Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	0000000000	0

Asymptotics of banded plane partitions: from $\exp(n^{1/2})$ to $\exp(n^{2/3})$

Wenjie Fang Joint work with Hsien-Kwei Hwang and Mihyun Kang

Workshop of Analytic and Enumerative Aspects of Combinatorics, University of Caen

Introduction	Analytic tools	Phase transition	Conclusion
● 0 0000000	00000000	0000000000	0
Partitions			

Partition: squares tightly piled up on a corner,

Or: eventually zero decreasing sequence $\lambda = (\lambda_1, \lambda_2, ...)$, Size $= \sum_i \lambda_i$.

Generating function (Euler):

$$P(z) = \sum_{p \text{ partition}} z^{|p|} = \prod_{k \ge 1} \frac{1}{1 - z^k}$$

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	00000000000	0

Asymptotics of partitions

p(n) = #(partitions of size n).

Enumeration: Hardy-Ramanujan (1918):

$$p_n \sim \frac{1}{4 \cdot 3^{1/2} \cdot n} \exp\left(\frac{2^{1/2}\pi}{3^{1/2}} n^{1/2}\right).$$

Exact convergent series given by Rademacher (1937). Explained in detail in *Analytic Combinatorics*. Limit shape: Vershik (1996)

After a rescaling of $n^{1/2}, \, {\rm the} \, \, {\rm boundary} \, \, {\rm becomes}$

$$\exp\left(-\frac{x}{6^{1/2}\pi}\right) + \exp\left(-\frac{y}{6^{1/2}\pi}\right) = 1.$$

Typical length: $\Theta(n^{1/2}\log n)$.

Introduction	Analytic tools	Phase transition	Conclusion
000000000	0000000	0000000000	0

Plane partitions

Plane partition: boxes tightly piled up on corner, Or: filling of \mathbb{N}^2 , decreasing upwards and rightwards, eventually zero. Size = sum of fillings.

Generating function (MacMahon):

$$PP(z) = \sum_{p \text{ plane partition}} z^{|p|} = \prod_{k \ge 1} \left(\frac{1}{1 - z^k} \right)^k$$

•

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	00000000000	0
• •	c		

Asymptotics of unrestricted plane partitions

pp(n) = #(plane partitions of size n).

Asymptotic enumeration: Wright (1931), Mutafchiev and Kamenov (2006)

$$pp_n \sim \frac{\zeta(3)^{7/36} e^{-\zeta'(-1)}}{2^{11/36}\sqrt{3\pi}} n^{-25/36} \exp\left(\frac{3\zeta(3)^{1/3}}{2^{2/3}} n^{2/3}\right).$$

Maximal: Pittel (2005)

Height, width and depth of a uniformly random plane partition of size n:

$$\frac{n^{1/3}}{2^{1/3}\zeta(3)^{1/3}}\left(\frac{2}{3}\log\frac{n}{2\zeta(3)}-d\right),\,$$

where d (iid for all three quantities) follows the Gumbel distribution $\mathbb{P}[d>x]=e^{-e^{-x}}.$

Typical length: $\Theta(n^{1/3} \log n)$, also from Mutafchiev (2018)

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	0000000000	0
A phase tran	sition?		

Partitions = plane partitions of width ≤ 1 , type $\exp(c \cdot n^{1/2})$ Plane partitions of width $\leq \infty$, type $\exp(c \cdot n^{3/2})$ Question: How the asymptotic changes if width varies with size? Maybe on nice variants of plane partitions with a natural notion of width

Dandad plan			
00000000	0000000	0000000000	0
Introduction	Analytic tools	Phase transition	Conclusion

Banded plane partitions

Banded plane partitions: a special case of *skew double shifted plane partition*, defined by Han and Xiong (2017).

Other than size n, it has width m.

- $m = 1 \Rightarrow$ partition, type $\exp(c \cdot n^{1/2})$
- $m \ge n \Rightarrow$ column-strict plane partition, type $\exp(c \cdot n^{2/3})$

Introduction	Analytic tools	Phase transition	Conclusion
00000000000	0000000	00000000000	0
14/1			

What is known

 $B_{n,m} = \#$ banded partitions of size n and width m. Han and Xiong (2017):

Generating function for width m:

$$B_m(z) = \sum_{n \ge 0} B_{n,m} z^n = \prod_{k \ge 1} \frac{1}{1 - z^k} \prod_{\substack{k \ge 0\\1 \le h < j \le m-1}} \frac{1}{1 - z^{2mk+h+j}}.$$

Asymptotic: For fixed constant m,

$$B_{n,m} \sim D(m) n^{-1} \exp\left(\pi \left(\frac{m^2 + m + 2}{6m}\right)^{1/2} n^{1/2}\right),$$

where D(m) is a constant depending on m:

$$D(m) = \left(\prod_{i=1}^{m-2} \prod_{j=i+1}^{m-i-1} \sin \frac{i+j}{2m} \pi\right)^{-1} \frac{(m^2+m+2)^{1/2}}{2^{(m^2-3m+14)/4} 3^{1/2} m^{1/2}}.$$

Introduction	Analytic tools	Phase transition	Conclusion
000000000	0000000	0000000000	0
Our result			

Theorem (F., Hwang, Kang (2019+))

Suppose that m = m(n).

• (Subcritical) If $m = o(n^{1/3}(\log n)^{-2/3})$, then

$$\log B_{n,m} \sim c_1 (nm)^{1/2} + (1 + o(1))c_2 m^2.$$

• (Critical) For $m = xn^{1/3}$ with $x = \omega(n^{-d})$ for any d > 0,

$$\log B_{n,m} \sim c_3(x)n^{2/3} + (1+o(1))c_4(x)n^{1/3}$$

with $c_3(x), c_4(x)$ are continuous with the asymptotics: • $x \to 0: c_3(x) = c_1 x^{1/2} + \Theta(x^2), c_4(x) = \Theta(x^{-1/2}).$ • $x \to \infty: c_3(x) \to c_5, c_4(x) \to c_6.$

• (Supercritical) If $m = \omega(n^{1/3}\log n)$, then

$$\log B_{n,m} \sim c_5 n^{2/3} + (1 + o(1))c_6 n^{1/3}.$$

All constants are explicit.

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	00000000000	0
In a graph			

In the window:

- Subcritical end: subdominant term changes behavior
- Supercritical end: full saturation

Precise behavior is computed in the window.

Introduction	Analytic tools	Phase transition	Conclusion
00000000	● O OOOOOO	00000000000	0

Partition as a toy example

Generating function for partitions:

$$P(z) = \prod_{k \ge 1} \frac{1}{1 - z^k}.$$

Essential singularities dense on |z| = 1, no singularity analysis!

Saddle point method: Cauchy integral formula on the circle $\vert z \vert = e^{-r}$ with r>0

Change of variable: $p(z) = \log P(z) \text{, } z = e^{-\tau}$

$$p_n = [z^n]P(z) = \frac{1}{2\pi i} \int_{r-i\pi}^{r+i\pi} \exp(n\tau + p(e^{-\tau})) d\tau.$$

Saddle point equation: $n+e^{-r}p'(e^{-r})=0 \Rightarrow r \to 0$

Aim: Behavior of $p(e^{-\tau})$ for $\tau=r+i\theta$ when $r\to 0$

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	0000000000	0
A simple rel	ation		

When $r \to 0,$ the function $p(e^{-\tau})$ gets close to essential singularities. Tricky!

Miraculously we have

$$p(e^{-\tau}) = \frac{\pi^2}{6\tau} + \frac{1}{2}\log\frac{\tau}{2\pi} - \frac{\tau}{24} + p(e^{-4\pi^2\tau^{-1}}).$$

Related to the modularity of the Dedekind eta function.

But can be seen by Mellin transform.

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	0000000000	0
Mellin trans	form		

For analytic function h, its Mellin transform is given by

$$h^*(s) = \mathcal{M}[h](s) = \int_0^{+\infty} h(\tau)\tau^{s-1}d\tau.$$

If $h(\tau) = O(\tau^u)$ for $\tau \to 0$, and $h(\tau) = O(\tau^v)$ for $\tau \to \infty$, then $\mathcal{M}[h](s)$ is defined on the fundamental strip $-u < \operatorname{Re}(s) < -v$.

Transforming asymptotic behavior to singularities!

The inverse is given by

$$h(\tau) = \mathcal{M}^{-1}[h^*](\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} h^*(s) \tau^{-s} ds.$$

Here, -u < c < -v, that is, we integrate in the fundamental strip.

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	0000000000	0

Why is Mellin transform nice?

$$h^*(s) = \mathcal{M}[h](s) = \int_0^{+\infty} h(\tau)\tau^{s-1}d\tau.$$

- Reading asymptotic behavior off singularities
- Linearity
- Rescaling rule: for $h_k(\tau) = h(k\tau)$, we have

$$\mathcal{M}[h_k](s) = k^{-s} \mathcal{M}[h](s).$$

Nice for so-called harmonic sums, i.e. sums of the form

$$g(\tau) = \sum_{k \ge 1} \alpha_k h(k\tau).$$

Its Mellin transform is simply

$$\mathcal{M}[g](s) = \sum_{k \ge 1} \alpha_k k^{-s} \mathcal{M}[h](s).$$

 $\alpha_k = 1 \Rightarrow$ Riemann zeta function

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	00000000000	0
_			

Partitions as a harmonic sum

Let
$$h(\tau) = \log(1-e^{-\tau}),$$
 then

$$p(e^{-\tau}) = -\sum_{k\geq 1} \log(1 - e^{-k\tau}) = -\sum_{k\geq 1} h(k\tau).$$

A harmonic sum!

The Mellin transform of h is (Hint: expand by $e^{-\tau}$)

$$\mathcal{M}[h](s) = -\Gamma(s)\zeta(s+1).$$

The Mellin transform of $p(e^{-\tau})$ is thus

$$K(s) = -\sum_{k\geq 1} k^{-s} \mathcal{M}[h](s) = \zeta(s)\Gamma(s)\zeta(s+1),$$

with the fundamental strip $\operatorname{Re}(s) > 1$. $\tau \to 0 \Rightarrow h(\tau) = \Theta(\tau^{-1})$

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	00000000000	0
	• •		

On the two sides

- Mellin transform of $p(e^{-\tau})$: $K(s) = \zeta(s)\Gamma(s)\zeta(s+1)$.
- Mellin transform of $p(e^{-4\pi^2\tau^{-1}})$: (reflection identities of $\zeta(s)$ and $\Gamma(s)$)

$$K_*(s) = (4\pi^2)^{-s} \zeta(-s) \Gamma(-s) \zeta(-s+1) = \zeta(s) \Gamma(s) \zeta(s+1) = K(s),$$

Same Mellin transform, different fundamental strip.

Mellin transform: $K(s) = \zeta(s)\Gamma(s)\zeta(s+1)$

Introduction	Analytic tools	Phase transition	Conclusion
00000000	00000000	0000000000	0
And the big	g miracle		

Inverse Mellin transform: integrate along a vertical line, with factor au^{-s}

Mellin transform: $K(s) = \zeta(s)\Gamma(s)\zeta(s+1)$

From one to the other: passing through singularities 1, 0, -1

$$p(e^{-\tau}) = \frac{\pi^2}{6\tau} + \frac{1}{2}\log\frac{\tau}{2\pi} - \frac{\tau}{24} + p(e^{-4\pi^2\tau^{-1}}).$$

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	0000000000	0
Why is it nice?			

$$p(e^{-\tau}) = \frac{\pi^2}{6\tau} + \frac{1}{2}\log\frac{\tau}{2\pi} - \frac{\tau}{24} + p(e^{-4\pi^2\tau^{-1}}).$$

For $\tau \to 0$, $p(e^{-4\pi^2\tau^{-1}}) \sim e^{-4\pi^2\tau^{-1}}$. So behavior is known!
 $p_n = [z^n]P(z) \approx \frac{1}{2\pi i} \int_{r-i\infty}^{r+i\infty} \exp\left(n\tau + \frac{\pi^2}{6\tau} + \frac{1}{2}\log\frac{\tau}{2\pi} - \frac{\tau}{24}\right) d\tau.$

Saddle point equation (approx): $n - (\pi^2/6)r^{-2} = 0 \Rightarrow r = 6^{-1/2}\pi n^{-1/2}$. The rest is classical. Note that considering only τ near r suffices.

00000000	0000000	00000 000000	0
Introduction	Analytic tools	Phase transition	Conclusion

The case of banded plane partitions

Generating function of banded plane partitions of width m:

$$B_m(z) = \prod_{k \ge 1} \prod_{j=1}^{2m-1} \left(\frac{1}{1 - z^{2mk+j}}\right)^{w(j)},$$

with
$$w(j) = \lfloor \frac{m-1-|m-j|}{2} \rfloor$$
.

Let $b_m(z) = \log B_m(z)$. We have

$$B_m(z) = \sum_{k \ge 1} \sum_{j=1}^{2m-1} w(j) \log\left(\frac{1}{1-z^{2mk+j}}\right).$$

For Mellin transform, not Riemann zeta, but Hurwitz zeta:

$$\zeta(s,\beta) = \sum_{k \ge 0} (k+\beta)^{-s}.$$

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	0000000000	0
A small miracle			

The integral E_0 involves Hurwitz zeta $\zeta(s,\beta)$, which still has a more complicated "reflection property".

With some computation, we can express E_0 , thus also $b_m(e^{-\tau}),$ in an exact form involving $p(e^{-\tau}).$

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	0000000000	0
An equality	for $b_m(e^{-\tau})$		

$$\begin{split} & b_m(e^{-\tau}) \\ &= -\frac{m^2 - 3m + 4}{4} \log(2\pi) + \sum_{1 \le j \le 2m-1} \left\lfloor \frac{m - 1 - |m - j|}{2} \right\rfloor \log \Gamma\left(\frac{j}{2m}\right) \\ &+ \frac{1}{2} p(e^{-\frac{4\pi^2}{m\tau}}) - \frac{1}{2} p(e^{-\frac{2\pi^2}{\tau}}) + \frac{m + 2}{4} p(e^{-\frac{4\pi^2}{\tau}}) \\ &+ \frac{1}{2} \log \tau + \left(\frac{m^3 - 7m^2 + 2}{96}\right) \tau + \frac{\pi^2(m^2 + m + 2)}{24m\tau} \\ &- \frac{1}{2m} \sum_{1 \le \ell < m} \frac{\cos \frac{(2\ell - 1)\pi}{n}}{1 - \cos \frac{(2\ell - 1)\pi}{m}} \sum_{k \ge 0} \frac{e^{-\left(k + \frac{2\ell - 1}{2m}\right)\frac{4\pi^2}{\tau}}}{\left(k + \frac{2\ell - 1}{2m}\right)\left(1 - e^{-(k + \frac{2\ell - 1}{2m})\frac{4\pi^2}{\tau}}\right)}. \end{split}$$

A small miracle to have an exact expression!

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	00000000000	0

Analysis term by term

Relatively easy to handle

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	00000000000	0

Analysis term by term

$$\begin{split} b_m(e^{-\tau}) &= -\frac{m^2 - 3m + 4}{4} \log(2\pi) + \sum_{1 \le j \le 2m - 1} \left\lfloor \frac{m - 1 - |m - j|}{2} \right\rfloor \log \Gamma\left(\frac{j}{2m}\right) \\ &+ \frac{1}{2} p(e^{-\frac{4\pi^2}{m\tau}}) - \frac{1}{2} p(e^{-\frac{2\pi^2}{\tau}}) + \frac{m + 2}{4} p(e^{-\frac{4\pi^2}{\tau}}) \\ &+ \frac{1}{2} \log \tau + \left(\frac{m^3 - 7m^2 + 2}{96}\right) \tau + \frac{\pi^2(m^2 + m + 2)}{24m\tau} \\ &- \frac{1}{2m} \sum_{1 \le \ell < m} \frac{\cos\frac{(2\ell - 1)\pi}{m}}{1 - \cos\frac{(2\ell - 1)\pi}{m}} \sum_{k \ge 0} \frac{e^{-\left(k + \frac{2\ell - 1}{2m}\right)\frac{4\pi^2}{\tau}}}{\left(k + \frac{2\ell - 1}{2m}\right)\left(1 - e^{-(k + \frac{2\ell - 1}{2m})\frac{4\pi^2}{\tau}}\right)}. \end{split}$$

Negligible when $n \to \infty$, where $\tau \to 0$

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	00000000000	0

Analysis term by term

$$\begin{split} b_m(e^{-\tau}) &= -\frac{m^2 - 3m + 4}{4} \log(2\pi) + \sum_{1 \le j \le 2m-1} \left\lfloor \frac{m - 1 - |m - j|}{2} \right\rfloor \log \Gamma\left(\frac{j}{2m}\right) \\ &+ \frac{1}{2} p(e^{-\frac{4\pi^2}{m\tau}}) - \frac{1}{2} p(e^{-\frac{2\pi^2}{\tau}}) + \frac{m + 2}{4} p(e^{-\frac{4\pi^2}{\tau}}) \\ &+ \frac{1}{2} \log \tau + \left(\frac{m^3 - 7m^2 + 2}{96}\right) \tau + \frac{\pi^2(m^2 + m + 2)}{24m\tau} \\ &- \frac{1}{2m} \sum_{1 \le \ell < m} \frac{\cos\frac{(2\ell - 1)\pi}{m}}{1 - \cos\frac{(2\ell - 1)\pi}{m}} \sum_{k \ge 0} \frac{e^{-\left(k + \frac{2\ell - 1}{2m}\right)\frac{4\pi^2}{\tau}}}{\left(k + \frac{2\ell - 1}{2m}\right)\left(1 - e^{-(k + \frac{2\ell - 1}{2m})\frac{4\pi^2}{\tau}}\right)}. \end{split}$$

Depending on m, since it changes the saddle point r, thus behavior of $m\tau$

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	00000000000	0
Subcritical phase			
In this phase, $m=$	$o(n^{1/3}(\log n)^{-2/3})$, mal	king $mr \to 0$.	

$$\begin{split} b_m(e^{-\tau}) &= -\frac{m^2 - 3m + 4}{4} \log(2\pi) + \sum_{1 \le j \le 2m - 1} \left\lfloor \frac{m - 1 - |m - j|}{2} \right\rfloor \log \Gamma\left(\frac{j}{2m}\right) \\ &+ \frac{1}{2} p(e^{-\frac{4\pi^2}{m\tau}}) - \frac{1}{2} p(e^{-\frac{2\pi^2}{\tau}}) + \frac{m + 2}{4} p(e^{-\frac{4\pi^2}{\tau}}) \\ &+ \frac{1}{2} \log \tau + \left(\frac{m^3 - 7m^2 + 2}{96}\right) \tau + \frac{\pi^2(m^2 + m + 2)}{24m\tau} \\ &- \frac{1}{2m} \sum_{1 \le \ell < m} \frac{\cos \frac{(2\ell - 1)\pi}{m}}{1 - \cos \frac{(2\ell - 1)\pi}{m}} \sum_{k \ge 0} \frac{e^{-\left(k + \frac{2\ell - 1}{2m}\right)\frac{4\pi^2}{\tau}}}{\left(k + \frac{2\ell - 1}{2m}\right)\left(1 - e^{-\left(k + \frac{2\ell - 1}{2m}\right)\frac{4\pi^2}{\tau}}\right)}. \end{split}$$

Saddle point $r \approx \sqrt{\frac{\pi^2(m^2 + m + 2)}{24m\pi}}$, with value $\approx \frac{\pi^2(m^2 + m + 2)n}{6m} \approx \frac{\pi^2}{6}mn$

We can also get lower order terms.

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	000000000000	0
с <u>ч</u>			

Supercritical phase

In this phase, $m = \omega(n^{1/3}\log n)$, making $mr \to \infty$.

$$\begin{split} b_m(e^{-\tau}) &= -\frac{m^2 - 3m + 4}{4} \log(2\pi) + \sum_{1 \le j \le 2m - 1} \left\lfloor \frac{m - 1 - |m - j|}{2} \right\rfloor \log \Gamma\left(\frac{j}{2m}\right) \\ &+ \frac{1}{2} p(e^{-\frac{4\pi^2}{m\tau}}) - \frac{1}{2} p(e^{-\frac{2\pi^2}{\tau}}) + \frac{m + 2}{4} p(e^{-\frac{4\pi^2}{\tau}}) \\ &+ \frac{1}{2} \log \tau + \left(\frac{m^3 - 7m^2 + 2}{96}\right) \tau + \frac{\pi^2(m^2 + m + 2)}{24m\tau} \\ &- \frac{1}{2m} \sum_{1 \le \ell < m} \frac{\cos\frac{(2\ell - 1)\pi}{m}}{1 - \cos\frac{(2\ell - 1)\pi}{m}} \sum_{k \ge 0} \frac{e^{-\left(k + \frac{2\ell - 1}{2m}\right)\frac{4\pi^2}{\tau}}}{\left(k + \frac{2\ell - 1}{2m}\right)\left(1 - e^{-\left(k + \frac{2\ell - 1}{2m}\right)\frac{4\pi^2}{\tau}}\right)}. \end{split}$$

Problematic term: double sum for $mr \to \infty$

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	0000000000000	0

Dealing with the double sum

$$\begin{aligned} \mathsf{Idea:} \ & \frac{\cos x}{1-\cos x} = 2x^{-2} + 5/6 + O(x^2) \\ & \frac{1}{2m} \sum_{1 \le \ell < m} \frac{\cos \frac{(2\ell-1)\pi}{m}}{1-\cos \frac{(2\ell-1)\pi}{m}} \sum_{k \ge 0} \frac{e^{-\left(k + \frac{2\ell-1}{2m}\right)\frac{4\pi^2}{\tau}}}{\left(k + \frac{2\ell-1}{2m}\right)\left(1 - e^{-\left(k + \frac{2\ell-1}{2m}\right)\frac{4\pi^2}{\tau}}\right)} \\ & \approx \frac{1}{2m} \sum_{1 \le \ell < m} \left(\frac{2m^2}{(2\ell-1)^2\pi^2} + \frac{5}{6} + O(\ell^2m^{-2})\right) \cdot \frac{e^{-\frac{2\pi^2(2\ell-1)}{m\tau}}}{\frac{2\ell-1}{2m}\left(1 - e^{-\frac{2\pi^2(2\ell-1)}{m\tau}}\right)} \\ &= m^2\varphi_1(m\tau) + \varphi_2(m\tau) + O(m^{-2}\varphi_3(m\tau)) \end{aligned}$$

All φ_i can be expressed as an integral involving $\Gamma(s),\zeta(s),$ thus can be estimated at $mr\to\infty$

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	000000000000000000000000000000000000000	0
c			

Supercritical phase (cont'd)

We plug in the estimates of red terms

$$\begin{split} b_m(e^{-\tau}) \\ &= -\frac{m^2 - 3m + 4}{4} \log(2\pi) + \sum_{1 \le j \le 2m - 1} \left\lfloor \frac{m - 1 - |m - j|}{2} \right\rfloor \log \Gamma\left(\frac{j}{2m}\right) \\ &+ \frac{1}{2} \log \tau + \left(\frac{m^3 - 7m^2 + 2}{96}\right) \tau + \frac{\pi^2(m^2 + m + 2)}{24m\tau} \\ &+ \frac{\zeta(3)}{2\tau^2} + \frac{7\zeta(3)m^2}{8\pi^2} - \left(\frac{m^3 - 7m}{96}\right) \tau - \frac{\pi^2(m^2 + 2)}{24m\tau} - \frac{11}{24} \log \frac{m\tau}{\pi} + \frac{1}{24} \log 2 \\ &+ o(1). \end{split}$$

A lot of terms cancels out!

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	000000000000000000000000000000000000000	0
Supercritical	phase (cont'd)		

After some computation...

$$b_m(e^{-\tau}) = \frac{\tau}{48} + \frac{\pi^2}{24\tau} + \frac{\zeta(3)}{2\tau^2} + \frac{1}{24}\log\tau + \frac{1}{2}\zeta'(-1) - \frac{1}{4}\log 2 + o(1).$$

A lot of terms cancels out, and no dependency on m!

This indicates a saturation.

Saddle point $r \approx \zeta(3)^{1/3} n^{-1/3}$, with value $\frac{3}{2} \zeta(3)^{1/3} n^{2/3}$

Final result agrees with that of column strict plane partitions, which are in bijection.

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	0000000000	0
Critical phase			

Key: the double sum, expressed in $\varphi_1, \varphi_2, \varphi_3$.

More complicated computations, but doable saddle point analysis The transition is smooth.

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	00000000000	•
Conclusion			

- Unexpected nice(?) exact formula unrelated to modularity
- Detailed analysis of phase transition in plane partition variant
- Ongoing: other models

Introduction	Analytic tools	Phase transition	Conclusion
00000000	0000000	00000000000	•
Conclusion			

- Unexpected nice(?) exact formula unrelated to modularity
- Detailed analysis of phase transition in plane partition variant
- Ongoing: other models

Thank you!