Asymptotics of banded plane partitions: from $\exp \left(n^{1 / 2}\right)$ to $\exp \left(n^{2 / 3}\right)$

Wenjie Fang

Joint work with Hsien-Kwei Hwang and Mihyun Kang

Workshop of Analytic and Enumerative Aspects of Combinatorics, University of Caen

Partitions

Partition: squares tightly piled up on a corner, Or: eventually zero decreasing sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, Size $=\sum_{i} \lambda_{i}$.

Generating function (Euler):

$$
P(z)=\sum_{p \text { partition }} z^{|p|}=\prod_{k \geq 1} \frac{1}{1-z^{k}}
$$

Asymptotics of partitions

$p(n)=\#($ partitions of size $n)$.
Enumeration: Hardy-Ramanujan (1918):

$$
p_{n} \sim \frac{1}{4 \cdot 3^{1 / 2} \cdot n} \exp \left(\frac{2^{1 / 2} \pi}{3^{1 / 2}} n^{1 / 2}\right) .
$$

Exact convergent series given by Rademacher (1937).
Explained in detail in Analytic Combinatorics.
Limit shape: Vershik (1996)
After a rescaling of $n^{1 / 2}$, the boundary becomes

$$
\exp \left(-\frac{x}{6^{1 / 2} \pi}\right)+\exp \left(-\frac{y}{6^{1 / 2} \pi}\right)=1
$$

Typical length: $\Theta\left(n^{1 / 2} \log n\right)$.

Plane partitions

Plane partition: boxes tightly piled up on corner, Or: filling of \mathbb{N}^{2}, decreasing upwards and rightwards, eventually zero. Size $=$ sum of fillings.

Generating function (MacMahon):

$$
P P(z)=\sum_{p \text { plane partition }} z^{|p|}=\prod_{k \geq 1}\left(\frac{1}{1-z^{k}}\right)^{k}
$$

Asymptotics of unrestricted plane partitions

$p p(n)=\#($ plane partitions of size $n)$.
Asymptotic enumeration: Wright (1931), Mutafchiev and Kamenov (2006)

$$
p p_{n} \sim \frac{\zeta(3)^{7 / 36} e^{-\zeta^{\prime}(-1)}}{2^{11 / 36} \sqrt{3 \pi}} n^{-25 / 36} \exp \left(\frac{3 \zeta(3)^{1 / 3}}{2^{2 / 3}} n^{2 / 3}\right)
$$

Maximal: Pittel (2005)
Height, width and depth of a uniformly random plane partition of size n :

$$
\frac{n^{1 / 3}}{2^{1 / 3} \zeta(3)^{1 / 3}}\left(\frac{2}{3} \log \frac{n}{2 \zeta(3)}-d\right),
$$

where d (iid for all three quantities) follows the Gumbel distribution $\mathbb{P}[d>x]=e^{-e^{-x}}$.
Typical length: $\Theta\left(n^{1 / 3} \log n\right)$, also from Mutafchiev (2018)

A phase transition?

Partitions $=$ plane partitions of width ≤ 1, type $\exp \left(c \cdot n^{1 / 2}\right)$
Plane partitions of width $\leq \infty$, type $\exp \left(c \cdot n^{3 / 2}\right)$
Question: How the asymptotic changes if width varies with size?
Maybe on nice variants of plane partitions with a natural notion of width

Banded plane partitions

Banded plane partitions: a special case of skew double shifted plane partition, defined by Han and Xiong (2017).

Other than size n, it has width m.

- $m=1 \Rightarrow$ partition, type $\exp \left(c \cdot n^{1 / 2}\right)$
- $m \geq n \Rightarrow$ column-strict plane partition, type $\exp \left(c \cdot n^{2 / 3}\right)$

What is known

$B_{n, m}=\#$ banded partitions of size n and width m.
Han and Xiong (2017):
Generating function for width m :

$$
B_{m}(z)=\sum_{n \geq 0} B_{n, m} z^{n}=\prod_{k \geq 1} \frac{1}{1-z^{k}} \prod_{\substack{k \geq 0 \\ 1 \leq h<j \leq m-1}} \frac{1}{1-z^{2 m k+h+j}}
$$

Asymptotic: For fixed constant m,

$$
B_{n, m} \sim D(m) n^{-1} \exp \left(\pi\left(\frac{m^{2}+m+2}{6 m}\right)^{1 / 2} n^{1 / 2}\right)
$$

where $D(m)$ is a constant depending on m :

$$
D(m)=\left(\prod_{i=1}^{m-2} \prod_{j=i+1}^{m-i-1} \sin \frac{i+j}{2 m} \pi\right)^{-1} \frac{\left(m^{2}+m+2\right)^{1 / 2}}{2^{\left(m^{2}-3 m+14\right) / 4} 3^{1 / 2} m^{1 / 2}}
$$

Our result

Theorem (F., Hwang, Kang (2019+))

Suppose that $m=m(n)$.

- (Subcritical) If $m=o\left(n^{1 / 3}(\log n)^{-2 / 3}\right)$, then

$$
\log B_{n, m} \sim c_{1}(n m)^{1 / 2}+(1+o(1)) c_{2} m^{2} .
$$

- (Critical) For $m=x n^{1 / 3}$ with $x=\omega\left(n^{-d}\right)$ for any $d>0$,

$$
\log B_{n, m} \sim c_{3}(x) n^{2 / 3}+(1+o(1)) c_{4}(x) n^{1 / 3},
$$

with $c_{3}(x), c_{4}(x)$ are continuous with the asymptotics:

$$
\begin{aligned}
& \text { - } x \rightarrow 0: c_{3}(x)=c_{1} x^{1 / 2}+\Theta\left(x^{2}\right), c_{4}(x)=\Theta\left(x^{-1 / 2}\right) \text {. } \\
& \text { - } x \rightarrow \infty: c_{3}(x) \rightarrow c_{5}, c_{4}(x) \rightarrow c_{6} .
\end{aligned}
$$

- (Supercritical) If $m=\omega\left(n^{1 / 3} \log n\right)$, then

$$
\log B_{n, m} \sim c_{5} n^{2 / 3}+(1+o(1)) c_{6} n^{1 / 3} .
$$

All constants are explicit.

In a graph

In the window:

- Subcritical end: subdominant term changes behavior
- Supercritical end: full saturation

Precise behavior is computed in the window.

Partition as a toy example

Generating function for partitions:

$$
P(z)=\prod_{k \geq 1} \frac{1}{1-z^{k}}
$$

Essential singularities dense on $|z|=1$, no singularity analysis!
Saddle point method: Cauchy integral formula on the circle $|z|=e^{-r}$ with $r>0$

Change of variable: $p(z)=\log P(z), z=e^{-\tau}$

$$
p_{n}=\left[z^{n}\right] P(z)=\frac{1}{2 \pi i} \int_{r-i \pi}^{r+i \pi} \exp \left(n \tau+p\left(e^{-\tau}\right)\right) d \tau
$$

Saddle point equation: $n+e^{-r} p^{\prime}\left(e^{-r}\right)=0 \Rightarrow r \rightarrow 0$
Aim: Behavior of $p\left(e^{-\tau}\right)$ for $\tau=r+i \theta$ when $r \rightarrow 0$

A simple relation

When $r \rightarrow 0$, the function $p\left(e^{-\tau}\right)$ gets close to essential singularities.
Tricky!
Miraculously we have

$$
p\left(e^{-\tau}\right)=\frac{\pi^{2}}{6 \tau}+\frac{1}{2} \log \frac{\tau}{2 \pi}-\frac{\tau}{24}+p\left(e^{-4 \pi^{2} \tau^{-1}}\right)
$$

Related to the modularity of the Dedekind eta function.
But can be seen by Mellin transform.

Mellin transform

For analytic function h, its Mellin transform is given by

$$
h^{*}(s)=\mathcal{M}[h](s)=\int_{0}^{+\infty} h(\tau) \tau^{s-1} d \tau
$$

If $h(\tau)=O\left(\tau^{u}\right)$ for $\tau \rightarrow 0$, and $h(\tau)=O\left(\tau^{v}\right)$ for $\tau \rightarrow \infty$, then $\mathcal{M}[h](s)$ is defined on the fundamental strip $-u<\operatorname{Re}(s)<-v$.
Transforming asymptotic behavior to singularities!
The inverse is given by

$$
h(\tau)=\mathcal{M}^{-1}\left[h^{*}\right](\tau)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} h^{*}(s) \tau^{-s} d s
$$

Here, $-u<c<-v$, that is, we integrate in the fundamental strip.

Why is Mellin transform nice?

$$
h^{*}(s)=\mathcal{M}[h](s)=\int_{0}^{+\infty} h(\tau) \tau^{s-1} d \tau
$$

- Reading asymptotic behavior off singularities
- Linearity
- Rescaling rule: for $h_{k}(\tau)=h(k \tau)$, we have

$$
\mathcal{M}\left[h_{k}\right](s)=k^{-s} \mathcal{M}[h](s) .
$$

Nice for so-called harmonic sums, i.e. sums of the form

$$
g(\tau)=\sum_{k \geq 1} \alpha_{k} h(k \tau)
$$

Its Mellin transform is simply

$$
\mathcal{M}[g](s)=\sum_{k \geq 1} \alpha_{k} k^{-s} \mathcal{M}[h](s)
$$

$\alpha_{k}=1 \Rightarrow$ Riemann zeta function

Partitions as a harmonic sum

Let $h(\tau)=\log \left(1-e^{-\tau}\right)$, then

$$
p\left(e^{-\tau}\right)=-\sum_{k \geq 1} \log \left(1-e^{-k \tau}\right)=-\sum_{k \geq 1} h(k \tau) .
$$

A harmonic sum!
The Mellin transform of h is (Hint: expand by $e^{-\tau}$)

$$
\mathcal{M}[h](s)=-\Gamma(s) \zeta(s+1) .
$$

The Mellin transform of $p\left(e^{-\tau}\right)$ is thus

$$
K(s)=-\sum_{k \geq 1} k^{-s} \mathcal{M}[h](s)=\zeta(s) \Gamma(s) \zeta(s+1),
$$

with the fundamental strip $\operatorname{Re}(s)>1 . \tau \rightarrow 0 \Rightarrow h(\tau)=\Theta\left(\tau^{-1}\right)$

On the two sides

- Mellin transform of $p\left(e^{-\tau}\right): K(s)=\zeta(s) \Gamma(s) \zeta(s+1)$.
- Mellin transform of $p\left(e^{-4 \pi^{2} \tau^{-1}}\right)$: (reflection identities of $\zeta(s)$ and $\Gamma(s)$)

$$
\begin{aligned}
K_{*}(s) & =\left(4 \pi^{2}\right)^{-s} \zeta(-s) \Gamma(-s) \zeta(-s+1) \\
& =\zeta(s) \Gamma(s) \zeta(s+1)=K(s),
\end{aligned}
$$

Same Mellin transform, different fundamental strip.

Mellin transform: $K(s)=\zeta(s) \Gamma(s) \zeta(s+1)$

And the big miracle

Inverse Mellin transform: integrate along a vertical line, with factor τ^{-s}

Mellin transform: $K(s)=\zeta(s) \Gamma(s) \zeta(s+1)$
From one to the other: passing through singularities $1,0,-1$

$$
p\left(e^{-\tau}\right)=\frac{\pi^{2}}{6 \tau}+\frac{1}{2} \log \frac{\tau}{2 \pi}-\frac{\tau}{24}+p\left(e^{-4 \pi^{2} \tau^{-1}}\right)
$$

Why is it nice?

$$
p\left(e^{-\tau}\right)=\frac{\pi^{2}}{6 \tau}+\frac{1}{2} \log \frac{\tau}{2 \pi}-\frac{\tau}{24}+p\left(e^{-4 \pi^{2} \tau^{-1}}\right)
$$

For $\tau \rightarrow 0, p\left(e^{-4 \pi^{2} \tau^{-1}}\right) \sim e^{-4 \pi^{2} \tau^{-1}}$. So behavior is known!

$$
p_{n}=\left[z^{n}\right] P(z) \approx \frac{1}{2 \pi i} \int_{r-i \infty}^{r+i \infty} \exp \left(n \tau+\frac{\pi^{2}}{6 \tau}+\frac{1}{2} \log \frac{\tau}{2 \pi}-\frac{\tau}{24}\right) d \tau
$$

Saddle point equation (approx): $n-\left(\pi^{2} / 6\right) r^{-2}=0 \Rightarrow r=6^{-1 / 2} \pi n^{-1 / 2}$.
The rest is classical. Note that considering only τ near r suffices.

The case of banded plane partitions

Generating function of banded plane partitions of width m :

$$
B_{m}(z)=\prod_{k \geq 1} \prod_{j=1}^{2 m-1}\left(\frac{1}{1-z^{2 m k+j}}\right)^{w(j)}
$$

with $w(j)=\left\lfloor\frac{m-1-|m-j|}{2}\right\rfloor$.
Let $b_{m}(z)=\log B_{m}(z)$. We have

$$
B_{m}(z)=\sum_{k \geq 1} \sum_{j=1}^{2 m-1} w(j) \log \left(\frac{1}{1-z^{2 m k+j}}\right) .
$$

For Mellin transform, not Riemann zeta, but Hurwitz zeta:

$$
\zeta(s, \beta)=\sum_{k \geq 0}(k+\beta)^{-s} .
$$

A small miracle

$b_{m}\left(e^{-\tau}\right)=$ contributions from $\{1,0,-1\}+E_{0}$

The integral E_{0} involves Hurwitz zeta $\zeta(s, \beta)$, which still has a more complicated "reflection property".
With some computation, we can express E_{0}, thus also $b_{m}\left(e^{-\tau}\right)$, in an exact form involving $p\left(e^{-\tau}\right)$.

An equality for $b_{m}\left(e^{-\tau}\right)$

$$
\begin{aligned}
& b_{m}\left(e^{-\tau}\right) \\
&=\left.\left.-\frac{m^{2}-3 m+4}{4} \log (2 \pi)+\sum_{1 \leq j \leq 2 m-1} \right\rvert\, \frac{m-1-|m-j|}{2}\right] \log \Gamma\left(\frac{j}{2 m}\right) \\
&+\frac{1}{2} p\left(e^{-\frac{4 \pi^{2}}{m \tau}}\right)-\frac{1}{2} p\left(e^{-\frac{2 \pi^{2}}{\tau}}\right)+\frac{m+2}{4} p\left(e^{-\frac{4 \pi^{2}}{\tau}}\right) \\
&+ \frac{1}{2} \log \tau+\left(\frac{m^{3}-7 m^{2}+2}{96}\right) \tau+\frac{\pi^{2}\left(m^{2}+m+2\right)}{24 m \tau} \\
&- \frac{1}{2 m} \sum_{1 \leq \ell<m} \frac{\cos \frac{(2 \ell-1) \pi}{m}}{1-\cos \frac{(2 \ell-1) \pi}{m}} \sum_{k \geq 0} \frac{e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}}{\left(k+\frac{2 \ell-1}{2 m}\right)\left(1-e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}\right)} .
\end{aligned}
$$

A small miracle to have an exact expression!

Analysis term by term

$$
\begin{aligned}
& b_{m}\left(e^{-\tau}\right) \\
= & \left.\left.-\frac{m^{2}-3 m+4}{4} \log (2 \pi)+\sum_{1 \leq j \leq 2 m-1} \right\rvert\, \frac{m-1-|m-j|}{2}\right] \log \Gamma\left(\frac{j}{2 m}\right) \\
+ & \frac{1}{2} p\left(e^{-\frac{4 \pi^{2}}{m \tau}}\right)-\frac{1}{2} p\left(e^{-\frac{2 \pi^{2}}{\tau}}\right)+\frac{m+2}{4} p\left(e^{-\frac{4 \pi^{2}}{\tau}}\right) \\
+ & \frac{1}{2} \log \tau+\left(\frac{m^{3}-7 m^{2}+2}{96}\right) \tau+\frac{\pi^{2}\left(m^{2}+m+2\right)}{24 m \tau} \\
- & \frac{1}{2 m} \sum_{1 \leq \ell<m} \frac{\cos \frac{(2 \ell-1) \pi}{m}}{1-\cos \frac{(2 \ell-1) \pi}{m}} \sum_{k \geq 0} \frac{e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}}{\left(k+\frac{2 \ell-1}{2 m}\right)\left(1-e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}\right)}
\end{aligned}
$$

Relatively easy to handle

Analysis term by term

$$
\begin{aligned}
& b_{m}\left(e^{-\tau}\right) \\
= & \left.\left.-\frac{m^{2}-3 m+4}{4} \log (2 \pi)+\sum_{1 \leq j \leq 2 m-1} \right\rvert\, \frac{m-1-|m-j|}{2}\right] \log \Gamma\left(\frac{j}{2 m}\right) \\
+ & \frac{1}{2} p\left(e^{-\frac{4 \pi^{2}}{m \tau}}\right)-\frac{1}{2} p\left(e^{-\frac{2 \pi^{2}}{\tau}}\right)+\frac{m+2}{4} p\left(e^{-\frac{4 \pi^{2}}{\tau}}\right) \\
+ & \frac{1}{2} \log \tau+\left(\frac{m^{3}-7 m^{2}+2}{96}\right) \tau+\frac{\pi^{2}\left(m^{2}+m+2\right)}{24 m \tau} \\
- & \frac{1}{2 m} \sum_{1 \leq \ell<m} \frac{\cos \frac{(2 \ell-1) \pi}{m}}{1-\cos \frac{(2 \ell-1) \pi}{m}} \sum_{k \geq 0} \frac{e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}}{\left(k+\frac{2 \ell-1}{2 m}\right)\left(1-e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}\right)}
\end{aligned}
$$

Negligible when $n \rightarrow \infty$, where $\tau \rightarrow 0$

Analysis term by term

$$
\begin{aligned}
& b_{m}\left(e^{-\tau}\right) \\
= & \left.\left.-\frac{m^{2}-3 m+4}{4} \log (2 \pi)+\sum_{1 \leq j \leq 2 m-1} \right\rvert\, \frac{m-1-|m-j|}{2}\right] \log \Gamma\left(\frac{j}{2 m}\right) \\
+ & \frac{1}{2} p\left(e^{-\frac{4 \pi^{2}}{m \tau}}\right)-\frac{1}{2} p\left(e^{-\frac{2 \pi^{2}}{\tau}}\right)+\frac{m+2}{4} p\left(e^{-\frac{4 \pi^{2}}{\tau}}\right) \\
+ & \frac{1}{2} \log \tau+\left(\frac{m^{3}-7 m^{2}+2}{96}\right) \tau+\frac{\pi^{2}\left(m^{2}+m+2\right)}{24 m \tau} \\
- & \frac{1}{2 m} \sum_{1 \leq \ell<m} \frac{\cos \frac{(2 \ell-1) \pi}{m}}{1-\cos \frac{(2 \ell-1) \pi}{m}} \sum_{k \geq 0} \frac{e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}}{\left(k+\frac{2 \ell-1}{2 m}\right)\left(1-e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}\right)} .
\end{aligned}
$$

Depending on m, since it changes the saddle point r, thus behavior of $m \tau$

Subcritical phase

In this phase, $m=o\left(n^{1 / 3}(\log n)^{-2 / 3}\right)$, making $m r \rightarrow 0$.

$$
\begin{aligned}
& b_{m}\left(e^{-\tau}\right) \\
= & \left.\left.-\frac{m^{2}-3 m+4}{4} \log (2 \pi)+\sum_{1 \leq j \leq 2 m-1} \right\rvert\, \frac{m-1-|m-j|}{2}\right] \log \Gamma\left(\frac{j}{2 m}\right) \\
+ & \frac{1}{2} p\left(e^{-\frac{4 \pi^{2}}{m \tau}}\right)-\frac{1}{2} p\left(e^{-\frac{2 \pi^{2}}{\tau}}\right)+\frac{m+2}{4} p\left(e^{-\frac{4 \pi^{2}}{\tau}}\right) \\
+ & \frac{1}{2} \log \tau+\left(\frac{m^{3}-7 m^{2}+2}{96}\right) \tau+\frac{\pi^{2}\left(m^{2}+m+2\right)}{24 m \tau} \\
- & \frac{1}{2 m} \sum_{1 \leq \ell<m} \frac{\cos \frac{(2 \ell-1) \pi}{m}}{1-\cos \frac{(2 \ell-1) \pi}{m}} \sum_{k \geq 0} \frac{e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}}{\left(k+\frac{2 \ell-1}{2 m}\right)\left(1-e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}\right)} .
\end{aligned}
$$

Saddle point $r \approx \sqrt{\frac{\pi^{2}\left(m^{2}+m+2\right)}{24 m n}}$, with value $\approx \frac{\pi^{2}\left(m^{2}+m+2\right) n}{6 m} \approx \frac{\pi^{2}}{6} m n$
We can also get lower order terms.

Supercritical phase

In this phase, $m=\omega\left(n^{1 / 3} \log n\right)$, making $m r \rightarrow \infty$.

$$
\begin{aligned}
& b_{m}\left(e^{-\tau}\right) \\
= & \left.\left.-\frac{m^{2}-3 m+4}{4} \log (2 \pi)+\sum_{1 \leq j \leq 2 m-1} \right\rvert\, \frac{m-1-|m-j|}{2}\right] \log \Gamma\left(\frac{j}{2 m}\right) \\
+ & \frac{1}{2} p\left(e^{-\frac{4 \pi^{2}}{m \tau}}\right)-\frac{1}{2} p\left(e^{-\frac{2 \pi^{2}}{\tau}}\right)+\frac{m+2}{4} p\left(e^{-\frac{4 \pi^{2}}{\tau}}\right) \\
+ & \frac{1}{2} \log \tau+\left(\frac{m^{3}-7 m^{2}+2}{96}\right) \tau+\frac{\pi^{2}\left(m^{2}+m+2\right)}{24 m \tau} \\
- & \frac{1}{2 m} \sum_{1 \leq \ell<m} \frac{\cos \frac{(2 \ell-1) \pi}{m}}{1-\cos \frac{(2 \ell-1) \pi}{m}} \sum_{k \geq 0} \frac{e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}}{\left(k+\frac{2 \ell-1}{2 m}\right)\left(1-e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}\right)} .
\end{aligned}
$$

Problematic term: double sum for $m r \rightarrow \infty$

Dealing with the double sum

Idea: $\frac{\cos x}{1-\cos x}=2 x^{-2}+5 / 6+O\left(x^{2}\right)$

$$
\begin{aligned}
& \frac{1}{2 m} \sum_{1 \leq \ell<m} \frac{\cos \frac{(2 \ell-1) \pi}{m}}{1-\cos \frac{(2 \ell-1) \pi}{m}} \sum_{k \geq 0} \frac{e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}}{\left(k+\frac{2 \ell-1}{2 m}\right)\left(1-e^{-\left(k+\frac{2 \ell-1}{2 m}\right) \frac{4 \pi^{2}}{\tau}}\right)} \\
\approx & \frac{1}{2 m} \sum_{1 \leq \ell<m}\left(\frac{2 m^{2}}{(2 \ell-1)^{2} \pi^{2}}+\frac{5}{6}+O\left(\ell^{2} m^{-2}\right)\right) \cdot \frac{e^{-\frac{2 \pi^{2}(2 \ell-1)}{m \tau}}}{\frac{2 \ell-1}{2 m}\left(1-e^{-\frac{2 \pi^{2}(2 \ell-1)}{m \tau}}\right)} \\
= & m^{2} \varphi_{1}(m \tau)+\varphi_{2}(m \tau)+O\left(m^{-2} \varphi_{3}(m \tau)\right)
\end{aligned}
$$

All φ_{i} can be expressed as an integral involving $\Gamma(s), \zeta(s)$, thus can be estimated at $m r \rightarrow \infty$

Supercritical phase (cont'd)

We plug in the estimates of red terms

$$
\begin{aligned}
& b_{m}\left(e^{-\tau}\right) \\
= & \left.\left.-\frac{m^{2}-3 m+4}{4} \log (2 \pi)+\sum_{1 \leq j \leq 2 m-1} \right\rvert\, \frac{m-1-|m-j|}{2}\right\rfloor \log \Gamma\left(\frac{j}{2 m}\right) \\
+ & \frac{1}{2} \log \tau+\left(\frac{m^{3}-7 m^{2}+2}{96}\right) \tau+\frac{\pi^{2}\left(m^{2}+m+2\right)}{24 m \tau} \\
+ & \frac{\zeta(3)}{2 \tau^{2}}+\frac{7 \zeta(3) m^{2}}{8 \pi^{2}}-\left(\frac{m^{3}-7 m}{96}\right) \tau-\frac{\pi^{2}\left(m^{2}+2\right)}{24 m \tau}-\frac{11}{24} \log \frac{m \tau}{\pi}+\frac{1}{24} \log 2 \\
+ & o(1)
\end{aligned}
$$

A lot of terms cancels out!

Supercritical phase (cont'd)

After some computation...

$$
b_{m}\left(e^{-\tau}\right)=\frac{\tau}{48}+\frac{\pi^{2}}{24 \tau}+\frac{\zeta(3)}{2 \tau^{2}}+\frac{1}{24} \log \tau+\frac{1}{2} \zeta^{\prime}(-1)-\frac{1}{4} \log 2+o(1) .
$$

A lot of terms cancels out, and no dependency on m !
This indicates a saturation.
Saddle point $r \approx \zeta(3)^{1 / 3} n^{-1 / 3}$, with value $\frac{3}{2} \zeta(3)^{1 / 3} n^{2 / 3}$
Final result agrees with that of column strict plane partitions, which are in bijection.

Critical phase

Key: the double sum, expressed in $\varphi_{1}, \varphi_{2}, \varphi_{3}$.
More complicated computations, but doable saddle point analysis
The transition is smooth.

Conclusion

- Unexpected nice(?) exact formula unrelated to modularity
- Detailed analysis of phase transition in plane partition variant
- Ongoing: other models

Conclusion

- Unexpected nice(?) exact formula unrelated to modularity
- Detailed analysis of phase transition in plane partition variant
- Ongoing: other models

Thank you!

