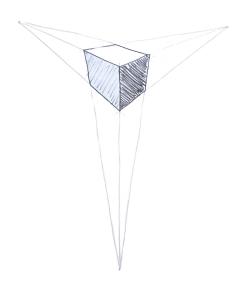
2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration Divers \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration Divers

Points de fuite et lignes de fuite

Vincent Nozick

Vincent Nozick Points de fuite et lignes de fuite 1 / 61


 \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration D

Rappels de \mathbb{R}^2 et \mathbb{P}^2

 $\left(\begin{array}{c} x \\ y \end{array}\right) \quad \longrightarrow \quad \left(\begin{array}{c} x \\ y \\ 1 \end{array}\right)$

catésien

homogène

Vincent Nozick Points de fuite et lignes de fuite 2 / 61

 \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration Divers

Rappels de \mathbb{R}^2 et \mathbb{P}^2

$$\begin{pmatrix} x \\ y \\ w \end{pmatrix} \qquad \dot{=} \qquad \begin{pmatrix} x/w \\ y/w \\ 1 \end{pmatrix} \qquad \longrightarrow \qquad \begin{pmatrix} x/w \\ y/w \end{pmatrix}$$
 homogène homogène catésien

Vincent Nozick Points de fuite et lignes de fuite 3 / 61 Vincent Nozick Points de fuite et lignes de fuite 4 / 61

Points et droites de \mathbb{P}^2

$$\mathbf{x} = \begin{pmatrix} x \\ y \\ w \end{pmatrix} \qquad \qquad \mathbf{l} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 point droite

Un point $\mathbf{x} \in \mathbf{l}$:

$$\operatorname{dans} \, \mathbb{R}^2: \quad ax+by+c=0$$

dans
$$\mathbb{P}^2$$
: $ax + by + cw = 0$ soit $\mathbf{x}^{\top} \cdot \mathbf{l} = \mathbf{l}^{\top} \cdot \mathbf{x} = 0$

Vincent Nozick Points de fuite et lignes de fuite 5 / 61

Ligne de fuite

ie, i , i i one de late

Rappels de \mathbb{R}^2 et \mathbb{P}^2

Droite l passant par 2 points :

$$\mathbf{x}_1 = (x_1, y_1, w_1)^\top$$
 $\mathbf{x}_2 = (x_2, y_2, w_2)^\top$ $\mathbf{l} = \mathbf{x}_1 \times \mathbf{x}_2$

où \times est le produit vectoriel de \mathbb{R}^3

Démonstration:

$$\begin{aligned} \mathbf{x}_1 &\overset{?}{\in} \mathbf{l} : & \mathbf{x}_1^{\top} \mathbf{l} = \mathbf{x}_1^{\top} (\mathbf{x}_1 \times \mathbf{x}_2) = 0 \\ \mathbf{x}_2 &\overset{?}{\in} \mathbf{l} : & \mathbf{x}_2^{\top} \mathbf{l} = \mathbf{x}_2^{\top} (\mathbf{x}_1 \times \mathbf{x}_2) = 0 \end{aligned} \right\} \mathbf{x}_1 \text{ et } \mathbf{x}_2 \in \mathbf{l}$$

$$\Rightarrow \mathbf{l} \text{ passe par } \mathbf{x}_1 \text{ et } \mathbf{x}_2$$

Rappels de \mathbb{R}^2 et \mathbb{P}^2

Intersection x de 2 droites :

$$\mathbf{l}_1 = (a_1, b_1, c_1)^{\top}$$
 $\mathbf{l}_2 = (a_2, b_2, c_2)^{\top}$ $\mathbf{x} = \mathbf{l}_1 \times \mathbf{l}_2$ où \times est le produit vectoriel de \mathbb{R}^3

Démonstration:

$$\begin{aligned} \mathbf{x} &\stackrel{?}{\in} \mathbf{l}_1: & \mathbf{l}_1^{\top} \mathbf{x} = \mathbf{l}_1^{\top} (\mathbf{l}_1 \times \mathbf{l}_2) = 0 \\ \mathbf{x} &\stackrel{?}{\in} \mathbf{l}_2: & \mathbf{l}_2^{\top} \mathbf{x} = \mathbf{l}_2^{\top} (\mathbf{l}_1 \times \mathbf{l}_2) = 0 \end{aligned} \right\} \mathbf{x} \in \mathbf{l}_1 \text{ et } \mathbf{l}_2$$

$$\Rightarrow \mathbf{x} \text{ intersection de } \mathbf{l}_1 \text{ et } \mathbf{l}_2$$

Vincent Nozick Points de fuite et lignes de fuite 6 / 61

 \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration Divers

Points à l'infini

Intersection de 2 droites parallèles :

$$\mathbf{l}_1 = (a, b, c_1)^{\top}$$
 $\mathbf{l}_2 = (a, b, c_2)^{\top}$

$$\mathbf{x} = \mathbf{l}_1 \times \mathbf{l}_2 = \left(egin{array}{c} b \ -a \ 0 \end{array}
ight)$$

Points à l'infini

Intersection de 2 droites parallèles :

$$\mathbf{l}_1 = (a, b, c_1)^{\top}$$
 $\mathbf{l}_2 = (a, b, c_2)^{\top}$

Propriétés:

- 2 droites parallèles s'intersectent à l'infini.
- le vecteur $(b, -a)^{\top}$ indique la direction du point à l'infini.

Vincent Nozick Points de fuite et lignes de fuite 8 / 61

 \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3

Point de fuite

Perspective

Ligne de fui

Détection automation

Calibration

Calibration

Droite à l'infini

$$\mathbf{l}_{\infty} = \left(\begin{array}{c} 0\\0\\1 \end{array}\right)$$

Doite à l'infini :

L'ensemble des points à l'infini reposent sur la droite à l'infini.

$$\mathbf{x} = (x, y, 0)^{\top}$$
 et $\mathbf{l}_{\infty} = (0, 0, 1)^{\top}$
 $\mathbf{x}^{\top} \cdot \mathbf{l}_{\infty} = 0 \Rightarrow \mathbf{x} \in \mathbf{l}_{\infty}$

Intersection:

L'intersection d'une droite $\mathbf{l}=(a,b,c)^{\top}$ avec \mathbf{l}_{∞} donne le point à l'infini $\mathbf{x}=(b,a,0)^{\top}$.

Droite à l'infini

Droite passant par 2 points à l'infini :

$$\mathbf{x}_1 = (x_1, y_1, 0)^{\top}$$
 $\mathbf{x}_2 = (x_2, y_2, 0)^{\top}$

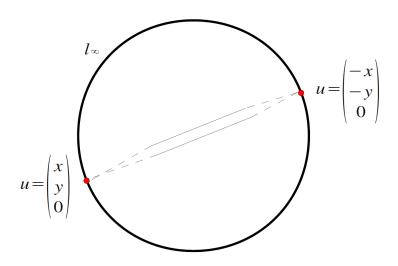
$$\mathbf{l} = \mathbf{x}_1 \times \mathbf{x}_2 = \begin{pmatrix} 0 \\ 0 \\ x_1 y_2 - y_1 x_2 \end{pmatrix} \doteq \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \mathbf{l}_{\infty}$$

Vincent Nozick Points de fuite et lignes de fuite 9 / 61

 \mathbb{R}^2 . \mathbb{P}^2 . \mathbb{P}^3 Point de

Vincent Nozick

Perspe


Ligne de f

Détection automation

Calibration

Divers

Points et droites à l'infini dans \mathbb{P}^2

Points de fuite et lignes de fuite

 $[2^2, \mathbb{P}^2, \mathbb{P}^3]$ Point de fuite Perspective Ligne de fuite Détection automatique

Points à l'infini dans \mathbb{P}^3

Dans \mathbb{P}^3 :

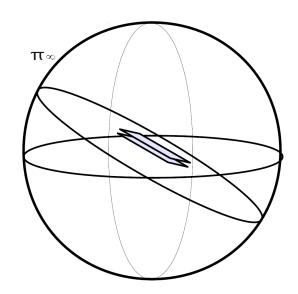
- ullet de même qu'il y a \mathbf{l}_{∞} dans \mathbb{P}^2 , il y a le plan à l'infini π_{∞} dans \mathbb{P}^3 .
- 2 plans parallèles π_1 et π_2 intersectent π_∞ sur une même droite : une droite à l'infini.
- 2 droites parallèles ${\bf l}_1$ et ${\bf l}_2$ intersectent π_∞ sur un même point : un point à l'infini.

Vincent Nozick Points de fuite et lignes de fuite 12 / 61

 \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3

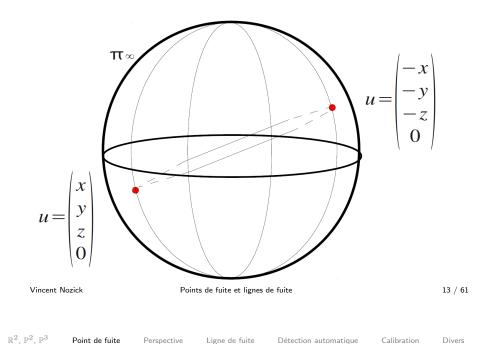
Point de fuite

Perspective

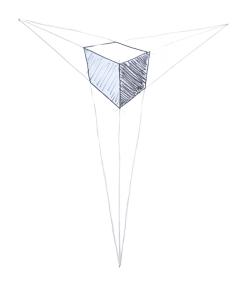

Ligne de fuit

Détection automatique

Calibration


Divers

Points et droites à l'infini dans \mathbb{P}^3



\mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration Divers

Points et droites à l'infini dans \mathbb{P}^3

Point de fuite

Vincent Nozick Points de fuite et lignes de fuite 14 / 61 Vincent Nozick Points de fuite et lignes de fuite 15 / 61

 2 . \mathbb{P}^2 . \mathbb{P}^3 Point of

uite Perspect

Ligne de fuite Déte

Détection automatique

Calibration

Point de fuite

Point de fuite :

Un point de fuite associé à une droite l (de l'espace 3d) correspond au projeté sur l'image du point à l'infini issu de l'intersection de l avec π_{∞} .

Vincent Nozick Points de fuite et lignes de fuite 16 / 61

 \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3

Point de fuite

Perspective

Ligne de fuite

ite Détection automatique

Calibration

Diver

Point de fuite à l'infini

Point de fuite à l'infini :

Des droites parallèles au plan image apparaissent parallèles sur l'image. Leur intersection (leur point de fuite) est à l'infini sur le plan image.

Point de fuite

Du point de vue de la caméra :

Le point de fuite ${\bf v}$ d'une droite ${\bf l}$ (de l'espace 3d) est l'intersection du plan image de la caméra avec un rayon parallèle à ${\bf l}$ passant par le centre de projection de la caméra.

Remarque:

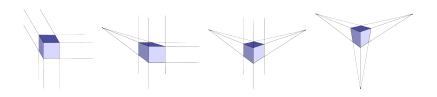
Un point de fuite dépend uniquement de l'orientation de la droite à laquelle il est associé, pas de sa position.

Vincent Nozick Points de fuite et lignes de fuite $17 \; / \; 61$

_□2 _□2 _□3

Point de

ite

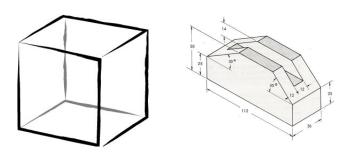

Perspectiv

Ligne de fuite

Détection automatique

Calibration Divers

Les perspectives dans le dessin



- perspective orthographique
- perspective frontale (à 1 point)
- perspective horizontale (à 2 points)
- perspective tridimensionnelle (à 3 points)

Vincent Nozick Points de fuite et lignes de fuite 18 / 61 Vincent Nozick Points de fuite et lignes de fuite 19 / 61

 \mathbb{P}^2 , \mathbb{P}^3 Point de fuite **Perspective** Ligne de fuite Détection automatique Calibration Di

Perspective orthographique

3 points de fuite à l'infini / 0 point de fuite fini.

Vincent Nozick Points de fuite et lignes de fuite 20 / 61 \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration Divers

Perspective frontale

2 points de fuite à l'infini / 1 point de fuite fini.

Perspective orthographique

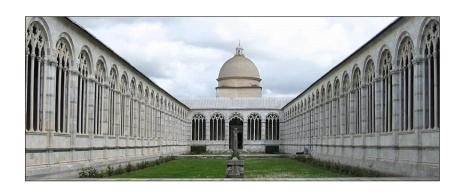
Ligne de fuite

Détection automatique

Détection automatique

Calibration

Calibration

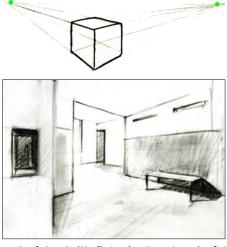

Divers

Divers

3 points de fuite à l'infini / 0 point de fuite fini.

Vincent Nozick Points de fuite et lignes de fuite 21 / 61

Perspective frontale

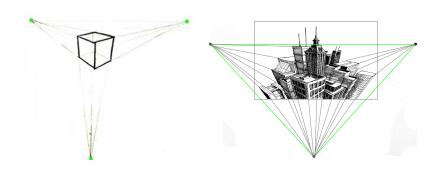


2 points de fuite à l'infini / 1 point de fuite fini.

Vincent Nozick Points de fuite et lignes de fuite 22 / 61 Vincent Nozick Points de fuite et lignes de fuite 23 / 61

 \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration [

Perspective horizontale



1 points de fuite à l'infini / 2 point de fuite fini.

 $Vincent \ Nozick \qquad \qquad Points \ de \ fuite \ et \ lignes \ de \ fuite \qquad \qquad 24 \ / \ 61$

 \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration Dive

Perspective tridimensionnelle

0 points de fuite à l'infini / 3 point de fuite fini.

Perspective horizontale

Ligne de fuite

Détection automatique

Divers

1 points de fuite à l'infini / 2 point de fuite fini.

Vincent Nozick Points de fuite et lignes de fuite 25 / 61

 \mathbb{R}^2 , \mathbb{P}^3 Point de fuite **Perspective** Ligne de fuite Détection automatique Calibration Divers

Perspective tridimensionnelle

0 points de fuite à l'infini / 3 point de fuite fini.

Vincent Nozick Points de fuite et lignes de fuite 26 / 61 Vincent Nozick Points de fuite et lignes de fuite 27 / 61

Ligne de fuite Détection automatique

Et là, c'est quoi?

Vincent Nozick Points de fuite et lignes de fuite 28 / 61

Détection automatique

Calibration

Calibration

Calcul d'un point de fuite

En pratique : on travaille plutôt sur les angles.

Ligne de fuite

Détection automatique

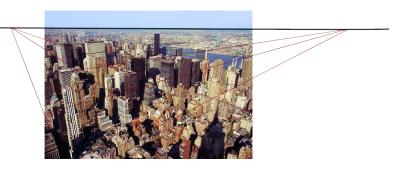
Calibration

Divers

Calcul d'un point de fuite

Intersection des droites parallèles dans la scène :

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ \vdots & \vdots & \vdots \\ a_n & b_n & c_n \end{bmatrix} \begin{pmatrix} x_v \\ y_v \\ w_v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$


Vincent Nozick Points de fuite et lignes de fuite 29 / 61

Détection automatique

Calibration

Divers

Ligne de fuite

Ligne de fuite = droite qui passe par 2 points de fuites.

Vincent Nozick Points de fuite et lignes de fuite 30 / 61 Points de fuite et lignes de fuite 31 / 61 Vincent Nozick

 \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective **Ligne de fuite** Détection automatique

Ligne de fuite

Ligne de fuite :

Une ligne de fuite associée à un plan π (de l'espace 3d) correspond au projeté sur l'image de la droite à l'infini issu de l'intersection de π avec π_{∞} .

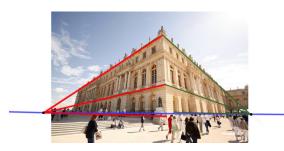
 $Vincent \ Nozick \qquad \qquad Points \ de \ fuite \ et \ lignes \ de \ fuite \qquad \qquad 32 \ / \ 61$

 \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3

Point de fuit

Perspective

Ligne de fui


de fuite Détection automatique

Calibration

Calibration

Div

Calcul d'une ligne de fuite

Construction:

- on cherche 2 ensembles de droites parallèles.
- on calcule leur points de fuite respectifs.
- la ligne de fuite est la droite passant par ces 2 points de fuite.

Ligne de fuite

Propriétés :

- des plans parallèles partagent la même ligne de fuite.
- une ligne de fuite correspond à l'ensemble des points fuite issus de l'emsemble des droites parallèles appartenant au plan.

Vincent Nozick Points de fuite et lignes de fuite 33 / 61

 \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3

Point

P

'erspective

gne de fuite

Détection automatique

Détection automatique

Calibration

Divers

Calibration

Divers

Détection automatique

J-linkage : Detecter automatiquement les points de fuites et lignes de fuites dans une scène présentant des droites parallèles.

Vincent Nozick Points de fuite et lignes de fuite 34 / 61 Vincent Nozick Points de fuite et lignes de fuite 35 / 61

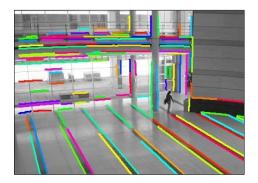
J-Linkage

Filtre de Canny

Vincent Nozick Points de fuite et lignes de fuite 36 / 61 \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite **Détection automatique** Calibration Divers

J-Linkage

Érosion pour enlever le bruit


J-Linkage

Suppression les coins pour n'avoir que des segments

Vincent Nozick Points de fuite et lignes de fuite 37 / 61 $\mathbb{R}^2, \mathbb{P}^2, \mathbb{P}^3 \quad \text{Point de fuite} \quad \text{Perspective} \quad \text{Ligne de fuite} \quad \text{Détection automatique} \quad \text{Calibration} \quad \text{Divers}$

J-Linkage


Segments détectés

Vincent Nozick Points de fuite et lignes de fuite 38 / 61 Vincent Nozick Points de fuite et lignes de fuite 39 / 61

Ligne de fuite

Détection automatique Calibration

J-Linkage

Segments détectés

Vincent Nozick Points de fuite et lignes de fuite 40 / 61

Ligne de fuite

Détection automatique

Calibration

J-Linkage

On obtient le tableau :

Que l'on contracte :

En fuisionant les colonnes les plus ressemblantes d'après le critère :

$$d(A,B) = \frac{|A \cup B| - |A \cap B|}{|A \cup B|}$$

J-Linkage

Point de fuite

Perspective

Algorithm 1: J-Linkage **input**: un ensemble $\{s_i\}$ de segments, iterations forall the iterations do choisir 2 segments au hasard calculer leur point de fuite p **foreach** segments s_i do voir si $\overline{\mathbf{p}}$ est un point de fuite pour s_i mettre le résultat dans un tableau end

Ligne de fuite

Détection automatique

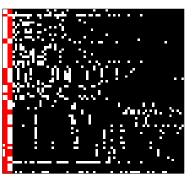
Détection automatique

Calibration

Calibration

Divers

Divers


Vincent Nozick Points de fuite et lignes de fuite 41 / 61

Ligne de fuite

J-Linkage

end

contracter le tableau

Les segments sont regroupés par points de fuite, il suffit alors de calculer les points de fuite des premières colonnes du tableau.

Vincent Nozick 42 / 61 Vincent Nozick 43 / 61 Points de fuite et lignes de fuite Points de fuite et lignes de fuite

Point de fuite Ligne de fuite Détection automatique Calibration Perspective Ligne de fuite Détection automatique Calibration

Résultat

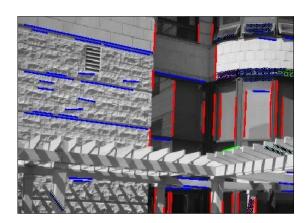
Ligne de fuite Détection automatique

Calibration

Divers

Résultat

Vincent Nozick Points de fuite et lignes de fuite 45 / 61


Ligne de fuite

Détection automatique

Calibration

Divers

Résultat

Calibration de caméra

Matrice de projection :

$$\mathbf{P} = \underbrace{ \begin{bmatrix} f & 0 & c_x \\ 0 & f & c_y \\ 0 & 0 & 1 \end{bmatrix} }_{\mathbf{K}} \underbrace{ \begin{bmatrix} r & r & r & t_x \\ r & r & r & t_y \\ r & r & r & t_z \end{bmatrix}}_{\mathbf{[R|t]}}$$
 paramètres paramètres intrinseques extrinsèques

avec:

- f : focal (en unité de pixels).
- ullet $(c_x,c_y)^{ op}$: position du point principal sur l'image.

Vincent Nozick Points de fuite et lignes de fuite 46 / 61 Vincent Nozick Points de fuite et lignes de fuite 47 / 61

49 / 61

Divers

Calibration

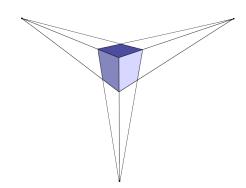
Image de la conique absolue

L'image de la conique absolue Ω_{∞} :

- notée ω
- ullet déterminée par l'association du plan à l'infini π_{∞} et du plan image de la caméra.
- notion "imaginaire" et donc non représentable sur une image.
- très liée aux paramètres de la caméra.

Lien entre ω et la caméra :

$$\omega = (\mathtt{K}\mathtt{K}^\top)^{-1} \qquad (\Rightarrow \omega \text{ est symétrique})$$


Vincent Nozick 48 / 61 Points de fuite et lignes de fuite

Ligne de fuite

Détection automatique

Calibration

Propriété

Les points de fuite \mathbf{u} et \mathbf{v} de deux droites perpendiculaires satisfont :

$$\mathbf{u}^{\mathsf{T}}\omega\mathbf{v}=0$$

Forme matricielle

• la matrice ω peut se noter de la façon suivante :

Perspective

$$\omega = \begin{bmatrix} \omega_{11} & \omega_{12} & \omega_{13} \\ \omega_{21} & \omega_{22} & \omega_{23} \\ \omega_{31} & \omega_{32} & \omega_{33} \end{bmatrix}$$

• à partir de la forme de K, on peut déduire que :

$$\omega_{12} = \omega_{21} = 0$$
 et $\omega_{11} = \omega_{22}$

• ω symétrique :

$$\omega = \begin{bmatrix} \omega_{11} & 0 & \omega_{13} \\ 0 & \omega_{11} & \omega_{23} \\ \omega_{13} & \omega_{23} & \omega_{33} \end{bmatrix}$$

Points de fuite et lignes de fuite

Détection automatique

Image de la conique absolue

Calcul de ω :

Vincent Nozick

- on pose $\mathbf{w} = (\omega_{11}, \omega_{13}, \omega_{23}, \omega_{33})^{\top}$
- à partir de trois points de fuites issus de droites ortogonales deux à deux (par exemple : verticale, largeur et profondeur)
- chaque contrainte $\mathbf{u}^{\mathsf{T}}\omega\mathbf{v}=0$ s'exprime matriciellement par

$$A\mathbf{w} = \mathbf{0}$$

$$\mathbf{A} = \left[\begin{array}{ccccc} \vdots & \vdots & \vdots & \vdots & \vdots \\ x_u x_v + y_u y_v & x_u w_v + w_u x_v & y_u w_v + w_u y_v & w_u w_v \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{array} \right]$$

• on résoud $\mathbf{A}\mathbf{w} = \mathbf{0}$ et on en déduit ω .

Vincent Nozick Points de fuite et lignes de fuite 50 / 61 51 / 61 Vincent Nozick Points de fuite et lignes de fuite

 \mathbb{R}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique **Calibration** Divers \mathbb{R}^2 , \mathbb{P}^2 ,

Calibration de la caméra

Calcul de K:

- à partir de trois points de fuites issus de droites ortogonales deux à deux.
- on calcule ω puis ω^{-1} .
- on trouve K par une décomposition de Cholesky : $\omega^{-1} = \mathrm{KK}^{\top}$.

Détection automatique

Ligne de fuite

Points de fuite et lignes de fuite

Réalité aumentée

Vincent Nozick

extraction des droites orthorgonales

Réalité aumentée

Perspective

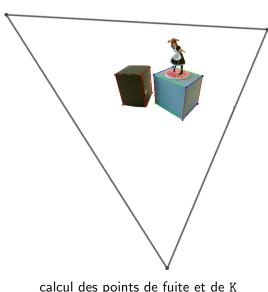
Ligne de fuite

Détection automatique

Calibration

Divers

image initiale


Vincent Nozick Points de fuite et lignes de fuite 53 / 61 \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique **Calibration** Divers

Réalité aumentée

Vincent Nozick

52 / 61

Calibration

calcul des points de fuite et de K

Points de fuite et lignes de fuite

Vincent Nozick Points de fuite et lignes de fuite 54 / 61

55 / 61

 2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration Divers \mathbb{R}^2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration Divers

Réalité aumentée

définition d'un repère (4 points coplanaires)

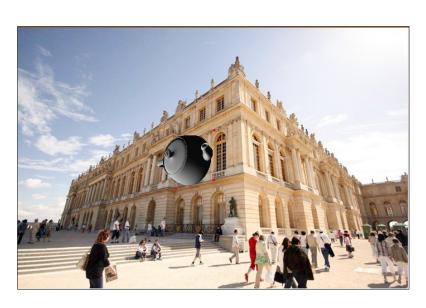
Vincent Nozick Points de fuite et lignes de fuite 56 / 61 $\mathbb{R}^2, \mathbb{P}^2, \mathbb{P}^3 \quad \text{Point de fuite} \quad \text{Perspective} \quad \text{Ligne de fuite} \quad \text{Détection automatique} \quad \text{Calibration} \quad \text{Divers}$

Réalité aumentée

incrustations de synthèse

Réalité aumentée

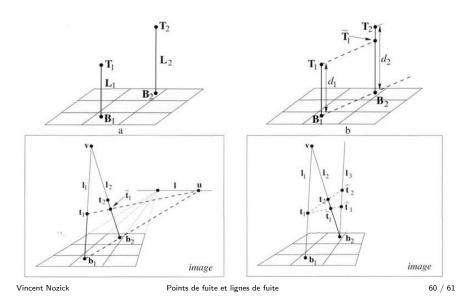
incrustations de synthèse


 2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique **Calibration** Divers

Points de fuite et lignes de fuite

57 / 61

Réalité aumentée


Vincent Nozick

Vincent Nozick Points de fuite et lignes de fuite 58 / 61 Vincent Nozick Points de fuite et lignes de fuite 59 / 61

 2 , \mathbb{P}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration **Divers** \mathbb{R}^2 , \mathbb{P}^3 Point de fuite Perspective Ligne de fuite Détection automatique Calibration **D**

Rapport des hauteurs

Rapport des hauteurs

Vincent Nozick Points de fuite et lignes de fuite 61/61