Bijective link between Chapoton's new intervals and bipartite planar maps

bipartite planar maps with n edges

degree trees with n edges

Chapoton's new interval of length $2 n+2$

Wenjie Fang, LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

Introduction

In Sur le nombre d'intervalles dans les treillis de Tamari (Sém. Lothar. Combin., B55f, 2006), Chapoton defined new intervals in the Tamari lattice, and gave the following counting formula:

$$
\frac{3 \cdot 2^{n-2}(2 n-2)!}{(n-1)!(n+1)!}
$$

which also counts the number of bipartite planar maps with $n-1$ edges. See also OEIS A000257.
Chapoton and Fusy (unpublished) found a symmetry in three statistics on new intervals. They are equi-distributed as the number of black vertices, white vertices and faces in bipartite planar maps, three statistics well-known to be symmetric.

We found a bijection that naturally shows such correspondence, and also some further ones.

Chapoton's new intervals

As pairs of binary trees, some Tamari intervals are "compositions" of smaller Tamari intervals:

Tamari intervals without such "composition" are called new intervals.

Bijective link between Chapoton's new intervals and bipartite planar maps

bipartite planar maps with n edges

degree trees with n edges

Chapoton's new interval of length $2 n+2$

Chapoton's new intervals (Dyck path version)

Bracket vector V_{P} of a Dyck path P :
$V_{P}(i)=$ half-distance of the i-th up-step to its matching down-step
$P \leq Q$ in the Tamari lattice $\Leftrightarrow V_{P} \leq V_{Q}$ componentwise
A Tamari interval $[P, Q]$ is a new interval if
(i) $V_{Q}(1)=n$;
(ii) For all $1 \leq i \leq n$, if $V_{Q}(i)>0$, then $V_{P}(i) \leq V_{Q}(i+1)$.

Three statistics for an interval $I=[P, Q]$:

$$
c_{0,0}(I)=\#\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad c_{0,1}(I)=\#\left[\begin{array}{c}
0 \\
\neq 0
\end{array}\right], \quad c_{1,1}(I)=\#\left[\begin{array}{l}
\neq 0 \\
\neq 0
\end{array}\right]
$$

Symmetry between $c_{0,0}(I), c_{0,1}(I), 1+c_{1,1}(I)$ when summing over all new intervals of size n

Example

$$
\begin{aligned}
& V_{P}=9,4,0,2,0,0,0,2,0,0,0,0,0,0,0,0 \\
& V_{Q}=15,12,9,3,2,0,0,4,3,2,0,0,0,0,1,0
\end{aligned}
$$

$$
\begin{aligned}
& c_{0,0}(I)=7 \\
& c_{0,1}(I)=5 \\
& c_{1,1}(I)=4
\end{aligned}
$$

Bijective link between Chapoton's new intervals and bipartite planar maps

bipartite planar maps with n edges

degree trees with n edges

Chapoton's new interval of length $2 n+2$

Bipartite planar maps

Drawings of bipartite graphs on the plane, rooted by choosing a corner on the outer face
Three statistics: black, white, face, symmetric on the set of bipartite maps with n edges

Degree trees

A degree tree is a pair (T, ℓ), with

- T : a rooted plane tree,
- ℓ : a labeling on nodes of T,
such that for any node v in T,
- v is a leaf $\Rightarrow \ell(v)=0$;
- v not a leaf, with children $v_{1}, v_{2}, \ldots, v_{k}$

$\Rightarrow \ell(v)=k-a+\sum_{i} \ell\left(v_{i}\right)$ for some $0 \leq a \leq \ell\left(v_{1}\right)$.
Edge labeling ℓ_{Λ} of (T, ℓ) : on the first descending edge of every node v, with value a used to obtain $\ell(v)$. Clear bijection $\ell \Leftrightarrow \ell_{\Lambda}$

Three statistics:

- Inode(T, ℓ): \#leaves,
- znode (T, ℓ) : \#nodes with $\ell_{\Lambda}(e)=0$ for its first down edge e,
- pnode (T, ℓ) : \#nodes with $\ell_{\Lambda}(e) \neq 0$ for its first down edge e.

Edge labeling ℓ_{Λ} of (T, ℓ)

Bijective link between Chapoton's new intervals and bipartite planar maps

Wenjie Fang, LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

bipartite planar maps with n edges

degree trees with n edges

Chapoton's new interval of length $2 n+2$

From maps to trees: an exploration

Depth-first exploration of edges, clockwise, starting from the root corner
Turning edges in M into edges in (T, ℓ). Walking only on black vertices, except for leaves.

(A2)

Statistics correspondence

$$
\operatorname{white}(M)=\operatorname{lnode}(T, \ell), \quad \operatorname{black}(M)=\operatorname{znode}(T, \ell), \quad \text { face }(M)=1+\operatorname{pnode}(T, \ell)
$$

Bijective link between Chapoton's new intervals and bipartite planar maps

Wenjie Fang, LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

bipartite planar maps with n edges

degree trees with n edges

Chapoton's new interval of length $2 n+2$

From trees to maps: an exploration

Depth-first exploration of edges, counter-clockwise, starting from the root
Turning edges in (T, ℓ) int edges in M. Walking only on black vertices, except for leaves

Bijective link between Chapoton's new intervals and bipartite planar maps

bipartite planar maps with n edges

degree trees with n edges

Chapoton's new interval of length $2 n+2$

From trees to intervals

The certificates of nodes in (T, ℓ) is defined by a coloring process (reverse preorder):

- Initially all nodes are black;
- v a leaf \Rightarrow the certificate of v is v
- v not a leaf, e its first down edge \Rightarrow visit nodes after v in preorder, color visited nodes red, stop just before $\left(\ell_{\Lambda}(e)+1\right)$-st black node. The certificate of v is the last visited node.

Certificate function c of $(T, \ell): c(u)=$ \#nodes with u as certificate
From (T, ℓ) to $I=[P, Q]$:

- P : concatenation of $u d^{c(v)}$ for v in preorder;
- $Q: u Q^{\prime} d$ with Q^{\prime} from contour walk.

Bijective link between Chapoton's new intervals and bipartite planar maps

bipartite planar maps with n edges

degree trees with n edges

Chapoton's new interval of length $2 n+2$

From intervals to trees

From $I=[P, Q]$ to (T, ℓ) (or $\left(T, \ell_{\Lambda}\right)$):

- T : from $Q=u Q^{\prime} d$;
- ℓ_{Λ} : from rising contacts of subpath between matching steps.

Statistics correspondence

$$
c_{0,0}(I)=\operatorname{lnode}(T, \ell), \quad c_{0,1}(I)=\operatorname{znode}(T, \ell), \quad c_{1,1}(I)=\operatorname{pnode}(T, \ell) .
$$

For $M \longleftrightarrow(T, \ell) \longleftrightarrow I$:

$$
c_{0,0}(I)=\operatorname{white}(M), \quad c_{0,1}(I)=\operatorname{black}(M), \quad c_{1,1}(I)+1=\operatorname{face}(M) .
$$

Symmetries and structures

- "Derecursivified" version of recursive decompositions known to Chapoton and Fusy;
- Bijective explanation of the S_{3} symmetry.

