Bijective link between Chapoton's new intervals and bipartite planar maps

Wenjie Fang, LIGM, Université Gustave Eiffel

12 avril 2021, Journées Cartes, IHES

Binary trees

Binary trees: leaves or internal nodes with 2 children

Size : \# internal nodes
Enumeration: Catalan numbers Cat $_{n}=\frac{1}{2 n+1}\binom{2 n+1}{n}$

Rotation on binary trees

Rotation (from left to right) :

Rotation \Rightarrow order : Tamari lattice
Can also be defined on other Catalan objects (Dyck paths, ...)

Tamari lattice

Tamari intervals

Tamari intervals : a pair of objects $S \leq T$ comparable in Tamari lattice, also denoted $[S, T]$

Counted by Chapoton in 2006 : for all sizes n, the number is

$$
\frac{2}{n(n+1)}\binom{4 n+1}{n-1}
$$

Same formula as bridgeless planar maps and 3-connected planar triangulations. (There are several bijections.)
How is it done (by Chapoton) ?

Lego of Tamari intervals

Operation \oplus_{i} : compose two intervals in a big one

New intervals

An interval I is new if it cannot be constructed as $I=I_{1} \oplus_{i} I_{2}$.

Easy criterion : common non-root internal nodes
Geometrically : new \Leftrightarrow not on the same facet of the associahedron
A structure of operad, with new intervals as atoms
Unique decomposition of general ones into new ones \Rightarrow enumeration

Counting new intervals

Théorème (Chapoton 2006)

The number of new intervals of size n is

$$
\frac{3 \cdot 2^{n-2}(2 n-2)!}{(n-1)!(n+1)!}
$$

With this formula, Chapoton counted general Tamari intervals.
Same formula as bipartite planar maps!

Dyck paths

Dyck paths :

- Formed by up steps $(1,1)$ and down steps $(1,-1)$,
- Starting and ending on x-axis, while staying above it.

Matching steps : connected by horizontal line without obstacle
Bracket vector V_{P} of path P :
$V_{P}(i)=$ half-length from the i-th up step to its matching down step
Rising contact: up step on x-axis
$\operatorname{rcont}(P)$: number of rising contacts of P.

New intervals, with Dyck paths

Tamari lattice : $P \leq Q \Longleftrightarrow V_{P} \leq V_{Q}$ componentwise

An interval $[P, Q]$ is new iff :

- $V_{Q}(1)=n$;
- $\forall 1 \leq i \leq n, V_{Q}(i) \neq 0 \Rightarrow V_{P}(i) \leq V_{Q}(i+1)$.

$$
\begin{array}{|ccccc|}
\hline V_{P} & \cdots & a & \cdots & \cdots \\
& & & \backslash & \\
V_{Q} & \cdots & \neq 0 & b & \cdots \\
\hline
\end{array}
$$

Three statistics (nearly) symmetric

Three statistics on an interval $I=[P, Q]$:

$$
\mathbf{c}_{00}(I)=\#\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad \mathbf{c}_{01}(I)=\#\left[\begin{array}{c}
0 \\
\neq 0
\end{array}\right], \quad \mathbf{c}_{11}(I)=\#\left[\begin{array}{l}
\neq 0 \\
\neq 0
\end{array}\right] .
$$

Then $\operatorname{rcont}(I)=\operatorname{rcont}(P)$ (lower path).

(Experimental) symmetry between $\mathbf{c}_{00}(I), \mathbf{c}_{01}(I), 1+\mathbf{c}_{11}(I)$ when summing for all new intervals of size n (Chapoton, unpublished)
Similar symmetry in bipartite planar maps. A link?

Bipartite planar maps

Bipartite planar map : proper drawing of bipartite graph on the plane, rooted at a corner of a black vertex on the outer face

white $(M)=7$
black $(M)=5$
face $(M)=5$
outdeg $(M)=6$
Three statistics of a bipartite planar map M :
white $(M)=\#$ white vertex, \quad black $(M)=$ \#black vertex, \quad face $(M)=\#$ face.
Equidistributed (\# cycles of permutations in $\sigma_{\bullet} \sigma_{\circ} \phi=\mathrm{id}_{n}$)
An auxiliary statistic : outdeg $(M)=$ half-degree of the outer face

Refined equi-enumeration

Théorème (Chapoton and Fusy, unpublished)

Let $F_{\mathcal{I}}(t, x ; u, v, w)$ be the generating function of new intervals:

$$
F_{\mathcal{I}}(t, x ; u, v, w)=\sum_{n \geq 1} t^{n} \sum_{I \in \mathcal{I}_{n}} x^{\mathbf{r c o n t}(I)-1} u^{\mathbf{c}_{00}(I)} v^{\mathbf{c}_{01}(I)} w^{\mathbf{c}_{11}(I)}
$$

Let $F_{\mathcal{M}}(t, x ; u, v, w)$ be the generating function of bipartite planar maps:

$$
F_{\mathcal{M}}(t ; u, v, w)=\sum_{n \geq 0} t^{n} \sum_{M \in \mathcal{M}_{n}} x^{\text {outdeg }(M)} u^{\text {black }(M)} v^{\text {white }(M)} w^{\text {face }(M)}
$$

Then we have

$$
w F_{\mathcal{I}}=t F_{\mathcal{M}}
$$

Proved using recursive decomposition of the two families of objects

A bijective proof ?

Degree trees

Degree trees: a pair (T, ℓ)

- T : plane tree,
- ℓ : node-labeling on T,
such that, for all node v,
- v is a leaf $\Rightarrow \ell(v)=0$;
- v has children $v_{1}, v_{2}, \ldots, v_{k} \Rightarrow \ell(v)=k-a+\sum_{i} \ell\left(v_{i}\right)$ for some $0 \leq a \leq \ell\left(v_{1}\right)$.

$\operatorname{rlabel}(T, \ell)$: root label

Degree trees, another version

Edge labeling ℓ_{Λ} of (T, ℓ) : on the leftmost descending edge of each node v, with the value subtracted from $\ell(v)$.
$\ell_{\Lambda} \Rightarrow \ell: \ell(v)=\#$ descendants - sum of edge labels below v

Edge labeling ℓ_{Λ} of (T, ℓ)

Three statistics:

- lnode (T, ℓ) : \#leaves,
- znode (T, ℓ) : \#nodes with $\ell_{\Lambda}(e)=0$ on its leftmost edge e,
- pnode (T, ℓ) : \#nodes with $\ell_{\Lambda}(e) \neq 0$ on its leftmost edge e.

Bijections

Chapoton's new intervals of size $n+1$

Degree trees with n edges

Bipartite planar maps with n edges

From maps to trees : exploration

DFS on edges, clockwise, starting from the root, three rules edges of $M \rightarrow$ edges of (T, ℓ). Only on black vertices.

Generalizing a bijection of Janson and Stefánsson (2015) on trees

From maps to trees : exploration

DFS on edges, clockwise, starting from the root, three rules edges of $M \rightarrow$ edges of (T, ℓ). Only on black vertices.

(A2)

Generalizing a bijection of Janson and Stefánsson (2015) on trees

From maps to trees : exploration

DFS on edges, clockwise, starting from the root, three rules edges of $M \rightarrow$ edges of (T, ℓ). Only on black vertices.

Generalizing a bijection of Janson and Stefánsson (2015) on trees

From maps to trees : exploration

DFS on edges, clockwise, starting from the root, three rules edges of $M \rightarrow$ edges of (T, ℓ). Only on black vertices.

Generalizing a bijection of Janson and Stefánsson (2015) on trees

From maps to trees : exploration

DFS on edges, clockwise, starting from the root, three rules edges of $M \rightarrow$ edges of (T, ℓ). Only on black vertices.

Generalizing a bijection of Janson and Stefánsson (2015) on trees

Correspondence of statistics

- $\operatorname{white}(M)=\operatorname{lnode}(T, \ell)$: white node \leftrightarrow leaves
- $\operatorname{face}(M)=1+\operatorname{pnode}(T, \ell):$ inner face $\leftrightarrow(\mathrm{A} 3)$
- black $(M)=\operatorname{znode}(T, \ell)$: computation
- outdeg $(M)=\operatorname{rlabel}(T, \ell)$: inner face $\leftrightarrow(\mathrm{A} 3)$

From trees to maps: reversed exploration

DFS on edges, counter-clockwise, three rules when exiting an edge edges of $(T, \ell) \rightarrow$ edges of M.

From trees to maps: reversed exploration

DFS on edges, counter-clockwise, three rules when exiting an edge edges of $(T, \ell) \rightarrow$ edges of M.

From trees to maps: reversed exploration

DFS on edges, counter-clockwise, three rules when exiting an edge edges of $(T, \ell) \rightarrow$ edges of M.

From trees to maps: reversed exploration

DFS on edges, counter-clockwise, three rules when exiting an edge edges of $(T, \ell) \rightarrow$ edges of M.

From trees to maps: reversed exploration

DFS on edges, counter-clockwise, three rules when exiting an edge edges of $(T, \ell) \rightarrow$ edges of M.

From intervals to trees: contacts counting

From $I=[P, Q]$ to (T, ℓ) using ℓ_{Λ} :

- T : from Q^{\prime} such that $Q=u Q^{\prime} d\left(\right.$ as $\left.V_{Q}(1)=n\right)$
- i-th up step of $Q \Leftrightarrow i$-th node v_{i} of T in contour (root included)
- i-th up step of $P \Leftrightarrow$ upward edge of v_{i+1} in T (shift by 1 !)
- ℓ_{Λ} : rising contacts on sub-paths between matching steps

From intervals to trees: correctness

- $V_{Q}(i)$: \# descendants of v_{i}
- $V_{P}(i)$: sum of labels of upward edge of v_{i+1} and edges in subtree
- Tamari \Leftrightarrow positive vertex label
- New \Leftrightarrow label of upward edge of v_{i+1} limited by label of v_{i+1}

Correspondence of statistics

- $\mathbf{c}_{00}(I)=\operatorname{lnode}(T, \ell): V_{Q}(i)=0 \Leftrightarrow$ leaf
- $\mathbf{c}_{11}(I)=\operatorname{pnode}(T, \ell): V_{P}(i) \neq 0 \Leftrightarrow$ non-zero label on edge
- $\mathbf{c}_{01}(I)=\operatorname{znode}(T, \ell)$: computation with size
- $\operatorname{rcont}(I)=\operatorname{rlabel}(T, \ell):$ rising contacts not counted in ℓ_{Λ}

From trees to intervals: a coloring process

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $\left(\ell_{\Lambda}(e)+1\right)$-st black node. The last node visited is the certificate of v.

Certificate function c of $(T, \ell): c(u)=$ \#nodes whose certificate is u

From trees to intervals: a coloring process

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $\left(\ell_{\Lambda}(e)+1\right)$-st black node. The last node visited is the certificate of v.

Certificate function c of $(T, \ell): c(u)=$ \#nodes whose certificate is u

From trees to intervals: a coloring process

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $\left(\ell_{\Lambda}(e)+1\right)$-st black node. The last node visited is the certificate of v.

Certificate function c of $(T, \ell): c(u)=$ \#nodes whose certificate is u

From trees to intervals: a coloring process

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $\left(\ell_{\Lambda}(e)+1\right)$-st black node. The last node visited is the certificate of v.

Certificate function c of $(T, \ell): c(u)=$ \#nodes whose certificate is u

From trees to intervals: a coloring process

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $\left(\ell_{\Lambda}(e)+1\right)$-st black node. The last node visited is the certificate of v.

Certificate function c of $(T, \ell): c(u)=$ \#nodes whose certificate is u

From trees to intervals: a coloring process

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $\left(\ell_{\Lambda}(e)+1\right)$-st black node. The last node visited is the certificate of v.

Certificate function c of $(T, \ell): c(u)=$ \#nodes whose certificate is u

From trees to intervals: a coloring process

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $\left(\ell_{\Lambda}(e)+1\right)$-st black node. The last node visited is the certificate of v.

Certificate function c of $(T, \ell): c(u)=$ \#nodes whose certificate is u

From trees to intervals: a coloring process

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $\left(\ell_{\Lambda}(e)+1\right)$-st black node. The last node visited is the certificate of v.

Certificate function c of $(T, \ell): c(u)=$ \#nodes whose certificate is u

From trees to intervals: a coloring process

The certificate of a node in (T, ℓ) is defined by a coloring process (reversed prefix order):

- All nodes are black from the start;
- v a leaf \Rightarrow the certificate of v is v itself;
- v not a leaf, with e its leftmost edge \Rightarrow color nodes after v in prefix order in red, stop up to the $\left(\ell_{\Lambda}(e)+1\right)$-st black node. The last node visited is the certificate of v.

Certificate function c of $(T, \ell): c(u)=$ \#nodes whose certificate is u

From trees to intervals: certificate function

Certificate function c of $(T, \ell): c(u)=\#$ nodes whose certificate is u From (T, ℓ) to $I=[P, Q]$:

- P : concatenation of $u d^{c(v)}$ for all v in prefix order;
- Q : $u Q^{\prime} d$ with Q^{\prime} obtained from the contour walk of T.

function c

Recapitulation

Chapoton's new intervals of size $n+1$

$$
\begin{aligned}
\mathbf{c}_{0,0}(I) & =\operatorname{lnode}(T, \ell)=\operatorname{white}(M) \\
\mathbf{c}_{0,1}(I) & =\operatorname{znode}(T, \ell)=\operatorname{black}(M) \\
\mathbf{c}_{1,1}(I) & =\operatorname{pnode}(T, \ell)=\operatorname{face}(M)-1 \\
\operatorname{rcont}(I) & =\operatorname{rlabel}(T, \ell)+1=\operatorname{outdeg}(M)+1
\end{aligned}
$$

Degree trees with n edges

Bipartite planar maps with n edges

What is really happening

Recursive decomposition of the two families of objects (Chapoton and Fusy, unpublished):

Degree tree is in fact the decomposition tree.
The bijections are all canonical w.r.t. these decompositions.

Work in progress (?)

- \mathbb{S}_{3} symmetry for bipartite maps, how about new intervals?
- At least one explained: white \leftrightarrow face \Leftrightarrow duality of intervals
- Relation with $\beta(0,1)$-trees ? And other objects ?
- Recent new direct bijection between degree trees and linear planar 3-connected λ-terms (arXiv:2202.03542)
- Tamari intervals decompose into new intervals. How about maps ?

Work in progress (?)

- \mathbb{S}_{3} symmetry for bipartite maps, how about new intervals?
- At least one explained: white \leftrightarrow face \Leftrightarrow duality of intervals
- Relation with $\beta(0,1)$-trees ? And other objects ?
- Recent new direct bijection between degree trees and linear planar 3-connected λ-terms (arXiv:2202.03542)
- Tamari intervals decompose into new intervals. How about maps ?

Thank you for listening!

