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Partitions

Partition: squares tightly piled up on a corner,
Or: eventually zero decreasing sequence λ = (λ1, λ2, . . .), Size =

∑

i λi.

4 3 3 1 1 14

≥

Generating function (Euler):

P (z) =
∑

p partition

z|p| =
∏

k≥1

1

1− zk
.
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Asymptotics of partitions

p(n) = #(partitions of size n).

Enumeration: Hardy-Ramanujan (1918):

pn ∼ 1

4 · 31/2 · n exp

(

21/2π

31/2
n1/2

)

.

Exact convergent series given by Rademacher (1937).

Explained in detail in Analytic Combinatorics.

Limit shape: Vershik (1996)

After a rescaling of n1/2, the boundary becomes

exp
(

− x

61/2π

)

+ exp
(

− y

61/2π

)

= 1.

Typical length: Θ(n1/2 log n).
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Plane partitions

Plane partition: boxes tightly piled up on corner,
Or: filling of N2, decreasing upwards and rightwards, eventually zero.

Size = sum of fillings.

≥

≥

5 2 1 1

3 2

2 1

Generating function (MacMahon):

PP (z) =
∑

p plane partition

z|p| =
∏

k≥1

(

1

1− zk

)k

.
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Asymptotics of unrestricted plane partitions

pp(n) = #(plane partitions of size n).

Asymptotic enumeration: Wright (1931), Mutafchiev and Kamenov
(2006)

ppn ∼ ζ(3)7/36e−ζ′(−1)

211/36
√
3π

n−25/36 exp

(

3ζ(3)1/3

22/3
n2/3

)

.

Maximal: Pittel (2005)

Height, width and depth of a uniformly random plane partition of size n:

n1/3

21/3ζ(3)1/3

(

2

3
log

n

2ζ(3)
− d

)

,

where d (iid for all three quantities) follows the Gumbel distribution

P[d > x] = e−e−x

.

Typical length: Θ(n1/3 log n), also from Mutafchiev (2018)
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A phase transition?

Partitions = plane partitions of width ≤ 1, type exp(c · n1/2)

Plane partitions of width ≤ ∞, type exp(c · n3/2)

Question: How the asymptotic changes if width varies with size?

Maybe on nice variants of plane partitions with a natural notion of width
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Banded plane partitions

Banded plane partitions: a special case of skew double shifted plane
partition, defined by Han and Xiong (2017).

7 7 4 2

6 4 2 2

3 1 1

1

width

≥

≥

Other than size n, it has width m.

m = 1 ⇒ partition, type exp(c · n1/2)

m ≥ n ⇒ column-strict plane partition, type exp(c · n2/3)
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What is known

Bn,m = # banded partitions of size n and width m.

Han and Xiong (2017):

Generating function for width m:

Bm(z) =
∑

n≥0

Bn,mzn =
∏

k≥1

1

1− zk

∏

k≥0
1≤h<j≤m−1

1

1− z2mk+h+j
.

Asymptotic: For fixed constant m,

Bn,m ∼ D(m)n−1 exp

(

π

(

m2 +m+ 2

6m

)1/2

n1/2

)

,

where D(m) is a constant depending on m:

D(m) =





m−2
∏

i=1

m−i−1
∏

j=i+1

sin
i+ j

2m
π





−1

(m2 +m+ 2)1/2

2(m2−3m+14)/431/2m1/2
.
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Our result

Theorem (F., Hwang, Kang (2019+))

Suppose that m = m(n).

(Subcritical) If m = o(n1/3(log n)−2/3), then

logBn,m ∼ c1(nm)1/2 + (1 + o(1))c2m
2.

(Critical) For m = xn1/3 with x = ω(n−d) for any d > 0,

logBn,m ∼ c3(x)n
2/3 + (1 + o(1))c4(x)n

1/3,

with c3(x), c4(x) are continuous with the asymptotics:

x → 0: c3(x) = c1x
1/2 +Θ(x2), c4(x) = Θ(x−1/2).

x → ∞: c3(x) → c5, c4(x) → c6.

(Supercritical) If m = ω(n1/3 log n), then

logBn,m ∼ c5n
2/3 + (1 + o(1))c6n

1/3.

All constants are explicit.
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In a graph

m = Θ(nα) ⇒ logBn,m = Θ(nβ)

α

β

0 1/3 1

1/2

2/3

n1/3(log n)−2/3 n1/3 log n

In the window:

Subcritical end: subdominant term changes behavior

Supercritical end: full saturation

Precise behavior is computed in the window.
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Partition as a toy example

Generating function for partitions:

P (z) =
∏

k≥1

1

1− zk
.

Essential singularities dense on |z| = 1, no singularity analysis!

Saddle point method: Cauchy integral formula on the circle |z| = e−r

with r > 0

Change of variable: p(z) = logP (z), z = e−τ

pn = [zn]P (z) =
1

2πi

∫ r+iπ

r−iπ

exp
(

nτ + p(e−τ )
)

dτ.

Saddle point equation: n+ e−rp′(e−r) = 0 ⇒ r → 0

Aim: Behavior of p(e−τ ) for τ = r + iθ when r → 0
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A simple relation

When r → 0, the function p(e−τ ) gets close to essential singularities.

Tricky!

Miraculously we have

p(e−τ ) =
π2

6τ
+

1

2
log

τ

2π
− τ

24
+ p(e−4π2τ−1

).

Related to the modularity of the Dedekind eta function.

But can be seen by Mellin transform.
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Mellin transform

For analytic function h, its Mellin transform is given by

h∗(s) = M[h](s) =

∫ +∞

0

h(τ)τ s−1dτ.

If h(τ) = O(τu) for τ → 0, and h(τ) = O(τv) for τ → ∞, then M[h](s)
is defined on the fundamental strip −u < Re(s) < −v.

Transforming asymptotic behavior to singularities!

The inverse is given by

h(τ) = M−1[h∗](τ) =
1

2πi

∫ c+i∞

c−i∞

h∗(s)τ−sds.

Here, −u < c < −v, that is, we integrate in the fundamental strip.
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Why is Mellin transform nice?

h∗(s) = M[h](s) =

∫ +∞

0

h(τ)τ s−1dτ.

Reading asymptotic behavior off singularities

Linearity

Rescaling rule: for hk(τ) = h(kτ), we have

M[hk](s) = k−sM[h](s).

Nice for so-called harmonic sums, i.e. sums of the form

g(τ) =
∑

k≥1

αkh(kτ).

Its Mellin transform is simply

M[g](s) =
∑

k≥1

αkk
−sM[h](s).

αk = 1 ⇒ Riemann zeta function
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Partitions as a harmonic sum

Let h(τ) = log(1− e−τ ), then

p(e−τ ) = −
∑

k≥1

log
(

1− e−kτ
)

= −
∑

k≥1

h(kτ).

A harmonic sum!

The Mellin transform of h is (Hint: expand by e−τ )

M[h](s) = −Γ(s)ζ(s+ 1).

The Mellin transform of p(e−τ ) is thus

K(s) = −
∑

k≥1

k−sM[h](s) = ζ(s)Γ(s)ζ(s+ 1),

with the fundamental strip Re(s) > 1. τ → 0 ⇒ h(τ) = Θ(τ−1)
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On the two sides

Mellin transform of p(e−τ ): K(s) = ζ(s)Γ(s)ζ(s+ 1).

Mellin transform of p(e−4π2τ−1

): (reflection identities of ζ(s) and Γ(s))

K∗(s) = (4π2)−sζ(−s)Γ(−s)ζ(−s+ 1)

= ζ(s)Γ(s)ζ(s+ 1) = K(s),

Same Mellin transform, different fundamental strip.

Mellin transform: K(s) = ζ(s)Γ(s)ζ(s+ 1)

p(e−τ )p(e−4π2τ−1

)

0−1 1

s
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And the big miracle

Inverse Mellin transform: integrate along a vertical line, with factor τ−s

Mellin transform: K(s) = ζ(s)Γ(s)ζ(s+ 1)

p(e−τ )p(e−4π2τ−1

)

0−1 1

s

From one to the other: passing through singularities 1, 0,−1

p(e−τ ) =
π2

6τ
+

1

2
log

τ

2π
− τ

24
+ p(e−4π2τ−1

).
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Why is it nice?

p(e−τ ) =
π2

6τ
+

1

2
log

τ

2π
− τ

24
+ p(e−4π2τ−1

).

For τ → 0, p(e−4π2τ−1

) ∼ e−4π2τ−1

. So behavior is known!

pn = [zn]P (z) ≈ 1

2πi

∫ r+i∞

r−i∞

exp

(

nτ +
π2

6τ
+

1

2
log

τ

2π
− τ

24

)

dτ.

Saddle point equation (approx): n− (π2/6)r−2 = 0 ⇒ r = 6−1/2πn−1/2.

The rest is classical. Note that considering only τ near r suffices.
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The case of banded plane partitions

Generating function of banded plane partitions of width m:

Bm(z) =
∏

k≥1

2m−1
∏

j=1

(

1

1− z2mk+j

)w(j)

,

with w(j) = bm−1−|m−j|
2 c.

Let bm(z) = logBm(z). We have

Bm(z) =
∑

k≥1

2m−1
∑

j=1

w(j) log

(

1

1− z2mk+j

)

.

For Mellin transform, not Riemann zeta, but Hurwitz zeta:

ζ(s, β) =
∑

k≥0

(k + β)−s.
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A small miracle

bm(e−τ ) = contributions from {1, 0,−1}+ E0

bm(e−τ )E0

0−1 1

s

The integral E0 involves Hurwitz zeta ζ(s, β), which still has a more
complicated “reflection property”.

With some computation, we can express E0, thus also bm(e−τ ), in an
exact form involving p(e−τ ).
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An equality for bm(e
−τ)

bm(e−τ )

= −m2 − 3m+ 4

4
log(2π) +

∑

1≤j≤2m−1

⌊

m− 1− |m− j|
2

⌋

log Γ

(

j

2m

)

+
1

2
p(e−

4π2

mτ )− 1

2
p(e−

2π2

τ ) +
m+ 2

4
p(e−

4π2

τ )

+
1

2
log τ +

(

m3 − 7m2 + 2

96

)

τ +
π2(m2 +m+ 2)

24mτ

− 1

2m

∑

1≤`<m

cos (2`−1)π
m

1− cos (2`−1)π
m

∑

k≥0

e−(k+
2`−1
2m ) 4π2

τ

(

k + 2`−1
2m

)

(

1− e−(k+ 2`−1
2m ) 4π2

τ

) .

A small miracle to have an exact expression!
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Analysis term by term

bm(e−τ )

= −m2 − 3m+ 4

4
log(2π) +

∑

1≤j≤2m−1

⌊

m− 1− |m− j|
2

⌋

log Γ

(

j

2m

)

+
1

2
p(e−

4π2

mτ )− 1

2
p(e−

2π2

τ ) +
m+ 2

4
p(e−

4π2

τ )

+
1

2
log τ +

(

m3 − 7m2 + 2

96

)

τ +
π2(m2 +m+ 2)

24mτ

− 1

2m

∑

1≤`<m

cos (2`−1)π
m

1− cos (2`−1)π
m

∑

k≥0

e−(k+
2`−1
2m ) 4π2

τ

(

k + 2`−1
2m

)

(

1− e−(k+ 2`−1
2m ) 4π2

τ

) .

Relatively easy to handle
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Analysis term by term

bm(e−τ )

= −m2 − 3m+ 4

4
log(2π) +

∑

1≤j≤2m−1

⌊

m− 1− |m− j|
2

⌋

log Γ

(

j

2m

)

+
1

2
p(e−

4π2

mτ )− 1

2
p(e−

2π2

τ ) +
m+ 2

4
p(e−

4π2

τ )

+
1

2
log τ +

(

m3 − 7m2 + 2

96

)

τ +
π2(m2 +m+ 2)

24mτ

− 1

2m

∑

1≤`<m

cos (2`−1)π
m

1− cos (2`−1)π
m

∑

k≥0

e−(k+
2`−1
2m ) 4π2

τ

(

k + 2`−1
2m

)

(

1− e−(k+ 2`−1
2m ) 4π2

τ

) .

Negligible when n → ∞, where τ → 0
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Analysis term by term

bm(e−τ )

= −m2 − 3m+ 4

4
log(2π) +

∑

1≤j≤2m−1

⌊

m− 1− |m− j|
2

⌋

log Γ

(

j

2m

)

+
1

2
p(e−

4π2

mτ )− 1

2
p(e−

2π2

τ ) +
m+ 2

4
p(e−

4π2

τ )

+
1

2
log τ +

(

m3 − 7m2 + 2

96

)

τ +
π2(m2 +m+ 2)

24mτ

− 1

2m

∑

1≤`<m

cos (2`−1)π
m

1− cos (2`−1)π
m

∑

k≥0

e−(k+
2`−1
2m ) 4π2

τ

(

k + 2`−1
2m

)

(

1− e−(k+ 2`−1
2m ) 4π2

τ

) .

Depending on m, since it changes the saddle point r, thus behavior of mτ

24 / 31



Introduction Analytic tools Phase transition Conclusion

Subcritical phase

In this phase, m = o(n1/3(log n)−2/3), making mr → 0.

bm(e−τ )

= −m2 − 3m+ 4

4
log(2π) +

∑

1≤j≤2m−1

⌊

m− 1− |m− j|
2

⌋

log Γ

(

j

2m

)

+
1

2
p(e−

4π2

mτ )− 1

2
p(e−

2π2

τ ) +
m+ 2

4
p(e−

4π2

τ )

+
1

2
log τ +

(

m3 − 7m2 + 2

96

)

τ +
π2(m2 +m+ 2)

24mτ

− 1

2m

∑

1≤`<m

cos (2`−1)π
m

1− cos (2`−1)π
m

∑

k≥0

e−(k+
2`−1
2m ) 4π2

τ

(

k + 2`−1
2m

)

(

1− e−(k+ 2`−1
2m ) 4π2

τ

) .

Saddle point r ≈
√

π2(m2+m+2)
24mn , with value ≈ π2(m2+m+2)n

6m ≈ π2

6 mn

We can also get lower order terms.
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Supercritical phase

In this phase, m = ω(n1/3 log n), making mr → ∞.

bm(e−τ )

= −m2 − 3m+ 4

4
log(2π) +

∑

1≤j≤2m−1

⌊

m− 1− |m− j|
2

⌋

log Γ

(

j

2m

)

+
1

2
p(e−

4π2

mτ )− 1

2
p(e−

2π2

τ ) +
m+ 2

4
p(e−

4π2

τ )

+
1

2
log τ +

(

m3 − 7m2 + 2

96

)

τ +
π2(m2 +m+ 2)

24mτ

− 1

2m

∑

1≤`<m

cos (2`−1)π
m

1− cos (2`−1)π
m

∑

k≥0

e−(k+
2`−1
2m ) 4π2

τ

(

k + 2`−1
2m

)

(

1− e−(k+ 2`−1
2m ) 4π2

τ

) .

Problematic term: double sum for mr → ∞
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Dealing with the double sum

Idea: cos x
1−cos x = 2x−2 + 5/6 +O(x2)

1

2m

∑

1≤`<m

cos (2`−1)π
m

1− cos (2`−1)π
m

∑

k≥0

e−(k+
2`−1
2m ) 4π2

τ

(

k + 2`−1
2m

)

(

1− e−(k+ 2`−1
2m ) 4π2

τ

)

≈ 1

2m

∑

1≤`<m

(

2m2

(2`− 1)2π2
+

5

6
+O(`2m−2)

)

· e−
2π2(2`−1)

mτ

2`−1
2m

(

1− e−
2π2(2`−1)

mτ

)

= m2ϕ1(mτ) + ϕ2(mτ) +O(m−2ϕ3(mτ))

All ϕi can be expressed as an integral involving Γ(s), ζ(s), thus can be
estimated at mr → ∞
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Supercritical phase (cont’d)

We plug in the estimates of red terms

bm(e−τ )

= −m2 − 3m+ 4

4
log(2π) +

∑

1≤j≤2m−1

⌊

m− 1− |m− j|
2

⌋

log Γ

(

j

2m

)

+
1

2
log τ +

(

m3 − 7m2 + 2

96

)

τ +
π2(m2 +m+ 2)

24mτ

+
ζ(3)

2τ2
+

7ζ(3)m2

8π2
−
(

m3 − 7m

96

)

τ − π2(m2 + 2)

24mτ
− 11

24
log

mτ

π
+

1

24
log 2

+ o(1).

A lot of terms cancels out!
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Supercritical phase (cont’d)

After some computation...

bm(e−τ ) =
τ

48
+

π2

24τ
+

ζ(3)

2τ2
+

1

24
log τ +

1

2
ζ ′(−1)− 1

4
log 2 + o(1).

A lot of terms cancels out, and no dependency on m!

This indicates a saturation.

Saddle point r ≈ ζ(3)1/3n−1/3, with value 3
2ζ(3)

1/3n2/3

Final result agrees with that of column strict plane partitions, which are
in bijection.
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Critical phase

Key: the double sum, expressed in ϕ1, ϕ2, ϕ3.

More complicated computations, but doable saddle point analysis

The transition is smooth.
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Conclusion

Unexpected nice(?) exact formula unrelated to modularity

Detailed analysis of phase transition in plane partition variant

Ongoing: other models
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Conclusion

Unexpected nice(?) exact formula unrelated to modularity

Detailed analysis of phase transition in plane partition variant

Ongoing: other models

Thank you!
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