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Two Tamaris Bijections Zeta Discussion

Tamari lattice, as an order on Dyck paths

Dyck path : n north steps (N) and n east steps (E), above the
diagonal. Counted by Catalan numbers
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Tamari lattice, as an order on Dyck paths

Covering relation: take a valley •, let � be the next point wiht the same
distance to the diagonal...
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Tamari lattice, as an order on Dyck paths

..., and push the segment to the left. The path gets larger. This gives
the Tamari lattice.
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ν-Tamari lattice

Generalization with ν an arbitrary directed walk as “diagonal”!

Horizontal distance = # east steps until touching the other side of ν
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ν-Tamari lattice (Préville-Ratelle and Viennot 2014): Tν with arbitrary
ν (called canopy) with steps N,E.
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Why is it important ?

Generalizing a lot of cases (m-Tamari, rational Tamari)

Bijective links (non-separable planar maps and related objects)

Algebraic aspect (subword complexes, Diagonal coinvariant spaces,
etc.)
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Tamari lattice, as quotient of the weak order

Sn as a Coxeter group generated by si = (i, i+ 1)

For w ∈ Sn, ℓ(w) = min. length of factorization of w into si’s.

Weak order : w covered by w′ iff w′ = wsi and ℓ(w′) = ℓ(w) + 1
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Sylvester class : permutations with the same binary search tree

Only one 231-avoiding in each class. Induced order = Tamari.

Works for other types
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Parabolic subgroup and parabolic quotient of Sn

Let α = (α1, . . . , αk) be a composition of n.

Parabolic subgroup : Sα1
× · · · ×Sαk

⊂ Sn.

Generated by si except for i = α1 + α2 + · · ·+ αj .

1 2 3 4 5 6 7 8 9

12 3 4 56 7 8 9

Parabolic quotient : Sα
n = Sn/(Sα1

× · · · ×Sαk
).

1 2 3 4 5 6 7 8 9

1 23 45 6 78 9

Increasing order in each block
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Parabolic permutations avoiding 231

Pattern (α, 231) : three indices i < j < k in three distinct blocks with

w(k) < w(i) < w(j),

w(k) + 1 = w(i).

(α, 231)-avoiding permutations: without (α, 231) patterns

12 3 45 67 8 9

1 23 45 6 78 9

S
α
n(231) : set of (α, 231)-avoiding permutations
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Parabolic Tamari lattice

Parabolic Tamari lattice T α
n = weak order restricted to S

α
n(231)

(Mühle and Williams 2018+)

12|34|5

12|35|4 13|24|5

12|45|3 13|25|4 14|23|5 23|14|5

14|35|2 23|15|4 15|23|4 24|13|5

34|25|1 15|24|3 25|13|4 34|12|5

15|34|2 25|14|3 35|12|4

35|24|1 45|12|3

45|13|2

45|23|1

Works for other types!
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Parabolic non-crossing partitions

· · · · · ·

bump

{1, 6, 8}, {2, 9}, {3, 7}, {4}, {5}

1 2 3 4 5 6 7 8 9

Parabolic α-partition: a set of bumps, ≤ 1 incoming/outgoing

1 2 3 4 5 6 7 8 9

Parabolic non-crossing α-partition : without bumps crossing
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Parabolic non-nesting partitions

Parabolic non-nesting α-partition : no bumps (i, j), (k, ℓ) with
i < k < ℓ < j.

Encoding with points (i, j)

1 2 3 4 5 6 7 8 9
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1 2 3 4 5 6 7 8 9
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Parabolic non-nesting partitions

Parabolic non-nesting α-partition : no bumps (i, j), (k, ℓ) with
i < k < ℓ < j.

Encoding with points (i, j)
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Parabolic non-nesting partitions

Parabolic non-nesting α-partition : no bumps (i, j), (k, ℓ) with
i < k < ℓ < j.

Bounce pair: A Dyck path above a bounce path

1 2 3 4 5 6 7 8 9
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Detour to pipe dreams

Hopf algebra on pipe dreams (Bergeron, Ceballos et Pilaud, 2018+).

1
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1 23 4 56

Dim. of homogeneous comps. of a sub-algebra (generated by identities)
= # pipe dreams with an “identity by block” permutation

Proposition (Bergeron, Ceballos and Pilaud, 2018+)

Pipe dreams whose permutation is an “identity by block” of size n are in

bijection with bounce pairs of order n.

Already a link to the parabolic Catalan objects!
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Counting and relations ?

All three objects are in bijection (Mühle and Williams), but not easy.

Numbers of parabolic Catalan objects of order n:

1, 1, 3, 12, 57, 301, 1707, 10191, 63244, 404503, . . . (OEIS A151498)

= certain walks in the quadrant

Bijective link? An easier-to-understand structure?
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Marked paths and steep pairs

Walks in the quadrant: {(1, 0), (1,−1), (−1, 1)}, ending with y = 0.

Considered in (Bousque-Mélou and Mishna, 2010) and counted in
(Mishna and Rechnitzer, 2009)

In bijection with level-marked Dyck paths:
level ≤ marking before the point
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Level-marked Dyck paths and steep pairs

Steep pairs : 2 nested Dyck paths, the one above has no EE except at
the end

Bijection:

Path below: path without marking

Path above: read the N ’s, marked → N , not marked → EN
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Steep-Bounce conjecture

Conjecture (Bergeron, Ceballos and Pilaud 2018+, Conjecture 2.2.8)

The following two sets are of the same size:

bounce pairs of order n with k blocks;

steep pairs of order n with k east steps E on y = n.

A proof gives the counting of all these objects (pipe dreams and
parabolic Catalan)

The cases k = 1, 2, n− 1, n already proved
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A scheme of the bijections

5 3 4 10 1 2 7 6 9 13 14 8 11 12

Ξperm

Ξnc

Ξbounce

Ξdyck

Ξsteep
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Left-aligned colored trees

T : plane tree with n non-root nodes;

α = (α1, . . . , αk) : composition of n

Active nodes : not yet colored, but parent is colored or is the root.

Coloring algorithm : For i from 1 to k,

If there are less than αi active nodes, then fail;

Otherwise, color the first αi from left to right with color i.

α = (1, 3, 1, 2, 4, 3) ⊢ 14

When succeeded, it is a left-aligned colored tree (or a LAC tree).
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Left-aligned colored trees
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To permutations

(T, α)
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Ξperm(T, α) = 5 | 3 4 10 | 1 | 2 7 | 6 9 13 14 | 8 11 12 ∈ S
α

n
(231)

Ξperm
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To parabolic non-crossing partitions

(T, α)

Ξnc

LAC tree → partition : flatten the layers

Partition → LAC tree : look at the sky
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To bounce pairs

α = (1, 3, 1, 2, 4, 3) ⊢ 14

jk = 1
ak = 5
p = jk − r + 1 = 1
q = jk + ak − s = 4

r = 1
s = 2
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To bounce pairs

jk = 4
ak = 6
p = jk − r + 1 = 4
q = jk + ak − s = 8

r = 1
s = 2

α = (1, 3, 1, 2, 4, 3) ⊢ 14
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To bounce pairs

jk = 4
ak = 6
p = jk − r + 1 = 2
q = jk + ak − s = 6

r = 3
s = 4

α = (1, 3, 1, 2, 4, 3) ⊢ 14
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To bounce pairs

α = (1, 3, 1, 2, 4, 3) ⊢ 14
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To steep pairs

Ξdyck(T, α) Ξsteep(T, α)(T, α)
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Steep-Bounce theorem

Theorem (Ceballos, F., Mühle 2018+)

There is a natural bijection Γ between the following two sets:

bounce pairs of order n with k blocks;

steep pairs of order n with k each steps E on y = n.

So we know how to count them!
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A bijection between the two Tamaris

5 3 4 10 1 2 9 6 8 13 14 7 11 12 ⋗L

⋖να

5 3 4 10 1 2 7 6 9 13 14 8 11 12

↓ ↓
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One isomorphic to the dual of the other

12|34|5

12|35|4 13|24|5

12|45|3 13|25|4 14|23|5 23|14|5

14|35|2 23|15|4 15|23|4 24|13|5

34|25|1 15|24|3 25|13|4 34|12|5

15|34|2 25|14|3 35|12|4

35|24|1 45|12|3

45|13|2

45|23|1

Theorem (Ceballos, F., Mühle 2018+)

The parabolic Tamari lattice indexed by α is isomorphic to the ν-Tamari

lattice with ν = Nα1Eα1 · · ·NαkEαk .
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Detour to q, t-Catalan combinatorics

a(1) = 0

1

2

3

3

3

3

1

a(9) = 2

5

2

area(D) =
∑

i
a(i) = 18

dinv(D) = #{(i, j) | i < j, (a(i) = a(j) ∨ a(i) = a(j) + 1} = 17

bounce(D) =
∑

i
(i− 1)αi = 7



Two Tamaris Bijections Zeta Discussion

A non-trivial symmetry

Theorem (Garsia and Haiman 1996, Haiman 2001)

By summing up all Dyck paths of order n, we have

∑

D

qarea(D)tbounce(D) =
∑

D

qbounce(D)tarea(D).

The proof goes by the Hilbert series of the diagonal coinvariant space
with two sets of variables.

No combinatorial proof!

Theorem (Haglund 2008, Proof of Theorem 3.15)

There is a bijection ζ on Dyck paths that transfers the pairs of statistics

(dinv, area) → (area, bounce).
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Our zeta map

area(D) = 18

bounce(D) = 7

dinv(D) = 18

area(D) = 7

Γ = Ξbounce ◦ Ξ
−1
steep

ΞsteepΞbounce
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Our zeta map, Steep-Bounce version

Theorem (Ceballos, F., Mühle 2018+)

There is a natural bijection Γ between the following sets:

bounce pairs of order n with k blocks;

steep pairs of order n with k east steps E on y = n.

ζ = special case of Γ, with steep pairs and bounce pairs constructed in a
greedy way

A generalization to explore!
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Possible directions

Many questions in enumeration (but possibly very difficult)

How are the statistics transferred, and which ones?

Action by symmetries?

Implication in diagonal coinvariant spaces?

etc. ?
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Possible directions

Many questions in enumeration (but possibly very difficult)

How are the statistics transferred, and which ones?

Action by symmetries?

Implication in diagonal coinvariant spaces?

etc. ?

Thank you for listening!
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