Introduction	Statistics	Bijection	Conclusion
000000	0000000	0000000	000

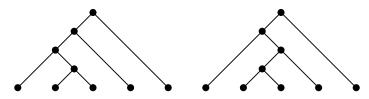
Bijective link between Chapoton's new intervals and bipartite planar maps

Wenjie Fang, LIGM, Université Gustave Eiffel

12 avril 2021, Journées Cartes, IHES

Introduction	Statistics	Bijection	Conclusion
●000000	0000000	0000000	000
Binary trees			

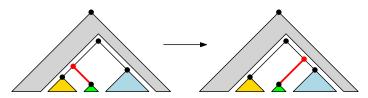
Binary trees : leaves or internal nodes with 2 children



Size : # internal nodes

Enumeration : Catalan numbers $\operatorname{Cat}_n = \frac{1}{2n+1} \binom{2n+1}{n}$

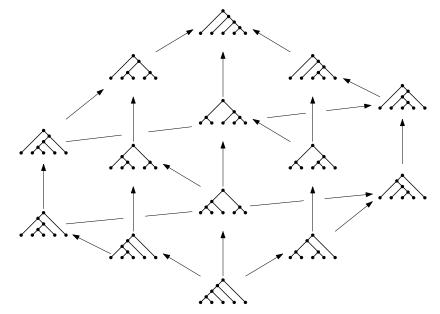
Rotation (from left to right) :



Rotation \Rightarrow order : Tamari lattice

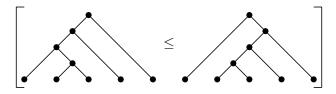
Can also be defined on other Catalan objects (Dyck paths, ...)

Introduction	Statistics	Bijection	Conclusion
000000	0000000	0000000	000
Tamari lattice			



Introduction	Statistics	Bijection	Conclusion
000000	0000000	0000000	000
Tamari intervals			

Tamari intervals : a pair of objects $S \leq T$ comparable in Tamari lattice, also denoted [S,T]



Counted by Chapoton in 2006 : for all sizes n, the number is

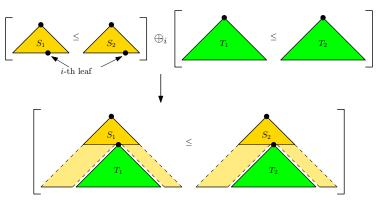
$$\frac{2}{n(n+1)}\binom{4n+1}{n-1}.$$

Same formula as bridgeless planar maps and 3-connected planar triangulations. (There are several bijections.)

How is it done (by Chapoton) ?

Introduction	Statistics	Bijection	Conclusion
0000000	0000000	0000000	000
Lego of Tan	nari intervals		

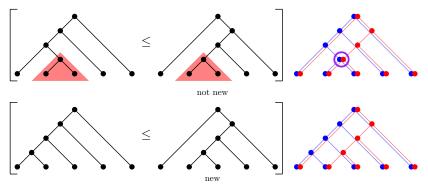
Operation \bigoplus_i : compose two intervals in a big one



Introduction	Statistics	Bijection	Conclusion
0000000	0000000	0000000	000
Nourintaruala			

New intervals

An interval I is new if it cannot be constructed as $I = I_1 \oplus_i I_2$.



Easy criterion : common non-root internal nodes Geometrically : new \Leftrightarrow not on the same facet of the associahedron A structure of operad, with new intervals as atoms Unique decomposition of general ones into new ones \Rightarrow enumeration

Introduction	Statistics	Bijection	Conclusion
000000	0000000	0000000	000
Counting ne	w intervals		

Théorème (Chapoton 2006)

The number of new intervals of size \boldsymbol{n} is

$$\frac{3 \cdot 2^{n-2}(2n-2)!}{(n-1)!(n+1)!}.$$

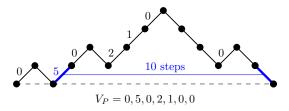
With this formula, Chapoton counted general Tamari intervals.

Same formula as bipartite planar maps!

Introduction	Statistics	Bijection	Conclusion
000000	• 00 00000	0000000	000
Dyck paths			

Dyck paths :

- Formed by up steps (1,1) and down steps (1,-1),
- Starting and ending on *x*-axis, while staying above it.



Matching steps : connected by horizontal line without obstacle

Bracket vector V_P of path P:

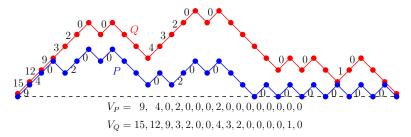
 $V_P(i) =$ half-length from the *i*-th up step to its matching down step

Rising contact : up step on x-axis

 $\mathbf{rcont}(P)$: number of rising contacts of P.

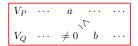
Introduction	Statistics	Bijection	Conclusion
000000	0000000	0000000	000
New interval	s. with Dyck paths		

Tamari lattice : $P \leq Q \iff V_P \leq V_Q$ componentwise



An interval [P,Q] is new iff :

- $V_Q(1) = n;$
- $\forall 1 \le i \le n, V_Q(i) \ne 0 \Rightarrow V_P(i) \le V_Q(i+1).$



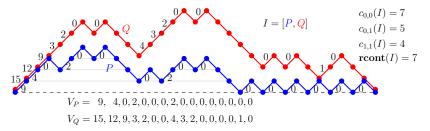
Introduction	Statistics	Bijection	Conclusion
000000	0000000	0000000	000

Three statistics (nearly) symmetric

Three statistics on an interval I = [P, Q]:

$$\mathbf{c}_{00}(I) = \# \begin{bmatrix} 0\\ 0 \end{bmatrix}, \quad \mathbf{c}_{01}(I) = \# \begin{bmatrix} 0\\ \neq 0 \end{bmatrix}, \quad \mathbf{c}_{11}(I) = \# \begin{bmatrix} \neq 0\\ \neq 0 \end{bmatrix}.$$

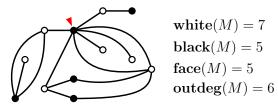
Then $\mathbf{rcont}(I) = \mathbf{rcont}(P)$ (lower path).



(Experimental) symmetry between $\mathbf{c}_{00}(I), \mathbf{c}_{01}(I), 1 + \mathbf{c}_{11}(I)$ when summing for all new intervals of size n (Chapoton, unpublished) Similar symmetry in bipartite planar maps. A link?

Introduction	Statistics	Bijection	Conclusion
0000000	0000000	0000000	000
Bipartite planar	maps		

Bipartite planar map : proper drawing of bipartite graph on the plane, rooted at a corner of a black vertex on the outer face



Three statistics of a bipartite planar map M:

white (M) = # white vertex, black (M) = # black vertex, face (M) = # face. Equidistributed (# cycles of permutations in $\sigma_{\bullet}\sigma_{\circ}\phi = \mathrm{id}_n$) An auxiliary statistic : outdeg(M) = half-degree of the outer face

Introduction	Statistics	Bijection	Conclusion
000000	00000000	0000000	000
Refined equ	ui-enumeration		

Théorème (Chapoton and Fusy, unpublished)

Let $F_{\mathcal{I}}(t, x; u, v, w)$ be the generating function of new intervals:

$$F_{\mathcal{I}}(t,x;u,v,w) = \sum_{n\geq 1} t^n \sum_{I\in\mathcal{I}_n} x^{\mathbf{rcont}(I)-1} u^{\mathbf{c}_{00}(I)} v^{\mathbf{c}_{01}(I)} w^{\mathbf{c}_{11}(I)}.$$

Let $F_{\mathcal{M}}(t, x; u, v, w)$ be the generating function of bipartite planar maps:

$$F_{\mathcal{M}}(t; u, v, w) = \sum_{n \ge 0} t^n \sum_{M \in \mathcal{M}_n} x^{\mathbf{outdeg}(M)} u^{\mathbf{black}(M)} v^{\mathbf{white}(M)} w^{\mathbf{face}(M)}$$

Then we have

$$wF_{\mathcal{I}} = tF_{\mathcal{M}}.$$

Proved using recursive decomposition of the two families of objects

A bijective proof ?

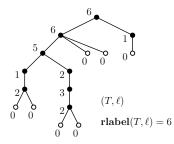
Introduction	Statistics	Bijection	Conclusion
0000000	00000000	0000000	000
Degree trees			

Degree trees : a pair (T, ℓ)

- T: plane tree,
- ℓ : node-labeling on T,

such that, for all node v,

- v is a leaf $\Rightarrow \ell(v) = 0;$
- v has children $v_1, v_2, \ldots, v_k \Rightarrow \ell(v) = k a + \sum_i \ell(v_i)$ for some $0 \le a \le \ell(v_1)$.



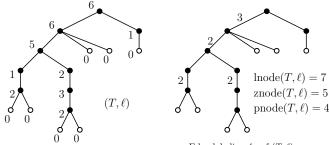
 $\mathbf{rlabel}(T, \ell)$: root label

Introduction	Statistics	Bijection	Conclusion
0000000	00000000	0000000	000
	. 1		

Degree trees, another version

Edge labeling ℓ_{Λ} of (T, ℓ) : on the leftmost descending edge of each node v, with the value subtracted from $\ell(v)$.

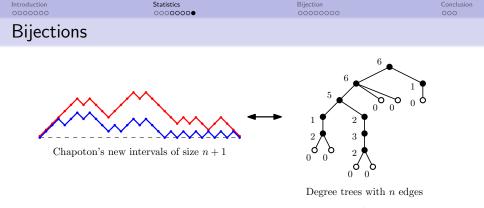
 $\ell_\Lambda \Rightarrow \ell$: $\ell(v) = \#$ descendants - sum of edge labels below v



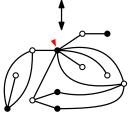
Edge labeling ℓ_{Λ} of (T, ℓ)

Three statistics :

- $\mathbf{lnode}(T, \ell)$: #leaves,
- $\mathbf{znode}(T, \ell)$: #nodes with $\ell_{\Lambda}(e) = 0$ on its leftmost edge e,
- $\mathbf{pnode}(T, \ell)$: #nodes with $\ell_{\Lambda}(e) \neq 0$ on its leftmost edge e.



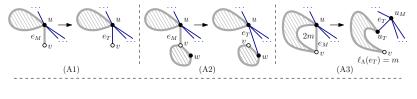
$$\begin{split} \mathbf{c}_{0,0}(I) &= \mathbf{lnode}(T,\ell) = \mathbf{white}(M) \\ \mathbf{c}_{0,1}(I) &= \mathbf{znode}(T,\ell) = \mathbf{black}(M) \\ \mathbf{c}_{1,1}(I) &= \mathbf{pnode}(T,\ell) = \mathbf{face}(M) - 1 \\ \mathbf{rcont}(I) &= \mathbf{rlabel}(T,\ell) + 1 = \mathbf{outdeg}(M) + 1 \end{split}$$

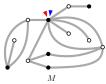


Bipartite planar maps with n edges

Introduction	Statistics	Bijection	Conclusion
0000000	0000000	00 00000	000

DFS on edges, clockwise, starting from the root, three rules edges of $M \rightarrow$ edges of (T, ℓ) . Only on black vertices.





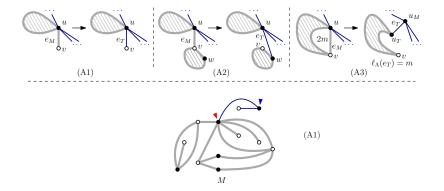
Introduction	Statistics	Bijection	Conclusion
000000	0000000	00 00000	000

DFS on edges, clockwise, starting from the root, three rules edges of $M \rightarrow$ edges of (T, ℓ) . Only on black vertices.



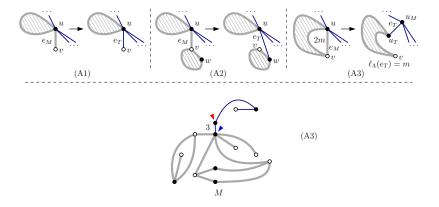
Introduction	Statistics	Bijection	Conclusion
000000	0000000	00 00000	000

DFS on edges, clockwise, starting from the root, three rules edges of $M \rightarrow$ edges of (T, ℓ) . Only on black vertices.



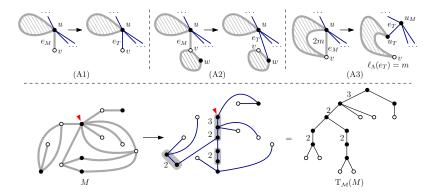
Introduction	Statistics	Bijection	Conclusion
0000000	0000000	00 00000	000

DFS on edges, clockwise, starting from the root, three rules edges of $M \rightarrow$ edges of (T, ℓ) . Only on black vertices.



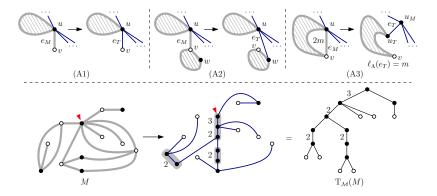
Introduction	Statistics	Bijection	Conclusion
0000000	0000000	• 00 00000	000

DFS on edges, clockwise, starting from the root, three rules edges of $M \rightarrow$ edges of (T, ℓ) . Only on black vertices.



Introduction	Statistics	Bijection	Conclusion
000000	0000000	0000000	000

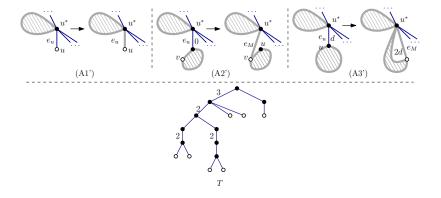
Correspondence of statistics



- $\mathbf{white}(M) = \mathbf{lnode}(T, \ell)$: white node \leftrightarrow leaves
- $face(M) = 1 + pnode(T, \ell)$: inner face \leftrightarrow (A3)
- $\mathbf{black}(M) = \mathbf{znode}(T, \ell)$: computation
- $outdeg(M) = rlabel(T, \ell)$: inner face \leftrightarrow (A3)

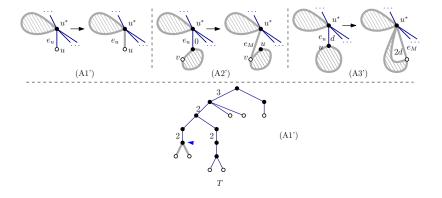
000000	0000000	0000000	000
Evene tuese t	a maana waxawaad	a vale vetien	

DFS on edges, counter-clockwise, three rules when exiting an edge edges of $(T, \ell) \rightarrow$ edges of M.



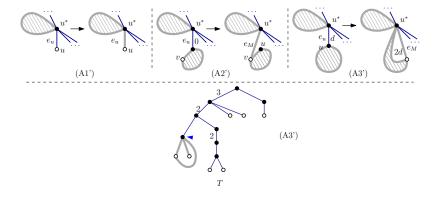
000000	0000000	0000000	000
Eugen tugon t	a maana waxawaad	a vale vetien	

DFS on edges, counter-clockwise, three rules when exiting an edge edges of $(T, \ell) \rightarrow$ edges of M.



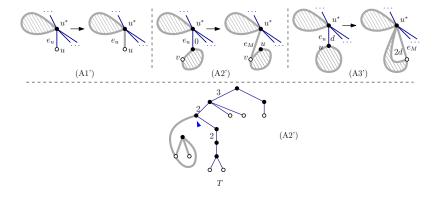
000000	0000000	0000000	000
Eugen tugon t	a maana waxawaad	a vale vetien	

DFS on edges, counter-clockwise, three rules when exiting an edge edges of $(T,\ell)\to$ edges of M.



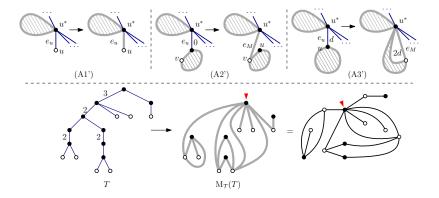
000000	0000000	0000000	000
Eugen tugon t	a maana waxawaad	a vale vetien	

DFS on edges, counter-clockwise, three rules when exiting an edge edges of $(T,\ell)\to$ edges of M.



Introduction	Statistics	Bijection	Conclusion
0000000	0000000	0000000	000

DFS on edges, counter-clockwise, three rules when exiting an edge edges of $(T, \ell) \rightarrow$ edges of M.

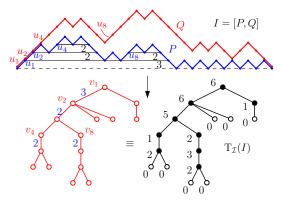


Introduction		Statistics		Bijection	Conclusion
000000	C	00000000		000000	000
-					

From intervals to trees: contacts counting

From I = [P, Q] to (T, ℓ) using ℓ_{Λ} :

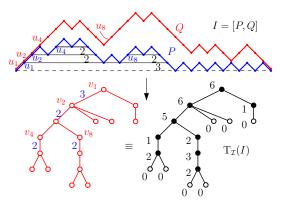
- T: from Q' such that Q = uQ'd (as $V_Q(1) = n$)
- *i*-th up step of $Q \Leftrightarrow i$ -th node v_i of T in contour (root included)
- *i*-th up step of $P \Leftrightarrow$ upward edge of v_{i+1} in T (shift by 1!)
- ℓ_{Λ} : rising contacts on sub-paths between matching steps



Ensure intermedia to	+		
000000	0000000	0000000	000
Introduction	Statistics	Bijection	Conclusion

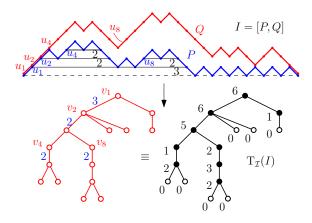
From intervals to trees: correctness

- $V_Q(i)$: # descendants of v_i
- $V_P(i)$: sum of labels of upward edge of v_{i+1} and edges in subtree
- Tamari ⇔ positive vertex label
- New \Leftrightarrow label of upward edge of v_{i+1} limited by label of v_{i+1}



Introduction	Statistics	Bijection	Conclusion
0000000	0000000	00000000	000

Correspondence of statistics

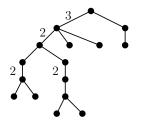


- $\mathbf{c}_{00}(I) = \mathbf{lnode}(T, \ell)$: $V_Q(i) = 0 \Leftrightarrow \mathsf{leaf}$
- $c_{11}(I) = pnode(T, \ell) : V_P(i) \neq 0 \Leftrightarrow$ non-zero label on edge
- $\mathbf{c}_{01}(I) = \mathbf{znode}(T, \ell)$: computation with size
- $\mathbf{rcont}(I) = \mathbf{rlabel}(T, \ell)$: rising contacts not counted in ℓ_{Λ}

Introduction	Statistics	Bijection	Conclusion
0000000	0000000	00000000	000
—		1 ·	

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

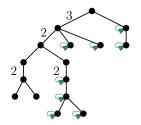
- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $(\ell_{\Lambda}(e) + 1)$ -st black node. The last node visited is the certificate of v.



Introduction	Statistics	Bijection	Conclusion
0000000	0000000	00000000	000
—		1 ·	

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

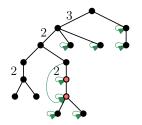
- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $(\ell_{\Lambda}(e) + 1)$ -st black node. The last node visited is the certificate of v.



Introduction	Statistics	Bijection	Conclusion
0000000	0000000	00000000	000
—		1 ·	

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

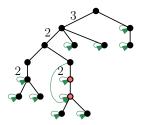
- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $(\ell_{\Lambda}(e) + 1)$ -st black node. The last node visited is the certificate of v.



Introduction	Statistics	Bijection	Conclusion
0000000	0000000	00000000	000
—		1 ·	

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

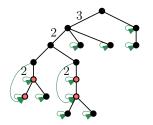
- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $(\ell_{\Lambda}(e) + 1)$ -st black node. The last node visited is the certificate of v.



Introduction	Statistics	Bijection	Conclusion
0000000	0000000	00000000	000
—		1 ·	

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

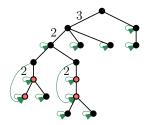
- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $(\ell_{\Lambda}(e) + 1)$ -st black node. The last node visited is the certificate of v.



Introduction	Statistics	Bijection	Conclusion
0000000	0000000	00000000	000
—		1 ·	

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

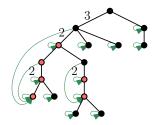
- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $(\ell_{\Lambda}(e) + 1)$ -st black node. The last node visited is the certificate of v.



Introduction	Statistics	Bijection	Conclusion
0000000	0000000	00000000	000
—		1 ·	

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

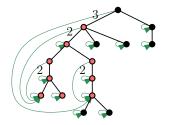
- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $(\ell_{\Lambda}(e) + 1)$ -st black node. The last node visited is the certificate of v.



Introduction	Statistics	Bijection	Conclusion
0000000	0000000	00000000	000
—		1 ·	

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

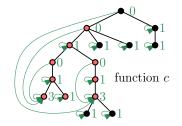
- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $(\ell_{\Lambda}(e) + 1)$ -st black node. The last node visited is the certificate of v.



Introduction	Statistics	Bijection	Conclusion
0000000	0000000	00000000	000
—		1 ·	

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $(\ell_{\Lambda}(e) + 1)$ -st black node. The last node visited is the certificate of v.

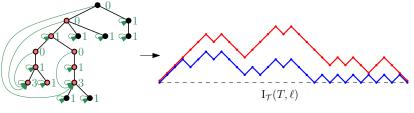


Introduction	Statistics	Bijection	Conclusion
000000	0000000	0000000	000
From trees to inte	ervals: certificate f	unction	

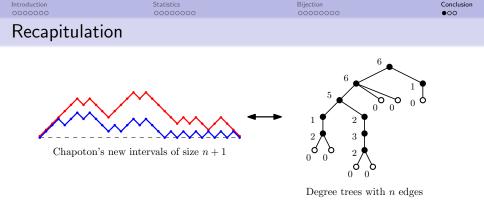
Certificate function c of (T, ℓ) : c(u) = #nodes whose certificate is u

From (T, ℓ) to I = [P, Q]:

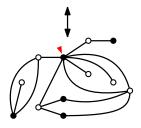
- P: concatenation of $ud^{c(v)}$ for all v in prefix order;
- Q: uQ'd with Q' obtained from the contour walk of T.



function \boldsymbol{c}



$$\begin{split} \mathbf{c}_{0,0}(I) &= \mathbf{lnode}(T, \ell) = \mathbf{white}(M) \\ \mathbf{c}_{0,1}(I) &= \mathbf{znode}(T, \ell) = \mathbf{black}(M) \\ \mathbf{c}_{1,1}(I) &= \mathbf{pnode}(T, \ell) = \mathbf{face}(M) - 1 \\ \mathbf{rcont}(I) &= \mathbf{rlabel}(T, \ell) + 1 = \mathbf{outdeg}(M) + 1 \end{split}$$

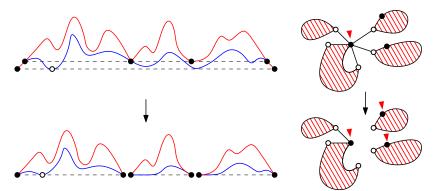


Bipartite planar maps with n edges

000000	0000000	0000000	000	
Introduction	Statistics	Bijection	Conclusion	

What is really happening

Recursive decomposition of the two families of objects (Chapoton and Fusy, unpublished):



Degree tree is in fact the decomposition tree.

The bijections are all canonical w.r.t. these decompositions.

Introduction	Statistics	Bijection	Conclusion
000000	0000000	0000000	000
Work in progress	(?)		

- \mathbb{S}_3 symmetry for bipartite maps, how about new intervals?
- \bullet At least one explained: white \leftrightarrow face \Leftrightarrow duality of intervals
- Relation with $\beta(0,1)$ -trees ? And other objects ?
- Recent new direct bijection between degree trees and linear planar 3-connected λ-terms (arXiv:2202.03542)
- Tamari intervals decompose into new intervals. How about maps ?

Introduction	Statistics	Bijection	Conclusion
000000	0000000	0000000	000
Work in progress	(?)		

- \mathbb{S}_3 symmetry for bipartite maps, how about new intervals?
- At least one explained: white \leftrightarrow face \Leftrightarrow duality of intervals
- Relation with $\beta(0,1)$ -trees ? And other objects ?
- Recent new direct bijection between degree trees and linear planar 3-connected λ-terms (arXiv:2202.03542)
- Tamari intervals decompose into new intervals. How about maps ?

Thank you for listening!