Functional programming Lecture 02 - Functions

Stéphane Vialette
stephane.vialette@univ-eiffel.fr
November 16, 2023
Laboratoire d'Informatique Gaspard-Monge, UMR CNRS 8049, Université Gustave Eiffel

Lists

Lists

Enumerations
List comprehensions
Processing lists - basic functions
High-order functions
Origami programming
Curried functions \& friends
Processing lists - revisit

The anatomy of a list

- Lists are the workhorses of functional programming.
- Lists are inherently recursive.
- A list is either empty or an element followed by another list.

List notation

- The type [a] denotes lists of elements of type a.
- The empty list is denoted by [].
- We can have lists over any type but we cannot mix different types in the same list

List notation

$$
\begin{aligned}
& \text { [] :: [a] } \\
& \text { [undefined,undefined] :: [a] } \\
& \text { [sin, cos,tan] :: Floating a => [a -> a] } \\
& {[[1,2,3],[4,5]] \quad:: N u m ~ a ~=>~[[a]]} \\
& {[(+1),(* 2)] \quad:: N u m ~ a ~=>~[a ~->~ a] ~} \\
& \text { [(1,'1',"1"),(2,'2',"2")] :: Num a => [(a, Char, String)] } \\
& \text { ["tea", "for", 2] not valid }
\end{aligned}
$$

List notation

- The operator (:) :: a -> [a] -> [a] (pronounced cons) is constructor for lists.
- Cons associates to the right.
- Cons is non-strict in both arguments.
- List notation, such as $[1,2,3,4]$, is in fact an abbreviation for the more basic form 1:2:3:4:[]

List notation

$$
[1,2,3,4,5] \equiv 1: 2: 3: 4: 5:[]
$$

First element

Data.List.head :: [a] -> a
head extracts the first element of a non-empty list.

First element

Data.List.head :: [a] -> a
head extracts the first element of a nonempty list.
$\lambda>$ head $[1,2,3,4]$
1
$\lambda>$ head (1: $[2,3,4]$)
1
$\lambda>$ head [1]
1
$\lambda>$ head (1:[])
1
$\lambda>$ head []
*** Exception: Prelude.head: empty list

First element

Data.List.head :: [a] -> a
head extracts the first element of a nonempty list.
head1 :: [a] -> []
head [] = error "*** Exception: head: empty list"
head ($x: x s$) $=x$
head2 :: [a] -> []
head [] = error "*** Exception: head: empty list"
head (x:_) = x

Except the first element

Data.List.tail :: [a] -> [a]
tail extracts the elements after the head of a non-empty list.

Except the first element

Data.List.tail :: [a] -> [a]
tail extracts the elements after the head of a non-empty list.
$\lambda>$ tail [1,2,3,4]
$[2,3,4]$
$\lambda>$ tail (1: $[2,3,4])$
[2,3,4]
$\lambda>$ tail [1]
[]
$\lambda>$ tail (1:[])
[]
$\lambda>$ tail []
*** Exception: Prelude.tail: empty list

Except the first element

Data.List.tail :: [a] -> [a]
tail extracts the elements after the head of a nonempty list.
tail :: [a] -> []
tail [] = error "*** Exception: tail: empty list"
tail1 (x :xs) = xs
tail :: [a] -> []
tail2 [] = error "*** Exception: tail: empty list"
tail2 (_:xs) = xs

Enumerations

Lists

Enumerations
List comprehensions
Processing lists - basic functions
High-order functions
Origami programming
Curried functions \& friends

Processing lists - revisit

Enumerating lists of integers

When m, n and p are integers, we can write

$$
\begin{array}{ll}
{[m . . n]} & \text { for the list }[m, m+1, m+2, \ldots, n] \\
{[m . .]} & \text { for the infinite list }[m, m+1, m+2, \ldots] \\
{[m, p \ldots n]} & \text { for the list }[m, m+(p-n), m+2(p-n), \ldots, n] \\
{[m, p \ldots]} & \text { for the infinite list }[m, m+(p-n), m+2(p-n), \ldots]
\end{array}
$$

Enumerating lists of integers

```
\lambda> [1..10]
[1,2,3,4,5,6,7,8,9,10]
\lambda> [10..1]
[]
\lambda> [1..]
[1,2,3,4,5,6,7,8,9,... `CInterrupted.
\lambda> [1,3..9]
[1,3,5,7,9]
\lambda> [1,3..0]
[]
```


Enumerating lists of integers

$$
\begin{aligned}
& \lambda>\quad[10,8 \ldots 0] \\
& {[10,8,6,4,2,0]} \\
& \lambda>\quad[10,8 \ldots 1] \\
& {[10,8,6,4,2]} \\
& \lambda>\quad[5,3 \ldots] \\
& {[5,3,1,-1,-3,-5,-7,-9, \ldots \text { ' CInterrupted. }}
\end{aligned}
$$

Enumerating lists of integers

Do not use floating point numbers in enumerations! Never ever!

```
\lambda> [0.1,0.3..1]
[0.1,0.3,0.5,0.7,0.8999999999999999,1.0999999999999999]
```

$\lambda>$ [1,0.6..0]
[1.0,0.6,0.199999999999999996]
$\lambda>$ [1,4/3..2]
[1.0,1.3333333333333333,1.6666666666666665,1.9999999999999998]
$\lambda>[5,13 / 3 . .3]$
[5.0,4.333333333333333,3.666666666666666,2.999999999999999]

Enumerating lists of integers

Do not expect too much!

$\lambda>[1,2,4,8,16 . .100]$-- expecting the powers of 2 ! <interactive>: error: parse error on input '..'
$\lambda>$ [2,3,5,7,11..101] -- expecting prime numbers <interactive>: error: parse error on input '..'
$\lambda>[1,-2,3,-4 . .9] \quad--\operatorname{expecting}[1,-2,3,-4,5,-6,7,-8,9]$ <interactive>: error: parse error on input '..'
$\lambda>[100,50,25 . .1]$-- expecting [100,50,25,12.5,6.25,...]
<interactive>: error: parse error on input '..'

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers, but to members of yet another type class Enum.

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers, but to members of yet another type class Enum.

Char is an instance of Enum:
$\lambda>$ ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
$\lambda>\operatorname{succ}$ 'a'
'b'
$\lambda>\operatorname{pred}{ }^{\prime} z^{\prime}$
'y'

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers, but to members of yet another type class Enum.

Char is an instance of Enum:
$\lambda>$ ['A'..'Z']
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$\lambda>\operatorname{succ} '^{\prime}{ }^{\prime}$
'B'
$\lambda>\operatorname{pred}{ }^{\prime} Z^{\prime}$
'Y'

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers, but to members of yet another type class Enum.

Char is an instance of Enum:
$\lambda>$ ['a','c'..'z']
"acegikmoqsuwy"
$\lambda>$ ['z','y'..'a']
"zyxwvutsrqponmlkjihgfedcba"
$\lambda>$ ['z','x'..'a']
"zxvtrpnljhfdb"

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers, but to members of yet another type class Enum.

Char is an instance of Enum:
$\lambda>\operatorname{succ}$ 'Z'
' ${ }^{\prime}$
$\lambda>\operatorname{pred}$ 'a'
1-।
$\lambda>$ ['A'..'z']
"ABCDEFGHIJKLMNOPQRSTUVWXYZ[
]^_ abcdefghijklmnopqrstuvwxyz"

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers, but to members of yet another type class Enum.

More on this soon!

List comprehensions

Lists
Enumerations
List comprehensions
Processing lists - basic functionsHigh-order functionsOrigami programming
Curried functions \& friends
Processing lists - revisit

List comprehensions

Comprehensions are annotations in Haskell which are used to produce new lists from existing ones
[f x | x <- xs]

- Everything before the pipe determines the output of the list comprehension. It's basically what we want to do with the list elements.
- Everything after the pipe \mid is the generator.
- A generator:
- Generates the set of values we can work with.
- Binds each element from that set of values to x .
- Draw our elements from that set (<- is pronounced "drawn from").

List comprehensions

- Set (i.e., math) point of view. $\left\{x^{2}: x \in \mathbb{N}\right\}$
- Comprehensions (i.e., Haskell) point of view.

$$
[x * x \mid x<-[1 . .]]
$$

List comprehensions

$$
\begin{aligned}
& \lambda>[\mathrm{x} * \mathrm{x} \mid \mathrm{x}<-[1 . .9]] \\
& {[1,4,9,16,25,36,49,64,81]} \\
& \lambda>[\mathrm{x} * \mathrm{x} \mid \mathrm{x}<-[1,3 . .9]] \\
& {[1,9,25,49,81]} \\
& \lambda>\left[2^{\wedge} \mathrm{n} \mid \mathrm{n}<-[1 . .10]\right] \\
& {[2,4,8,16,32,64,128,256,512,1024]} \\
& \lambda>\left[(-1)^{\wedge}(\mathrm{n}+1) * \mathrm{n} \mid \mathrm{n}<-[1 \ldots 10]\right] \\
& {[1,-2,3,-4,5,-6,7,-8,9,-10]} \\
& \lambda>[100 / \mathrm{n} \mid \mathrm{n}<-[1 . .10]] \\
& {[100.0,50.0,33.333333333333336,25.0,20.0,16.666666666666668,} \\
& 14.285714285714286,12.5,11.11111111111111,10.0]
\end{aligned}
$$

Many generators

$$
\begin{aligned}
& \lambda>[\mathrm{x} \mid \mathrm{x}<-[]] \\
& {[]} \\
& \lambda>[(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}<-[1.3], \mathrm{y}<-[1 . .3]] \\
& {[(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)} \\
& \lambda>[(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}<-[1 . .3], \mathrm{y}<-[\mathrm{x} . .3]] \\
& {[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]} \\
& \lambda>[\mathrm{x} * \mathrm{y} \mid \mathrm{x}<-[1 \ldots 3], \mathrm{y}<-[1 . .3]] \\
& {[1,2,3,2,4,6,3,6,9]} \\
& \lambda>\operatorname{let} \mathrm{n}=2 \text { in }[\mathrm{x} * \mathrm{y} \text { `mod` } \mathrm{n} \mid \mathrm{x}<-[1 . .3], \mathrm{y}<-[1 . .3]] \\
& {[1,0,1,0,0,0,1,0,1]}
\end{aligned}
$$

Many lists

```
\lambda> [[1..n] | n <- [1..4]]
[[1],[1,2],[1,2,3],[1, 2, 3,4]]
\lambda> [[m..n] | m <- [1..4], n <- [1..4]]
[[1],[1,2], [1,2,3],[1,2,3,4], [] , [2] , [2,3], [2,3,4] , [] , [] , [3],
[3,4], [], [] , [] , [4]]
\lambda> [[m..n] | m <- [1..4], n <- [m..4]]
[[1],[1,2],[1,2,3],[1,2,3,4], [2] , [2,3], [2,3,4], [3], [3,4], [4]]
\lambda> [[[m..n] | n <- [m..3]] | m <- [1..3]]
[[[1],[1,2],[1,2,3]],[[2],[2,3]],[[3]]]
\lambda> [[[m..n] | n <- [1..3]] | m <- [1..3]]
[[[1],[1,2],[1,2,3]],[[],[2],[2,3]],[[], [], [3]]]
```


Predicates

- If we do not want to draw all elements from a list, we can add a condition, a predicate.
- A predicate is a function which takes an element and returns a boolean value.

$$
[f \mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p} 1 \mathrm{x}, \mathrm{p} 2 \mathrm{x}, \ldots, \mathrm{pn} \mathrm{x}]
$$

Predicates

$$
\begin{aligned}
& \lambda>[x * x \mid x<-[1 . .10] \text {, even } x] \\
& \text { [4,16,36,64,100] } \\
& \lambda>[(x, x * x) \mid x<-[1 . .10] \text {, even } x] \\
& {[(2,4),(4,16),(6,36),(8,64),(10,100)]} \\
& \lambda>[(x, x * x) \mid x<-[1 . .10], ~ e v e n ~ x, ~ x ~ ` m o d ` ~ 3 /=0] \\
& {[(2,4),(4,16),(8,64),(10,100)]} \\
& \lambda>\quad[(x, y) \mid x<-[1 . .10] \text {, even } x, y<-[x .10] \text {, odd } y] \\
& {[(2,3),(2,5),(2,7),(2,9),(4,5),(4,7),(4,9),(6,7),(6,9),(8,9)]} \\
& \lambda>[\mathrm{x} \mid \mathrm{x}<- \text { [1..100], even } \mathrm{x}, \mathrm{x} ` \bmod 3 \text { == } 0 \text {, } \mathrm{x} \times \bmod 5 \text { == 0] } \\
& \text { [30,60, 90] }
\end{aligned}
$$

Predicates and pattern matching

$$
\begin{aligned}
& \lambda>[x \mid(x, 1)<-[(x, y) \mid x<-[1 \ldots 3], y<-[1 \ldots 3]]] \\
& {[1,2,3]} \\
& \lambda>[x \mid(x, y)<-[(x, y) \mid x<-[1 \ldots 3], y<-[1 \ldots 3]], y<=2] \\
& {[1,1,2,2,3,3]} \\
& \lambda>[(x, y) \mid(x, y)<-[(x, y) \mid x<-[1 \ldots 3], y<-[1 \ldots 3]], x==y] \\
& {[(1,1),(2,2),(3,3)]} \\
& \lambda>[y \mid x y s<-[[(x, x * 2)] \mid x<-[1 \ldots 6]],(2, y)<-x y s] \\
& {[4]} \\
& \lambda>[y \mid x y s<-[[(x, x * 2)] \mid x<-[1 \ldots 6]],(x, y)<-x y s, \text { even } x] \\
& {[4,8,12]}
\end{aligned}
$$

Problem solving with list comprehensions

Compute the list $[1,1+2, \ldots, 1+2+3+\ldots+n]$.

```
-- assuming we don't know about Data.Foldable.sum
sums :: (Num a, Enum a, Eq a) => a -> [a]
sums n = [f k | k <- [1..n]]
    where
\[
\begin{aligned}
& \mathrm{f} 1=1 \\
& \mathrm{f} k=k+\mathrm{f}(\mathrm{k}-1)
\end{aligned}
\]
```

$\lambda>$ sums 10
$[1,3,6,10,15,21,28,36,45,55]$
$\lambda>[n *(n+1)$ `div` 2 | n <- [1..10]]
$[1,3,6,10,15,21,28,36,45,55]$

Problem solving with list comprehensions

Compute the list $\left[1^{\wedge} 2,1^{\wedge} 2+2^{\wedge} 2, \ldots, 1^{\wedge} 2+2^{\wedge} 2+3^{\wedge} 2+\ldots+n^{\wedge} 2\right]$.
-- assuming we don't know about Data.Foldable.sum sumsSq :: (Num a, Enum a, Eq a) => a -> [a] sumsSq $\mathrm{n}=[\mathrm{f} \mathrm{k} \mid \mathrm{k}<-$ [1..n]]
where

$$
\begin{aligned}
& \mathrm{f} 1=1 \\
& \mathrm{f} k=\mathrm{k} * \mathrm{k}+\mathrm{f}(\mathrm{k}-1)
\end{aligned}
$$

$\lambda>$ sumsSq 10
$[1,5,14,30,55,91,140,204,285,385]$
$\lambda>[n *(n+1) *(2 * n+1)$ `div` $6 \mid n<-[1 . .10]]$
[1,5,14,30,55, 91, 140, 204, 285, 385]

Problem solving with list comprehensions

Compute the list of all positive intergers $k \leqslant n$ such that $k \not \equiv 0$ $(\bmod 2), k \not \equiv 0(\bmod 3), k \equiv 1(\bmod 5)$ and $k \equiv 0(\bmod 7)$.
f : : Integral a => a -> [a]
f $\mathrm{n}=$ [k | k <- [1..n]
, odd k
, k `mod` 3 > 0
, k `mod` 5 == 1
, k `mod` 7 == 0]
$\lambda>\mathrm{f} 1000$
$[91,161,301,371,511,581,721,791,931]$

Problem solving with list comprehensions

A Pythagorean triple consists of three positive integers a, b, and c, such that $a^{2}+b^{2}=c^{2}$. Compute all Pythagorean triples with $a<b<c \leqslant 15$.
-- naive implementation
pythT :: (Num a, Enum a, Eq a) => c -> [(a, a, a)]
pythT $\mathrm{n}=[(\mathrm{a}, \mathrm{b}, \mathrm{c}) \mid \mathrm{a}<-$ [1..n]
, $b<-[a+1 . . n]$
, c <- [b+1..n]
, $\mathrm{a} * \mathrm{a}+\mathrm{b} * \mathrm{~b}==\mathrm{c} * \mathrm{c}]$
$\lambda>$ pythT 15
$[(3,4,5),(5,12,13),(6,8,10),(9,12,15)]$

Problem solving with list comprehensions

Compute the infinite list of the powers of 2.
p2s1 :: Num a => [a]
p2s1 = [2^n | n <- 1:p2s1]
$\lambda>$ take 11 p 2 s 1
[2,4,8,16,32,64,128,256,512,1024,2048]
$\lambda>$ head (drop 120 p2s1)
2658455991569831745807614120560689152

Problem solving with list comprehensions

Compute the infinite list of the powers of 2 .

$$
\begin{aligned}
& \mathrm{p} 2 \mathrm{~s} 2:: \text { Num a }=>[\mathrm{a}] \\
& \mathrm{p} 2 \mathrm{~s} 2=[2 * \mathrm{n} \mid \mathrm{n}<-1: \mathrm{p} 2 \mathrm{~s} 2]
\end{aligned}
$$

$$
\mathrm{n}=1
$$

$$
\mathrm{p} 2 \mathrm{~s} 2=1: 2^{\wedge} 1: \mathrm{p} 2 \mathrm{~s} 2
$$

$$
\mathrm{n}=2
$$

$$
\mathrm{p} 2 \mathrm{~s} 2=1: 2^{\wedge} 1: 2^{\wedge} 2: \mathrm{p} 2 \mathrm{~s} 2
$$

$$
\mathrm{n}=3
$$

$$
\mathrm{p} 2 \mathrm{~s} 2=1: 2^{\wedge} 1: 2^{\wedge} 2: 2^{\wedge} 3: \mathrm{p} 2 \mathrm{~s} 2
$$

$\mathrm{n}=4$

$$
\mathrm{p} 2 \mathrm{~s} 2=1: 2^{\wedge} 1: 2^{\wedge} 2: 2^{\wedge} 3: 2^{\wedge} 4: \mathrm{p} 2 \mathrm{~s} 2
$$

Problem solving with list comprehensions

Compute the infinite list of all binary strings.

```
binaries :: [String]
binaries = [b:bs | bs <- "":binaries, b <- ['0','1']]
```

$\lambda>$ take 11 binaries
["0", "1", "00", "10", "01", "11", "000", "100", "010", "110", "001"]
$\lambda>$ head (drop 10000000 binaries)
"01000001011010010001100"

Processing lists - basic functions

Lists

Enumerations

List comprehensions

Processing lists - basic functions
High-order functions
Origami programming
Curried functions \& friends

Processing lists - revisit

Finding

Data.List.elem :: (Eq a) => a -> [a] -> Bool
elem is the list membership predicate, usually written in infix form, e.g., x `elem` xs. For the result to be False, the list must be finite; True, however, results from an element equal to x found at a finite index of a finite or infinite list.

Finding

Data.List.elem :: (Eq a) => a -> [a] -> Bool
elem is the list membership predicate, usually written in infix form, e.g., x `elem` xs. For the result to be False, the list must be finite; True, however, results from an element equal to x found at a finite index of a finite or infinite list.
$\lambda>2$ `elem` [1..5]
True
$\lambda>8$ `elem` [1..5]
False

Finding

Data.List.elem :: (Eq a) => a -> [a] -> Bool
elem is the list membership predicate, usually written in infix form, e.g., x `elem` xs. For the result to be False, the list must be finite; True, however, results from an element equal to x found at a finite index of a finite or infinite list.

$$
\begin{aligned}
& \text { elem1 :: Eq a => a -> [a] -> Bool } \\
& \text { elem1 _ [] = False } \\
& \text { elem1 x' (x:xs) } \\
& \text { | } \mathrm{x}=\mathrm{x}^{\prime}=\text { True } \\
& \text { | otherwise = elem1 x' xs }
\end{aligned}
$$

$$
\begin{aligned}
& \text { elem2 :: Eq a => a -> [a] -> Bool } \\
& \text { elem2 - [] }=\text { False } \\
& \text { elem2 x' (x:xs) }=x \text { = } x^{\prime} \text { || elem2 } x^{\prime} x s
\end{aligned}
$$

Repeating

Data.List.repeat :: a -> [a]
repeat takes an element and returns an infinite list that just has that element.

Repeating

Data.List.repeat :: a -> [a]
repeat takes an element and returns an infinite list that just has that element.
$\lambda>$ repeat 'a'
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa...
-C Interrupted.
$\lambda>$ repeat "a" -- i.e. repeat ['a'] ["a", "a", "a", "a", "a", "a", "a", "a". .
-C Interrupted.

Repeating

Data.List.repeat :: a -> [a]
repeat takes an element and returns an infinite list that just has that element.
repeat1 :: a -> [a]
repeat1 $\mathrm{x}=\mathrm{x}$:repeat1 x
repeat2 :: a -> [a]
repeat2 $\mathrm{x}=[\mathrm{x} \mid \mathrm{n}<-$ [1 ..]]
repeat3 :: a -> [a]
repeat3 $\mathrm{x}=[\mathrm{x} \mid \ldots-<-$ [1 ..] $]$

Taking

Data.List.take :: Int -> [a] -> [a]
take takes a certain number of elements from a list.

Taking

Data.List.take :: Int -> [a] -> [a]
take takes a certain number of elements from a list.

$$
\begin{aligned}
& \lambda>\text { take } 10[1 . .20] \\
& {[1,2,3,4,5,6,7,8,9,10]}
\end{aligned}
$$

$$
\lambda>\text { take } 10[1 . .]
$$

$$
[1,2,3,4,5,6,7,8,9,10]
$$

$$
\lambda>\text { take } 20 \text { [1..10] }
$$

$$
[1,2,3,4,5,6,7,8,9,10]
$$

$\lambda>$ take 0 [1..]
[]
$\lambda>$ take (-1) [1..]
[]

Taking

Data.List.take :: Int -> [a] -> [a]
take takes a certain number of elements from a list.
take1 :: (Ord t, Num t) => t -> [a] -> [a]
take1 _ [] = []
take1 n (x:xs)

$$
\begin{aligned}
& \mid \mathrm{n}<=0 \\
& \text { | otherwise } \\
& =\mathrm{x}: \text { take1 }(\mathrm{n}-1) \mathrm{xs}
\end{aligned}
$$

take2 :: (Eq t, Num t) => t -> [a] -> [a]
take2 _ [] = []
take2 0 _ \quad []
take2 n (x:xs) = x:take2 (n-1) xs

Dropping

Data.List.drop :: Int -> [a] -> [a]
drop drops a certain number of elements from a list.

Dropping

Data.List.drop :: Int -> [a] -> [a]
drop drops a certain number of elements from a list.
$\lambda>\operatorname{drop} 10[1 . .20]$
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
$\lambda>\operatorname{drop} 10$ [1..]
$[11,12,13,14,15,16,17,18,19,20, \ldots$

- C Interrupted.
$\lambda>\operatorname{drop}(-1)$ [1..]
$[1,2,3,4,5,6,7,8,9,10, \ldots$
- C Interrupted.
$\lambda>\operatorname{drop} 20$ [1..10]
[]

Dropping

Data.List.drop :: Int -> [a] -> [a]
drop drops a certain number of elements from a list.

```
drop1 :: (Ord t, Num t) => t -> [a] -> [a]
drop1 _ [] = []
drop1 n (x:xs)
    | n > 0 = drop1 (n-1) xs
    | otherwise = x:xs
```

drop2 :: (Ord t, Num t) => t -> [a] -> [a]
drop2 _ [] = []
drop2 n xs@(_:xs')
| n > $0 \quad=$ drop2 ($\mathrm{n}-1$) $\mathrm{xs}{ }^{\prime}$
| otherwise = xs

Taking and Dropping - In practice

Define a function that rotates the elements of a list n places to the left, wrapping around at the start of the list, and assuming that the integer argument n is between zero and the length of the list.

For example:

$$
\begin{aligned}
& \lambda>\text { rotate } 0[1 . .8] \\
& {[1,2,3,4,5,6,7,8]} \\
& \lambda>\text { rotate } 1[1 . .8] \\
& {[2,3,4,5,6,7,8,1]} \\
& \lambda>\text { rotate } 4[1 . .8] \\
& {[5,6,7,8,1,2,3,4]}
\end{aligned}
$$

Taking and Dropping - In practice

Define a function that rotates the elements of a list n places to the left, wrapping around at the start of the list, and assuming that the integer argument n is between zero and the length of the list.
rotate1 :: Int -> [a] -> [a]
rotate1 = go []
where

$$
\begin{array}{ll}
\text { go acc } 0 \mathrm{xs} & =\mathrm{xs}++ \text { reverse acc } \\
\text { go acc } \mathrm{n} \mathrm{[]} & =\text { go [] } \mathrm{n}(\text { reverse acc) -- (*) } \\
\text { go acc } \mathrm{n}(\mathrm{x}: \mathrm{xs}) & =\text { go (x:acc) (n-1) xs }
\end{array}
$$

rotate2 :: Int -> [a] -> [a]
rotate2 n xs = drop n xs ++ take n xs

Replicating

Data.List.replicate :: Int -> a -> [a]
replicate takes an Int and some element and returns a list that has several repetitions of the same element.

Replicating

Data.List.replicate :: Int -> a -> [a]
replicate takes an Int and some element and returns a list that has several repetitions of the same element.
$\lambda>$ replicate 101
$[1,1,1,1,1,1,1,1,1,1]$
$\lambda>$ replicate 01
[]
$\lambda>$ replicate (-1) 1
[]

Replicating

Data.List.replicate : : Int -> a -> [a]
replicate takes an Int and some element and returns a list that has several repetitions of the same element.

$$
\begin{aligned}
& \text { replicate1 :: (Num t, Ord t) => t -> a -> [a] } \\
& \text { replicate1 } \mathrm{n} \text { x } \\
& \text { | } \mathrm{n}<=0=[] \\
& \text { | otherwise = x:replicate1 (n-1) } x \\
& \text { replicate2 :: (Ord t, Num t) => t -> a -> [a] } \\
& \text { replicate } 2 \mathrm{n} \mathrm{x}=\text { take } \mathrm{n} \text { (repeat } \mathrm{x} \text {) }
\end{aligned}
$$

Suffixing

Data.List.tails :: [a] -> [[a]]
tails returns all final segments of the argument, longest first.

Suffixing

Data.List.tails :: [a] -> [[a]]
tails returns all final segments of the argument, longest first.
$\lambda>$ tails [1..4]
$[[1,2,3,4],[2,3,4],[3,4],[4],[]]$
$\lambda>$ tails []
[[]]
$\lambda>$ tails [1..]
${ }^{-}$C Interrupted.
$\lambda>$ head (tails [1..])

- C Interrupted.

Suffixing

Data.List.tails :: [a] -> [[a]]
tails returns all final segments of the argument, longest first.
tails1 :: [a] -> [[a]]
tails1 [] = [[]]
tails1 (x:xs) = (x:xs):tails1 xs
tails2 :: [a] -> [[a]]
tails2 [] = [[]]
tails2 xs@(_:xs') = xs:tails2 xs'

Reversing

Data.List.reverse :: [a] -> [a]
reverse xs returns the elements of xs in reverse order. xs must be finite.

Reversing

Data.List.reverse :: [a] -> [a]
reverse xs returns the elements of xs in reverse order. xs must be finite.
$\lambda>$ reverse [1..5]
[5, 4, 3, 2, 1]
$\lambda>$ reverse []
[]
$\lambda>$ reverse [1..]
${ }^{\text {C C Interrupted. }}$

Reversing

Data.List.reverse :: [a] -> [a]
reverse xs returns the elements of $x s$ in reverse order. xs must be finite.
-- inefficient because of (++)
reverse1 :: [a] -> [a]
reverse1 [] = []
reverse1 (x:xs) = reverse1 xs ++ [x]
-- using an accumulator is much more efficient
reverse2 :: [a] -> [a]
reverse2 = go []
where

$$
\begin{array}{ll}
\text { go acc }[] & =\operatorname{acc} \\
\text { go acc }(x: x s) & =\text { go (} x: a c c)
\end{array}
$$

Cutting last

Data.List.init :: [a] -> [a]
init returns all the elements of a list except the last one. The list must be non-empty.

Cutting last

Data.List.init :: [a] -> [a]
init returns all the elements of a list except the last one. The list must be non-empty.
$\lambda>$ init [1,2,3,4]
$[1,2,3]$
$\lambda>$ init [1]
[]
$\lambda>$ init []
*** Exception: Prelude.init: empty list

Cutting last

Data.List.init :: [a] -> [a]
init returns all the elements of a list except the last one. The list must be non-empty.

```
init1 :: [a] -> [a]
init1 [] = error "*** Exception: init': empty list"
init1 [_] = []
init1 (x:xs) = x:init' xs
```

-- with functors and Maybe type
safeInit : : [a] -> Maybe [a]
safeInit [] = Nothing
safeInit [_] = Just []
safeInit $(x: x s)=(x:)<\$>$ safeInit xs

Prefixing

Data.List.inits :: [a] -> [[a]]
inits returns all initial segments of the argument, shortest first.

Prefixing

Data.List.inits :: [a] -> [[a]]
inits returns all initial segments of the argument, shortest first.
$\lambda>$ inits [1..4]
[[] , [1] , [1, 2] , [1, 2, 3] , [1, 2, 3, 4]]
$\lambda>$ inits [1]
[[], [1]]
$\lambda>$ inits []
[[]]
$\lambda>$ inits [1..]
[[], [1], [1, 2], [1, 2, 3], [1, 2, 3, 4], ... ${ }^{\wedge}$ C Interrupted.
$\lambda>$ head (inits [1..])

Prefixing

Data.List.inits :: [a] -> [[a]]
inits returns all initial segments of the argument, shortest first.
inits1 :: [a] -> [[a]]
inits1 [] = [[]]
inits1 xs = inits1 (init xs) ++ [xs]
inits2 :: [a] -> [[a]]
inits2 = reverse . go
where

$$
\begin{aligned}
& \text { go }[]=[[]] \\
& \text { go } x s=\text { xs:go (init xs) }
\end{aligned}
$$

Interspersing

$$
\begin{aligned}
& \text { Data.List.intersperse :: a }->\text { [a] }->\text { [a] } \\
& \text { intersperse takes an element and a list and intersperses that } \\
& \text { element between the elements of the list. }
\end{aligned}
$$

Interspersing

Data.List.intersperse : : a -> [a] -> [a]
intersperse takes an element and a list and intersperses that element between the elements of the list.
$\lambda>$ intersperse ',' ['a','b','c','d']
"a,b,c,d"
$\lambda>$ intersperse $0[1,2,3,4]$
[1, 0,2, 0, 3, 0, 4]
$\lambda>$ intersperse [0] [[1,2], [3,4], [5,6]]
$[[1,2],[0],[3,4],[0],[5,6]]$

Interspersing

Data.List.intersperse : : a -> [a] -> [a]
intersperse takes an element and a list and intersperses that element between the elements of the list.
intersperse1 :: a -> [a] -> [a]
intersperse1 _ [] = []
intersperse1 _ $[\mathrm{x}]=[\mathrm{x}]$
intersperse1 y (x:xs) = x:y:intersperse1 i xs

Concatening

Data. List. concat : : Foldable t => t [a] -> [a]
concat concatenates a list of lists.

Concatening

```
Data.List.concat :: Foldable t => t [a] -> [a]
concat concatenates a list of lists.
\lambda> concat [[1,2],[3,4],[5,6]]
[1,2,3,4,5,6]
\lambda> concat [[1,2]]
[1,2]
\lambda> concat [[]]
[]
\lambda> concat []
[]
```


Concatening

```
Data.List.concat :: Foldable t => t [a] -> [a]
concat concatenates a list of lists.
-- recursive
concat1 :: [[a]] -> [a]
concat1 [] = []
concat1 (xs:xss) = xs ++ concat1 xss
-- with a list comprehension
concat2 :: [[a]] -> [a]
concat2 xss = [x | xs <- xss, x <- xs]
```


Intercalating

Data.List.intercalate :: [a] -> [[a]] -> [a]
intercalate xs xss inserts the list xs in between the lists in xss and concatenates the result.

Intercalating

Data.List.intercalate :: [a] -> [[a]] -> [a]
intercalate xs xss inserts the list xs in between the lists in xss and concatenates the result.
$\lambda>$ intercalate [0] [[1,2], [3,4], [5,6]]
[1, 2, 0, 3, 4, 0, 5, 6]
$\lambda>$ intercalate [0] [[1,2]]
$[1,2]$
$\lambda>$ intercalate [0] []
[]
$\lambda>$ intercalate " -> " ["task1","task2","task3"]
"task1 -> task2 -> task3"

Intercalating

Data.List.intercalate :: [a] -> [[a]] -> [a]
intercalate xs xss inserts the list xs in between the lists in xss and concatenates the result.
intercalate1 :: [a] -> [[a]] -> [a]
intercalate1 _ [] = []
intercalate1 _ [xs] = xs
intercalate1 xs' (xs:xss) = xs ++ xs' ++ intercalate1 xs' xss
intercalate2 :: [a] -> [[a]] -> [a]
intercalate2 xs xss = concat (intersperse xs xss)

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]
zip takes two lists and returns a list of corresponding pairs.

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]
zip takes two lists and returns a list of corresponding pairs.
$\lambda>\operatorname{zip}[1,2,3]\left[' a^{\prime}, ' b '^{\prime} c^{\prime}\right]$
$\left[\left(1\right.\right.$, 'a' $\left.\left.^{\prime}\right),\left(2, b^{\prime}\right),\left(3, c^{\prime}\right)\right]$
$\lambda>\operatorname{zip}[1,2,3,4]\left[a^{\prime}, ' b ', ' c '\right]$
[(1,'a'),(2,'b'),(3,'c')]
$\lambda>\operatorname{zip}[1,2,3]\left[{ }^{\prime}{ }^{\prime}, ' b ', ' c ', ' d '\right]$
[(1,'a'),(2,'b'),(3,'c')]

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]
zip takes two lists and returns a list of corresponding pairs.
zip :: [a] -> [b] -> [(a, b)]
zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y):zip xs ys

Zipping - In practice

Index a list from a given integer.

```
\lambda> index 0 ['a'..'f']
[(0,'a'),(1,'b'),(2,'c'),(3,'d'),(4,'e'),(5,'f')]
\lambda> index 1 ['a'..'f']
[(1,'a'),(2,'b'),(3,'c'),(4,'d'),(5,'e'),(6,'f')]
\lambda> index (2^10) ['a'..'e']
[(1024,'a'),(1025,'b'),(1026,'c'),(1027,'d'),(1028,'e')]
\lambda> index2 (-10) ['a'..'f']
[(-10,'a'),(-9,'b'),(-8,'c'),(-7,'d'),(-6,'e'),(-5,'f')]
```


Zipping - In practice

Index a list from a given integer.
index1 :: Num a $=>$ a -> [b] -> [(a, b)]
index1 _ [] = []
index1 $\mathrm{n}(\mathrm{x}: \mathrm{xs})=(\mathrm{n}, \mathrm{x}):$ index1 ($\mathrm{n}+1$) xs
index2 :: Enum a => a -> [b] -> [(a, b)]
index2 n xs = zip [n..] xs

Zipping - In practice

Implementing take with zip.
take3 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]
take3 n xs = go (zip xs [1..])
where

$$
\begin{aligned}
& \text { go }((x, i): x i s) \\
& \quad \left\lvert\, \begin{array}{l}
\text { i }<=n=x: \text { go xis } \\
\text { | otherwise }=[]
\end{array}\right.
\end{aligned}
$$

take4 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]
take4 n xs = go \$ zip xs [1..]
where

$$
\begin{aligned}
& \text { go }((x, i): x i s) \\
& \quad \left\lvert\, \begin{array}{l}
\text { i }<=n=x: \text { go xis } \\
\text { | otherwise }=[]
\end{array}\right.
\end{aligned}
$$

Zipping - In practice

Implementing take with zip.
-- don't do this!!!
-- infinite computation: a predicate does not stop
-- the infinite enumeration (we are just skipping
-- values again and again).
take5 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]
take5 n xs = [x | (x, i) <- zip xs [1..], i <= n]
-- not better!
take5 :: Int -> [a] -> [a]
take5 n xs $=$ [$\mathrm{x} \mid(\mathrm{x}, \mathrm{i})<-\mathrm{zip} \mathrm{xs}$ [1..nxs], i <= n]
where
nxs = length xs

Anding

$$
\begin{aligned}
\text { Data.Foldable. and :: Foldable t }=> & \text { t Bool }->\text { Bool } \\
& {[\text { Bool] -> Bool }}
\end{aligned}
$$

and returns the conjunction of a Boolean list, the result can be True only for finite lists

Anding

$$
\begin{aligned}
\text { Data.Foldable. and :: Foldable t }=> & \text { t Bool }->\text { Bool } \\
& {[\text { Bool] -> Bool }}
\end{aligned}
$$

and returns the conjunction of a Boolean list, the result can be True only for finite lists

```
\lambda> and []
```

True
$\lambda>$ and [True]
True
$\lambda>$ and [False]
False
$\lambda>$ and (take 100 (repeat True) ++ [False])
False

Anding

$$
\begin{aligned}
\text { Data.Foldable. and :: Foldable t }=> & \text { t Bool }->\text { Bool } \\
& {[\text { Bool] -> Bool }}
\end{aligned}
$$

and returns the conjunction of a Boolean list, the result can be True only for finite lists

```
and1 :: [Bool] -> Bool
and1 [] = True
and1 (False:_) = False
and1 (True:bs) = and1 bs
and2 [] = True
and2 (b:bs) = b && and2 bs
```

$$
\begin{aligned}
\text { Data. Foldable. or : : Foldable } t ~ & \text { t Bool } \rightarrow \text { Bool } \\
& {[\text { Bool] }->\text { Bool }}
\end{aligned}
$$

or returns the disjunction of a Boolean list, the result can be True only for finite lists

Oring

$$
\begin{aligned}
\text { Data.Foldable. or :: Foldable t } \Rightarrow & t \text { Bool } \rightarrow \text { Bool } \\
& {[\text { Bool] } \rightarrow \text { Bool }}
\end{aligned}
$$

or returns the disjunction of a Boolean list, the result can be True only for finite lists
$\lambda>$ or []
False
$\lambda>$ or [True]
True
$\lambda>$ or (take 100 (repeat False))
False
$\lambda>$ or (take 100 (repeat False) ++ [True])
True

Oring

$$
\begin{aligned}
\text { Data. Foldable. or :: Foldable t } \Rightarrow & t \text { Bool } \rightarrow \text { Bool } \\
& {[\text { Bool] } \rightarrow \text { Bool }}
\end{aligned}
$$

or returns the disjunction of a Boolean list, the result can be True only for finite lists

```
or1 :: [Bool] -> Bool
or1 [] = False
or1 (True:_) = True
or1 (False:bs) = or1 bs
or2 :: [Bool] -> Bool
or2 [] = False
or2 (b:bs) = b || or2 bs
```


Maximizing

```
Data.Foldable.maximum :: (Foldable t, Ord a) => t a -> a
    [a] -> a
```

maximum returns the largest element of a non-empty structure.
(minimum returns the largest element of a non-empty structure).
$\lambda>$ maximum []
*** Exception: Prelude.maximum: empty list
$\lambda>$ maximum [1]
1
$\lambda>$ maximum $[4,3,7,1,8,6,2,3,5]$
8
$\lambda>$ maximum $[2,3,1,4,3,1,2,4]$
4

Maximizing

```
Data.Foldable.maximum :: (Foldable t, Ord a) => t a -> a
    [a] -> a
maximum1 :: Ord a => [a] -> a
maximum1 [] = error "empty list"
maximum1 [x] = x
maximum1 (x:xs) = let m = maximum1 xs
                                in if m>x then m else x
maximum2 :: Ord a => [a] -> a
maximum2 [] = error "empty list"
maximum2 [x] = x
maximum2 (x:xs) = max x (maximum2 xs)
```


Maximizing

```
Data.Foldable.maximum :: (Foldable t, Ord a) => t a -> a
    [a] -> a
maximum3 :: Ord a => [a] -> a
maximum3 [] = error "empty list"
maximum3 (x:xs) = go x xs
    where
    go m [] =m
    | x' > m = go x' xs'
    | otherwise = go m xs'
```


High-order functions

Lists

Enumerations

List comprehensions
Processing lists - basic functions
High-order functions
Origami programming
Curried functions \& friends
Processing lists - revisit

High-order functions

- A function that takes a function as an argument or returns a function as a result is called a high-order function.
- Because the term curried already exists for returning functions as results, the ther high-order is often just used for taking functions as arguments.
- Using high-order functions considerably increases the power of Haskell by allowing common programming patterns to be encapsulated as functions within the language itself.

Filtering

Data.List.filter :: (a -> Bool) -> [a] -> [a]
filter applied to a predicate and a list, returns the list of those elements that satisfy the predicate.

Filtering

Data.List.filter :: (a -> Bool) -> [a] -> [a]
filter applied to a predicate and a list, returns the list of those elements that satisfy the predicate.
$\lambda>$ filter even [1..10]
[2,4,6,8,10]
$\lambda>$ filter ($\backslash \mathrm{x}$-> x `mod` 2 == 0) [1..10]
[2,4,6,8,10]
$\lambda>$ filter ($\backslash x$-> even x \&\& odd x) [1..10]
[]
$\lambda>$ filter (> 5) $[1,5,2,6,3,7,4,8]$
[6, 7,8]
$\lambda>$ filter (<= 5) [1,5,2,6,3,7,4,8]
[1,5,2,3,4]

Filtering

Data.List.filter : : (a -> Bool) -> [a] -> [a]
filter applied to a predicate and a list, returns the list of those elements that satisfy the predicate.
-- recursive
filter1 : : (a -> Bool) -> [a] -> [a]
filter1 _ [] = []
filter1 p (x:xs)
$\mathrm{p} x \quad=\mathrm{x}$:filter1 p xs
| otherwise $=$ filter1 p xs
-- with a list comprehension
filter2 :: (a -> Bool) -> [a] -> [a]
filter2 p xs $=[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p} \mathrm{x}]$

Mapping

Data.List.map :: (a -> b) -> [a] -> [b] map f xs is the list obtained by applying f to each element of $x s$.

Mapping

Data.List.map :: (a -> b) -> [a] -> [b]
map f xs is the list obtained by applying f to each element of x s.
$\lambda>\operatorname{map}(* 2)[1 . .5]$
[2,4,6,8,10]
$\lambda>\operatorname{map}$ even [1..5]
[False,True, False, True, False]
$\lambda>\operatorname{map}(\backslash x->2 * x)[1 . .5]$-- equiv map (2*) [1..5]
[2,4,6,8,10]
$\lambda>\operatorname{map}(\backslash x->[x])[1 . .5]$
[[1], [2], [3] , [4], [5]]

Mapping

Data.List.map :: (a -> b) -> [a] -> [b]
map f xs is the list obtained by applying f to each element of x s.

```
\lambda> map (map (* 2)) [[1,2,3],[4,5,6],[7,8,9]]
[[2,4,6],[8,10,12],[14,16,18]]
\lambda> map (filter even) [[1,2,3],[4,5,6],[7,8,9]]
[[2], [4,6], [8]]
\lambda> map length [[1,2,3],[4,5,6],[7,8,9]]
[3,3,3]
\lambda> map (take 2) [[1,2,3],[4,5,6],[7,8,9]]
[[1,2],[4,5], [7, 8]]
```


Mapping

Data.List.map :: (a -> b) -> [a] -> [b]
map f xs is the list obtained by applying f to each element of xs.
-- recursive
map1 :: (a -> b) -> [a] -> [b]
map1 _ [] = []
map1 $f(x: x s)=f x: m a p 1 f x s$
-- with a list comprehension
map2 :: (a -> b) -> [a] -> [b]
map1 f xs $=[f \times x \mid x<-x s]$

Mapping - In practice

You are constructing a numeric matrix (as a list of lists), but you want to add extra columns to pad on the right side.

Mapping - In practice

You are constructing a numeric matrix (as a list of lists), but you want to add extra columns to pad on the right side.

$$
M=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]
$$

$$
M^{\prime}=\left[\begin{array}{lllllll}
1 & 2 & 0 & 0 & 0 & 0 & 0 \\
3 & 4 & 0 & 0 & 0 & 0 & 0 \\
5 & 6 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
m=[[1,2],
$$

$[3,4]$,
$[5,6]]$

$$
\begin{aligned}
& m^{\prime}=[[1,2,0,0,0,0,0] \text {, } \\
& {[3,4,0,0,0,0,0] \text {, }} \\
& [5,6,0,0,0,0,0]]
\end{aligned}
$$

Mapping - In practice

You are constructing a numeric matrix (as a list of lists), but you want to add extra columns to pad on the right side.
$\lambda>m=[[1,2],[3,4],[5,6]]$
$\lambda>$ addExtraColumns 0 m
$[[1,2],[3,4],[5,6]]$
$\lambda>$ addExtraColumns 1 m
[[1, 2, 0], [3, 4, 0], [5, 6, 0]]
$\lambda>$ addExtraColumns 5 m
$[[1,2,0,0,0,0,0],[3,4,0,0,0,0,0],[5,6,0,0,0,0,0]]$

Mapping - In practice

You are constructing a numeric matrix (as a list of lists), but you want to add extra columns to pad on the right side.
addExtraColumns1 :: Num a => Int -> [[a]] -> [[a]]
addExtraColumns1 k xss = map (++ yss) xss
where

$$
\text { yss = replicate k } 0
$$

Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile, applied to a predicate p and a list xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p.

Taking with a predicate

Data.List.takeWhile : : (a -> Bool) -> [a] -> [a]
takeWhile, applied to a predicate p and a list xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p.
$\lambda>$ takeWhile (< 10) [1..20]
[1,2,3,4,5,6,7,8,9]
$\lambda>$ takeWhile odd ([1,3..10] ++ [1..10])
[1,3,5,7,9,1]
$\lambda>$ takeWhile even [1..10]
[]
$\lambda>$ takeWhile (> 0) (map (`mod` 5) [1..10])
[1,2,3,4]

Taking with a predicate

Data.List.takeWhile : : (a -> Bool) -> [a] -> [a]
takeWhile, applied to a predicate p and a list xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p.
takeWhile1 :: (a -> Bool) -> [a] -> [a]
takeWhile1 _ [] = []
takeWhile1 p (x:xs)

$$
\begin{array}{ll}
\mid \mathrm{px} & =\mathrm{x}: \text { takeWhile1 } \mathrm{p} \text { xs } \\
\text { | otherwise } & =[]
\end{array}
$$

Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a] dropWhile p xs returns the suffix remaining after takeWhile p xs.

Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a] dropWhile p xs returns the suffix remaining after takeWhile p xs.
$\lambda>$ dropWhile (< 10) [1..20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
$\lambda>$ dropWhile odd ([1,3..10] ++ [1..10])
[2,3,4,5,6,7,8,9,10]
$\lambda>$ dropWhile even [1..10]
[1,2,3,4,5,6,7,8,9,10]
$\lambda>$ dropWhile (> 0) (map (`mod` 5) [1..10])
[0,1,2,3,4,0]
$\lambda>$ dropWhile (< 3) (takeWhile (< 6) [1..10])
[3,4,5]

Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a] dropWhile p xs returns the suffix remaining after takeWhile p xs.
dropWhile1 :: (a -> Bool) -> [a] -> [a]
dropWhile1 _ [] = []
dropWhile1 p (x:xs)
| $\mathrm{p} x \quad=$ dropWhile1 $\mathrm{p} x \mathrm{~s}$
| otherwise = x:xs
dropWhile2 :: (a -> Bool) -> [a] -> [a]
dropWhile2 _ [] = []
dropWhile2 p xs@(x:xs')

```
| p x = dropWhile2 p xs'
    | otherwise = xs
```


Iterating

Data.List.iterate :: (a -> a) -> a -> [a]
iterate creates an infinite list where the first item is calculated by applying the function on the second argument, the second item by applying the function on the previous result, and so on.
$\lambda>$ iterate ($\backslash \mathrm{x}->\mathrm{x}+1$) 1 -- equiv iterate (+1) 1
$[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, \ldots$
-C Interrupted.
$\lambda>$ take 10 (iterate ($\backslash \mathrm{x}->\mathrm{x}+1$) 1)
[1,2,3,4,5,6,7,8,9,10]
$\lambda>$ take 10 (iterate (+1) 1)
[1,2,3,4,5,6,7,8,9,10]
$\lambda>$ takeWhile (< 10) (iterate (+1) 1)
[1,2,3,4,5,6,7,8,9]

Iterating

Data.List.iterate : : (a -> a) -> a -> [a]
iterate1 :: (a -> a) -> a -> [a]
iterate1 $f x=$ let $y=f x$ in y iterate1 $f y$
iterate1 f x

```
= x:iterate1 (f x)
= x:f x:iterate1 (f (f x))
= x:f x:f (f x):iterate1 (f (f (f x)))
= ...
```


Iterating

Data.List.iterate : : (a -> a) -> a -> [a]
iterate2 :: (a -> a) -> a -> [a]
iterate2 $\mathrm{f} x=\mathrm{x}:[\mathrm{f} \mathrm{y} \mid \mathrm{y}<-$ iterate2 f x$]$
iterate2 f x

$$
\begin{aligned}
& =x:[f \mathrm{y} \mathrm{\mid} \mathrm{y} \mathrm{<-} \mathrm{iterate2} \mathrm{f} \mathrm{x]} \\
& =x: f x:[f \text { y | y <- iterate2 f (f x)] } \\
& =x: f x: f(f x):[f \text { y | y <- iterate2 f (f (f x))] } \\
& =\ldots
\end{aligned}
$$

Zipping with functions

Data.List.zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith generalises zip by zipping with the function given as the first argument, instead of a tupling function.
$\lambda>$ zipWith (+) [0..4] [10..14]
[10,12,14,16,18]
$\lambda>$ zipWith (\x y -> (x,y)) [1,2,3] ['a','b','c']
[(1,'a'),(2,'b'),(3,'c')]
$\lambda>$ zipWith (,) [1,2,3] ['a','b','c']
[(1,'a'),(2,'b'), (3,'c')]
$\lambda>\mathrm{f} x \mathrm{~b}=$ if b then $\mathrm{x} * 10$ else x
$\lambda>$ zipWith f [1,2,3,4] [True,False,True,False]
[10,2,30,4]

Zipping with functions

Data.List.zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith1 :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith1 _ [] - = []
zipWith1 _ _ [] = []
zipWith1 $f(x: x s)(y: y s)=f x y: z i p W i t h 1 f$ xs ys
zip2 :: [a] -> [b] -> [(a,b)]
zip2 = zipWith1 (,)

Zipping with functions - In practice

Determine whether a list is in non-decreasing order.

```
nonDec1 :: Ord a => [a] -> Bool
nonDec1 [] = True
nonDec1 [_] = True
nonDec1 (x1:x2:xs) = x1 <= x2 && nonDec1 (x2:xs)
```

nonDec2 :: Ord a => [a] -> Bool
nonDec2 [] = True
nonDec2 [_] = True
nonDec2 (x1:xs@(x2:_)) = x1 <= x2 \&\& nonDec2 xs
nonDec3 :: Ord a => [a] -> Bool
nonDec3 xs = and \$ zipWith (<=) xs (tail xs)

Zipping with functions - In practice

You are constructing a numeric matrix (as a list of lists), but you want to add extra columns to pad on the right side.

Zipping with functions - In practice

You are constructing a numeric matrix (as a list of lists), but you want to add extra columns to pad on the right side.

$$
M=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]
$$

$$
M^{\prime}=\left[\begin{array}{lllllll}
1 & 2 & 0 & 0 & 0 & 0 & 0 \\
3 & 4 & 0 & 0 & 0 & 0 & 0 \\
5 & 6 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{m}= {[} \\
& {[1,2], } \\
& {[3,4], } \\
& {[5,6]] }
\end{aligned}
$$

$$
\begin{aligned}
& m^{\prime}=[[1,2,0,0,0,0,0] \text {, } \\
& {[3,4,0,0,0,0,0] \text {, }} \\
& [5,6,0,0,0,0,0]]
\end{aligned}
$$

Zipping with functions - In practice

You are constructing a numeric matrix (as a list of lists), but you want to add extra columns to pad on the right side.
$\lambda>m=[[1,2],[3,4],[5,6]]$
$\lambda>$ addExtraColumns 0 m
[[1, 2], [3, 4], [5, 6]]
$\lambda>$ addExtraColumns 1 m
[[1, 2, 0], [3, 4, 0], [5, 6, 0]]
$\lambda>$ addExtraColumns 5 m
$[[1,2,0,0,0,0,0],[3,4,0,0,0,0,0],[5,6,0,0,0,0,0]]$

Zipping with functions - In practice

You are constructing a numeric matrix (as a list of lists), but you want to add extra columns to pad on the right side.
addExtraColumns1 :: Num a => Int -> [[a]] -> [[a]] addExtraColumns1 k xss = map (++ yss) xss where

$$
\text { yss = replicate k } 0
$$

addExtraColumns2 :: Num a => Int -> [[a]] -> [[a]]
addExtraColumns2 k xss = zipWith (++) xss yss where

$$
\text { yss = repeat \$ replicate k } 0
$$

Zipping with functions - In practice

The Leibniz formula for π, named after Gottfried Leibniz, states that

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots
$$

Zipping with functions - In practice

The Leibniz formula for π, named after Gottfried Leibniz, states that

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots
$$

approxPi1 $\mathrm{k}=4 *$ sum (take k xs)
where

$$
\begin{aligned}
& \mathrm{ss}=\left[(-1)^{\wedge} \mathrm{n} \mid \mathrm{n}<-[0 \ldots]\right] \\
& \mathrm{xs}=\operatorname{zipWith}(*) \operatorname{ss}(\operatorname{map}(1 /) \text { (iterate (+2) 1)) }
\end{aligned}
$$

approxPi2 $\mathrm{k}=4 * \operatorname{sum}$ (take k xs)
where

$$
\begin{aligned}
& \mathrm{ss}=1:[(-1) * \mathrm{~s} \mid \mathrm{s}<-\mathrm{ss}] \\
& \mathrm{xs}=\text { zipWith (*) ss (map (1/) (iterate (+2) 1)) }
\end{aligned}
$$

Zipping with functions - In practice

The Leibniz formula for π, named after Gottfried Leibniz, states that

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots
$$

$\lambda>$ pi
3.141592653589793
$\lambda>$ let $\mathrm{n}=10$ in approxPi1 n
3.0418396189294032
$\lambda>$ let $\mathrm{n}=100$ in approxPi1 n
3.1315929035585537
$\lambda>$ let $\mathrm{n}=10000$ in approxPi1 n
3.1414926535900345

Zipping with functions - In practice

The Leibniz formula for π, named after Gottfried Leibniz, states that

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots
$$

$\lambda>\mathrm{ns}=$ iterate (*10) 1
$\lambda>$ mapM_ print (take 8 [pi / approxPi1 n | n <- ns])
0.7853981633974483
1.0327936535639899
1.0031931832582315
1.0003184111600008
1.0000318320017856
1.0000031831090173
1.0000003183099935
1.00000003183099

η-conversion

An eta conversion (also written η-conversion) is adding or dropping of abstraction over a function.

The following two values are equivalent under η-conversion:
\x -> someFunction x
and
someFunction

Converting from the first to the second would constitute an η-reduction, and moving from the second to the first would be an eta-expansion.

The term η-conversion can refer to the process in either direction.

η-conversion

```
insertEntry :: Entry -> AddressBook -> AddressBook
insertEntry entry book = Cons entry book
\eta}\downarrow\mathrm{ \-reduction
insertEntry :: Entry -> AddressBook -> AddressBook
insertEntry entry = Cons entry
        \downarrow
insertEntry :: Entry -> AddressBook -> AddressBook
insertEntry entry = Cons
```


The composition operator

The high-order library operator . returns the composition of two function as a single function
(.) :: (b -> c) -> (a -> b) -> (a -> c)
f. $\mathrm{g}=\backslash \mathrm{x}->\mathrm{f}(\mathrm{g} \mathrm{x})$
f . g , which is read as f composed with g , is the function that takes an argument x , applies the function g to this argument, and applies the function f to the result.

The composition operator

Composition can be used to simplify nested function applications, by reducing parentheses ans avoiding the need to explicitly refer to the initial argument.

The composition operator

Composition can be used to simplify nested function applications, by reducing parentheses ans avoiding the need to explicitly refer to the initial argument.

```
odd1 :: Integral a => a -> Bool
odd1 n = not (even n)
```

odd2 :: Integral a => a -> Bool
odd2 $\mathrm{n}=($ not . even) n -- i.e., odd2 $=\backslash x$-> not (even
odd3 :: Integral a => a -> Bool
odd3 = not . even

The composition operator

Composition can be used to simplify nested function applications, by reducing parentheses ans avoiding the need to explicitly refer to the initial argument.

```
twice1 :: (a -> a) -> a -> a
twice1 f x = f (f x)
twice2 :: (a -> a) -> a -> a
twice2 f x = (f . f) x -- i.e., twice2 = \x -> f (f x)
twice3 :: (a -> a) -> a -> a
twice3 f = f . f
```


The composition operator

Composition is associative
$\mathrm{f} \cdot(\mathrm{g} \cdot \mathrm{h})=\mathrm{f} \cdot \mathrm{g} \cdot \mathrm{h}$
for any functions f, g and h of the appropriate types.

```
sumSqrEven1 :: Integral a => [a] -> a
sumSqrEven1 xs = sum (map (`2) (filter even xs))
sumSqrEven2 :: Integral a => [a] -> a
sumSqrEven2 xs = (sum . map (`2) . filter even) xs
sumSqrEven3 :: Integral a => [a] -> a
sumSqrEven3 = sum . map (`2) . filter even
```


The composition operator

Composition also has an identity, given by the identity function:
id :: a -> a
id $=$ \x -> x

For any function f :
id . $f=f$
f . id = f

The composition operator

Composition also has an identity, given by the identity function:

```
\lambda> f = head . id
\lambda> f [1,2,3,4]
1
f = head . id
    = \x -> head (id x)
    = \x -> head x
    = head
```


The composition operator

Composition also has an identity, given by the identity function:

$$
\begin{aligned}
& \lambda>g=i d \cdot h e a d \\
& \lambda>g[1,2,3,4] \\
& 1
\end{aligned} \quad \begin{aligned}
g & =\text { id } \cdot \text { head } \\
& =\backslash x->\text { id (head } x) \\
& =\backslash x->\text { head } x \\
& =\text { head }
\end{aligned}
$$

The composition operator

Composition also has an identity, given by the identity function:

```
\lambda> :type take
take :: Int -> [a] -> [a]
\lambda> f = take . id
\lambda> f 3 [1..10]
[1,2,3]
f = take . id
    = \x -> take (id x)
    = \x -> take x -- :: Int -> ([a] -> [a])
    = take
```


The composition operator

Composition also has an identity, given by the identity function:

$$
\begin{aligned}
& \lambda>\text { :type take } \\
& \text { take :: Int -> [a] -> [a] } \\
& \lambda>\mathrm{g}=\mathrm{id} . \text { take } \\
& \lambda>\mathrm{g} 3 \text { [1...10] } \\
& {[1,2,3]} \\
& \text { g = id . take } \\
& =\backslash x \text {-> id (take } x \text {) } \\
& \text { = \x -> take } \mathrm{x} \text {-- : : Int -> ([a] -> [a]) } \\
& \text { = take }
\end{aligned}
$$

The function application operator

The $\$$ is an operator for function application.
(\$) : : (a -> b) -> a -> b
f \$ $x=f x$

All this does is apply a function. So, $f \$ x$ exactly equivalent to $f \mathrm{x}$:
$\lambda>$ head $\$[1,2,3,4]$ 1
$\lambda>$ tail \$ [1, 2, 3, 4]
[2,3,4]
$\lambda>\operatorname{map}(+1) \$[1,2,3,4]$
[2,3,4,5]

The function application operator

This seems utterly pointless, until you look beyond the type.
$\lambda>$:info (\$)
(\$) :: (a -> b) -> a -> b -- Defined in 'GHC.Base’
infixr 0 \$

The function application operator

This seems utterly pointless, until you look beyond the type.
$\lambda>$:info (\$)
(\$) :: (a -> b) -> a -> b -- Defined in 'GHC.Base’
infixr 0 \$

This little note holds the key to understanding the ubiquity of (\$): infixr 0.

- infixr tells us it's an infix operator with right associativity.
- 0 tells us it has the lowest precedence possible.

In contrast, normal function application (via white space)

- is left associative and
- has the highest precedence possible (10).

The function application operator

Compare

```
\lambda> take 10 "Haskell " ++ "rocks!"
"Haskell rocks!"
\lambda> (take 10 "Haskell ") ++ "rocks!"
"Haskell rocks!"
```

with
$\lambda>$ take 10 \$ "Haskell " ++ "rocks!"
"Haskell ro"
$\lambda>$ take 10 ("Haskell " ++ "rocks!")
"Haskell ro"

The function application operator

```
One pattern where you see the dollar sign used sometimes is between a chain of composed functions and an argument being passed to (the first of) those.
\lambda> sum . drop 3 . take 5 [1..10]
error.
\lambda> sum . drop 3 . take 5 $ [1..10]
9
\lambda> (sum . drop 3 . take 5) [1..10]
9
\lambda> sum . drop 3 $ take 5 [1..10]
9
```

The function application operator

Function application.

```
\lambda> map (\f -> f 2) [(* i) | i <- [1,2,3,4,5]]
[2,4,6,8,10]
\lambda> map 2[(* i) | i <- [1,2,3,4,5]]
error.
\lambda> map ($ 2) [(* i) | i <- [1,2,3,4,5]]
    [2,4,6,8,10]
\lambda> map ($ 2) [f i | f <- [(*),(+)], i <- [1,2,3,4,5]]
[2,4,6,8,10, 3,4,5,6,7]
```


And a curiosity

\$ is just an identity function for ...functions.
(\$) : : (a -> b) -> a -> b
$::(\mathrm{a}->\mathrm{b})$-> ($\mathrm{a}->\mathrm{b}$)
id :: a -> a

$$
::(\mathrm{a}->\mathrm{b})->(\mathrm{a}->\mathrm{b})-- \text { for } a \sim a->b
$$

And a curiosity

\$ is just an identity function for ...functions.

$$
\begin{aligned}
(\$) & ::(\mathrm{a}->\mathrm{b})->\mathrm{a}->\mathrm{b} \\
& ::(\mathrm{a}->\mathrm{b}) \rightarrow(\mathrm{a}->\mathrm{b}) \\
\text { id } & :: \mathrm{a}->\mathrm{a} \\
& :(\mathrm{a}->\mathrm{b}) \rightarrow(\mathrm{a}->\mathrm{b})-\text { for } a \sim a \rightarrow b
\end{aligned}
$$

$$
\lambda>\text { (sum . drop } 3 \text {. take 5) [1..10] }
$$

$$
9
$$

$$
\lambda>\text { sum . drop } 3 \text { \$ take } 5 \text { [1..10] }
$$

$$
9
$$

$$
\lambda>\text { (sum . drop 3) `id` take } 5 \text { [1..10] }
$$

$$
9
$$

$\lambda>$ id (sum . drop 3) (take 5 [1..10])

Origami programming

Lists

Enumerations

List comprehensions
Processing lists - basic functions

High-order functions
Origami programming
Curried functions \& friends
Processing lists - revisit

Folding

- In functional programming, fold is a family of higher order functions that process a data structure in some order and build a return value.
- This is as opposed to the family of unfold functions which take a starting value and apply it to a function to generate a data structure.
- A fold deals with two things:

1. a combining function, and
2. a data structure.

The fold then proceeds to combine elements of the data structure using the function in some systematic way.

Folding right

$$
\begin{aligned}
& \text { foldr : : (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr f } \mathrm{z}[]=\mathrm{z} \\
& \text { foldr f } \mathrm{z}(\mathrm{x}: \mathrm{xs})=\mathrm{fx}(\text { foldr } \mathrm{f} \mathrm{z} \mathrm{xs})
\end{aligned}
$$

Folding right

$$
\begin{aligned}
& \text { foldr : : (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr f z [] }=\mathrm{z} \\
& \text { foldr f } z(x: x s)=f x \text { (foldr f } z \text { xs) } \\
& \text { foldr (+) } 0 \text { [1,2,3,4] } \\
& =(+) 1 \text { (foldr (+) } 0[2,3,4] \\
& =(+) 1((+) 2 \text { (foldr (+) } 0[3,4]) \\
& =(+) 1((+) 2((+) 3 \text { (foldr (+) } 0 \text { [4]) } \\
& =(+) 1((+) 2((+) 3((+) 4 \text { (foldr (+) } 0 \text { []) } \\
& =(+) 1((+) 2((+) 3((+) 40) \text {-- stop recursion } \\
& =(+) 1((+) 2((+) 34) \\
& =(+) 1((+) 27) \\
& =(+) 19 \\
& =10
\end{aligned}
$$

Folding right

$$
\begin{aligned}
& \text { foldr :: (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr f z [] = z } \\
& \text { foldr f } z(x: x s)=f x \text { (foldr f } z \text { xs) } \\
& \text { foldr (:) [] [1,2,3,4] } \\
& \text { = (:) } 1 \text { (foldr (:) [] [2,3,4] } \\
& \text { = (:) } 1 \text { ((:) } 2 \text { (foldr (:) [] [3,4]) } \\
& \text { = (:) } 1 \text { ((:) } 2 \text { ((:) } 3 \text { (foldr (:) [] [4]) } \\
& =(:) 1 \text { ((:) } 2 \text { ((:) } 3 \text { ((:) } 4 \text { (foldr (:) [] []) } \\
& \text { = (:) } 1 \text { ((:) } 2 \text { ((:) } 3 \text { ((:) } 4 \text { []) -- stop recursion } \\
& \text { = (:) } 1 \text { ((:) } 2 \text { ((:) } 3 \text { 4:[]) } \\
& \text { = (:) } 1 \text { ((:) } 2 \text { 3:4:[]) } \\
& \text { = (:) } 1 \text { 2:3:4:[] } \\
& =1: 2: 3: 4:[] \quad--[1,2,3,4]
\end{aligned}
$$

Folding right

$$
\begin{aligned}
& \text { foldr :: (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr f z [] = z } \\
& \text { foldr f } z \text { (x:xs) = f } x \text { (foldr f } z \text { xs) } \\
& \text { let } \mathrm{f} x \mathrm{acc}=[\mathrm{x}]: \mathrm{acc} \text { in foldr } \mathrm{f} \text { [] [1,2,3,4] } \\
& =\mathrm{f} 1 \text { (foldr } \mathrm{f} \text { [] [2,3,4] } \\
& =\mathrm{f} 1 \text { (f } 2 \text { (foldr f [] [3,4])) } \\
& =\mathrm{f} 1 \text { (f } 2 \text { (f } 3 \text { (foldr f [] [4]))) } \\
& =\mathrm{f} 1 \text { (f } 2(\mathrm{f} 3(\mathrm{f} 4 \text { (foldr } \mathrm{f} \text { [] [])))) } \\
& =\mathrm{f} 1 \text { (f } 2 \text { (f 3 (f } 4 \text { []))) -- stop recursion } \\
& \text { = f } 1 \text { (f } 2 \text { (f 3 [4]:[])) } \\
& \text { = } \mathrm{f} 1 \text { (f } 2 \text { [3]: [4]: []) } \\
& \text { = } \mathrm{f} 1 \text { [2]:[3]:[4]:[] } \\
& =[1]:[2]:[3]:[4]:[] \quad--[[1],[2],[3],[4]]
\end{aligned}
$$

Folding right

$$
\begin{aligned}
& \text { foldr : : (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr f z [] }=\mathrm{z} \\
& \text { foldr f } z(x: x s)=f x \text { (foldr f } z \text { xs) } \\
& \text { let } \mathrm{f} x \mathrm{acc}=\mathrm{acc}++[\mathrm{x}] \text { in foldr } \mathrm{f} \text { [] [1,2,3,4] } \\
& =\mathrm{f} 1 \text { (foldr } \mathrm{f} \text { [] [2,3,4] } \\
& =\mathrm{f} 1 \text { (f } 2 \text { (foldr } \mathrm{f} \text { [] [3,4])) } \\
& =\mathrm{f} 1 \text { (f } 2 \text { (f } 3 \text { (foldr } \mathrm{f} \text { [] [4]))) } \\
& =\mathrm{f} 1 \text { (f } 2 \text { (f } 3 \text { (f } 4 \text { (foldr } \mathrm{f} \text { [] [])))) } \\
& =\mathrm{f} 1(\mathrm{f} 2(\mathrm{f} 3(\mathrm{f} 4[])) \text {) -- stop recursion } \\
& =\mathrm{f} 1(\mathrm{f} 2(\mathrm{f} 3([]++[4]))) \\
& =\mathrm{f} 1 \text { (f } 2([]++[4]++[3]) \text {) } \\
& =\mathrm{f} 1 \text { ([] ++ [4] ++ [3] ++ [2]) } \\
& =[]++[4]++[3]++[2]++[1] \quad--[4,3,2,1]
\end{aligned}
$$

Folding left

Folding left

$$
\begin{aligned}
& \text { foldl : : (b -> a }->\mathrm{b}) ~->\mathrm{b}->[\mathrm{a}]->\mathrm{b} \\
& \text { foldl f z [] }=\text { z } \\
& \text { foldl f } z(x: x s)=f o l d l(f \quad z \quad x) x s \\
& \text { foldl (+) } 0 \text { [1,2,3,4] } \\
& =\text { foldl (+) ((+) 0 1) [2,3,4] } \\
& =\text { foldl (+) ((+) ((+) 0 1) 2) [3,4] } \\
& =\text { foldl (+) ((+) ((+) ((+) 0 1) 2) 3) [4] } \\
& =\text { foldl (+) ((+) ((+) ((+) ((+) 0 1) 2) 3) 4) [] } \\
& =((+)((+)((+)((+) 01) 2) 3) 4) \text {-- stop recursion } \\
& =\left((+) \quad(+) \quad\left(\begin{array}{lll}
(+) & 1 & 2) \\
3
\end{array}\right) 4\right) \\
& =\left((+) \quad \left(\begin{array}{l}
(+) \\
3
\end{array}\right.\right. \text { 3) 4) } \\
& =((+) 64) \\
& =10
\end{aligned}
$$

Folding left

$$
\begin{aligned}
& \text { foldl : : (b -> a }->\mathrm{b}) ~->\mathrm{b}->[\mathrm{a}]->\mathrm{b} \\
& \text { foldl f z [] }=\text { z } \\
& \text { foldl f } z(x: x s)=f o l d l(f \quad z \quad x) x s \\
& \text { let } f C \operatorname{acc} x=x: a c c \text { in foldl } f C \text { [] [1,2,3,4] } \\
& =\text { foldl fC (fC [] 1) [2,3,4] } \\
& =\text { foldl fC (fC (fC [] 1) 2) [3,4] } \\
& =\text { foldl fC (fC (fC (fC [] 1) 2) 3) [4] } \\
& \text { = foldl fC (fC (fC (fC (fC [] 1) 2) 3) 4) [] } \\
& =(f C(f C(f C(f C[] 1) 2) 3) 4)-- \text { stop recursion } \\
& =(f C(f C(f C 1:[] 2) 3) 4) \\
& =(f C(f C 2: 1:[] 3) 4) \\
& =(f C 3: 2: 1:[] 4) \\
& \text { = 4:3:2:1:[] } \\
& \text {-- }[4,3,2,1]
\end{aligned}
$$

Folding left

$$
\begin{aligned}
& \text { foldl : : (b -> a }->\mathrm{b}) ~->\mathrm{b}->[\mathrm{a}]->\mathrm{b} \\
& \text { foldl f z [] }=\text { z } \\
& \text { foldl f } z(x: x s)=f o l d l(f \quad z \quad x) x s \\
& \text { let } f C \text { acc } x=[x]: a c c \text { in foldl } f C[][1,2,3,4] \\
& =\text { foldl fC (fC [] 1) [2,3,4] } \\
& =\text { foldl fC (fC (fC [] 1) 2) [3,4] } \\
& =\text { foldl fC (fC (fC (fC [] 1) 2) 3) [4] } \\
& =\text { foldl fC (fC (fC (fC (fC [] 1) 2) 3) 4) [] } \\
& =(f C(f C(f C(f C[] 1) 2) 3) 4)-- \text { stop recursion } \\
& =(f C(f C(f C[1]:[] 2) 3) 4) \\
& =(f C \text { (fC [2]:[1]:[] 3) 4) } \\
& =(f C \quad[3]:[2]:[1]:[] 4) \\
& =[4]:[3]:[2]:[1]:[] \quad--[[4],[3],[2],[1]]
\end{aligned}
$$

Folding left

$$
\begin{aligned}
& \text { foldl : : (b -> a }->\mathrm{b}) ~->\mathrm{b}->[\mathrm{a}]->\mathrm{b} \\
& \text { foldl f z [] }=\text { z } \\
& \text { foldl f } z(x: x s)=f o l d l(f \quad z \quad x) x s \\
& \text { let } f C \text { acc } x=\operatorname{acc}++[x] \text { in foldl } f C \text { [] [1,2,3,4] } \\
& =\text { foldl fC (fC [] 1) [2,3,4] } \\
& =\text { foldl fC (fC (fC [] 1) 2) [3,4] } \\
& =\text { foldl fC (fC (fC (fC [] 1) 2) 3) [4] } \\
& \text { = foldl fC (fC (fC (fC (fC [] 1) 2) 3) 4) [] } \\
& =(f C(f C(f C(f C[] 1) 2) 3) 4)-- \text { stop recursion } \\
& =(f C(f C(f C[]++[1] ~ 2) 3) 4) \\
& =(f C(f C[]++[1]++[2] 3) 4) \\
& =(f C[]++[1]++[2]++[3] 4) \\
& =[]++[1]++[2]++[3]++[4] \quad--[1,2,3,4]
\end{aligned}
$$

Folding

foldr f z

foldl f z

Curried functions \& friends

Lists

Enumerations

List comprehensions

Processing lists - basic functions

High-order functions

Origami programming
Curried functions \& friends

Processing lists - revisit

Currying

Currying is the process of transforming a function that takes multiple arguments in a tuple as its argument, into a function that takes just a single argument and returns another function which accepts further arguments, one by one, that the original function would receive in the rest of that tuple.
f :: a -> b -> c -- i.e. f :: a -> (b -> c)
is the curried form of
g : : (a, b) -> c

In Haskell, all functions are considered curried: That is, all functions in Haskell take just one argument.

Currying / uncurrying

$$
\begin{aligned}
& \mathrm{f}:: \mathrm{a} \rightarrow \mathrm{~b} \rightarrow \mathrm{c} \quad-\mathrm{i} \cdot \mathrm{e} . f:: a \rightarrow(\mathrm{~b}->\mathrm{c}) \\
& \mathrm{g}::(\mathrm{a}, \mathrm{~b}) \rightarrow \mathrm{c}
\end{aligned}
$$

You can convert these two types in either directions with the Prelude functions curry and uncurry:
curry :: (a, b) $->\mathrm{c})$ $->\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{c}$
uncurry : : (a $->\mathrm{b} \rightarrow \mathrm{c})$-> ($\mathrm{a}, \mathrm{b})$ $->\mathrm{c}$
We have:

$$
\begin{aligned}
& f=\text { curry } g \\
& g=\text { uncurry } f
\end{aligned}
$$

Currying / uncurrying

$$
\begin{aligned}
& \mathrm{f}:: \mathrm{a}->\mathrm{b}->\mathrm{c} \text {-- i.e. } f:: a \rightarrow(b->c) \\
& \mathrm{g}::(\mathrm{a}, \mathrm{~b})->\mathrm{c}
\end{aligned}
$$

You can convert these two types in either directions with the Prelude functions curry and uncurry:

$$
\begin{aligned}
& \text { curry :: (} \mathrm{a}, \mathrm{~b})->\mathrm{c}) \text {-> a }->\mathrm{b}->\mathrm{c} \\
& \text { uncurry : }:(\mathrm{a}->\mathrm{b}->\mathrm{c}) \text {-> (a, b) }->\mathrm{c}
\end{aligned}
$$

Both forms are equally expressive. It holds:
$f x y=g(x, y)$

Uncurrying

```
\lambda> :type (+)
(+) :: Num a => a -> a -> a
\lambda> add1 = (+) 1
\lambda> :type add1
add1 :: Num a => a -> a
\lambda> add1 2
3
\lambda> :type uncurry (+)
uncurry (+) :: Num a => (a, a) -> a
\lambda> uncurry (+) (1,2)
3
\lambda> uncurry (+) 1
error.
```


Uncurrying

$$
\begin{aligned}
& \lambda>\text { zipWith (+) [0..4] [10..14] } \\
& {[10,12,14,16,18]} \\
& \lambda>\text { :type (+) } \\
& \text { (+) : : Num a }=>\mathrm{a}->\mathrm{a}->\mathrm{a} \\
& \lambda>\text { :type map } \\
& \text { map :: (a -> b) -> [a] -> [b] } \\
& \lambda>\operatorname{zip}[0.4] \text { [10..14] } \\
& {[(0,10),(1,11),(2,12),(3,13),(4,14)]} \\
& \lambda>\operatorname{map}(\backslash(x, y)->x+y) \$ \operatorname{zip}[0.4] \text { [10..14] } \\
& {[10,12,14,16,18]} \\
& \lambda>\operatorname{map}(u n c u r r y(+)) \$ \operatorname{zip}[0 . .4] \text { [10..14] } \\
& {[10,12,14,16,18]}
\end{aligned}
$$

Currying

```
\lambda> :type fst
fst :: (a, b) -> a
\lambda> fst (1,2)
1
\lambda> fst 1
error.
\lambda> type curry fst
curry fst :: a -> b -> a
\lambda> f = curry fst 1
\lambda> :type f
f :: Num a => b -> a
\lambda>f 2
1
```


Currying

```
\lambda> add p = fst p + snd p
\lambda> :type add
add :: Num a => (a, a) -> a
\lambda> add (1,2)
3
\lambda> add1 = curry add 1
\lambda> :type add1
add1 :: Num a => a -> a
\lambda> add1 2
3
```


Flipping

flip :: (a -> b -> c) -> b -> a -> c
evaluates the function flipping the order of arguments
$\lambda>(/) 12$
0.5
$\lambda>$ foldr (++) [] ["A","B","C","D"]
"ABCD"
$\lambda>$ foldr (flip (++)) [] ["A","B","C","D"]
"DCBA"
$\lambda>$ foldr (:) [] ['a'..'d']
"abcd"
$\lambda>$ foldr (flip (:)) [] ['a'..'d']
error.

Flipping

flip :: (a -> b -> c) -> b -> a -> c
evaluates the function flipping the order of arguments
$\lambda>(/) 12$
0.5
$\lambda>$ foldr (++) [] ["A","B","C","D"]
"ABCD"
$\lambda>$ foldr (flip (++)) [] ["A","B","C","D"]
"DCBA"
$\lambda>$ foldr (:) [] ['a'..'d']
"abcd"
$\lambda>$ foldr (flip (:)) [] ['a'..'d']
error.

Flipping
flip : : ($\mathrm{a}->\mathrm{b}->\mathrm{c}$) $->\mathrm{b}->\mathrm{a}->\mathrm{c}$
evaluates the function flipping the order of arguments
flip1 : : ($\mathrm{a}->\mathrm{b}->\mathrm{c})$-> b $->\mathrm{a}->\mathrm{c}$
flip1 f x y $=\mathrm{f} \mathrm{y} x$
flip1 : : ($\mathrm{a}->\mathrm{b}->\mathrm{c})$-> b $->\mathrm{a}->\mathrm{c}$
flip1 $f=\ x->\backslash y ~->f y x$

Flipping - Use cases

```
\lambda> foldr (:) [] [1..4]
[1,2,3,4]
\lambda> foldl (flip (:)) [] [1..4]
[4, 3, 2, 1]
\lambda> foldl (-) 100 [1..4] -- (((100-1)-2)-3)-4
90
\lambda> foldr (-) 100 [1..4] -- 1-(2-(3-(4-100)))
98
\lambda> foldl (flip (-)) 100 [1..4] -- 4-(3-(2-(1-100)))
102
\lambda> foldr (flip (-)) 100 [1..4] -- (((100-4)-3)-2)-1
90
```


Constant

```
const :: a -> b -> a
const x y always evaluates to x, ignoring its second argument.
\lambda> const 1 2
1
\lambda> const (2/3) (1/0)
0.6666666666666666
\lambda> const take drop 5 [1..10]
[1,2,3,4,5]
\lambda> foldr (\_ acc -> 1 + acc) 0 [1..10]
1 0
\lambda> foldr (const (1+)) 0 [1..10]
10
```


Constant

$$
\begin{aligned}
& \text { const }:=\mathrm{a}->\mathrm{b}->\mathrm{a} \\
& \text { const } \mathrm{x} \text { y always evaluates } \\
& \text { const1 }:: \mathrm{a}->\mathrm{b}->\mathrm{a} \\
& \text { const1 } \mathrm{x}-=\mathrm{x} \\
& \text { const2 }:: \mathrm{a}->\mathrm{b}->\mathrm{a} \\
& \text { const2 }=\backslash \mathrm{x}->_{-}->\mathrm{x}
\end{aligned}
$$

$$
\text { const } \mathrm{x} \text { y always evaluates to } \mathrm{x} \text {, ignoring its second argument. }
$$

Fun with flipping and constant

$$
\begin{aligned}
& \text { curry id }=\text { \x } y \text {-> id (x, y) -- def. curry } \\
& =\backslash \mathrm{x} \mathrm{y}->(\mathrm{x}, \mathrm{y}) \quad--d e f . i d \\
& =\backslash \mathrm{x} y->(,) \mathrm{x} y \quad-- \text { desugar } \\
& =\backslash \mathrm{x}->(,) \mathrm{x} \quad-- \text { eta reduction } \\
& =(,) \\
& \text {-- eta reduction } \\
& \lambda>\text { curry id } 12 \\
& (1,2) \\
& \lambda>(,) 12 \\
& (1,2)
\end{aligned}
$$

Fun with flipping and constant

$$
\begin{aligned}
& \text { uncurry const }=\backslash(\mathrm{x}, \mathrm{y})->\text { const } \mathrm{x} y \text {-- def. uncurry } \\
& =\backslash(\mathrm{x}, \mathrm{y})->\mathrm{x} \quad-- \text { def. const } \\
& =\text { fst } \quad-- \text { def. fst } \\
& \lambda>\text { uncurry const (1, 2) } \\
& 1 \\
& \lambda>\text { fst }(1,2) \text {-- from Data.Tuple (in Prelude) } \\
& 1
\end{aligned}
$$

Fun with flipping and constant

```
uncurry (flip const)
    = \(x, y) -> (flip const) x y -- def. uncurry
    =\(x, y) -> const y x -- def. flip
    =\(x, y) -> y -- def. const
    = snd
    -- def. snd
\lambda> uncurry (flip const) (1, 2)
2
\lambda> snd (1, 2) -- from Data.Tuple (in Prelude)
2
```


Fun with flipping and constant

```
uncurry (flip (,))
    =\(x, y) -> (flip (,)) x y -- def. uncurry
    =\(x, y) -> (,) y x -- def. flip
    =\(x, y) -> (y, x) -- desugar
\lambda> uncurry (flip (,)) (1, 2)
(2,1)
\lambda> import Data.Tuple
\lambda> :type swap
swap :: (a, b) -> (b, a)
\lambda> swap (1, 2)
(2,1)
```


Processing lists - revisit

Lists
Enumerations
List comprehensions
Processing lists - basic functions
High-order functions
Origami programming
Curried functions \& friends
Processing lists - revisit

Rotations - revisit

Produce all rotations of a list.

```
\lambda> rotate []
[[]]
\lambda> rotate [1]
[[1]]
\lambda> rotate [1,2]
[[2,1],[1,2]]
\lambda> rotate [1,2,3]
[[3,1,2],[2,3,1],[1,2,3]]
\lambda> rotate [1,2,3,4]
[[4,1,2,3],[3,4,1,2],[2,3,4,1],[1,2,3,4]]
```


Rotations - revisit

Produce all rotations of a list. shift1xs :: [a] -> [a]
shift1 [] = []
shift1 (x:xs) = xs ++ [x]
rotate3 :: [a] -> [[a]]
rotate3 [] = [[]]
rotate3 xs = foldl (\acc@(xs':acc') _ -> shift xs':acc) [xs

Rotations - revisit

Produce all rotations of a list.
rotate4 :: [a] -> [[a]]
rotate4 xs = init \$ zipWith (++) (tails xs) (inits xs)
-- tails $[1,2,3,4]=[[1,2,3,4],[2,3,4],[3,4],[4]$,
-- inits $[1,2,3,4]=[[], \quad[1],[1,2],[1,2,3]$,

Finding (revisit)

Data.List.elem is the list membership predicate, usually written in infix form, e.g., x `elem` xs. For the result to be False, the list must be finite; True, however, results from an element equal to x found at a finite index of a finite or infinite list.
-- foldr
elem1 :: (Foldable t, Eq a) => a -> t a -> Bool
elem1 x' xs = foldr f False xs
where

$$
f \mathrm{x} b=\mathrm{x}==\mathrm{x}^{\prime} \| \mathrm{b}
$$

Finding (revisit)

Data.List.elem is the list membership predicate, usually written in infix form, e.g., x `elem` xs. For the result to be False, the list must be finite; True, however, results from an element equal to x found at a finite index of a finite or infinite list.
-- eta-reduction
elem2 :: (Foldable t, Eq a) => a -> t a -> Bool
elem2 x' = foldr f False
where

$$
f \mathrm{x} b=\mathrm{x}==\mathrm{x}^{\prime} \| \mathrm{b}
$$

Finding (revisit)

Data.List.elem is the list membership predicate, usually written in infix form, e.g., x `elem` xs. For the result to be False, the list must be finite; True, however, results from an element equal to x found at a finite index of a finite or infinite list.
-- lambda
elem3 :: (Foldable t, Eq a) => a $->$ t a $->$ Bool
elem3 $x^{\prime}=$ foldr ($\backslash \mathrm{x}$ b $\left.->\mathrm{x}==\mathrm{x}^{\prime}| | \mathrm{b}\right)$ False

Filtering (revisit)

Data.List.filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate.

```
filter3 :: Foldable t => (a -> Bool) -> t a -> [a]
filter3 p xs = foldr f [] xs
    where
        f x acc
    | p x = x:acc
    | otherwise = acc
```


Repeating (revisit)

Data.List.repeat takes an element and returns an infinite list that just has that element.
repeat4 :: a -> [a]
repeat4 x = foldr (_ acc -> x:acc) [] [1..]

Repeating (revisi

Data.Foldable.maximum returns the maximum value from a list, which must be non-empty, finite, and of an ordered type.

Repeating (revisi

Data.Foldable.maximum returns the maximum value from a list, which must be non-empty, finite, and of an ordered type.

```
maximum4 :: Ord a => [a] -> a
maximum4 [] = error "empty list"
maximum4 (x:xs) = foldr f x xs
    where
    f x m = if x > m then x else m
maximum5 :: Ord a => [a] -> a
maximum5 [] = error "empty list"
maximum5 (x:xs) = foldr max x xs
```


Repeating (revisi

Data.Foldable.maximum returns the maximum value from a list, which must be non-empty, finite, and of an ordered type.

```
maximum6 :: Ord a => [a] -> a
maximum6 [] = error "empty list"
maximum6 xs = foldl1 max xs
maximum7 :: Ord a => [a] -> a
maximum7 [] = error "empty list"
maximum7 xs = foldr1 max xs
```


Remove duplicate

Data.Foldable.nub : : Eq a => [a] -> [a]
The nub function removes duplicate elements from a list. In particular, it keeps only the first occurrence of each element.

Remove duplicate

Data.Foldable.nub : : Eq a => [a] -> [a]
The nub function removes duplicate elements from a list. In particular, it keeps only the first occurrence of each element.
nub1 :: Eq a => [a] -> [a]
nub1 [] = []
nub1 (x : xs) = x:nub1 (filter (\y -> x/=y) xs)
nub2 :: Eq a => [a] -> [a]
nub2 [] = []
nub2 (x : $x s$) = $x: n u b 1 ~ x s '$
where
xs' = filter (/=x) xs

Remove duplicate

Data.Foldable.nubBy :: (a -> a -> Bool) -> [a] -> [a]
The nubBy function behaves just like nub, except it uses a user-supplied equality predicate instead of the overloaded == function.

Remove duplicate

Data.Foldable.nubBy :: (a -> a -> Bool) -> [a] -> [a]
The nubBy function behaves just like nub, except it uses a user-supplied equality predicate instead of the overloaded == function.

```
nubBy1 :: Eq a => (a -> a -> Bool) -> [a] -> [a]
nubBy1 _ [] = []
nubBy1 p (x : xs) = x:nub1 xs'
    where
xs' = filter (not . p x) xs
nub3 : : Eq a => [a] -> [a]
nub3 = nubBy (==)
```


Remove duplicate

Data.Foldable.nubBy :: (a -> a -> Bool) -> [a] -> [a]
The nubBy function behaves just like nub, except it uses a user-supplied equality predicate instead of the overloaded == function.

```
elemBy :: (a -> a -> Bool) -> a -> [a] -> Bool
elemBy _ _ [] = False
elemBy eq y (x:xs) = x `eq` y || elemBy eq y xs
nubBy2 :: (a -> a -> Bool) -> [a] -> [a]
nubBy2 eq xs = go xs []
    where
go [] _ _ = [] 
```

