

bipartite planar maps with n edges

degree trees with n edges

Chapoton's new interval of length 2n+2

Wenjie Fang, LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

Introduction

In *Sur le nombre d'intervalles dans les treillis de Tamari (Sém. Lothar. Combin.*, B55f, 2006), Chapoton defined new intervals in the Tamari lattice, and gave the following counting formula:

which also counts the number of bipartite planar maps with n-1 edges. See also OEIS A000257.

Chapoton and Fusy (unpublished) found a symmetry in three statistics on new intervals. They are equi-distributed as the number of black vertices, white vertices and faces in bipartite planar maps, three statistics well-known to be symmetric.

We found a bijection that naturally shows such correspondence, and also some further ones.

Chapoton's new intervals

As pairs of binary trees, some Tamari intervals are "compositions" of smaller Tamari intervals:

Tamari intervals without such "composition" are called new intervals.

$$\frac{3 \cdot 2^{n-2}(2n-2)!}{(n-1)!(n+1)!},$$

bipartite planar maps with n edges

Chapoton's new interval of length 2n+2

Chapoton's new intervals (Dyck path version)

Bracket vector V_P of a Dyck path P: $V_P(i) =$ half-distance of the *i*-th up-step to its matching down-step

 $P \leq Q$ in the Tamari lattice $\Leftrightarrow V_P \leq V_Q$ componentwise

A Tamari interval [P, Q] is a **new interval** if

- (i) $V_Q(1) = n$;
- (ii) For all $1 \leq i \leq n$, if $V_O(i) > 0$, t

Three statistics for an interval I = [P,

$$c_{0,0}(I) = \# \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad c_{0,1}(I) = \# \begin{bmatrix} 0 \\ \neq 0 \end{bmatrix}, \quad c_{1,1}(I) = \# \begin{bmatrix} \neq 0 \\ \neq 0 \end{bmatrix}$$

Symmetry between $c_{0,0}(I), c_{0,1}(I), 1 + c_{1,1}(I)$ when summing over all new intervals of size n

Wenjie Fang, LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

then
$$V_P(i) \le V_Q(i+1)$$
.
 Q]:

bipartite planar maps with n edges

degree trees with n edges

Wenjie Fang, LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

Bipartite planar maps

Drawings of bipartite graphs on the plane, rooted by choosing a corner on the outer face Three statistics: black, white, face, symmetric on the set of bipartite maps with n edges

Degree trees

A degree tree is a pair (T, ℓ) , with

- T: a rooted plane tree,
- ℓ : a labeling on nodes of T,

such that for any node v in T,

- v is a leaf $\Rightarrow \ell(v) = 0$;
- v not a leaf, with children v_1, v_2, \ldots, v_k $\Rightarrow \ell(v) = k - a + \sum_{i} \ell(v_i)$ for some $0 \le a \le \ell(v_1)$.

Edge labeling ℓ_{Λ} of (T, ℓ) : on the first descending edge of every node v, with value a used to obtain $\ell(v)$. Clear bijection $\ell \Leftrightarrow \ell_{\Lambda}$

Three statistics:

- Inode (T, ℓ) : #leaves,
- $\operatorname{znode}(T, \ell)$: #nodes with $\ell_{\Lambda}(e) = 0$ for its first down edge e, • pnode (T, ℓ) : #nodes with $\ell_{\Lambda}(e) \neq 0$ for its first down edge e.

bipartite planar maps with n edges

From maps to trees: an exploration

Depth-first exploration of edges, clockwise, starting from the root corner

Turning edges in M into edges in (T, ℓ) . Walking only on black vertices, except for leaves.

Statistics correspondence

white $(M) = \text{lnode}(T, \ell)$, $\text{black}(M) = \text{znode}(T, \ell)$, $\text{face}(M) = 1 + \text{pnode}(T, \ell)$.

Wenjie Fang, LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

bipartite planar maps with n edges

From trees to maps: an exploration

Depth-first exploration of edges, counter-clockwise, starting from the root

Turning edges in (T, ℓ) int edges in M. Walking only on black vertices, except for leaves

Wenjie Fang, LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

bipartite planar maps with n edges

Chapoton's new interval of length 2n+2

From trees to intervals

The certificates of nodes in (T, ℓ) is defined by a coloring process (reverse preorder):

- Initially all nodes are black;
- v a leaf \Rightarrow the certificate of v is v

Certificate function c of (T, ℓ) : c(u) = #nodes with u as certificate

From (T, ℓ) to I = [P, Q]:

- P: concatenation of $ud^{c(v)}$ for v in preorder;
- Q: uQ'd with Q' from contour walk.

Wenjie Fang, LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

• v not a leaf, e its first down edge \Rightarrow visit nodes after v in preorder, color visited nodes red, stop just before $(\ell_{\Lambda}(e) + 1)$ -st black node. The certificate of v is the last visited node.

bipartite planar maps with n edges

From intervals to trees

From I = [P, Q] to (T, ℓ) (or (T, ℓ_{Λ})):

- T: from Q = uQ'd;
- ℓ_{Λ} : from rising contacts of subpath between matching steps.

Statistics correspondence

$$c_{0,0}(I) = \text{lnode}(T, \ell), \quad c_0$$

For $M \longleftrightarrow (T, \ell) \longleftrightarrow I$:

$$c_{0,0}(I) = \text{white}(M), \quad c_0$$

Symmetries and structures

- Bijective explanation of the S_3 symmetry.

Wenjie Fang, LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

 $c_{1,1}(I) = \text{znode}(T, \ell), \quad c_{1,1}(I) = \text{pnode}(T, \ell).$

 $c_{0,1}(I) = \text{black}(M), \quad c_{1,1}(I) + 1 = \text{face}(M).$

• "Derecursivified" version of recursive decompositions known to Chapoton and Fusy;