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Binary trees

Binary trees : leaves or internal nodes with 2 children

Size : # internal nodes

Enumeration : Catalan numbers Catn = 1
2n+1

(

2n+1
n

)
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Rotation on binary trees

Rotation (from left to right) :

Rotation ⇒ order : Tamari lattice

Can also be defined on other Catalan objects (Dyck paths, ...)
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Tamari lattice
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Tamari intervals

Tamari intervals : a pair of objects S ≤ T comparable in Tamari lattice,
also denoted [S, T ]

≤

Counted by Chapoton in 2006 : for all sizes n, the number is

2

n(n+ 1)

(

4n+ 1

n− 1

)

.

Same formula as bridgeless planar maps and 3-connected planar
triangulations. (There are several bijections.)

How is it done (by Chapoton) ?
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Lego of Tamari intervals

Operation ⊕i : compose two intervals in a big one

≤ ⊕i
≤

T1 T2

i-th leaf

S1 S2

S2

T2

S1

T1

≤
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New intervals

An interval I is new if it cannot be constructed as I = I1 ⊕i I2.

≤

not new

new

≤

Easy criterion : common non-root internal nodes

Geometrically : new ⇔ not on the same facet of the associahedron

A structure of operad, with new intervals as atoms

Unique decomposition of general ones into new ones ⇒ enumeration
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Counting new intervals

Théorème (Chapoton 2006)

The number of new intervals of size n is

3 · 2n−2(2n− 2)!

(n− 1)!(n+ 1)!
.

With this formula, Chapoton counted general Tamari intervals.

Same formula as bipartite planar maps!
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Dyck paths

Dyck paths :

Formed by up steps (1, 1) and down steps (1,−1),

Starting and ending on x-axis, while staying above it.

50

0 2

1

0

0

10 steps

VP = 0, 5, 0, 2, 1, 0, 0

Matching steps : connected by horizontal line without obstacle

Bracket vector VP of path P :
VP (i) = half-length from the i-th up step to its matching down step

Rising contact : up step on x-axis

rcont(P ) : number of rising contacts of P .
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New intervals, with Dyck paths

Tamari lattice : P ≤ Q ⇐⇒ VP ≤ VQ componentwise

VP = 9, 4, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0

VQ = 15, 12, 9, 3, 2, 0, 0, 4, 3, 2, 0, 0, 0, 0, 1, 0

P

Q

15

12

9

3

2

0 0

4

3

2

0 0

0 0 0

1

9

4

0 2

2

0 0

0

0 0

0 0 0 0 00

An interval [P,Q] is new iff :

VQ(1) = n;

∀1 ≤ i ≤ n, VQ(i) 6= 0 ⇒ VP (i) ≤ VQ(i+ 1).

VP · · · a · · · · · ·

VQ · · · 6= 0 b · · ·
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Three statistics (nearly) symmetric

Three statistics on an interval I = [P,Q]:

c00(I) = #

[

0
0

]

, c01(I) = #

[

0
6= 0

]

, c11(I) = #

[

6= 0
6= 0

]

.

Then rcont(I) = rcont(P ) (lower path).

VP = 9, 4, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0

VQ = 15, 12, 9, 3, 2, 0, 0, 4, 3, 2, 0, 0, 0, 0, 1, 0

P

Q

c0,0(I) = 7

c0,1(I) = 5

c1,1(I) = 4

I = [P ,Q]

15
12

9
3

2
0 0

4
3

2
0 0

0 0 0
1

9
4

0 2
2

0 0

0
0 0

0 0 0 0 00

rcont(I) = 7

(Experimental) symmetry between c00(I), c01(I), 1 + c11(I) when
summing for all new intervals of size n (Chapoton, unpublished)

Similar symmetry in bipartite planar maps. A link?
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Bipartite planar maps

Bipartite planar map : proper drawing of bipartite graph on the plane,
rooted at a corner of a black vertex on the outer face

white(M) = 7

black(M) = 5

face(M) = 5

outdeg(M) = 6

Three statistics of a bipartite planar map M :

white(M) = #white vertex, black(M) = #black vertex, face(M) = #face.

Equidistributed (# cycles of permutations in σ•σ◦φ = idn)

An auxiliary statistic : outdeg(M) = half-degree of the outer face

12 / 27



Introduction Statistics Bijection Conclusion

Refined equi-enumeration

Théorème (Chapoton and Fusy, unpublished)

Let FI(t, x;u, v, w) be the generating function of new intervals:

FI(t, x;u, v, w) =
∑

n≥1

tn
∑

I∈In

xrcont(I)−1uc00(I)vc01(I)wc11(I).

Let FM(t, x;u, v, w) be the generating function of bipartite planar maps:

FM(t;u, v, w) =
∑

n≥0

tn
∑

M∈Mn

xoutdeg(M)ublack(M)vwhite(M)wface(M).

Then we have

wFI = tFM.

Proved using recursive decomposition of the two families of objects

A bijective proof ?

13 / 27



Introduction Statistics Bijection Conclusion

Degree trees

Degree trees : a pair (T, ℓ)

T : plane tree,

ℓ: node-labeling on T ,

such that, for all node v,

v is a leaf ⇒ ℓ(v) = 0;

v has children v1, v2, . . . , vk ⇒ ℓ(v) = k − a+
∑

i ℓ(vi) for some
0 ≤ a ≤ ℓ(v1).

(T, ℓ)

rlabel(T, ℓ) = 6

2

1

0 0

0 0

3

6

6

00 0

2

2

5
1

rlabel(T, ℓ) : root label
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Degree trees, another version

Edge labeling ℓΛ of (T, ℓ): on the leftmost descending edge of each node
v, with the value subtracted from ℓ(v).
ℓΛ ⇒ ℓ: ℓ(v) = # descendants - sum of edge labels below v

(T, ℓ)
2

1

0 0

0 0

3

6

6

00 0

2

2

5
1

Edge labeling ℓΛ of (T, ℓ)

3

2

2 2 lnode(T, ℓ) = 7

znode(T, ℓ) = 5

pnode(T, ℓ) = 4

Three statistics :

lnode(T, ℓ): #leaves,

znode(T, ℓ): #nodes with ℓΛ(e) = 0 on its leftmost edge e,

pnode(T, ℓ): #nodes with ℓΛ(e) 6= 0 on its leftmost edge e.
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Bijections

c0,0(I) = lnode(T, ℓ) = white(M)

c0,1(I) = znode(T, ℓ) = black(M)

c1,1(I) = pnode(T, ℓ) = face(M)− 1

rcont(I) = rlabel(T, ℓ) + 1 = outdeg(M) + 1

Chapoton’s new intervals of size n+ 1

2

1

0 0

0 0

3

6

6

0
0 0

2

2

5

1

Degree trees with n edges

Bipartite planar maps with n edges
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From maps to trees : exploration

DFS on edges, clockwise, starting from the root, three rules

edges of M → edges of (T, ℓ). Only on black vertices.

(A1) (A2) (A3)

eM

. . .

. . .

u

v

. . .

. . .
eT

u

v

M

. . .

eM . . .

u

v

w

. . .

. . .
eT

u

v

w

. . .

. . .
eM

2m

u

v
ℓΛ(eT ) = m

. . .

. . .

eT

v

uM

uT

Generalizing a bijection of Janson and Stefánsson (2015) on trees
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edges of M → edges of (T, ℓ). Only on black vertices.

(A1) (A2) (A3)

eM

. . .

. . .

u

v

. . .

. . .
eT

u

v

M

. . .

eM . . .

u

v

w

. . .

. . .
eT

u

v

w

. . .

. . .
eM

2m

u

v
ℓΛ(eT ) = m

. . .

. . .

eT

v

uM

uT

(A2)

Generalizing a bijection of Janson and Stefánsson (2015) on trees
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From maps to trees : exploration

DFS on edges, clockwise, starting from the root, three rules

edges of M → edges of (T, ℓ). Only on black vertices.

(A1) (A2) (A3)

eM

. . .

. . .

u

v

. . .

. . .
eT

u

v

M

. . .

eM . . .

u

v

w

. . .

. . .
eT

u

v

w

. . .

. . .
eM

2m

u

v
ℓΛ(eT ) = m

. . .

. . .

eT

v

uM

uT

(A1)

Generalizing a bijection of Janson and Stefánsson (2015) on trees
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From maps to trees : exploration

DFS on edges, clockwise, starting from the root, three rules

edges of M → edges of (T, ℓ). Only on black vertices.

(A1) (A2) (A3)

eM

. . .

. . .

u

v

. . .

. . .
eT

u

v

M

. . .

eM . . .

u

v

w

. . .

. . .
eT

u

v

w

. . .

. . .
eM

2m

u

v
ℓΛ(eT ) = m

. . .

. . .

eT

v

uM

uT

(A3)
3

Generalizing a bijection of Janson and Stefánsson (2015) on trees
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From maps to trees : exploration

DFS on edges, clockwise, starting from the root, three rules

edges of M → edges of (T, ℓ). Only on black vertices.

(A1) (A2) (A3)

eM

. . .

. . .

u

v

. . .

. . .
eT

u

v

M TM(M)

=

. . .

eM . . .

u

v

w

. . .

. . .
eT

u

v

w

. . .

. . .
eM

2m

u

v
ℓΛ(eT ) = m

3

2

2 2

. . .

. . .

eT

v

uM

uT

3

2

2

2

Generalizing a bijection of Janson and Stefánsson (2015) on trees
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Correspondence of statistics

(A1) (A2) (A3)

eM

. . .

. . .

u

v

. . .

. . .
eT

u

v

M TM(M)

=

. . .

eM . . .

u

v

w

. . .

. . .
eT

u

v

w

. . .

. . .
eM

2m

u

v
ℓΛ(eT ) = m

3

2

2 2

. . .

. . .

eT

v

uM

uT

3

2

2

2

white(M) = lnode(T, ℓ) : white node ↔ leaves

face(M) = 1 + pnode(T, ℓ) : inner face ↔ (A3)

black(M) = znode(T, ℓ) : computation

outdeg(M) = rlabel(T, ℓ) : inner face ↔ (A3)
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From trees to maps: reversed exploration

DFS on edges, counter-clockwise, three rules when exiting an edge

edges of (T, ℓ) → edges of M .

(A1’) (A2’) (A3’)

. . .

. . .

u
∗

eu

u

d

eM

. . .

. . .

u
∗

2d

. . .

. . .

u
∗

v

eu 0 eM u

. . .

. . .

u
∗

v

. . .

. . .
eu

u
∗

u

eu

. . .

. . .

u
∗

u

T

3

2

2 2
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From trees to maps: reversed exploration

DFS on edges, counter-clockwise, three rules when exiting an edge

edges of (T, ℓ) → edges of M .
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From trees to maps: reversed exploration

DFS on edges, counter-clockwise, three rules when exiting an edge

edges of (T, ℓ) → edges of M .
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=
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From intervals to trees: contacts counting

From I = [P,Q] to (T, ℓ) using ℓΛ:

T : from Q′ such that Q = uQ′d (as VQ(1) = n)

i-th up step of Q ⇔ i-th node vi of T in contour (root included)

i-th up step of P ⇔ upward edge of vi+1 in T (shift by 1!)

ℓΛ: rising contacts on sub-paths between matching steps

I = [P,Q]

u1

u2

3
2 2
2u4

u8u1

u2

u4

u8 Q

P

≡ TI(I)2

1

0 0

0 0

3

6

6

00 0

2

2

5
1

v1

v2

v4 v8

3

2

2 2
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From intervals to trees: correctness

VQ(i): # descendants of vi

VP (i): sum of labels of upward edge of vi+1 and edges in subtree

Tamari ⇔ positive vertex label

New ⇔ label of upward edge of vi+1 limited by label of vi+1

I = [P,Q]

u1

u2

3
2 2
2u4

u8u1

u2

u4

u8 Q

P

≡ TI(I)2

1

0 0

0 0

3

6

6

00 0

2

2

5
1

v1

v2

v4 v8

3

2

2 2
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Correspondence of statistics

I = [P,Q]

u1

u2

3
2 2
2u4

u8u1

u2

u4

u8 Q

P

≡ TI(I)2

1

0 0

0 0

3

6

6

00 0

2

2

5
1

v1

v2

v4 v8

3

2

2 2

c00(I) = lnode(T, ℓ) : VQ(i) = 0 ⇔ leaf

c11(I) = pnode(T, ℓ) : VP (i) 6= 0 ⇔ non-zero label on edge

c01(I) = znode(T, ℓ) : computation with size

rcont(I) = rlabel(T, ℓ) : rising contacts not counted in ℓΛ
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From trees to intervals: a coloring process

The certificate of a node in (T, ℓ) is defined by a coloring process
(reversed prefix order):

All nodes are black from the start;

v a leaf ⇒ the certificate of v is v itself;

v not a leaf, with e its leftmost edge ⇒ color nodes after v in prefix
order in red, stop up to the (ℓΛ(e) + 1)-st black node. The last node
visited is the certificate of v.

3

2

2 2

Certificate function c of (T, ℓ): c(u) = #nodes whose certificate is u
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0 0
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From trees to intervals: certificate function

Certificate function c of (T, ℓ): c(u) = #nodes whose certificate is u

From (T, ℓ) to I = [P,Q]:

P : concatenation of udc(v) for all v in prefix order;

Q: uQ′d with Q′ obtained from the contour walk of T .

IT (T, ℓ)

function c

1

0

0

0 0

1

1111

1

1 1

33

1
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Recapitulation

c0,0(I) = lnode(T, ℓ) = white(M)

c0,1(I) = znode(T, ℓ) = black(M)

c1,1(I) = pnode(T, ℓ) = face(M)− 1

rcont(I) = rlabel(T, ℓ) + 1 = outdeg(M) + 1

Chapoton’s new intervals of size n+ 1

2

1

0 0

0 0

3

6

6

0
0 0

2

2

5

1

Degree trees with n edges

Bipartite planar maps with n edges
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What is really happening

Recursive decomposition of the two families of objects (Chapoton and
Fusy, unpublished):

Degree tree is in fact the decomposition tree.

The bijections are all canonical w.r.t. these decompositions.
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Work in progress (?)

S3 symmetry for bipartite maps, how about new intervals?

At least one explained: white ↔ face ⇔ duality of intervals

Relation with β(0, 1)-trees ? And other objects ?

Recent new direct bijection between degree trees and linear planar
3-connected λ-terms (arXiv:2202.03542)

Tamari intervals decompose into new intervals. How about maps ?
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At least one explained: white ↔ face ⇔ duality of intervals

Relation with β(0, 1)-trees ? And other objects ?

Recent new direct bijection between degree trees and linear planar
3-connected λ-terms (arXiv:2202.03542)

Tamari intervals decompose into new intervals. How about maps ?

Thank you for listening!
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