| Introduction | Characterization | First bijection | Second bijection | Conclusion |
|--------------|------------------|-----------------|------------------|------------|
| 0000000      | 000              | 0000            | 0000             | 0          |
|              |                  |                 |                  |            |
|              |                  |                 |                  |            |

Bijections between planar maps and planar linear normal  $\lambda$ -terms with connectivity condition

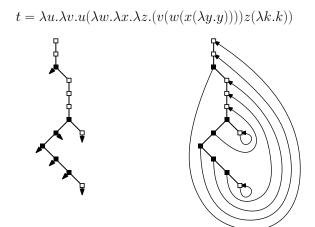
Wenjie Fang LIGM, Université Gustave Eiffel arXiv:2202.03542

11 avril 2022, LIX, École polytechnique



# $\lambda$ -terms, according to a combinatorialist

 $\lambda$ -term: unary-binary tree (skeleton) + variable-abstraction map Linear  $\lambda$ -term: the variable-abstraction map being bijective





- closed: the variable-abstraction map is complete
- unitless: no closed sub-term
- normal: no  $\beta$ -reduction, *i.e.*, avoiding
- (RL-)planar: right-to-left variable-abstraction map Example:  $t = \lambda u.\lambda v.u(\lambda w.\lambda x.\lambda z.(v(w(x(\lambda y.y))))z(\lambda k.k))$

All can be translated combinatorially to trees!

Linear + planar : unique choice, so just unary-binary tree!

| Introduction | Characterization | First bijection | Second bijection | Conclusion |
|--------------|------------------|-----------------|------------------|------------|
| 0000000      | 000              | 0000            | 0000             | 0          |
| Known en     | umerations       |                 |                  |            |

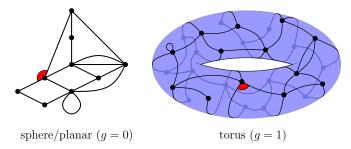
| $\lambda$ -terms                      | Maps                    | OEIS    |
|---------------------------------------|-------------------------|---------|
| linear                                | general cubic           | A062980 |
| planar                                | planar cubic            | A002005 |
| unitless                              | bridgeless cubic        | A267827 |
| unitless planar                       | bridgeless planar cubic | A000309 |
| $eta$ -normal linear/ $\sim$          | general                 | A000698 |
| eta-normal planar                     | planar                  | A000168 |
| $eta$ -normal unitless linear/ $\sim$ | bridgeless              | A000699 |
| eta-normal unitless planar            | bridgeless planar       | A000260 |

Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, LICS 2018

A lot of people and work: Zeilberger, Bodini, Gardy, Jacquot, Giorgetti, Courtiel, Yeats, ...

| Introduction | Characterization | First bijection | Second bijection | Conclusion |
|--------------|------------------|-----------------|------------------|------------|
| 00000000     | 000              | 0000            | 0000             | 0          |
| What is      | a map?           |                 |                  |            |

Combinatorial map: drawing of graphs on a surface



We only consider rooted map, *i.e.*, with a marked corner.

| Introduction               | Characterization | First bijection | Second bijection | Conclusion |
|----------------------------|------------------|-----------------|------------------|------------|
| 00000000                   | 000              | 0000            | 0000             | 0          |
| Different families of maps |                  |                 |                  |            |

- Planar: maps on the plane
- Cubic: all vertices have degree 3
- Bridgeless: remain connected after removal of any one edge
- Loopless: no loop (edge linking a vertex with itself)
- Bipartite: has a proper 2-coloring on vertices
- . . .

Some are related by duality, which turns vertices into faces and vice versa.

| Introduction | Characterization       | First bijection | Second bijection | Conclusion |
|--------------|------------------------|-----------------|------------------|------------|
| 00000000     | 000                    | 0000            | 0000             | 0          |
| Connectivity | <pre>/ condition</pre> |                 |                  |            |

#### Noam Zeilberger and Jason Reed (CLA 2019)

How about connectivity of the diagram on planar linear normal terms?

k-connected: breaking k-1 edges does not split the graph

- 1-connected: all (connected by their skeleton)
- 2-connected: unitless (bridge ⇔ closed sub-term)
- 3-connected: ???

## Conjecture (Zeilberger-Reed, 2019)

The number of 3-connected planar linear normal  $\lambda$ -terms with n + 2 variables is

$$\frac{2^n}{(n+1)(n+2)}\binom{2n+1}{n},$$

which also counts bipartite planar maps with n edges (A000257).

Also claimed characterization with typing for k-connected terms.

| Introduction | Characterization | First bijection | Second bijection | Conclusion |
|--------------|------------------|-----------------|------------------|------------|
| 00000000     | 000              | 0000            | 0000             | 0          |
| Our cont     | ribution (1)     |                 |                  |            |

Katarzyna Grygiel and Guan-Ru Yu (CLA 2020): combinatorial characterization of 3-connected terms, partial bijective results

#### Theorem (Fang, 2022+)

There is a direct bijection between 3-connected planar linear normal  $\lambda$ -terms with n + 2 variables and bipartite planar maps with n edges.

 $\mathsf{Bijection} \Rightarrow \mathsf{transfer} \text{ of statistics} \Rightarrow \mathsf{generating function} \Rightarrow \mathsf{asymptotics}$  behavior

| Introduction | Characterization | First bijection | Second bijection | Conclusion |
|--------------|------------------|-----------------|------------------|------------|
| 0000000      | 000              | 0000            | 0000             | 0          |
| Our contri   | bution (2)       |                 |                  |            |

#### Theorem (Fang, 2022+)

There is a direct bijection from planar linear normal  $\lambda$ -terms to planar maps. Furthermore, when restricted to unitless terms, the bijection leads to loopless planar maps.

| $\lambda$ -terms                        | Maps            | OEIS    |
|-----------------------------------------|-----------------|---------|
| $\beta$ -normal linear/ $\sim$          | general         | A000698 |
| $\beta$ -normal planar                  | planar          | A000168 |
| $\beta$ -normal unitless linear/ $\sim$ | bridgeless      | A000699 |
| $\beta$ -normal unitless planar         | loopless planar | A000260 |

Known recursive bijection in (Zeilberger and Giorgetti, 2015) via LR-planar terms

Done with a new recursive decomposition of planar maps



Linear planar  $\lambda$ -terms  $\Leftrightarrow$  unary-binary trees (with conditions)

Three statistics for a unary-binary tree S:

- unary(S): number of unary nodes (abstractions)
- leaf(S): number of leaves (variables)
- excess(S): leaf(S) unary(S) (free variables)

Properties of linear planar  $\lambda$ -terms  $\Leftrightarrow$  properties on skeletons

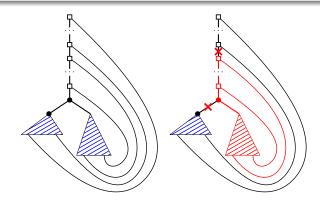
 $S_u: \mathsf{sub-tree} \text{ of } S \text{ induced by } u$ 

- Linear  $\Leftrightarrow \operatorname{excess}(S) = 0$
- Normal ⇔ Left child of a binary node is never unary
- 1-connected  $\Leftrightarrow \operatorname{excess}(S_u) \ge 0$  for all u
- 2-connected  $\Leftrightarrow \operatorname{excess}(S_u) > 0$  for all u non-root



## Proposition (Grygiel and Yu, CLA 2020)

Let S be the skeleton of a 3-connected planar linear  $\lambda$ -term, then the left child of the first binary node is a leaf.



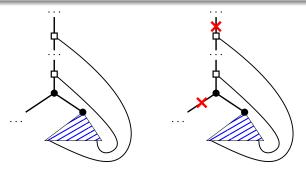
Reduced skeleton: the right sub-tree of the first binary node



Proposition (Proposed by Grygiel and Yu, CLA 2020)

S is the reduced skeleton of a 3-connected planar linear normal  $\lambda$ -term iff

- (Normality) The left child of a binary node in S is never unary;
- (3-connectedness) For every binary node u with v its right child, excess $(S_v)$  is strictly larger than the number of consecutive unary nodes above u.



Clearly necessary, but also sufficient!

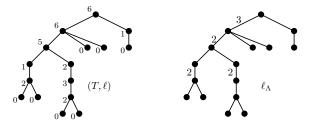
| Introduction | Characterization | First bijection | Second bijection | Conclusion |
|--------------|------------------|-----------------|------------------|------------|
| 0000000      | 000              | ●000            | 0000             | 0          |
| Degree trees | 5                |                 |                  |            |

**Degree tree**: a plane tree T with a labeling  $\ell$  on nodes with

- u is a leaf  $\Rightarrow \ell(u) = 0$ ;
- u has children  $v_1, \ldots v_k \Rightarrow s(u) \ell(v_1) \le \ell(u) \le s(u)$ , where  $s(u) = k + \sum_{i=1}^k \ell(v_i)$ .

Contribution of each child : 1 (itself) +  $\ell(v_i)$  (its sub-tree)

Except for the first child: from 1 to its due contribution.

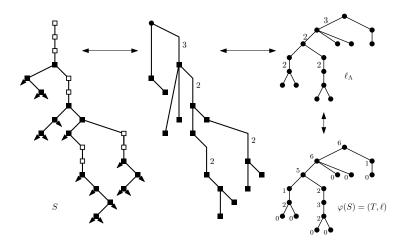


Edge labeling  $\ell_{\Lambda}:$  the subtracted contribution

 $\ell$  and  $\ell_\Lambda$  interchangeable!



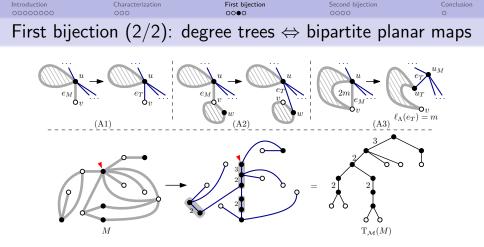
First bijection (1/2): 3-connected terms  $\Leftrightarrow$  degree trees



● Unary nodes on right child ⇔ Subtraction on left child

• Leftmost leaf  $\Leftrightarrow$  Contribution 1

Related to Böhm trees.



Existing direct bijection (F., 2021), using an exploration

Also related to Chapoton's new intervals in the Tamari lattice Some statistics correspondences:

- Unary chains of length  $k \Leftrightarrow$  edge label  $k \Leftrightarrow$  faces of degree 2k
- Initial unary chain  $\Leftrightarrow$  root label  $\Leftrightarrow$  degree of root face



#### Bijections are useful!

- Transfer of statistics (also about applications in  $\lambda$ -terms)
- Generating function for free!
- Probabilistic results also for free!

#### Proposition (F. 2022+)

Let  $X_n = \#$  initial abstractions of a uniformly random 3-connected planar linear normal  $\lambda$ -term. When  $n \to \infty$ ,

$$\mathbb{P}[X_n = k] \to \frac{k-1}{3} \binom{2k-2}{k-1} \left(\frac{3}{16}\right)^{k-1}$$

Corollary of known results on bipartite maps

| Introduction | Characterization | First bijection | Second bijection | Conclusion |
|--------------|------------------|-----------------|------------------|------------|
| 0000000      | 000              | 0000            | <b>0</b> 000     | 0          |
| Connected    | terms and to     | rees            |                  |            |

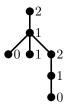
Recall the conditions:

- Linear  $\Leftrightarrow$  excess(S) = 0
- Normal ⇔ Left child of a binary node is never unary
- 1-connected  $\Leftrightarrow \operatorname{excess}(S_u) \ge 0$  for all u
- 2-connected  $\Leftrightarrow excess(S_u) > 0$  for all u non-root

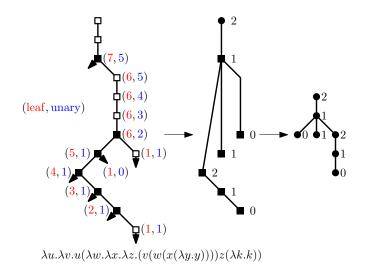
**v-trees**: a plane tree T with a labeling  $\ell$  on nodes with

• Leaves 
$$u \Rightarrow \ell(u) \in \{0, 1\};$$

• Non-root u with children  $v_1, \ldots, v_k \Rightarrow 0 \le \ell(u) \le 1 + \sum_{i=1}^k \ell(v_i)$ 

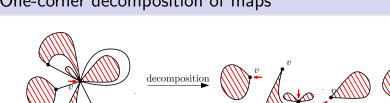


| Introduction | Characterization  | First bijection | Second bijection | Conclusion |
|--------------|-------------------|-----------------|------------------|------------|
| 0000000      | 000               | 0000            | 0000             | 0          |
| Second b     | pijection $(1/2)$ |                 |                  |            |

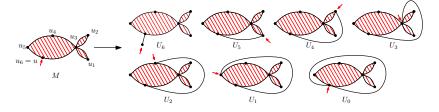


Excess of the right child!  $0 \Leftrightarrow$  closed sub-term

| One corner o | lecomposition    | of mans         |                  |            |
|--------------|------------------|-----------------|------------------|------------|
| 0000000      | 000              | 0000            | 0000             | 0          |
| Introduction | Characterization | First bijection | Second bijection | Conclusion |

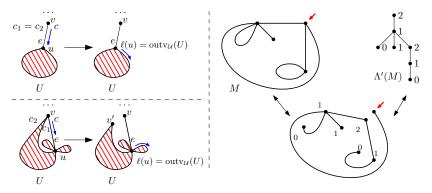


**One-corner component**: maps whose root vertex has one outer corner Catalytic statistics: number of non-root vertices on outer face  $(outv_{\mathcal{U}})$ 



| Introduction | Characterization | First bijection | Second bijection | Conclusion |
|--------------|------------------|-----------------|------------------|------------|
| 0000000      | 000              | 0000            | 0000             | 0          |
| Second b     | ijection (2/2)   |                 |                  |            |

Direct bijection = "de-recusifyng" the decomposition



Loop  $\Leftrightarrow$  one-corner component with single outer node  $\Leftrightarrow$  label 0 in tree Natural specialization to loopless planar maps  $\Leftrightarrow$  unitless terms!

| Introduction<br>00000000 |                                       | ·                  | Second bijection | Conclusion<br>• |
|--------------------------|---------------------------------------|--------------------|------------------|-----------------|
| Recapitulation           |                                       |                    |                  |                 |
|                          |                                       |                    |                  |                 |
|                          | $\lambda$ -terms                      | Maps               | OEIS             |                 |
|                          | $eta$ -normal linear/ $\sim$          | general            | A000698          |                 |
|                          | eta-normal planar                     | planar             | A000168          |                 |
|                          | $eta$ -normal unitless linear/ $\sim$ | bridgeless         | A000699          |                 |
|                          | $\beta$ -normal unitless planar       | loopless plana     | r A000260        |                 |
|                          | $\beta$ -normal 3-connected plan      | ar bipartite plana | ar A000257       |                 |

First bijection (direct) for 3-connected planar normal terms and bipartite planar maps

New bijection (direct) for general planar normal terms and planar maps, naturally restricted to 2-connected terms and loopless planar maps

Not the same bijection... But in the same spirit.

Higher connectivity? Types? Other enumeration consequences?

| Introduction<br>00000000 |                                       | ·                  | Second bijection | Conclusion<br>• |
|--------------------------|---------------------------------------|--------------------|------------------|-----------------|
| Recapitulation           |                                       |                    |                  |                 |
|                          |                                       |                    |                  |                 |
|                          | $\lambda$ -terms                      | Maps               | OEIS             |                 |
|                          | $eta$ -normal linear/ $\sim$          | general            | A000698          |                 |
|                          | eta-normal planar                     | planar             | A000168          |                 |
|                          | $eta$ -normal unitless linear/ $\sim$ | bridgeless         | A000699          |                 |
|                          | $\beta$ -normal unitless planar       | loopless plana     | r A000260        |                 |
|                          | $\beta$ -normal 3-connected plan      | ar bipartite plana | ar A000257       |                 |

First bijection (direct) for 3-connected planar normal terms and bipartite planar maps

New bijection (direct) for general planar normal terms and planar maps, naturally restricted to 2-connected terms and loopless planar maps

Not the same bijection... But in the same spirit.

Higher connectivity? Types? Other enumeration consequences?

# Thank you for listening!