Two Tamaris	Bijections	Zeta	Discussion
000000000	0000000000	0000	0

Steep-bounce zeta map in the parabolic Cataland

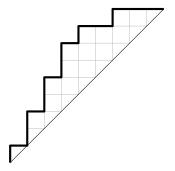
Wenjie Fang, Institute of Discrete Mathematics, TU Graz Joint work with Cesar Ceballos and Henri Mühle

11 December 2018, AG Diskrete Mathematik, TU Wien

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Two Tamaris	Bijections	Zeta	Discussion
● ○○ ○○○○○○○	0000000000	0000	0
T			

Tamari lattice, as an order on Dyck paths

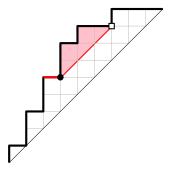


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Dyck path : n north steps (N) and n east steps (E), above the diagonal. Counted by Catalan numbers

Two Tamaris	Bijections	Zeta	Discussion
● 00 0000000	0000000000	0000	0
- · · · · · ·			

Tamari lattice, as an order on Dyck paths

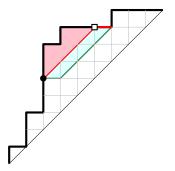


Covering relation: take a valley $\bullet,$ let \Box be the next point wiht the same distance to the diagonal...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two Tamaris	Bijections	Zeta	Discussion
● 00 0000000	00000000000	0000	0
- · · ·			

Tamari lattice, as an order on Dyck paths



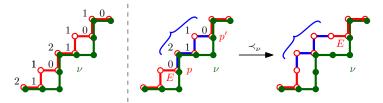
..., and push the segment to the left. The path gets larger. This gives the **Tamari lattice**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two Tamaris	Bijections	Zeta	Discussion
000000000	0000000000	0000	0
u-Tamari lattice			

Generalization with ν an arbitrary directed walk as "diagonal" !

Horizontal distance = # east steps until touching the other side of ν

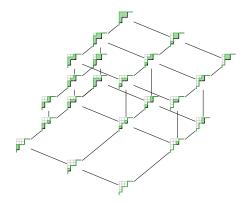


 ν -Tamari lattice (Préville-Ratelle and Viennot 2014): \mathcal{T}_{ν} with arbitrary ν (called canopy) with steps N, E.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Two Tamaris	Bijections	Zeta	Discussion
000000000	00000000000	0000	0

Why is it important ?



- Generalizing a lot of cases (*m*-Tamari, rational Tamari)
- Bijective links (non-separable planar maps and related objects)
- Algebraic aspect (subword complexes, Diagonal coinvariant spaces, *etc.*)

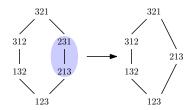
Two Tamaris	Bijections	Zeta	Discussion
0000000000	0000000000	0000	0

Tamari lattice, as quotient of the weak order

 \mathfrak{S}_n as a Coxeter group generated by $s_i=(i,i+1)$

For $w \in \mathfrak{S}_n$, $\ell(w) = \min$. length of factorization of w into s_i 's.

Weak order : w covered by w' iff $w' = ws_i$ and $\ell(w') = \ell(w) + 1$



Sylvester class : permutations with the same binary search tree Only one 231-avoiding in each class. Induced order = Tamari. Works for other types

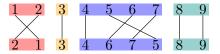
Two Tamaris	Bijections	Zeta	Discussion
000000000	0000000000	0000	0
D I I I			

Parabolic subgroup and parabolic quotient of \mathfrak{S}_n

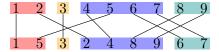
Let $\alpha = (\alpha_1, \dots, \alpha_k)$ be a composition of n.

Parabolic subgroup : $\mathfrak{S}_{\alpha_1} \times \cdots \times \mathfrak{S}_{\alpha_k} \subset \mathfrak{S}_n$.

Generated by s_i except for $i = \alpha_1 + \alpha_2 + \cdots + \alpha_j$.



Parabolic quotient : $\mathfrak{S}_n^{\alpha} = \mathfrak{S}_n / (\mathfrak{S}_{\alpha_1} \times \cdots \times \mathfrak{S}_{\alpha_k}).$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Increasing order in each block

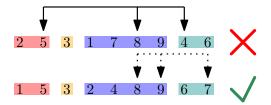
Two Tamaris	Bijections	Zeta	Discussion
000000000	0000000000	0000	0
Parabolic permuta	ations avoiding 231		

Pattern $(\alpha,231)$: three indices i < j < k in three distinct blocks with

•
$$w(k) < w(i) < w(j)$$
,

•
$$w(k) + 1 = w(i)$$
.

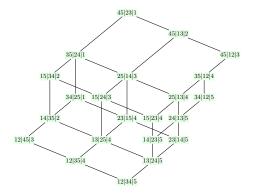
 $(\alpha,231)\text{-avoiding permutations:}$ without $(\alpha,231)$ patterns



 $\mathfrak{S}^{\alpha}_n(231)$: set of $(\alpha,231)\text{-avoiding permutations}$

Two Tamaris	Bijections	Zeta	Discussion
000 000 0000	0000000000	0000	0
Parabolic Tamari I	attice		

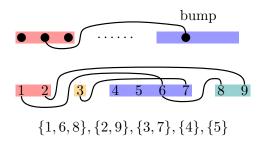
Parabolic Tamari lattice T_n^{α} = weak order restricted to $\mathfrak{S}_n^{\alpha}(231)$ (Mühle and Williams 2018+)



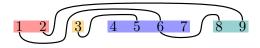
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Works for other types!

Two Tamaris	Bijections	Zeta	Discussion
000000000000000000000000000000000000000	0000000000	0000	0
Parabolic non-cros	sing partitions		



Parabolic α -partition: a set of bumps, ≤ 1 incoming/outgoing



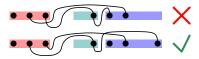
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Parabolic non-crossing α -partition : without bumps crossing

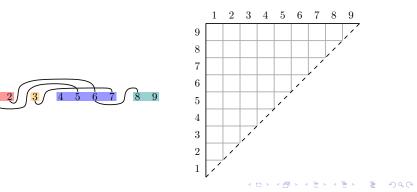
Two Tamaris	Bijections	Zeta	Discussion
00000000000	00000000000	0000	0

Parabolic non-nesting partitions

Parabolic non-nesting α -partition : no bumps $(i, j), (k, \ell)$ with $i < k < \ell < j$.



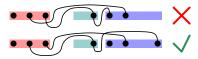
Encoding with points (i, j)



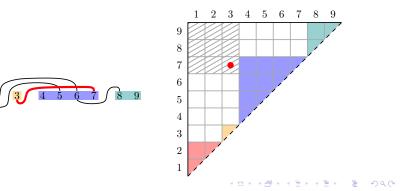
Two Tamaris	Bijections	Zeta	Discussion
000000000000	0000000000	0000	0

Parabolic non-nesting partitions

Parabolic non-nesting α -partition : no bumps $(i, j), (k, \ell)$ with $i < k < \ell < j$.



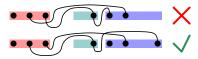
Encoding with points $\left(i,j\right)$



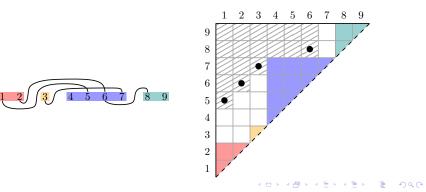
Two Tamaris	Bijections	Zeta	Discussion
000000000000	0000000000	0000	0

Parabolic non-nesting partitions

Parabolic non-nesting α -partition : no bumps $(i, j), (k, \ell)$ with $i < k < \ell < j$.

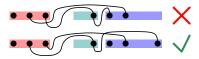


Encoding with points $\left(i,j\right)$



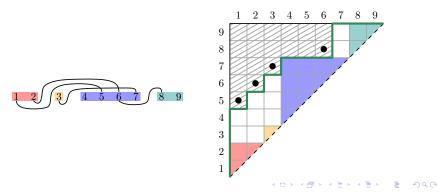
Two Tamaris	Bijections	Zeta	Discussion
000000000000	0000000000	0000	0
Parabolic non-nes	ing partitions		

Parabolic non-nesting α -partition : no bumps $(i, j), (k, \ell)$ with $i < k < \ell < j$.



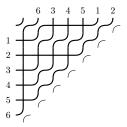
Bounce pair: A Dyck path above a bounce path

ъ



Two Tamaris	Bijections	Zeta	Discussion
000000000000	00000000000	0000	0
Detour to pipe dr	eams		

Hopf algebra on pipe dreams (Bergeron, Ceballos et Pilaud, 2018+).



Dim. of homogeneous comps. of a sub-algebra (generated by identities) = # pipe dreams with an "identity by block" permutation

Proposition (Bergeron, Ceballos and Pilaud, 2018+)

Pipe dreams whose permutation is an "identity by block" of size n are in bijection with bounce pairs of order n.

Already a link to the parabolic Catalan objects!

Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	0
Counting and r	relations ?		

- All three objects are in bijection (Mühle and Williams), but not easy.
- Numbers of parabolic Catalan objects of order *n*:

 $1, 1, 3, 12, 57, 301, 1707, 10191, 63244, 404503, \dots$ (OEIS A151498)

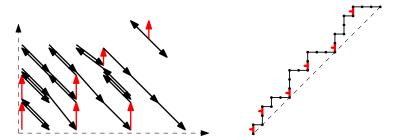
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- = certain walks in the quadrant
- Bijective link? An easier-to-understand structure?

Two Tamaris	Bijections	Zeta	Discussion
0000000000	• 00 00000000	0000	0
Marked paths ar	nd steep pairs		

Walks in the quadrant: $\{(1,0),(1,-1),(-1,1)\}$, ending with y=0.

Considered in (Bousque-Mélou and Mishna, 2010) and counted in (Mishna and Rechnitzer, 2009)



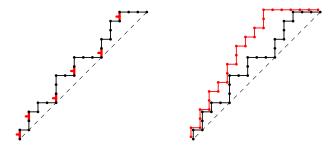
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In bijection with level-marked Dyck paths: level \leq marking before the point

Two Tamaris	Bijections	Zeta	Discussion
0000000000	0000000000	0000	0
	al contraction of a second	· · · · · · · · · · · · · · · · · · ·	

Level-marked Dyck paths and steep pairs

Steep pairs : 2 nested Dyck paths, the one above has no EE except at the end



Bijection:

- Path below: path without marking
- Path above: read the N 's, marked $\rightarrow N$, not marked $\rightarrow EN$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Two Tamaris	Bijections	Zeta	Discussion
0000000000	0000000000	0000	0

Steep-Bounce conjecture

Conjecture (Bergeron, Ceballos and Pilaud 2018+, Conjecture 2.2.8)

The following two sets are of the same size:

- bounce pairs of order n with k blocks;
- steep pairs of order n with k east steps E on y = n.

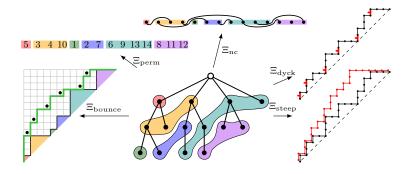
A proof gives the counting of all these objects (pipe dreams and parabolic Catalan)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The cases k = 1, 2, n - 1, n already proved

Two Tamaris	Bijections	Zeta	Discussion
00000000000	00000000000	0000	0

A scheme of the bijections

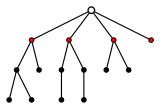


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Two Tamaris	Bijections	Zeta	Discussion
000000000	000000000000	0000	0
Left-aligned colore	d trees		

- T : plane tree with n non-root nodes;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition of n

- If there are less than α_i active nodes, then fail;
- Otherwise, color the first α_i from left to right with color *i*.

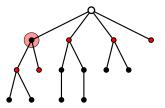


 $\alpha = (\mathbf{1}, 3, 1, 2, 4, 3) \vdash 14$

Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	0
Left-aligned color	red trees		

- T : plane tree with n non-root nodes;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition of n

- If there are less than α_i active nodes, then fail;
- Otherwise, color the first α_i from left to right with color *i*.

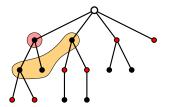


 $\alpha = (1, \mathbf{3}, 1, 2, 4, 3) \vdash 14$

Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	0
Left-aligned color	red trees		

- T : plane tree with n non-root nodes;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition of n

- If there are less than α_i active nodes, then fail;
- Otherwise, color the first α_i from left to right with color *i*.

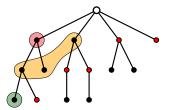


 $\alpha = (1, 3, \textbf{1}, 2, 4, 3) \vdash 14$

Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	0
Left-aligned color	red trees		

- T : plane tree with n non-root nodes;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition of n

- If there are less than α_i active nodes, then fail;
- Otherwise, color the first α_i from left to right with color *i*.

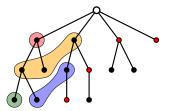


 $\alpha = (1, 3, 1, \mathbf{2}, 4, 3) \vdash 14$

Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	0
Left-aligned color	red trees		

- T : plane tree with n non-root nodes;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition of n

- If there are less than α_i active nodes, then fail;
- Otherwise, color the first α_i from left to right with color *i*.

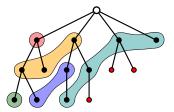


 $\alpha=(1,3,1,2,\textbf{4},3)\vdash 14$

Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	0
Left-aligned color	red trees		

- T : plane tree with n non-root nodes;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition of n

- If there are less than α_i active nodes, then fail;
- Otherwise, color the first α_i from left to right with color *i*.

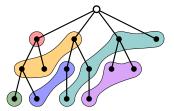


 $\alpha = (1, 3, 1, 2, 4, \mathbf{3}) \vdash 14$

Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	0
Left-aligned color	red trees		

- T : plane tree with n non-root nodes;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition of n

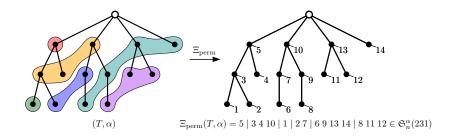
- If there are less than α_i active nodes, then fail;
- Otherwise, color the first α_i from left to right with color *i*.



 $\alpha = (1,3,1,2,4,3) \vdash 14$

Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	0

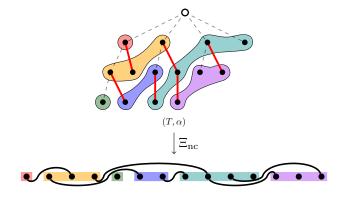
To permutations



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	0
To parabolic por	crossing partitions		

To parabolic non-crossing partitions

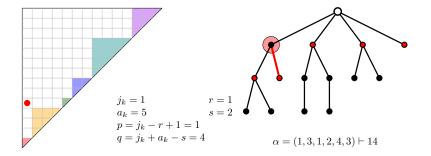


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

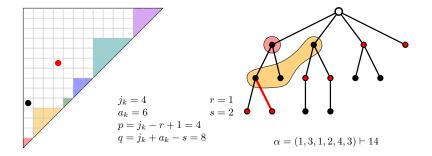
 $\bullet~\text{LAC}$ tree \rightarrow partition : flatten the layers

 $\bullet~\mbox{Partition} \to \mbox{LAC}$ tree : look at the sky

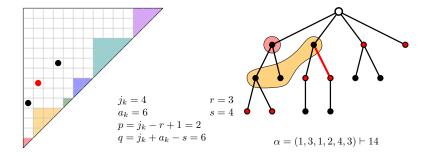
Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	0



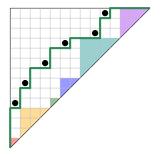
Two Tamaris	E	Bijections	Zeta	Discussion
0000000000	C	0000000000	0000	0
·				

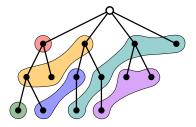


Two Tamaris	Bij	ections	Zeta	Discussion
0000000000	00	0000000000	0000	0



Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	0

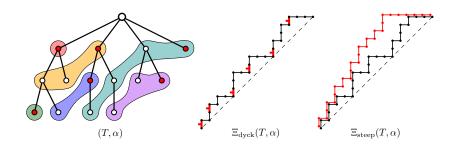




 $\alpha = (1, 3, 1, 2, 4, 3) \vdash 14$

Two Tamaris	Bijections	Zeta	Discussion
0000000000	0000000000000	0000	0

To steep pairs



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Two Tamaris	Bijections	Zeta	Discussion
0000000000	000000000000	0000	0
Steep-Bounce	theorem		

Theorem (Ceballos, F., Mühle 2018+)

There is a natural bijection Γ between the following two sets:

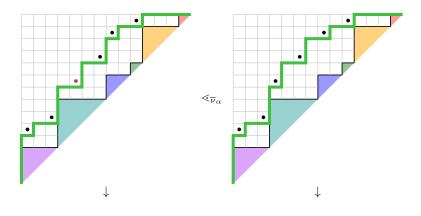
- bounce pairs of order n with k blocks;
- steep pairs of order n with k each steps E on y = n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

So we know how to count them!

Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	0
A 1 ** . * . 1 .			

A bijection between the two Tamaris

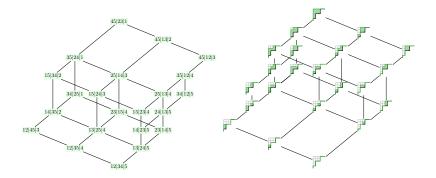


5 3 4 10 1 2 9 6 8 13 14 7 11 12 $>_L$ **5 3 4 10 1 2 7 6 9 13 14 8 11 12**

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Two Tamaris	Bijections	Zeta	Discussion
0000000000	0000000000	0000	0

One isomorphic to the dual of the other

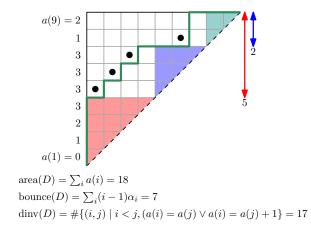


Theorem (Ceballos, F., Mühle 2018+)

The parabolic Tamari lattice indexed by α is isomorphic to the ν -Tamari lattice with $\nu = N^{\alpha_1} E^{\alpha_1} \cdots N^{\alpha_k} E^{\alpha_k}$.

Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0 000	0

Detour to q, t-Catalan combinatorics



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Two Tamaris	Bijections	Zeta	Discussion	
0000000000	00000000000	0000	0	
A non-trivial symmetry				

Theorem (Garsia and Haiman 1996, Haiman 2001)

By summing up all Dyck paths of order n, we have

$$\sum_{D} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} = \sum_{D} q^{\operatorname{bounce}(D)} t^{\operatorname{area}(D)}.$$

The proof goes by the Hilbert series of the diagonal coinvariant space with two sets of variables.

No combinatorial proof!

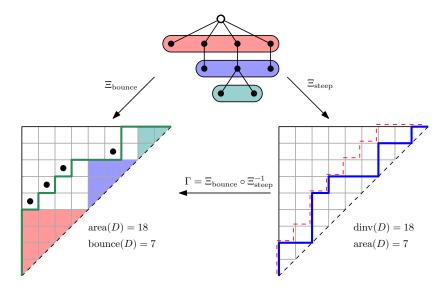
Theorem (Haglund 2008, Proof of Theorem 3.15)

There is a bijection ζ on Dyck paths that transfers the pairs of statistics

 $(\text{dinv}, \text{area}) \rightarrow (\text{area}, \text{bounce}).$

Two Tamaris	Bijections	Zeta	Discussion
000000000	0000000000	0000	0

Our zeta map



•	~	-		
0000000000		00000000000	0000	0
Two Tamaris		Bijections	Zeta	Discussion

Our zeta map, Steep-Bounce version

Theorem (Ceballos, F., Mühle 2018+)

There is a natural bijection Γ between the following sets:

- bounce pairs of order n with k blocks;
- steep pairs of order n with k east steps E on y = n.

 $\zeta = {\rm special\ case\ of\ } \Gamma,$ with steep pairs and bounce pairs constructed in a greedy way

A generalization to explore!

Two Tamaris	Bijections	Zeta	Discussion
000000000	00000000000	0000	•
Possible directions			

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Many questions in enumeration (but possibly very difficult)
- How are the statistics transferred, and which ones?
- Action by symmetries?
- Implication in diagonal coinvariant spaces?
- etc. ?

Two Tamaris	Bijections	Zeta	Discussion
0000000000	00000000000	0000	•
Possible directions			

- Many questions in enumeration (but possibly very difficult)
- How are the statistics transferred, and which ones?
- Action by symmetries?
- Implication in diagonal coinvariant spaces?
- etc. ?

Thank you for listening!