Méthodes et modélisation pour l'optimisation M1 informatique

Examen – jeudi 10 janvier 2019 14h00-16h00

Une feuille recto-verso manuscrite autorisée. Calculatrices, ordinateurs et téléphones portables interdits. Ce sujet comporte 5 questions. La notation prendra en compte le soin apporté à la rédaction.

Pour les questions de modélisation en SAT, vous avez droit d'utiliser les 'macros' AtLeastOne/AtLeast-k et AtMostOne/AtMost-k.

Question 1. La compagnie minière MINEMAX extrait 10 000 tonnes de minerai rouge et 8 000 tonnes de minerai noir par jour. Ceux-ci peuvent être affinés de manières différentes pour produire trois alliages : Souple, Dur et Fort. Pour produire une tonne d'alliage Souple, il faut 3 tonnes de minerai rouge et 2 tonnes de minerai noir. Pour l'alliage Dur, il faut 2 tonnes de minerai rouge et 3 tonnes de minerai noir tandis que pour l'alliage Fort, il faut 3 tonnes de minerai rouge et 3 tonnes de minerai noir. Une tonne d'alliage Souple, Dur et Fort se vend respectivement $300 \le$, $350 \le$ et $400 \le$. On suppose que la compagnie peut vendre tout ce qu'elle produit.

- a) La compagnie veut répartir sa production des trois alliages pour maximiser ses revenus. Formuler ce problème comme un programme linéaire.
- b) Afin d'assumer une stratégie plus pérenne, la compagnie doit s'assurer que les revenus venant de la vente de chaque alliage représente au moins 10% des revenus totaux. Modifier votre programme pour prendre en compte cette contrainte.

Question 2. On considère le programme linéaire suivant :

Maximiser
$$11x_1 + 6x_2 + 10x_3$$

sous les contraintes $2x_1 + 3x_2 + x_3 \le 15$
 $3x_1 + 3x_2 + 2x_3 \le 12$
 $x_1 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

- a) Donner une forme équationnelle en introduisant des variables d'écart.
- b) Appliquer l'algorithme du simplexe. En cas de choix, la variable du plus grand coefficient entre dans la base (la règle de Dantzig). On prendra soin d'indiquer à chaque étape la base visitée par l'algorithme et la valeur de la fonction objectif.

Question 3. Le roi Tirian ($\stackrel{\bullet}{\boxtimes}$) du royaume de Narnia doit affecter ses chevaliers ($\stackrel{\bullet}{\boxtimes}$) aux châteaux ($\stackrel{\Xi}{\boxtimes}$). Étant un bon souverain, il veut respecter les vœux des chevaliers. En même temps, il a besoin d'affecter au moins un chevalier à chaque château. Les chevaliers, les châteaux et les vœux sont représentés dans le tableau suivant.

	2 1	2	② 3	2 4	2 5
I 1				√	
2	\checkmark	\checkmark	\checkmark		\checkmark
3		\checkmark	\checkmark	\checkmark	\checkmark
\ 4				\checkmark	

Exemple : les vœux du chevalier 4 (24) sont les châteaux 1, 3 ou 4 (21, 23 ou 24). \triangleright Aidez le roi à modéliser ce problème par une formule SAT.

Question 4. L'entreprise Chimico Volantis dispose de 3 usines (U1, U2, U3) pour la fabrication du pesticide Telone. Pour la fabrication, il y a besoin d'un composé chimique (propène) produit sur 4 sites (S1, S2, S3, S4). Le coût de la production de propène sur chaque site est de $5 \in /kg$ pour les 100 premiers kg/semaine, $8 \in /kg$ pour les 100 deuxièmes kg/semaine et $15 \in /kg$ pour tout kg/semaine au-dèla de 200. Le besoin de chaque usine est de 300 kg/semaine et les coûts de transport (entre chaque site de production de propène et chaque usine en \in /kg) sont donnés dans le tableau suivant.

	l .	S2		S4
U1	13	11	18	7
U2	2	14	10	1
U3	5	8	18	11

> Formuler un programme linéaire pour aider l'entreprise à minimiser le coût pour la fabrication de son pesticide.

Question 5. L'objectif du jeu Takuzu est de remplir une grille carrée de taille paire avec des 0 et des 1 en respectant les conditions suivantes :

- $1.\,$ chaque ligne et colonne doit contenir autant de 0 que de 1 ;
- $2.\,$ des lignes ou des colonnes identiques sont interdites ;
- 3. il ne doit pas y avoir plus de deux 0 ou 1 placés l'un à côté ou en dessous de l'autre.

	1		0
		0	
	0		
1	1		

La grille est partiellement pré-remplie par des 0 et des 1 qui ne doivent pas être modifiés (la configuration initiale). Modéliser ce jeu par une formule SAT sur la grille 4×4 avec la configuration initiale indiquée ci-dessus.