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Abstract
Given a vertex-coloured graph, a dominating set is said to be tropical if every colour of the

graph appears at least once in the set. Here, we study minimum tropical dominating sets from
structural and algorithmic points of view. First, we prove that the tropical dominating set problem
is NP-complete even when restricted to a simple path. Then, we establish upper bounds related
to various parameters of the graph such as minimum degree and number of edges. We also give
an optimal upper bound for random graphs. Last, we give approximability and inapproximability
results for general and restricted classes of graphs, and establish a FPT algorithm for interval
graphs.
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1 Introduction
Vertex-coloured graphs are useful in various situations. For instance, the Web graph may be considered
as a vertex-coloured graph where the colour of a vertex represents the content of the corresponding page
(red for mathematics, yellow for physics, etc). Given a vertex-coloured graph Gc, a subgraph Hc (not
necessarily induced) of Gc is said to be tropical if and only if each colour of Gc appears at least once in
Hc. Potentially, any kind of usual structural problems (paths, cycles, independent and dominating sets,
vertex covers, connected components, etc.) could be studied in their tropical version. This new tropical
concept is close to, but quite different from, the colourful concept used for paths in vertex-coloured
graphs [1, 26, 27]. It is also related to (but again different from) the concept of colour patterns used in
bio-informatics [18]. Here, we study minimum tropical dominating sets in vertex-coloured graphs. Some
ongoing work on tropical connected components, tropical paths and tropical homomorphisms can be
found in [13, 14, 19]. A general overview on the classical dominating set problem can be found in [23].
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Throughout the paper let G = (V,E) denote a simple undirected non-coloured graph. Let n = |V |
and m = |E|. Given a set of colours C = {1, ..., c}, Gc = (V c, E) denotes a vertex-coloured graph where
each vertex has precisely one colour from C and each colour of C appears on at least one vertex. The
colour of a vertex x is denoted by c(x). A subset S ⊆ V is a dominating set of Gc (or of G), if every
vertex either belongs to S or has a neighbour in S. The domination number γ(Gc) (γ(G)) is the size of
a smallest dominating set of Gc (G). A dominating set S of Gc is said to be tropical if each of the c
colours appears at least once among the vertices of S. The tropical domination number γt(Gc) is the
size of a smallest tropical dominating set of Gc. A rainbow dominating set of Gc is a tropical dominating
set with exactly c vertices. More generally, a c-element set with precisely one vertex from each colour
is said to be a rainbow set. We let δ(Gc) (respectively ∆(Gc)) denote the minimum (maximum) degree
of Gc. When no confusion arises, we write γ, γt, δ and ∆ instead of γ(G), γt(Gc), δ(Gc) and ∆(Gc),
respectively. We use the standard notation N(v) for the (open) neighbourhood of vertex v, that is the
set of vertices adjacent to v, and write N [v] = N(v)∪{v} for its closed neighbourhood. The set and the
number of neighbours of v inside a subgraph H is denoted by NH(v) and by dH(v), independently of
whether v is in H or in V (Gc)− V (H). Although less standard, we shall also write sometimes v ∈ Gc
to abbreviate v ∈ V (Gc).

Note that tropical domination in a vertex-coloured graph Gc can also be interpreted as “simultaneous
domination” in two graphs which have a common vertex set. One of the two graphs is the non-coloured
G itself, the other one is the union of c vertex-disjoint cliques each of which corresponds to a colour
class in Gc. The notion of simultaneous dominating set1 was introduced by Sampathkumar [32] and
independently by Brigham and Dutton [9]. It was investigated recently by Caro and Henning [10] and
also by further authors. Remark that δ ≥ 1 is regularly assumed for each factor graph in the results
of these papers that is not the case in the present manuscript, as we do not forbid the presence of
one-element colour classes.

The Tropical Dominating Set problem (TDS) is defined as follows.

Problem 1. TDS
Input: A vertex-coloured graph Gc and an integer k ≥ c.
Question: Is there a tropical dominating set of size at most k?

The Rainbow Dominating Set problem (RDS) is defined as follows.

Problem 2. RDS
Input: A vertex-coloured graph Gc.
Question: Is there a rainbow dominating set?

The paper is organized as follows. In Section 2 we prove that RDS is NP-complete even when
graphs are restricted to simple paths. In Section 3 we give upper bounds for γt related to the minimum
degree and the number of edges. We give upper bounds for random graphs in Section 4. In Section 5
we give approximability and inapproximability results for TDS. We also show that the problem is FPT
(fixed-parameter tractable) on interval graphs when parametrized by the number of colours.

2 NP-completeness
In this section we show that the RDS problem is NP-complete. This implies that the TDS problem is
NP-complete too.

Theorem 2.1. The RDS problem is NP-complete, even when the input is restricted to vertex-coloured
paths.

Proof. Clearly the RDS problem is in NP. The reduction is obtained from the 3-SAT problem. Let
(I, Y ) be an instance of 3-SAT where I = (l1 ∨ l2 ∨ l3) ∧ (l4 ∨ l5 ∨ l6) ∧ . . . ∧ (lX−2 ∨ lX−1 ∨ lX) is a

1Also known under the names ‘factor dominating set’ and ‘global dominating set’ in the literature.
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collection of τ = X/3 clauses on a finite set Y = {y1, . . . , ym} of boolean variables. From this instance,
we will define a vertex-coloured path P such that P contains a rainbow dominating set if and only if
(I, Y ) is satisfiable.

In order to define P , we first construct a segment P0 = vv′v0v1 . . . v4τ , and we colour its vertices as
follows. Vertices v and v′ are coloured black. Vertices v0, v4, v8, . . . , v4τ−4, v4τ are each coloured with a
unique colour. The remaining vertices, that will be henceforth called clausal, are coloured from v1 to
v4τ−1 with colours 10, 20, 30, . . . , X0. Figure 1 shows P0 if X = 6.

Figure 1: Example of P0 when X = 6

Next, we define a number of gadgets as follows. If a pair of literals li and lj satisfies that li = lj ,
we say that lj is antithetic to li. For each literal li, i = 1, . . . , X, we consider the list of all literals
li1 , li2 , . . . , liki

that are antithetic to li. Now, to each literal lif , f = 1, . . . , ki, we associate a constraint
gadget wi,if on five vertices defined as follows. Vertex A is an artificial one and is coloured with a
unique colour. Vertex P is the positive one of the gadget, it corresponds to literal li being true and has
colour if . The middle vertex M is coloured with black. Vertex N is the negative one, it corresponds
to li being false and has colour if−1. Vertex L is the link vertex and represents the relation between
li and lif . If i < if , then L is coloured with colour ci,if , otherwise, with colour cif ,i. See Figure 2.
Finally, in order to obtain path P, we concatenate all these gadgets to P0 in a serial manner and we
close the path with a final vertex F of a unique colour. Clearly, this construction is polynomial as we
have O(X2) gadgets.

Figure 2: A constraint gagdet wi,if (where i < if )

We first prove the "if case". Consider an assignment to the variables y1, . . . , ym that satisfies the
3-SAT instance. From this assignment we obtain a rainbow dominating set D for P as follows:

1. We add v and every vertex of a unique colour to D.

2. For each true literal li, we add the clausal vertex of colour i0 to D and for all f = 1, . . . , ki (if
any), we add the positive vertex P and the link vertex L of wi,if to D.

3. For each false literal li and all f = 1, . . . , ki (if any), we add the negative vertex N of wi,if to D.

4. If there are vertices with some colour still not present in D, we add them to the set.

We can check that each colour is present exactly once in D. In fact, this conclusion is straightforward
for black colour, for every unique colour and for each colour if . For the colour on the link vertex L of a
gadget wi,j , as literals li and lj are antithetic, then exactly one of them is true, so it stands that either
ci,j is present once in D if i < j, or cj,i otherwise.
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We show now that D is a dominating set. Observe first that v′ is dominated by v (and also by
v0). Then, as every clause contains at least one true literal, every clausal vertex is either in D or has
some neighbour in D. Last, every constraint gadget has either its negative vertex or both its positive
and link vertex in D. In both cases, all vertices of the gadget are covered by D. Therefore D is a
rainbow dominating set as claimed. An example of the construction of P and its corresponding rainbow
dominating set D for an arbitrary assignment to the variables is shown in Figure 3.

Figure 3: Construction of P for the formula (y1 ∨ y2 ∨ y3) ∧ (y1 ∨ y2 ∨ y3) ∧ (y1 ∨ y3 ∨ y4) where
P = P′w1,4w1,7w2,5w4,1w5,2w7,1F . The colour of the vertices is shown on top of them and the thick
edges represent the division of the gadgets. Vertices surrounded by dotted ~,8,♦ and � are the ones
taken by the steps 1, 2, 3 and 4, respectively, to obtain the rainbow dominating set D corresponding to
the assignment y1 = y2 = y4 = True and y3 = False. Note that the step 4 is not needed for the set to
be dominating but it is to become rainbow.

We now prove the "only if" case. Given the path P constructed as before, let D be a rainbow
dominating set for P. We consider first a partial assignment where for every clausal vertex of colour
i0 that is in D, we assign the value to the corresponding variable such that li is true. Suppose by
contradiction that this assignment method leads to some incoherences, that is, some variable ends up
being assigned both true and false. It implies that D contains two clausal vertices of colour i0 and j0,
respectively, such that li and lj are antithetic. Suppose without loss of generality that i < j. As li and
lj are antithetic, there exist two gadgets wi,if , if = j, and wj,jf′ , jf ′ = i, where the link vertices are
both coloured ci,j (as i < j). We will show that both of those vertices are in D lead to a contradiction.
Consider wi,if (a similar proof works for wj,jf′ ).

Suppose first that f = 1. If L does not belong to D, then N must be in D as M being black,
cannot belong to D since D must already contain either v or v′ that are also coloured black. This is
a contradiction since the colour of N is i0 and D already contains the clausal vertex on that colour.
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Therefore L belongs to D.
Suppose next that f > 1. By the same argument as before, if L does not belong to D then N must

be in D. As the colour of N is if−1, then the vertex P of wi,if−1 cannot belong to D since it has the
same colour. Therefore, as D must dominate the vertex M of wi,if−1 , we have that the vertex N on
colour if−2 of wi,if−1 belongs to D. Following the same argument, we have that the negative vertex N
belongs to D for each wi,ik , k = f, . . . , 1. This is a contradiction since the vertex N of wi,i1 has colour
i0 and D already contains the clausal vertex on that colour. Therefore L belongs to D.

As the same reasoning holds for wj,jf′ as well, D contains two vertices of colour ci,j . This is a
contradiction to the hypothesis that D is rainbow. Hence our partial assignment is coherent. We
complete the assignment by setting to true every unassigned variable.

Now, it remains to see that the obtained assignment satisfies the 3-SAT instance. Indeed, as every
clausal vertex is covered by D, then for every clause we have one literal who was assigned to true, that
is, the assignment is a solution to the 3-SAT instance. This completes the argument and the proof of
the theorem.

3 Upper Bounds
We begin with an easy observation which intends to avoid some trivial technical distinctions later on.

Proposition 3.1. If Gc is a vertex-coloured graph with c colours on n vertices, and δ(Gc) ≥ n − c,
then every rainbow set is a rainbow dominating set of Gc. As a consequence, γt(Gc) = c holds.

Proof. Let D be any rainbow set, and v ∈ V (Gc)−D any vertex. Then |N [v]|≥ δ(Gc)+1 ≥ n− c+1 =
|V (Gc)−D|+1, thus D dominates v.

Without further reference to this proposition, throughout the text below, we shall disregard whether
or not any proof works for graphs of minimum degree at least n − c, because we know the tropical
domination number of those graphs exactly.

Proposition 3.2. For any graph Gc, γt ≤ γ + c − 1. Furthermore, there are extremal graphs that
attain this bound.

Proof. The upper bound follows from the fact that taking a minimal dominating set of Gc and then
adding vertices from every colour not present in the dominating set gives a tropical dominating set.
To construct extremal graphs, for γ ∈ N, consider a cycle of length 3× γ and add c− 1 leaves to one
vertex u of the cycle. Colour the new leaves with unique colours and the rest of the graph with a single
colour. Taking u and every vertex which its distance to u is a multiple of three, is a minimum tropical
dominating set that attains the bound. The reader can easily check that γt = γ + c− 1.

Proposition 3.3. Given an integer k > 0, if m ≥
(
n−k+c−1

2
)

+ n− k and n > k + c− 2, then γt ≤ k.
Furthermore, there are graphs with that number of edges and γt = k.

Proof. We can check that m ≥
(
n−k+c−1

2
)

+ n − k > 1
2 (n − k + c)(n − k + c − 2) for n > k + c − 2,

therefore, by the contrapositive of Vizing’s theorem stated in [34], we obtain a minimum dominating
set on at most k − c+ 1 vertices. Then we may add at most c− 1 other vertices to this dominating set
to represent the colours that are absent. Thus obtain a tropical one.

To construct a graph that attains this bound, do the following. Consider a clique on n− k + c− 1
vertices. Pick some c− 1 vertices and colour them with c− 1 unique colours. Every other vertex of the
graph is coloured with the remaining colour. Let A be the set of the remaining n− k vertices. Add a
new set B of k − c+ 1 vertices. Now make a bipartite graph between these two sets such that each
vertex in the set A is adjacent to exactly one vertex of B. It is easy to check that this graph has the
necessary number of edges. Also, at least k − c+ 1 vertices are needed to dominate the vertices in B.
This set can represent only one colour. So we need to add the c− 1 uniquely coloured vertices to the
set to get the required tropical dominating set.
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Conjecture 3.4. Let Gc be a connected graph with minimum degree δ and c < n. Then, γt ≤
(n−c+1)δ

3δ−1 + c− 1.

We are motivated to raise this conjecture by the fact that its particular case for c = 1 (i.e., simple
graphs without colours) holds true. Its proof is a long story, however, taking nearly a half century, along
the works by Ore [30] (1962, δ = 1), Blank [7] (1973), and independently McCuaig and Shepherd [29]
(1989) (δ = 2), Arnautov [4] (1974, δ ≥ 6 with a stronger upper bound in general), Reed [31] (1996,
δ = 3), Xing, Sun and Chen [22] (2006, δ = 5) and Sohn and Xudong [33] (2009, δ = 4).

Lemma 3.5. If G is a connected graph with n vertices and minimum degree δ, then γ(G) ≤ δn
3δ−1 , with

precisely seven exceptions if δ = 2.

We first prove Conjecture 3.4 for δ = 1.

Theorem 3.6. If Gc is a connected graph with n > c ≥ 1, then γt ≤ n+c−1
2 .

Proof. Let Gc be a connected graph with minimum degree δ ≥ 1. Let A be a subset of vertices of Gc
with each of the c colours once. Let B = {v ∈ Gc − A : v has a neighbour in A}. Clearly B 6= ∅ as
Gc is connected and has n > c. Consider the graph Gc − A−B. If this graph is empty, then A is a
tropical dominating set for Gc of size c and we are done.

Now, suppose first that Gc −A−B has no isolated vertices. Then, since the domination number of
a graph without isolated vercites is at most half the order (cf. [23]), we obtain a dominating set for
Gc−A−B of size at most n−c−|B|

2 . Now, as this is less than or equal to n−c−1
2 , adding the c vertices of

A to this dominating set we obtain a tropical one for Gc of size at most n−c−1
2 + c = n+c−1

2 as desired.
Suppose next that Gc−A−B has isolated vertices. Let D be the set of isolated vertices of Gc−A−B.

Let k1 = |B| and k2 = |D|. As above, we obtain a dominating set S for Gc−A−B−D of size n−c−k1−k2
2 .

Now, if k1 > k2, then S ∪ D ∪ A is a tropical dominating set of size n−c−k1−k2
2 + k2 + c ≤ n+c−1

2 .
Otherwise, if k1 ≤ k2, let v ∈ A be a vertex such that its colour appears on some vertex in B. Then,
S ∪B ∪ (A− {v}) is a tropical dominating set for Gc as v is dominated by a vertex either in A or in
B. The size of this tropical dominating set is n−c−k1−k2

2 + k1 + c− 1 < n+c−1
2 and this completes the

proof.

The validity of Conjecture 3.4, for δ ≥ 9, will be a consequence of the following theorem.

Theorem 3.7. For any connected graph Gc with minimum degree δ(Gc) = δ, either γt(Gc) = c or
γt(Gc) < 1+ln(δ+1)

δ+1 (n− c+ 1) + c− 1 holds.

Proof. Given a graph Gc = (V c, E) satisfying the conditions, first we pick one vertex from each colour
class. If this set A dominates all vertices, then γt = c. Otherwise, there is a vertex v which is
undominated, that is N [v] ∩A = ∅; and further, there is a vertex v′ ∈ A with c(v′) = c(v). Then, the
set Dp = (A−{v′})∪ {v} is rainbow and dominates at least |N(v)|≥ δ vertices from V c−Dp. Observe
that in this case also n ≥ c+ δ + 1 and δ ≥ 1 hold.

From now on, we apply the probabilistic method in a similar way as it is done on pages 4–5 of [3]
concerning γ(G). Let D0 be a subset of V c −Dp chosen at random, such that independently for each
u ∈ V c −Dp,

P(u ∈ D0) = ln(δ + 1)
δ + 1 .

The cardinality of D0 is a random variable, which is the sum of the random variables ξu defined as
ξu = 1 if u ∈ D0 and ξu = 0 if u /∈ D0. Therefore, the expected number of selected vertices is

E(|D0|) = ln(δ + 1)
δ + 1 (n− c).
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The set Dp ∪D0 dominates all the at least c+ δ vertices in Dp ∪N(v). Consider the set D1 consisting
of those vertices which are not dominated by Dp ∪D0. For each vertex u ∈ V − (Dp ∪N(v)), we have

P(u ∈ D1) ≤
(

1− ln(δ + 1)
δ + 1

)δ+1
< e− ln(δ+1) = 1

δ + 1

that implies
E(|D1|) <

1
δ + 1(n− c− δ).

Clearly, Dp ∪D0 ∪D1 is a tropical dominating set of G and γt(G) is not greater than the expected
value of its size. Therefore, we have

γt(G) < c+ ln(δ + 1)
δ + 1 (n− c) + 1

δ + 1(n− c− δ)

= 1 + ln(δ + 1)
δ + 1 (n− c+ 1) + c− 1 + 1

δ + 1 −
1 + ln(δ + 1)

δ + 1

<
1 + ln(δ + 1)

δ + 1 (n− c+ 1) + c− 1

which completes the proof.

Corollary 3.8. For any connected graph Gc with minimum degree δ ≥ 9, either γt(Gc) = c or
γt(Gc) < δ(n−c+1)

3δ−1 + c− 1 holds.

Proof. For every δ ≥ 9, 1+ln(δ+1)
δ+1 < δ

3δ−1 holds. Then, Theorem 3.7 implies

γt(Gc) < 1 + ln(δ + 1)
δ + 1 (n− c+ 1) + c− 1 < δ

3δ − 1(n− c+ 1) + c− 1,

if γt(Gc) 6= c.

For 2 ≤ δ ≤ 8 we present the following result that is slightly weaker than Conjecture 3.4.

Theorem 3.9. Let Gc be a connected graph with minimum degree δ such that 2 ≤ δ ≤ 8 and c < n.
Then, γt ≤ (n−c)δ

3δ−1 + c+ δ(δ−2)
3δ−1 .

Proof. Let A be a subset of vertices of Gc with each of the c colours once. Let B = {v ∈ Gc − A :
dGc−A(v) < δ}. Clearly, if B = ∅, then by Lemma 3.5 we obtain a dominating set for Gc −A of size
(n−c)δ
3δ−1 . Thus, adding A to this set we obtain a tropical dominating set for Gc of size (n−c)δ

3δ−1 + c ≤
(n−c)δ
3δ−1 + c+ δ(δ−2)

3δ−1 . Assume therefore that B 6= ∅ and let |B|= b. We intend to keep A in the tropical
dominating set to be constructed, by extending A with a subset of Gc −A that dominates Gc −A−B.

First we can assume that for every vertex v ∈ B, dGc−A−B(v) ≥ 2. Otherwise, if there is a vertex
v ∈ B with a unique neighbour w ∈ Gc −A−B, we can set NGc−A[v] = NGc−A[w] to make the degree
of v at least δ and therefore any dominating set extending A that contains v is equivalent to one
containing w instead.

Second, if b ≥ δ − 1, then making B a complete graph we obtain that for every vertex v ∈ B,
dGc−A(v) = dGc−A−B(v) + dB(v) ≥ 2 + δ − 2 = δ. We can therefore apply Lemma 3.5 to obtain a
dominating set S for Gc − A of size (n−c)δ

3δ−1 except for the case when δ = 2 and some components of
Gc −A are one of the seven exceptions (which are also listed in [23]). In this special case, if at least
one of the vertices of a component is dominated from outside (as is the case in our problem since every
vertex in B is dominated by some vertex in A), then each of them satisfies the bound. Therefore we
have that S ∪A is a tropical dominating set for Gc of size (n−c)δ

3δ−1 + c ≤ (n−c)δ
3δ−1 + c+ δ(δ−2)

3δ−1 .
We can conclude that b ≤ δ − 2, and consequently δ ≥ 3 holds. Consider now the following

graph obtained from Gc − A plus a complete graph C on δ − b − 1 new vertices. First make B a
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complete graph. Join every vertex in B to every vertex in C. Finally, for every vertex w ∈ C set
NGc−A−B(w) = NGc−A−B(v) for some vertex v ∈ B. Clearly this new graph has minimum degree δ
therefore by [23] we obtain a dominating set S of size at most (n−c+δ−b−1)δ

3δ−1 . Now we obtain a tropical
dominating set for the original graph Gc as follows. If any of the vertices of C belongs to S we just
delete them from S and add instead the chosen vertex v ∈ B. Then add A to the dominating set. This
new set is dominating as every vertex in B is dominated by some vertex in A in Gc and clearly it is
tropical. Finally, its size is not greater than (n−c+δ−b−1)δ

3δ−1 + c and this number is maximum when b
is as small as possible, that is, b = 1. We obtain then that the size of the tropical dominating set is
(n−c+δ−2)δ

3δ−1 + c = (n−c)δ
3δ−1 + c+ δ(δ−2)

3δ−1 which completes the proof.

Proposition 3.10. Let Gc be super-dense, i.e., δ(Gc) > (n− 1)−
√
n− 1. Then γt ≤ c+ 1.

Proof. Since δ(Gc) > (n − 1) −
√
n− 1, then the complement Gc of Gc satisfies ∆(Gc) <

√
n− 1.

Therefore, the diameter of Gc is at least 3. Thus according to a theorem from [23], the domination
number γ of Gc is at most 2. Now, the result for γt follows from Proposition 3.2.

4 Tropical dominating sets in random graphs
In this section we study the tropical domination parameter of a randomly vertex-colored random graph.
Recall that the random graph G(n, p) is the graph on n vertices where each of the possible

(
n
2
)
edges

appears with probability p, independently. For more details on random graph theory, we refer the
reader to [8] and [24]. Given a positive integer c, let G(n, p, c) be the vertex-colored graph obtained
from G(n, p) by coloring each vertex with one of the colors 1, 2, . . . , c uniformly and independently at
random. The choice of colors is independent of the existence of edges. In what follows, we will say
that G(n, p, c) has a property Q asymptotically almost surely (abbreviated a.a.s.) if the probability it
satisfies Q tends to 1 as n tends to infinity. For convenience, we will use the notation b = 1/(1− p).

The domination number of the random graph G(n, p) has been well studied, see for example [16],
[28] and [35]. In Particular, Wieland and Godbole [35] proved the following two-point concentration
result.

Theorem 4.1. ([35]) Let p = p(n) be such that 10
√

(log logn)/logn ≤ p < 1. Set b = 1/(1 − p).
Then a.a.s. the domination number of the random graph G(n, p) is equal to

b logb n− logb [(logb n)(logn)] c+ 1 or b logb n− logb [(logb n)(logn)] c+ 2.

Recently Glebov, Liebenau and Szabó [21] strengthened this two-point concentration result by
extending the range of p down to (log2 n)/

√
n .

We are interested here in the maximum number of colors c that can be used so that a.a.s. G(n, p, c)
has a tropical minimal dominating set. We only deal with the case when p is fixed. It follows from
Theorem 4.1 that the number of colors should not exceed b logb n− logb [(logb n)(logn)] c+ 2. We show
in Theorem 4.3 that this upper bound is achieved. This result can be extended to hold when p = p(n)
tends to 0 sufficiently slowly. This could be the subject of another study since, in this case, the proof is
very technical.

For c ≥ 1, let Xc be the random variable counting the number of tropical dominating sets of size c
in G(n, p, c).

Xc =
(n

c)∑
j=1

Ij ,

where Ij is the indicator random variable indicating if the j-th c-set is both tropical and dominating in
G(n, p, c).

In order to prove Theorem 4.3, we need the following lemma.
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Lemma 4.2. Let 0 < p < 1 be fixed. Set b = 1/(1−p). Denote by Xc the number of tropical dominating
sets of size c in G(n, p, c). Then

E(Xc)→∞ as n→∞,

for c = c(n) = b logb n− logb [(logb n)(logn)] c+ 2.

Proof. Clearly, for 1 ≤ j ≤
(
n
c

)
, we have

E(Ij) = P [Ij = 1] = (1− (1− p)c)n−c c!
cc
,

where (1− (1− p)c)n−c is the probability that a given c-set Aj is dominating, and c! /cc is the probability
that Aj is tropical. By the linearity of expectation, we have

E(Xc) =
(
n

c

)
(1− (1− p)c)n−c c!

cc
.

= (n)c
cc

(1− (1− p)c)n−c .

≥ (n)c
cc

(1− (1− p)c)n .

Using the inequality 1− x ≥ −x/(1− x) and the estimate (n)c = (1 + o(1))nc, we have

E(Xc) ≥ (1− o(1))n
c

cc
exp

[
−n(1− p)c

1− (1− p)c

]
= (1− o(1)) exp [Ψ(c)] ,

where
Ψ(c) = c logn− c log c− n(1− p)c

1− (1− p)c .

Recall that c = b logb n− logb [(logb n)(logn)] c+ 2. Thus,

(1− p)c ≤ (1− p) logb n logn

and
n(1− p)c

1− (1− p)c ≤ (1− p) logb n logn+ o(1).

It follows that
Ψ(c) ≥ c logn− c log c− (1− p) logb n logn+ o(1).

Straightforward calculations show that

Ψ(c) ≥ (p− o(1)) logb n logn.

Since p is fixed, we conclude that ψ(c), and thus also E(Xc), tends to infinity as n→∞.

Theorem 4.3. Let 0 < p < 1 be fixed and set b = 1/(1− p). Let c = c(n) be the function defined by

c(n) = b logb n− logb [(logb n)(logn)] c+ 2.

Then a.a.s. G(n, p, c) contains a tropical dominating set of size c.
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Proof. To prove the Theorem, we use the second moment method. For this, we need to estimate the
variance Var(Xc) of the number of tropical dominating sets of size c.

Var(Xc) =
(n

c)∑
i=1

(n
c)∑

j=1
E(IiIj)− E2(Xc)

=
c∑

k=0

(
n

c

)(
c

k

)(
n− c
c− k

)
E(I1Ik)− E2(Xc),

= E(Xc) +
c−1∑
k=0

(
n

c

)(
c

k

)(
n− c
c− k

)
E(I1Ik)− E2(Xc), (1)

where Ik is the indicator random variable of any generic c-set Ak that intersect the first c-set A1 in k
elements. We have

E(I1Ik) = P[ A1 dominates and Ak dominates ]× P[ A1 and Ak are tropical ]
≤ P[ A1 dominates (A1 ∪Ak) ∧ Ak dominates (A1 ∪Ak) ]× P[ A1 and Ak are tropical ]

=
(
1− 2(1− p)k + (1− p)2c−k)n−2c+k × c! (c− k)!

c2c−k
(2)

Relations (1) and (2) imply
Var(Xc) ≤ E(Xc) + E2(Xc)A+B, (3)

where

A =
(
n

c

)−1(
n− c
c

)(
1− (1− p)c

)−2c
− 1

and

B =
(
n

c

) c−1∑
k=1

(
c

k

)(
n− c
c− k

)
c! (c− k)!
c2c−k

(
1− 2(1− p)k + (1− p)2c−k

)n−2c+k
.

Using once again the inequality 1− x ≥ −x/(1− x), we can bound A as follows

A ≤ e
−c2

n exp
[

2c(1− p)c

1− (1− p)c

]
− 1

≤ exp
[
−c2

n
+ 2c(1− p)c(1 + o(1))

]
− 1.

Thus, for c = b logb n− logb [(logb n)(logn)] c+ 2

A ≤
(

2c(1− p)c − c2

n

)
(1 + o(1))

= O

(
(logn)3

n

)
. (4)

Now, we need to estimate B. We have

B ≤
(
n

c

) c−1∑
k=1

g(k),

where
g(k) = (c! )2

k! (c− k)!
nc−k

c2c−k
exp

[
(n− 2c)

(
(1− p)2c−k − 2(1− p)c

) ]
.

We shall show that
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(i) there exists k0 = k0(n)→∞ such that g is decreasing if k ≤ k0 and increasing if k ≥ k0,

(ii) g(1) ≥ g(c− 1),
which will imply that

c−1∑
k=1

g(k) ≤ cg(1). (5)

Clearly,
g(1) ≥ g(c− 1)

iff
nc−2

cc−2 exp
[
(n− 2c)

(
(1− p)2c−1 − (1− p)c+1

)]
≥ 1

iff
exp

[
(c− 2) logn− (c− 2) log c+ (n− 2c)

n2b3
(logb n logn)2 − (n− 2c)

nb3
logb n logn

]
≥ 1

iff
exp

[(
1− 1

b3
+ o(1)

)
logb n logn

]
≥ 1.

Since the left-hand side of the last inequality tends to infinity as n→∞, the above condition is thus
satisfied and (ii) is proved.
For 1 ≤ k ≤ c− 1, let

h(k) = g(k + 1)
g(k) = c(c− k)

n(k + 1) exp
[
(n− c)p(1− p)2c−k−1

]
.

It is straightforward to see that, for c = b logb n− logb [(logb n)(logn)] c+ 2,
h(k) ≥ 1

iff
(1− p)k−3 log

[
n(k + 1)
c(c− 1)

]
≤ (n− c)

n2 p( logb n logn)2

iff
(1− p)k−3 logn (1 + δ(k)) ≤ (n− c)

n2 p( logb n logn)2
,

where δ(k) = log [n(k + 1)/c(c− 1)]/logn = O(log c/logn). Therefore h(k) ≥ 1 if and only if

k ≥ logb n− 2 logb
(

1− c

n

)
− 2 logb logb n− logb logn− logb p+ logb (1 + δ(k)) + 3.

The right-hand side of the above inequality is of the form an + o(1), an → ∞. Thus, there exists
k0 = k0(n) such that h(k) ≥ 1 if and only if k ≥ k0. We have thus shown (i). Combining (3), (4) and
(5), it follows that

Var(Xc)
E2(Xc)

≤ 1
E(Xc)

+O

(
(logn)3

n

)
+
(
n

c

)
cg(1)
E2(Xc)

.

Since, by Lemma 4, E(Xc) → ∞ as n → ∞, we will have Var(Xc)/E2(Xc) = o(1) if the last term in
the right-hand side of the above inequality tends to zero as n→∞. We have(

n

c

)
cg(1)
E2(Xc)

= 1
E2(Xc)

× (n)cc!nc−1

(c− 1)! c2c−2 exp [(n− 2c)
(
(1− p)2c−1 − 2(1− p)c

)
]

= c3nc−1

(n)c(1− (1− p)c)2n−2c exp [(n− 2c)
(
(1− p)2c−1 − 2(1− p)c

)
]

= c3nc−1

(n)c
exp [(n− 2c)

(
(1− p)2c−1 − 2(1− p)c

)
− (2n− 2c) log(1− (1− p)c)]

= c3nc−1

(n)c
exp

[
O

(
(logn)4

n

)]
.
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Since c = o(
√
n), we have (n)c = (1 + o(1))nc. Thus,(

n

c

)
cg(1)
E2(Xc)

= O

(
(logn)3

n

)
= o(1).

By Chebychev’s inequality,
P[Xc = 0] ≤ Var(Xc)

E2(Xc)
→ 0,

which completes the proof of the theorem.

5 Approximability and Fixed Parameter Tractability
We assume familiarity with the complexity classes NPO and PO which are optimisation analogues
of NP and P. A minimisation problem in NPO is said to be approximable within a constant r ≥ 1 if
there exists an algorithm A which, for every instance I, outputs a solution of measure A(I) such that
A(I)/Opt(I) ≤ r, where Opt(I) stands for the measure of an optimal solution. An NPO problem is in
the class APX if it is approximable within some constant factor r ≥ 1. An NPO problem is in the class
PTAS if it is approximable within r for every constant factor r > 1. An APX-hard problem cannot be
in PTAS unless P = NP. We use two types of reductions, L-reductions to prove APX-hardness, and
PTAS-reductions to demonstrate inclusion in PTAS. In the Appendix we give a slightly more formal
introduction and a description of reduction methods related to approximability. For more on these
issues we refer to Ausiello et al. [5] and Crescenzi [12].

A problem is said to be fixed parameter tractable (FPT) with parameter k ∈ N if it has an algorithm
that runs in time f(k) |I|O(1) for any instance (I, k), where f is an arbitrary function that depends
only on k.

In this section, we study the complexity of approximating and solving TDS conditioned on various
restrictions on the input graphs and on the number of colours. First, we show that TDS is equivalent
to MDS (Minimum Dominating Set) under L-reductions. In particular, this implies that the general
problem lies outside APX. We then attempt to restrict the input graphs and observe that if MDS is in
APX on some family of graphs, then so is TDS. However, there is also an immediate lower bound: TDS
on any family of graphs that contains all paths is APX-hard. We proceed by adding an upper bound
on the number of colours. We see that if MDS is in PTAS for some family of graphs with bounded
degree, then so is TDS when restricted to n1−ε colours for some ε > 0. Finally, we show that TDS on
interval graphs is FPT with the parameter being the number of colours and that the problem is in PO
when the number of colours is logarithmic.

Proposition 5.1. TDS is equivalent to MDS under L-reductions. It is approximable within lnn+ Θ(1)
but NP-hard to approximate within (1− ε) lnn.

Proof. MDS is clearly a special case of TDS. For the opposite direction, we reduce an instance of TDS to
an instance I of the Set Cover problem which is known to be equivalent to MDS under L-reductions [25].
In the Set Cover problem, we are given a ground set U and a collection of subsets Fi ⊆ U such that⋃
i Fi = U . The goal is to cover U with the smallest possible number of sets Fi. Our reduction goes as

follows. Given a vertex-coloured graph Gc = (V c, E), with the set of colours C, the ground set of I is
U = V c ∪ C. Each vertex v of V gives rise to a set Fv = N [v] ∪ {c(v)}, a subset of U . Every solution
to I must cover every vertex v ∈ V either by including a set that corresponds to v or by including a set
that corresponds to a neighbour of v. Furthermore, every solution to I must include at least one vertex
of every colour in C. It follows that every set cover can be translated back to a tropical dominating set
of the same size. This shows that our reduction is an L-reduction.

The approximation guarantee follows from that of the standard greedy algorithm for Set Cover.
The lower bound follows from the NP-hardness reduction to Set Cover in [15] in which the constructed
Set Cover instances contain o(N) sets, where N is the size of the ground set.
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When the input graphs are restricted to some family of graphs, then membership in APX for MDS
carries over to TDS.

Lemma 5.2. Let G be a family of graphs. If MDS restricted to G is in APX, then TDS restricted to G
is in APX.

Proof. Assume that MDS restricted to G is approximable within r for some r ≥ 1. Let Gc be an
instance of TDS. We can find a dominating set of the uncoloured graph G of size at most rγ(G) in
polynomial time, and then add one vertex of each colour that is not yet present in the dominating set.
This set is of size at most rγ(G) + c− 1. The size of an optimal solution of Gc is at least γ(G) and at
least c. Hence, the computed set will be at most r + 1 times the size of the optimal solution of Gc.

For ∆ ≥ 2, let ∆-TDS denote the problem of minimising a tropical dominating set on graphs of
degree bounded by ∆. The problem MDS is in APX for bounded-degree graphs, hence ∆-TDS is in
APX by Lemma 5.2. The same lemma also implies that TDS restricted to paths is in APX. Next, we
give explicit approximation ratios for these problems.

Proposition 5.3. TDS restricted to paths can be approximated within 5/3.

Proof. Let P c = v1, v2, . . . , vn be a vertex-coloured path. For i = 1, 2, 3 let σi = {vj | j ≡ i (mod
3), 1 ≤ j ≤ n}. Select any subset σ′i of V that contains precisely one vertex of each colour missing
from σi. Let Si = σi ∪ σ′i. By definition, Si is a tropical set.

Taking into account that each colour must appear in a tropical dominating set, moreover any vertex
can dominate at most two others, we see the following easy lower bounds:

n ≤ 3γt(P c),
2c ≤ 2γt(P c),

1
5(n+ 2c) ≤ γt(P c).

Suppose for the moment that each of S1, S2, S3 dominates Gc. Then, since each colour occurs in at
most two of the σ′i, we have |S1|+|S2|+|S3|≤ n+ 2c and therefore

γt(P c) ≤ min(|S1|, |S2|, |S3|) ≤
1
3(n+ 2c).

Comparing the lower and upper bounds, we obtain that the smallest set Si provides a 5/3-approximation.
It is also clear that this solution can be constructed in linear time.

The little technical problem here is that the set Si does not dominate vertex v1 if i = 3, and it does
not dominate vn if i ≡ n− 2 (mod 3). We can overcome this inconvenience as follows.

The set S3 surely will dominate v1 if we extend S3 with either of v1 and v2. This means no extra
element if we have the option to select e.g. v1 into σ′3. We cannot do this only if c(v1) is already present
in σ3. But then this colour is common in σ1 and σ3; that is, although we take an extra element for S3,
we can subtract 1 from the term 2c when estimating |σ′1|+|σ′2|+|σ′3|. The same principle applies to the
colour of vn, too.

Even this improved computation fails by 1 when n ≡ 2 (mod 3) and c(v1) = c(vn), as we can then
write just 2c− 1 instead of 2c− 2 for |σ′1|+|σ′2|+|σ′3|. Now, instead of taking the vertex pair {v1, vn}
into S3, we complete S3 with v2 and vn. This yields the required improvement to 2c− 2, unless c(v2),
too, is present in σ3. But then c(v2) is a common colour of σ2 and σ3, while c(v1) is a common colour
of σ1 and σ3. Thus |σ′1|+|σ′2|+|σ′3|≤ 2c− 2, and |S1|+|S2|+|S3|≤ n+ 2c holds also in this case.

Remark 1. In an analogous way — which does not even need the particular discussion of unfavourable
cases — one can prove that the square grid Pn2Pn admits an asymptotic 9/5-approximation. (This
extends also to Pn2Pm where m = m(n) tends to infinity as n gets large.) A more precise estimate on
grids, however, may require a careful and tedious analysis.
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Proposition 5.4. ∆-TDS is approximable within ln(∆+2)+ 1
2 . Moreover, there are absolute constants

C > 0 and ∆0 ≥ 3 such that for every ∆ ≥ ∆0, it is NP-hard to approximate ∆-TDS within
ln ∆− C ln ln ∆.

Proof. The second assertion follows from [11, Theorem 3]. For the first part, we apply reduction from
Set Cover, similarly as in the proof of Proposition 5.1. So, for Gc = (V c, E) we define U = V c ∪ C
and consider the sets Fv = N [v] ∪ {c(v)} for the vertices v ∈ V c. Every set cover in this set system
corresponds to a tropical dominating set in Gc. Moreover, the Set Cover problem is approximable within∑k
i=1

1
i −

1
2 < ln k + 1

2 [17], where k is an upper bound on the cardinality of any set of I. In our case,
we have k = ∆ + 2 since |N(v)| ≤ ∆ for all v. Hence, TDS is approximable within ln(∆ + 2) + 1

2 .

We now show that TDS for paths is APX-complete.

Theorem 5.5. TDS restricted to paths is APX-hard.

Proof. We apply an L-reduction from the Vertex Cover problem (VC): Given a graph G = (V,E), find
a set of vertices S ⊆ V of minimum cardinality such that, for every edge uv ∈ E, at least one of u ∈ S
and v ∈ S holds. We write 3-VC for the vertex cover problem restricted to graphs of maximum degree
three (subcubic graphs). The problem 3-VC is known to be APX-complete [2]. For a graph G, we write
OptV C(G) for the minimum size of a vertex cover of G.

Let G = (V,E) be a non-empty instance of 3-VC, with V = {v1, . . . , vn} and E = {e1, . . . , em}.
Assume that G has no isolated vertices. The reduction sends G to an instance φ(G) of TDS which will
have m+ n+ 1 colours: B (for black), Ei with 1 ≤ i ≤ m (for the ith edge), and Sj with 1 ≤ j ≤ n
(for the jth vertex). The path has 9n + 3 vertices altogether, starting with three black vertices of
Figure 4(a), we call this triplet V0. Afterwards blocks of 6 and 3 vertices alternate, we call the latter
V1, . . . , Vn, representing the vertices of G. Each Vj (other than V0) is coloured as shown in Figure 4(c).
Assuming that vj (1 ≤ j ≤ n) is incident to the edges ej1 , ej2 , and ej3 , the two parts Vj−1 and Vj are
joined by a path representing these three incidences, and coloured as in Figure 4(b). If vj has degree
less than 3, then the vertex in place of Ej3 is black; and if d(vj) = 1, then also Ej2 is black.

Figure 4: Gadgets for the reduction of Theorem 5.5

Let σ ⊆ V be an arbitrary solution to φ(G). First, we construct a solution σ′ from σ with more
structure, and with a measure at most that of σ. For every j, σ contains the vertex coloured Sj . Let
σ′ contain these as well. At least one of the first two vertices coloured B must also be in σ. Let σ′
contain the second vertex coloured B. Now, if any Vj (0 ≤ j ≤ n) has a further (first or third) vertex
which is an element of σ, then we can replace it with its predecessor or successor, achieving that they
dominate more vertices in the path. This modification does not lose any colour because the first and
third vertices of any Vj are black, and B is already represented in σ ∩ V0.

Now we turn to the 6-element blocks connecting a Vj−1 with Vj . Since the third vertex of Vj−1 and
the first vertex of Vj are surely not in the modified σ, which still dominates the path, it has to contain
at least two vertices of the 6-element block. And if it contains only two, then those necessarily are
the second and fifth, both being black. Should this be the case, we keep them in σ′. Otherwise, if the
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modified σ contains more than two vertices of the 6-element block, then let σ′ contain precisely Ej1 ,
Ej2 , and Ej3 . Since σ is a tropical dominating set, the same holds for σ′. It is also clear that |σ′| ≤ |σ|.

Next, we create a solution ψ(G, σ) to the vertex cover problem on G, using σ′. Let vj ∈ ψ(G, σ) if
and only if {Ej1 , Ej2 , Ej3} ⊆ σ′. Then, |ψ(G, σ)| = |σ′| − 1− 3n ≤ |σ| − 1− 3n, and when σ is optimal,
we have the equality OptV C(G) = γt(φ(G))− 1− 3n. Therefore,

|ψ(G, σ)| − OptV C(G) ≤ |σ| − γt(φ(G)). (6)

We may assume that G does not contain any isolated vertices. Under this assumption, we prove the
lower bound OptV C(G) ≥ n/4 by induction, as follows: The bound clearly holds for an empty graph.
Suppose that the bound holds for all graphs without isolated vertices with fewer than n vertices. Let σ∗
be a minimal vertex cover of G and let v ∈ V \ σ∗. Then, all of v’s neighbours are in σ∗. Let G′ be the
graph G with N [v] removed as well as any isolated vertices resulting from this removal. Let n′ be the
number of vertices in G′. If v has 1 ≤ nv ≤ 3 neighbours, then 0 ≤ ni ≤ 2nv vertices become isolated
when N [v] is removed, so OptV C(G) = nv + OptV C(G′) ≥ nv + n′/4 = nv + (n − 1 − nv − ni)/4 ≥
nv + (n− 1− 3nv)/4 ≥ n/4.

This allows us to upper-bound the optimum of φ(G):

γt(φ(G)) = OptV C(G) + 1 + 3n
≤ OptV C(G) + 1 + 12 · OptV C(G) ≤ 14 · OptV C(G). (7)

It follows from (6) and (7) that φ and ψ constitute an L-reduction.

Corollary 5.6. Fix 0 < ε ≤ 1, and let P be the family of all vertex-coloured paths with at most nε
colours, where n is the number of vertices. Then TDS restricted to P is NP-hard.

Proof. We reduce from TDS on paths with an unrestricted number of colours which is NP-hard by
Theorem 5.5. Let P c be a vertex-coloured path on n vertices with c ≤ n colours. Let Qc′ be the
instance obtained by adding a path v1, v2, . . . , vN with N = d(n+ 2)1/εe vertices to the end of P c (this
is a polynomial-time reduction for any fixed constant ε > 0). Let A and B be two new colours. In the
added path v1, v2, . . . , vN , let v2 have colour A and all the other vertices have colour B. The instance
Qc
′ has n′ = n+N vertices and c′ = c+ 2 ≤ n+ 2 ≤ N ε ≤ (n′)ε colours, so Qc′ ∈ P.
Given a minimum tropical dominating set σ of Qc′ , we see that v2 must be in σ to account for

the colour A. We may further assume that v1 is not in σ. If it were, then we could modify σ by
removing v1 and adding the last vertex of P c instead. It is now clear that taking σ restricted to
{v1, v2, . . . , vN} together with a tropical dominating set of P c yields a tropical dominating set of Qc′

and that σ restricted to P c is a tropical dominating set of P c. Hence, σ restricted to P c is a minimum
tropical dominating set of P c.

We have seen that restricting the input to any graph family that contains at least the paths can
take us into APX but not further. To find more tractable restrictions, we now introduce an additional
restriction on the number of colours. The following lemma says that if the domination number grows
asymptotically faster than the number of colours, then we can lift PTAS-inclusion of MDS to TDS.

Lemma 5.7. Let G be a family of vertex-coloured graphs. Assume that there exists a computable
function f :Q ∩ (0,∞)→ N such that for every r > 0, γ(G) > c/r whenever Gc ∈ G and n(Gc) ≥ f(r).
Then, TDS restricted to G PTAS-reduces to MDS restricted to G.

Proof. To design a polynomial-time (1 + ε)-approximation for any rational ε > 0, we pick r = ε/2;
hence let n0 = f(ε/2). Let Gc ∈ G be a vertex-coloured graph. The reduction sends Gc to φ(Gc) = G,
the instance of MDS obtained from Gc by simply forgetting the colours. Let σ be any dominating set
in G. Assuming that σ is a good approximation to γ(G), we need to compute a good approximation
ψ(Gc, σ) to γt(Gc). If n(Gc) < n0, then we let ψ(Gc, σ) be an optimal tropical dominating set of Gc.
Otherwise, let ψ(Gc, σ) be σ plus a vertex for each remaining non-covered colour. Since n0 depends on
ε but not on Gc or σ, it follows that ψ can be computed in time that is polynomial in |V (Gc)| and |σ|.
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We claim that φ and ψ provide a PTAS-reduction. This is clear if n(Gc) < n0 since ψ then computes
an optimal solution to Gc. Otherwise, assume that n(Gc) ≥ n0 and that |σ| /γ(G) ≤ 1 + ε/2, i.e., σ is
a good approximation. Then,

|ψ(Gc, σ)|
γt(Gc) ≤ |σ|+ c

γ(G) ≤
2 + ε

2 + c

γ(G) < 1 + ε,

where the last inequality follows from n(G) ≥ n0 and the definition of f .

Example 1. The problem MDS is in PTAS for planar graphs [6], but NP-hard even for planar subcubic
graphs [20]. Let G be the family of planar graphs of maximum degree ∆, for any fixed ∆ ≥ 3, and
with a number of colours c < n1−ε for some fixed ε > 0. Let f(r) = d(∆+1

r )1/εe and note that
γ(G) ≥ n/(∆ + 1) > cnε/(∆ + 1) ≥ cf(r)ε/(∆ + 1) ≥ c/r whenever n ≥ f(r). It then follows from
Lemma 5.7 that TDS is in PTAS when restricted to planar graphs of fixed maximum degree.
Example 2. As a second example, we observe how the complexity of TDS on a path varies when we
restrict the number of colours. For an arbitrary number of colours, it is APX-complete by Lemma 5.2
and Theorem 5.5. If the number of colours is O(n1−ε) for some ε > 0, then it is in PTAS by Lemma 5.7,
but NP-hard by Corollary 5.6. Finally, if the number of colours is O(logn), then it can be shown to be
in PO by a simple dynamic programming algorithm.

In the rest of this section, we look at the restriction where we consider the number of colours as a
fixed parameter. We prove the following result.

Theorem 5.8. There is an algorithm for TDS restricted to interval graphs that runs in time O(2cn2).

This shows that TDS for interval graphs is FPT and, furthermore, that if c = O(logn), then TDS
is in PO.

Let Gc be a vertex-coloured interval graph with vertex set V = {1, . . . , n} and colour set C, and fix
some interval representation Ii = [li, ri] for each vertex 1 ≤ i ≤ n. Assume that the vertices are ordered
non-decreasingly with respect to ri. For a, b ∈ V , we use (closed) intervals [a, b] = {i ∈ V | a ≤ i ≤ b}
to denote subsets of vertices with respect to this order.

Define an i-prefix dominating set as a subset U ⊆ V of vertices that contains i and dominates [1, i]
in Gc. We say that U is proper if, for every i, j ∈ U , we have neither Ii ⊆ Ij nor Ij ⊆ Ii.

Let f :P(C)× [0, n]→ N∪{∞} be the function defined so that, given a subset S ⊆ C of colours and
a vertex i ∈ V , f(S, i) is the least number of vertices in a proper i-prefix dominating set that covers
precisely the colours in S, or ∞ if there is no such set. The value of f(S, 0) is defined to be 0 when
S = ∅ and ∞ otherwise. Our proof is based on a recursive definition of f (Lemma 5.11) and the fact
that f determines γt (Lemma 5.10). First, we need a technical lemma.

Lemma 5.9. Let U ⊆ V and let i be the largest element in U . If U is i-prefix dominating, then it
dominates precisely the same vertices as [1, i]. In particular, U dominates G if and only if [1, i] does.

Proof. Assume to the contrary that there is a j ∈ [1, i] − U that dominates some k > i, and that k
is not dominated by U . This means that j is connected to k in G, so lk ≤ rj . But then we have
lk ≤ rj ≤ ri ≤ rk, so [li, ri] ∩ [lk, rk] 6= ∅, hence i ∈ U dominates k, a contradiction.

Lemma 5.10. For every interval graph Gc, we have

γt(Gc) = min{f(S, i) + |C − S| | S ⊆ C, i ∈ V, [1, i] dominates Gc}.

Proof. f(S, i) is the size of some set U ⊆ V that covers the colours S and that, by Lemma 5.9, dominates
Gc. We obtain a tropical dominating set by adding a vertex of each missing colour in C −S. Therefore,
each expression f(S, i) + |C − S| on the right-hand side corresponds to the size of a tropical dominating
set, so γt(Gc) is at most the minimum of these.

For the opposite inequality, let U be a minimum tropical dominating set of Gc. Remove from
U all vertices i for which there is some j ∈ U with Ii ⊆ Ij , and call the resulting set U ′. By
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construction U ′ still dominates Gc. Let S be the set of colours covered by U ′. Then U ′ is a minimum
set with these properties, so by the definition of f , |U ′| = f(S, i), where i is the greatest element in
U ′. Since U ′ ⊆ [1, i], it follows that [1, i] dominates Gc. Therefore, the right-hand side is at most
f(S, i) + |C − S| = |U ′|+ |C − S| ≤ |U | = γt(Gc).

The following lemma gives a recursive definition of the function f that permits us to compute it
efficiently when the number of colours in C grows at most logarithmically.

Lemma 5.11. For every interval graph Gc, the function f satisfies the following recursion:

f(S, 0) =
{

0 if S = ∅,
∞ otherwise;

f(S, i) = 1 + min{f(S′, j) | S′ ∪ {c(i)} = S, j ∈ Pi}, for i ∈ V,

where j ∈ Pi if and only if either j = 0 and {i} is i-prefix dominating, or j ∈ V , j < i, [1, j] ∪ {i} is
i-prefix dominating, and Ii 6⊆ Ij, Ij 6⊆ Ii.

Proof. The proof is by induction on i. The base case i = 0 holds by definition. Assume that the lemma
holds for all 0 ≤ i ≤ k − 1 and all S ⊆ C.

Let U be a minimum proper k-prefix dominating set that covers precisely the colours in S. We want
to show that |U | = f(S, k). If U = {k}, then S = {c(k)}, and it follows immediately that f(S, k) = 1.
Otherwise, U − {k} is non-empty. Let j < k be the greatest vertex in U − {k}. Assume that U − {k}
is not j-prefix dominating. Then, there is some i < j that is not dominated by j but that is dominated
by k, hence l(k) ≤ r(i) < l(j). Therefore Ij ⊆ Ik, so U is not proper, a contradiction. Hence, U − {k}
is a proper j-prefix dominating set. By induction, |U − {k}| ≥ min{f(S′, j) | S′ ∪ {c(k)} = S}. This
shows the inequality |U | ≥ f(S, k).

For the opposite inequality, it suffices to show that if [1, j] ∪ {k} is k-prefix dominating, U ′ is any
proper j-prefix dominating set, and Ik 6⊆ Ij , Ij 6⊆ Ik, then U ′ ∪ {k} is a proper k-prefix dominating
set. It follows from Lemma 5.9 that U ′ ∪ {k} is k-prefix dominating. Since Ik 6⊆ Ij , we must have
ri ≤ rj < rk for all i < j, hence Ik 6⊆ Ii. Assume that Ii ⊆ Ik for some i < j. Then, since Ij 6⊆ Ik, we
have lj < lk ≤ li ≤ ri ≤ rj , which contradicts U ′ being proper. It follows that U ′ ∪ {k} is proper.

Proof of Theorem 5.8. The sets Pi for i ∈ V in Lemma 5.11 can be computed in time O(n2) as
follows. Let ai ∈ V be the least vertex such that i dominates [ai, i], and let bj ∈ V be the least vertex
such that [1, j] does not dominate bj , or ∞ if [1, j] dominates G. Note that i does not dominate any
vertex strictly smaller than ai since the vertices are ordered non-decreasingly with respect to the right
endpoints of their intervals. Therefore, Pi = {j < i | ai ≤ bj , Ii 6⊆ Ij , Ij 6⊆ Ii}. The vectors ai and bj
are straightforward to compute in time O(n2), hence Pi can be computed in time O(n2) using this
alternative definition.

When Pi is computed for all i ∈ V , the recursive definition of f in Lemma 5.11 can be used to
compute all values of f in time O(2cn2), and it can easily be modified to compute, for each S and i,
some specific i-prefix dominating set of size f(S, i), also in time O(2cn2). Therefore, by Lemma 5.10,
one can find a minimum tropical dominating set in time O(2cn2). 2
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