Slice rank of tensors and its applications

Wenjie Fang, LIP, ENS de Lyon
Work of Terence Tao and William Sawin

One Day Meeting in Discrete Structures April 14 2017, ENS de Lyon

Two problems in extremal combinatorics

Sunflower-free set problem

Let U be a finite set with $n=|U|$. Three subsets A, B, C of U form a sunflower if $A \cap B=B \cap C=C \cap A$. What is the size of the largest subset family of U that has no sunflower?

Cap set problem

Three vectors $a, b, c \in \mathbb{F}_{3}^{n}$ form a progression of length 3 if $a+b+c=0$. What is the cardinal of the largest cap set (set of vectors avoiding such progressions) in \mathbb{F}_{3}^{n} ?

Naslund-Sawin bound on sunflower-free set

Theorem (Naslund-Sawin 2016)

Let \mathcal{F} be a sunflower-free family of $\{1,2, \ldots, n\}$. Then

$$
|\mathcal{F}| \leq 3(n+1) \sum_{k \leq n / 3}\binom{n}{k}=\left(3 \cdot 2^{-2 / 3}\right)^{n} e^{o(n)}
$$

Idea: A notion called slice rank, first used implicitly by Croot-Lev-Pach (2016) on progression-free sets in \mathbb{Z}_{4}^{n}.

First result that breaks $2^{n} e^{o(n)!}$

A polynomial model for the sunflower-free set

Let $U=\{1,2, \ldots, n\}$, and v_{1}, \ldots, v_{n} be the canonical base of \mathbb{F}_{3}^{n}. For $A \subseteq U$, we define $v_{A}=\sum_{i \in A} v_{i}$.
Given a polynomial $P\left(X_{1}, \ldots, X_{n}\right)$ and a vector $u=\sum_{i=1}^{n} x_{i} v_{i} \in \mathbb{F}_{3}^{n}$, we define $P(u)=P\left(x_{1}, \ldots, x_{n}\right)$.

Proposition

Let A, B, C be three sets without one set being the proper subset of another. The sets A, B, C form a sunflower or $A=B=C$ iff $P\left(v_{A}, v_{B}, v_{C}\right)=1$, with

$$
P\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, Z_{1}, \ldots, Z_{n}\right)=\prod_{i=1}^{n}\left(2-\left(X_{i}+Y_{i}+Z_{i}\right)\right)
$$

Proof: Since no set is a proper subset of the other, w.l.o.g., we only need to avoid $i \in(A \cap B) \backslash C$, which means $x_{i}=y_{i}=1, z_{i}=0$, which implies $x_{i}+y_{i}+z_{i}-2=0$.

Polynomial as tensor

A polynomial $P\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, Z_{1}, \ldots, Z_{n}\right)$ in \mathbb{F}_{3} \Leftrightarrow

A tensor T in $\mathbb{F}_{3}^{n} \otimes \mathbb{F}_{3}^{n} \otimes \mathbb{F}_{3}^{n}$ with $T(u, v, w)=P(u, v, w)$
Let \mathcal{F} be a sunflower-free family in U, and $T_{\mathcal{F}}$ the sub-tensor of T with coordinates restricted to all v_{A} with $A \in \mathcal{F}$.

Proposition

$T_{\mathcal{F}}$ is a diagonal tensor, that is, $T_{\mathcal{F}}(u, v, w)=1$ iff $u=v=w$.
Idea: Upper bound on "big diagonals" \Rightarrow upper bound on sunflower-free set.

We want some notion of rank to capture the size of "big diagonals".

Slice rank of a function

Let A be a finite set. A function $S: A \otimes A \otimes A \rightarrow \mathbb{F}$ is a slice if it has one of the following forms:

$$
S(u, v, w)=f(u) g(v, w) \text { or } f(v) g(u, w) \text { or } f(w) g(u, v) \text {. }
$$

The slice rank of a function $F: A \otimes A \otimes A \rightarrow \mathbb{F}$, denoted by $\operatorname{sr}(F)$, is the minimum number of slices needed to sum to F.

Property: Let $T_{A}: A \otimes A \otimes A \rightarrow \mathbb{F}$, and T_{B} its restriction on $B \otimes B \otimes B$ with $B \subseteq A$. Then $\operatorname{sr}\left(T_{B}\right) \leq \operatorname{sr}\left(T_{A}\right)$.

Lemma (Special case of Tao (2016))

The slice rank of the function $F(u, v, w)=\sum_{a \in A} c_{a} \delta_{a}(u) \delta_{a}(v) \delta_{a}(w)$ is the number of non-zero coefficients $c_{a} \in \mathbb{F}$.

Proof: delayed.

Slice rank of the sunflower polynomial

$$
P(\underline{X}, \underline{Y}, \underline{Z})=\prod_{i=1}^{n}\left(2-\left(X_{i}+Y_{i}+Z_{i}\right)\right) .
$$

For a monomial $X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} Y_{1}^{a_{1}} \cdots Y_{n}^{a_{n}} Z_{1}^{a_{1}} \cdots Z_{n}^{a_{n}}$ in $P(\underline{X}, \underline{Y}, \underline{Z})$, we have $\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}+\sum_{i=1}^{n} c_{i} \leq n$. One of the total powers of X, Y and Z must be $\leq n / 3$.

$$
P(\underline{X}, \underline{Y}, \underline{Z})=\sum_{a_{1}+\cdots+a_{n} \leq n / 3} X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} P_{a_{1}, \ldots, a_{n}}(\underline{Y}, \underline{Z})+\cdots .
$$

Thus we have (since all $a_{i} \leq 1$)

$$
\operatorname{sr}(P) \leq 3 \sum_{k \leq n / 3}\binom{n}{k}
$$

Proof of upper bound

Let \mathcal{F} be a sunflower-free family, with $\mathcal{F}=\bigcup_{\ell \geq 0} \mathcal{F}_{\ell}$ the partition by number of elements. Sets in \mathcal{F}_{ℓ} are never proper subset of each other.

Let $A_{\ell}=\left\{v_{A} \mid A \in \mathcal{F}_{\ell}\right\}$. The function P is diagonal on A_{ℓ}, thus $\left|\mathcal{F}_{\ell}\right|=\operatorname{sr}_{A_{\ell}}(P) \leq \operatorname{sr}(P)$.
We thus have

$$
|\mathcal{F}| \leq 3(n+1) \sum_{k \leq n / 3}\binom{n}{k}=\left(3 \cdot 2^{-2 / 3}\right)^{n} e^{o(n)}
$$

New bound on cap set problem

Polynomial:

$$
P(\underline{X}, \underline{Y}, \underline{Z})=\prod_{i=1}^{n}\left(1-\left(X_{i}+Y_{i}+Z_{i}\right)^{2}\right)
$$

Theorem (Ellenberg-Gijswijt (2016))
The size of a cap set in \mathbb{F}_{3}^{n} is $o\left(2.756^{n}\right)$.
General result for any finite field. Kleinberg-Sawin-Speyer gave a concrete construction on a lower bound that matches within a subexponential factor.

A general strategy

Given a problem concerning avoiding some structure.
(1) Construct a polynomial P whose zeros are exactly on "everything equal" or "things forming the structure", which is a product of the same polynomial on different sets of variables in many cases;
(2) The function P restricted to an avoiding family \mathcal{F} will then be diagonal;
(3) Compute the slice rank of P, which is an upper bound of the size of \mathcal{F};
(9) Hopefully this bound will be a breakthrough, or not.

Can we know the power of the method?

Slice rank for tensors

We consider tensors in $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{k}$. We define in the natural way the $j^{\text {th }}$ tensor product

$$
\otimes_{j}: V_{j} \otimes \bigotimes_{1 \leq i \leq k, i \neq j} V_{i} \rightarrow \bigotimes_{1 \leq i \leq k} V_{i} .
$$

A slice is any element of the form $v_{j} \otimes_{j} v_{\neq j}$ for any j. The slice rank of a tensor T is the minimum number of slices that sum to T.

Example: For V_{1} (resp. V_{2}, V_{3}) the space of polynomials of X_{i} (resp. $\left.Y_{i}, Z_{i}\right)$ in \mathbb{F}, the slice rank of tensors in $V_{1} \otimes V_{2} \otimes V_{3}$ is the slice rank of polynomials.

Property: Let T be a tensor in $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{k}$ and T^{\prime} a sub-tensor of T. Then $\operatorname{sr}\left(T^{\prime}\right) \leq \operatorname{sr}(T)$.

Slice rank of a polynomial and its value tensor

Let P be a polynomial in a finite field \mathbb{F} with k sets of n variables. P is a tensor in $V_{1} \otimes \cdots \otimes V_{k}$, where V_{i} is spanned by monomials in the $i^{\text {th }}$ set of variable.
Let T_{P} be the value tensor of P in $\left(\mathbb{F}^{n}\right)^{\otimes k}$ defined by

$$
T_{P}=\sum_{\underline{v}_{1}, \ldots, \underline{v}_{k} \in \mathbb{F}^{n}} P\left(\underline{v}_{1}, \ldots, \underline{v}_{k}\right) \underline{v}_{1} \otimes \cdots \otimes \underline{v}_{k} .
$$

Proposition

We have $\operatorname{sr}(P)=\operatorname{sr}\left(T_{P}\right)$.
Proof: Equivalence on slices.

Slice rank and diagonal

We now consider tensors of the form $V^{\otimes k}$. Let S be a basis of V.

Lemma (Special case of Tao (2016))

The slice rank of the tensor $T=\sum_{a \in S} c_{a} a^{\otimes k}$, denoted by $\operatorname{sr}(F)$, is the number of non-zero coefficients $c_{a} \in \mathbb{F}$.

Proof: Again delayed.
For $\mathcal{S} \subseteq V^{k}$ structures to avoid (e.g. sunflowers), suppose we have a polynomial P in \mathbb{F} with non-zero values only on $u_{1}=\cdots=u_{k}$ or S.

An avoiding family $\mathcal{F} \subseteq V$ gives a sub-tensor $\left.T_{P}\right|_{\mathcal{F} \otimes k}$ that is a diagonal.
We thus have $|\mathcal{F}|=\operatorname{sr}\left(\left.T_{P}\right|_{\mathcal{F} \otimes k}\right) \leq \operatorname{sr}\left(T_{P}\right)=\operatorname{sr}(P)$.
Upper bound on $\operatorname{sr}(P) \Rightarrow$ upper bound on \mathcal{F}.

Slice rank (dual version)

Let T be a tensor in $V=V_{1} \otimes V_{2} \otimes \cdots \otimes V_{k}$. Let W_{i} be the dual space of V_{i}, with the canonical pairing $\langle\cdot, \cdot\rangle_{i}$. Let $W=W_{1} \otimes \cdots \otimes W_{k}$, and we define the pairing

$$
\left\langle w_{1} \otimes \cdots \otimes w_{k}, v_{1} \otimes \cdots \otimes v_{k}\right\rangle=\prod_{i=1}^{k}\left\langle w_{i}, v_{i}\right\rangle_{i}
$$

Proposition

We have $\operatorname{sr}(T) \leq r$ iff there are sub-spaces W_{i}^{T} for all i such that the co-dimensions of W_{i}^{T} for all i sum to r, and that $\langle\cdot, v\rangle$ is zero on $\otimes_{i=1}^{k} W_{i}^{T}$.

Proof: There must be a component that annihilates the pairing.

Projections and upper bound

We fix a basis S_{i} for each V_{i}. We define $\pi_{i}\left(s_{1} \otimes \cdots \otimes s_{k}\right)=s_{i}$ for all v_{i} in S_{i}.

Proposition

Let T be a tensor in $V_{1} \otimes \cdots \otimes V_{k}$, and Γ its support w.r.t. $\left(S_{i}\right)_{1 \leq i \leq k}$. We have

$$
\operatorname{sr}(T) \leq \min _{\Gamma=\Gamma_{1} \cup \ldots \cup \Gamma_{k}} \sum_{i=1}^{k}\left|\pi_{i}\left(\Gamma_{i}\right)\right| .
$$

Proof: Decompose by the vector obtained after projection:

$$
\begin{aligned}
T & =\sum_{i=1}^{k} \sum_{\left(s_{1} \otimes \cdots \otimes s_{k}\right) \in \Gamma_{i}} c_{*} s_{1} \otimes \cdots \otimes s_{k} \\
& =\sum_{i=1}^{k} \sum_{s_{i} \in \pi_{i}\left(\Gamma_{i}\right)} c_{*} s_{i} \otimes_{i} v_{s_{i}, \neq i}
\end{aligned}
$$

Each summand is a slice.

Lower bound

We suppose that, for each S_{i}, we have a total order \leq_{i}. They induce a partial order on vectors $s_{1} \otimes \cdots \otimes s_{k}$ for $s_{i} \in S_{i}$.

Proposition

Let T be a tensor in $V_{1} \otimes \cdots \otimes V_{k}$, Γ its support w.r.t. $\left(S_{i}\right)_{1 \leq i \leq k}$, and Γ^{\prime} the set of maximal elements in Γ. We have

$$
\operatorname{sr}(T) \geq \min _{\Gamma^{\prime}=\Gamma_{1}^{\prime} \mathrm{U} \cdots \cup \Gamma_{k}^{\prime}} \sum_{i=1}^{k}\left|\pi_{i}\left(\Gamma_{i}^{\prime}\right)\right| .
$$

Remark: $\operatorname{sr}(T)$ does not depend on basis.
We only need to show that there is a covering $\Gamma_{1}^{\prime}, \ldots, \Gamma_{k}^{\prime}$ of Γ^{\prime} such that $\operatorname{sr}(T) \geq \sum_{i=1}^{k}\left|\pi_{i}\left(\Gamma_{i}^{\prime}\right)\right|$.

Proof using the dual definition

Suppose that $S_{i}=\left\{s_{i, 1} \leq \cdots \leq s_{i, d_{i}}\right\}$, with $d_{i}=\operatorname{dim}\left(V_{i}\right)$. Let $s_{i, j}^{*}$ be the dual of $s_{i, j}$ in W_{i}.
Consider $W^{T}=W_{1}^{T} \otimes \cdots \otimes W_{k}^{T}$ that annihilates T on the pairing $\langle\cdot, \cdot\rangle$. There is a basis $\left(w_{i, j}\right)_{1 \leq j \leq e_{i}}$ of W_{i}^{T} in a row-echelon form:

$$
\begin{array}{cr}
w_{i, 1}=s_{i, t_{1}}^{*}+\cdots+* s_{i, t_{2}}^{*}+\cdots+* s_{i, t_{e_{i}}}^{*}+\cdots \\
w_{i, 2}^{*}= & \\
\quad \vdots & \\
w_{i, t_{2}}+\cdots+* s_{i, e_{i}}^{*} & =\cdots \\
s_{i, t_{e_{i}}}^{*}+\cdots .
\end{array}
$$

Let $S_{i}^{\prime}=\left\{s_{i, t_{1}}, \ldots, s_{i, t_{e_{i}}}\right\}$. We claim that $v=s_{1}^{\prime} \otimes \cdots \otimes s_{k}^{\prime}$ with $s_{i}^{\prime} \in S_{i}^{\prime}$ for all i is not in Γ^{\prime}.

Suppose the contrary. By maximality of elements in Γ^{\prime}, all $s_{1}^{\dagger} \otimes \cdots \otimes s_{k}^{\dagger}$ with $s_{i}^{\dagger} \geq s_{i}^{\prime}$ for all i are not in Γ, except for v itself.

Then $\langle v, T\rangle \neq 0$ by row-echelon form.

Proof using the dual definition (cont'd)

Any $v=s_{1}^{\prime} \otimes \cdots \otimes s_{k}^{\prime}$ with $s_{i}^{\prime} \in S_{i}^{\prime}$ for all i is not in Γ^{\prime}.
We now take the covering $\Gamma_{i}^{\prime}=\left\{s_{1} \otimes \cdots \otimes s_{k} \mid s_{i} \notin S_{i}^{\prime}\right\}$. We have $\pi_{i}\left(\Gamma_{i}^{\prime}\right)=d_{i}-e_{i}$, which is also the co-dimension of W_{i}^{T}.
Therefore, for all annihilator W^{T}, there is a covering $\Gamma_{1}^{\prime}, \ldots, \Gamma_{k}^{\prime}$ of Γ^{\prime} such that

$$
\sum_{i=1}^{k} \operatorname{codim}\left(W_{i}^{T}\right) \leq \sum_{i=1}^{k}\left|\pi_{i}\left(\Gamma_{i}^{\prime}\right)\right|
$$

We conclude by the dual definition of slice rank.

Corollary on diagonal tensor

We consider diagonal tensors in $V^{\otimes k}$ over a field \mathbb{F}, with S a basis of V.

Corollary

Let $T=\sum_{a \in S} c_{a} a^{\otimes k}$. Then $\operatorname{sr}(T)$ is the number of non-zero coefficients c_{a}. In particular, for $T=\sum_{a \in S} a^{\otimes k}$, we have $\operatorname{sr}(T)=|S|$.

Proof: Consider a total order \leq_{S} on S, and we form a partial order by taking \leq_{S} on all components except the last, which has the reversed total order. Then the diagonal is an anti-chain without overlapping elements in projections.

Slice rank of tensor powers

Recall that many problems lead to polynomials that are product of the same polynomial on different set of variables, which leads to consider the slice rank of tensor powers.

Given a tensor T in $V_{1} \otimes \cdots V_{k}$, with S_{i} a basis of V_{k}, we want to compute asymptotically $\operatorname{sr}\left(T^{\otimes n}\right)$ for $T^{\otimes n}$ in $\left(V_{1} \otimes \cdots \otimes V_{k}\right)^{\otimes n} \cong V_{1}^{\otimes n} \otimes \cdots \otimes V_{k}^{\otimes n}$.

We suppose that all S_{i} come with a total order \leq_{i}. We denote by Γ the support of T w.r.t. all S_{i}, and Γ^{\prime} the set of maximal elements of Γ.

Upper and lower bounds

Proposition

For $n \rightarrow \infty$, we have

$$
\exp \left(n\left(H^{\prime}+o(1)\right)\right) \leq \operatorname{sr}\left(T^{\otimes n}\right) \leq \exp (n(H+o(1)))
$$

where

$$
\begin{aligned}
H & =\sup _{X} \min \left(h\left(\pi_{1}(X)\right), \ldots, h\left(\pi_{k}(X)\right)\right) \\
H^{\prime} & =\sup _{X^{\prime}} \min \left(h\left(\pi_{1}\left(X^{\prime}\right)\right), \ldots, h\left(\pi_{k}\left(X^{\prime}\right)\right)\right)
\end{aligned}
$$

with X (resp. X^{\prime}) a probability distribution on $\Gamma\left(\right.$ resp. $\left.\Gamma^{\prime}\right)$, and $h(\cdot)$ the entropy function.

Sawin and Tao also provided some criteria for the maximizing distribution X.

A sketch of proof

We only need to show for any Γ that

$$
\min _{\Gamma^{\otimes n}=\Gamma_{n, 1} \cup \cdots \cup \Gamma_{n, k}} \sum_{i=1}^{k}\left|\pi_{n, i}\left(\Gamma_{n, i}\right)\right|=\exp (n(H+o(1))) .
$$

By compacity, we can take X that reaches the sup H.
\geq : consider vectors in $\Gamma^{\otimes n}$ that are " ϵ-close" to X, there are roughly $\exp (n(H+o(1)))$ such vectors, and at least one partition contains $1 / k$ of them.
\leq : we can cover Γ by $O(\exp (o(n))$ " ϵ-close" balls centered at some X.

Sunflower: bounds

We recall that the "sunflower polynomial" is $2-X-Y-Z$ in \mathbb{F}_{3}. We now consider the polynomial space.

We have

$$
\begin{aligned}
\Gamma & =\{(1,0,0),(0,1,0),(0,0,1),(0,0,0)\}, \\
\Gamma^{\prime} & =\{(1,0,0),(0,1,0),(0,0,1)\} .
\end{aligned}
$$

A maximizing distribution for both is $X=\frac{1}{3}(1,0,0)+\frac{1}{3}(0,1,0)+\frac{1}{3}(0,0,1)$, which leads to

$$
H=\frac{1}{3} \log (3)+\frac{2}{3} \log (3 / 2)=\log \left(3 \cdot 2^{-2 / 3}\right) .
$$

This also shows that we cannot do better $\left(\operatorname{sr}\left(T^{\otimes n}\right)=\exp (n H+o(n))\right)$.

Capset: bounds

We recall that the "cap set polynomial" is $\left(1-(X+Y+Z)^{2}\right)$ in \mathbb{F}_{3}.
Reason: Cap set condition on a coordinate is that $X+Y+Z=0$.
We have

$$
\begin{aligned}
\Gamma & =\{(2,0,0),(0,2,0),(0,0,2),(1,1,0),(1,0,1),(0,1,1),(0,0,0)\} \\
\Gamma^{\prime} & =\{(2,0,0),(0,2,0),(0,0,2),(1,1,0),(1,0,1),(0,1,1)\}
\end{aligned}
$$

A maximizing distribution should take the form
$X=\alpha((2,0,0)+(0,2,0)+(0,0,2))+\beta((1,1,0),(1,0,1),(0,1,1))+\gamma(0,0,0)$.
By maximizing the corresponding H, we have the result, which has $\gamma=0$. It means that we cannot do better $\left(\operatorname{sr}\left(T^{\otimes n}\right)=\exp (n H+o(n))\right)$.

Limitation of the polynomial method

Proposition

Let $k \geq 8$, and G a finite abelian group. Let \mathbb{F} be any field, and $V_{1}=\cdots=V_{k}$ the space of functions from G to \mathbb{F}.
Let F be any \mathbb{F}-valued function that is zero only on k-progressions or on the diagonal. Then $\operatorname{sr}(F)=|G|$.

Proof ideas: first reduce the problem to the cyclic group $\mathbb{Z} / n \mathbb{Z}$, then show an ordering that makes every constant progression a maximal element (thus in Γ^{\prime}).

Ordering: $(\leq, \leq, \leq, \geq, \leq, \geq, \geq, \geq)$.

Change of basis

We consider the polynomial $P=1+(1+Z)(X+Y)$ in \mathbb{F}_{2}.
Meaning: Three sets A, B, C such that $A \Delta B \subseteq C$.

$$
\Gamma=\{(1,0,0),(0,1,0),(1,0,1),(0,1,1),(0,0,0)\}
$$

$X=\frac{1}{2}((1,0,0),(0,1,1))$ maximized $H=\log (2)$.
But a change of variable $Z \leftarrow 1+Z$ gives $Q=1+X Z+Y Z$, with entropy $H=\log \left(3 \cdot 2^{-2 / 3}\right)$.

Discussion

Observations:

- The lower bounds are limits of the method, and does not give concrete construction on original problems.
- Not limited to sub-tensors with only zeros outside the diagonal.
- The bounds does not depend on degree, but on the monomials in the defining polynomial.
Further directions:
- More applications?
- Synergies with other methods?
- Use the fact that slice rank is basis-independent?

