()
mutex_destroy()

Solaris (libthread)

pthread cond_init()
pthread cond wait()
pthread cond timedwait()
pthread cond signal()
pthread cond broadcast()
pthread cond destroy()

many attribute related calls
To use Ul thread functions :

e Must include header file :

cond init()
cond_wait()

cond timedwait()
cond_signal()
cond broadcast()
cond_destroy()

none

#include <thread.h>

e To compile Ul thread program with thread-safe definitions of

interfaces :

e To defined thread variable :

Example :

libra% cc -mt pl.c

thread t threadVar;

Taken from "man pthread create"

Example 1: This is an example of concurrency with multi-
threading. Since POSIX threads and Solaris threads are fully
compatible even within the same process, this example uses

10 pthread create() if you execute a.out 0, or thr create() if

11 you execute a.out 1.

13 Five threads are created that simultaneously perform a
14 time-consuming function, sleep(10). If the execution of this

&5

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

process is timed, the results will show that all five indi-
vidual calls to sleep for ten-seconds completed in about ten
seconds, even on a uniprocessor. If a single-threaded pro-
cess calls sleep(10) five times, the execution time will be
about 50-seconds.

The command-line to time this process is:
/ust/bin/time a.out 0 (for POSIX threading)
or

/ustr/bin/time a.out 1 (for Solaris threading)
*/

/* cc thisfile.c -Ithread -Ipthread */

#define REENTRANT /* basic 3-lines for threads */
#include <pthread.h>
#include <thread.h>

#define NUM_THREADS 5
#define SLEEP_TIME 10

void *sleeping(void *); /* thread routine */
nt 1;
thread t tid[NUM_THREADS]; /* array of thread IDs */

int
main(int argc, char *argv[])
{
if (argc==1) {
printf("use 0 as argl to use pthread create()\n");
printf("or use 1 as argl to use thr_create()\n");
return (1);

}

switch (*argv[1]) {
case '0": /* POSIX */

86

54 for (1=0;1<NUM_THREADS; i++)

55 pthread create(&tid[i], NULL, sleeping,
56 (void *)SLEEP TIME);

57 for (1=0;1<NUM_THREADS; i++)

58 pthread join(tid[i], NULL);

59 break;

60

61 case 'l": /* Solaris */

62 for (1=0;1<NUM_THREADS; i++)

63 thr_create(NULL, 0, sleeping,

64 (void *)SLEEP TIME, 0, &tid[i]);
65 while (thr_join(NULL, NULL, NULL) == 0)
66 ;

67 break;

68 } /* switch */

69

70 printf("main() reporting that all %d threads have terminated\n", 1);
71 return (0);

72 } /* main */

73

74 void *

75 sleeping(void *arg)

76 {

77 int sleep time = (int)arg;

78 printf("thread %d sleeping %d seconds ...\n",

79 thr self(), sleep_time);

80 sleep(sleep_time);

81 printf("\nthread %d awakening\n", thr_self());

82 return (NULL);

83 }

84

85

e Sample run :

libra% a.out 1

thread 4 sleeping 10 seconds ...
thread 5 sleeping 10 seconds ...
thread 6 sleeping 10 seconds ...
thread 7 sleeping 10 seconds ...
thread 8 sleeping 10 seconds ...

thread 5 awakening
thread 6 awakening
thread 7 awakening
thread 4 awakening
thread 8 awakening

main() reporting that all 5 threads have terminated

libra% a.out 0

thread 4 sleeping 10 seconds ...
thread 5 sleeping 10 seconds ...
thread 6 sleeping 10 seconds ...
thread 7 sleeping 10 seconds ...
thread 8 sleeping 10 seconds ...

thread 7 awakening
thread 5 awakening
thread 4 awakening
thread 8 awakening
thread 6 awakening

main() reporting that all 5 threads have terminated
libra%

8.5. References

88

Sun Solaris Manual Section 3T

Programming with Threads

by Kleiman, Shah and Smaalders

1996, Prentice hall

Note : Good reference for Pthread programming

Guide to Multithreaded Programming
SUN Microsystems, Part Number 801-3176-03

Practical Unix Programming : A Guide to Concurrency,
Communication, and Multithreading

by Kay A. Robbins, Steven Robbins, Steve Robbins (Contributor)
1996, Prentice Hall;

89

