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Abstract. We study the complexity of the problem MAX SOL which is a natural
optimisation version of the graph homomorphism problem. Given a fixed target
graphH with V (H) ⊆ N, and a weight functionw : V (G) → Q+, an instance
of the problem is a graphG and the goal is to find a homomorphismf : G → H

which maximises
P

v∈G
f(v) · w(v). MAX SOL can be seen as a restriction of

the MIN HOM-problem [Gutin et al., Disc. App. Math., 154 (2006), pp. 881-889]
and as a natural generalisation of MAX ONES to larger domains. We present new
tools with which we classify the complexity of MAX SOL for irreflexive graphs
with degree less than or equal to2 as well as for small graphs (|V (H)| ≤ 4).
We also study an extension of MAX SOL where value lists and arbitrary weights
are allowed; somewhat surprisingly, this problem is polynomial-time equivalent
to MIN HOM.

Keywords: constraint satisfaction, homomorphisms, computationalcomplexity, opti-
misation

1 Introduction

Throughout this paper, by a graph we mean an undirected graphwithout multiple edges
but possibly with loops. Ahomomorphismfrom a graphG to a graphH is a mappingf
from V (G) to V (H) such that(f(v), f(v′)) is an edge ofH whenever(v, v′) is an edge
of G. The homomorphism problem with a fixed target graphH takes a graphG as input
and asks whether there is a homomorphism fromG to H. Hence, by fixing the graphH
we obtain a class of problems, one for each graphH. For example, the graph homomor-
phism problem with fixed target graphH = {(v0, v1), (v1, v0)}, denoted by HOM(H),
is exactly the problem of determining whether the input graph G is bipartite (i.e., the 2-
COLORING problem). Similarly, ifH = {(v0, v1), (v1, v0), (v1, v2), (v2, v1), (v0, v2),
(v2, v0)}, then HOM(H) is exactly the 3-COLORING problem. More generally, ifH is
the clique onk-vertices, then HOM(H) is thek-COLORING problem.
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Hence, the HOM(H) class of problems contains several well studied problems,some
of which are inP (e.g, 2-COLORING) and others which areNP-complete (e.g.,k-
COLORING for k ≥ 3). A celebrated result, due to Hell and Nesetril [9], states that
HOM(H) is in P if H is bipartite or contains a looped vertex, and that it isNP-complete
for all other graphsH. For more information on graph homomorphism problems in gen-
eral and their complexity in particular, we refer the readerto the excellent monograph
by Hell and Nesetril [10].

In this paper we study a natural optimisation variant of the HOM(H) problem, i.e.,
we are not only interested in the existence of a homomorphismbut want to find the
“best homomorphism”. We let the vertices ofH be a subset of the natural numbers,
w : V (G) → Q+ be a weight function and look for a homomorphismh from G to H
that maximise the sum

∑

v∈G w(v) · h(v). We call this problem the maximum solution
problem (with a fixed target graphH) and denote it by MAX SOL(H).

Just as the HOM(H) problem captures several interesting combinatorialdecision
problems, it is clear that the MAX SOL(H) captures several interesting combinatorial
optimisationproblems. The MAX SOL(H) problem whereH = {(0, 0), (0, 1), (1, 0)}
is exactly theNP-hard optimisation problem WEIGHTED MAXIMUM INDEPENDENT

SET. MAX SOL can also be seen as a natural generalisation of MAX ONES or, alterna-
tively, as a variation of the integer linear programming problem.

Gutin et al. [7] introduced MIN HOM, another homomorphism optimisation prob-
lem motivated by a real-world application in defence logistics. This problem was stud-
ied in [5, 6] and among other things, a dichotomy was established for (undirected)
graphs. In particular, MIN HOM(H) was shown to be tractable wheneverH is aproper
interval graphor aproper interval bigraph. When formulated as a minimization prob-
lem, MAX SOL is easily seen to be a restriction of MIN HOM.

In [13], MAX SOL was studied as an optimisation variant of the constraint sat-
isfaction problem over arbitrary constraint languages. There, languages defined using
a many-valued logic were characterised as being either polynomial time solvable or
APX-hard. This was accomplished by adopting algebraic techniques from the study
of constraint satisfaction problems. In this paper, we continue the study of MAX SOL.
We look at languages given by undirected graphs. In particular, we give a complete
classification of the tractability of languages given by irreflexive graphs which have de-
gree less than or equal to2. We also classify the cases when|V (H)| ≤ 3 and when
V (H) = {0, 1, 2, 3}. An interesting observation in these cases is that for some graphs,
the complexity of the problem depends very subtly on the values of the vertices. In
particular, applying an order preserving map on the values may change the complexity.

Furthermore, we consider two natural extensions of the MAX SOL-framework. One
is to relax the restriction of the weights and allow arbitrary (possibly negative) rational
weights on the variables. The other is to attribute a list,L(v), of allowed values to each
vertexv in the input instance. The list is a subset ofV (H) and any solution must assign
v to one of the vertices inL(v). In this paper we focus, apart from the ordinary MAX

SOL, on the most general extreme, where we allow both lists and arbitrary weights.
This problem, which we call LIST MAX AW SOL, can be seen both as an optimisation
version of L-HOM(H), the list homomorphism problem(see [3, 4]) while it is still a



restriction of MIN HOM. We show that for each undirected graphH, L IST MAX AW
SOL(H) and MIN HOM(H) are in fact (polynomial time) equivalent.

The paper is organised as follows. In Section 2 we give a formal definition of CSP

and the problems MAX SOL and LIST MAX AW SOL. In Section 3 we formalise the
algebraic framework for studying MAX SOL. We also give a number of basic results
which are used throughout the paper. These results are interesting in their own right,
as many of them apply to general constraint languages. The results for MAX SOL are
given in Section 4. In Section 5 we show the equivalence of LIST MAX AW SOL and
Min Hom for undirected graphs, before concluding in Section6.

2 Preliminaries

We formally define constraint satisfaction as follows: LetD ⊂ N (the domain) be a
finite set. The set of alln-tuples of elements fromD is denoted byDn. Any subset of
Dn is called ann-ary relation onD. The set of all finitary relations overD is denoted
by RD. A constraint language over a finite set,D, is a finite setΓ ⊆ RD. Constraint
languages are the way in which we specify restrictions on ourproblems. The constraint
satisfaction problem over the constraint languageΓ , denoted CSP(Γ ), is defined to be
the decision problem with instance(V,D,C), whereV is a set of variables,D is a
finite set of values (the domain), andC is a set of constraints{C1, . . . , Cq}, in which
each constraintCi is a pair(si, ̺i) with si a list of variables of lengthmi, called the
constraint scope, and̺i anmi-ary relation over the setD, belonging toΓ , called the
constraint relation. The question is whether there exists asolution to(V,D,C) or not,
that is, a function fromV to D such that, for each constraint inC, the image of the
constraint scope is a member of the constraint relation.

List Maximum Solution with Arbitrary Weightsover a constraint languageΓ , de-
noted LIST MAX AW SOL(Γ ), is the maximization problem with

Instance: Tuple (V,D,C,L,w), whereD is a finite subset ofN, (V,D,C) is a CSP

instance overΓ , L : V → 2D is a function fromV to subsets ofD, andw : V → Q

is a weight function.
Solution: An assignmentf : V → D to the variables such that all constraints are

satisfied and such thatf(v) ∈ L(v) for all v ∈ V .
Measure:

∑

v∈V f(v) · w(v)

Weighted Maximum SolutionoverΓ , MAX SOL(Γ ), is then defined by restricting
w to non-negative rational numbers and lettingL(v) = D for all v ∈ V .

Let G be a graph. For a fixed graphH, theMinimum Cost Homomorphism Problem
[7], M IN HOM(H), is the problem of finding a graph homomorphismf from G to H
which minimises

∑

v∈V (G) cf(v)(v), whereci(v) ∈ Q+ are costs, forv ∈ V (G), i ∈

V (H).

Let G be a graph andH be a subgraph ofG. H is a retract of G if there exists
a graph homomorphismf : G → H such thatf(v) = v for all v ∈ V (H). The
Retraction Problem, RET(H), is to determine whether or notH is a retract ofG.



Let F = {I1, . . . , Ik} be a family of intervals on the real line. A graphG with
V (G) = F and(Ii, Ij) ∈ E(G) if and only if Ii ∩ Ij 6= ∅ is called aninterval graph .
If the intervals are chosen to be inclusion-free,G is called aproper interval graph .

Let F1 = {I1, . . . , Ik} and F2 = {J1, . . . , Jl} be two families of intervals on
the real line. A graphG with V (G) = F1 ∪ F2 and (Ii, Jj) ∈ E(G) if and only if
Ii ∩ Jj 6= ∅ is called aninterval bigraph . If the intervals in each family are chosen to
be inclusion-free,G is called aproper interval bigraph .

Interval graphs are reflexive, while interval bigraphs are irreflexive and bipartite.

3 Methods

3.1 Algebraic framework

An operation onD is an arbitrary functionf : Dk → D. Any operation onD can be
extended in a standard way to an operation on tuples overD, as follows: Letf be ak-
ary operation onD and letR be ann-ary relation overD. For any collection ofk tuples,
t1, . . . , tk ∈ R, definef(t1, . . . , tk) = (f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n]))
wheretj [i] is the i-th component in tupletj . If f is an operation such that for all
t1, t2, . . . , tk ∈ R, we havef(t1, t2, . . . , tk) ∈ R, thenR is said to be invariant under
f . If all constraint relations inΓ are invariant underf , thenΓ is invariant underf . An
operationf such thatΓ is invariant underf is called apolymorphismof Γ . The set of
all polymorphisms ofΓ is denotedPol(Γ ). Sets of operations of the form Pol(Γ ) are
known asclones, and they are well-studied objects in algebra (cf. [15]).

A first-order formulaφ over a constraint languageΓ is said to beprimitive positive
(we sayφ is a pp-formula for short) if it is of the form∃x : (P1(x1) ∧ . . . ∧ Pk(xk))
whereP1, . . . , Pk ∈ Γ andx1, . . . ,xk are vectors of variables such that|Pi| = |xi|
for all i. Note that a pp-formulaφ with m free variables defines anm-ary relation
R ⊆ Dm; the relationR is the set of all tuples satisfying the formulaφ. It follows, for
example from the proof of [13, Lemma 4], that there is a polynomial time reduction
from MAX SOL(Γ ∪ {R}) to MAX SOL(Γ ).

For any relationR and a unary operationf , let f(R) denote the relationf(R) =
{f(r) | r ∈ R}. Accordingly, letf(Γ ) denote the constraint language{f(R) | R ∈ Γ}.

Definition 1. A constraint languageΓ is a max-core if and only if there is no non-
injective unary operationf in Pol(Γ ) such thatf(d) ≥ d for all d ∈ D. A constraint
languageΓ ′ is a max-core ofΓ if and only ifΓ ′ is a max-core andΓ ′ = f(Γ ) for some
unary operationf ∈ Pol(Γ ) such thatf(d) ≥ d for all d ∈ D.

We refer to [13] for the proof of the following lemma.

Lemma 1. If Γ ′ is a max-core ofΓ , thenMAX SOL(Γ ) andMAX SOL(Γ ′) are poly-
nomial time equivalent.

3.2 Basic lemmas

We now present a series of lemmas which will prove useful in the coming section.
Several of the lemmas are, however, interesting in their ownright and can be applied to
a wider class of problems. LetΓ denote a constraint language overD = {d1, . . . , dk}.



Lemma 2. Arbitrarily chooseD′ ⊆ D, assume without loss of generality thatD′ =
{d1, . . . , dl} with d1 < d2 < . . . < dl and letF = {f ∈ Pol1(Γ ) | f |D′ = idD′}.
Assume that there exists constantsa1, . . . , al > 0 such that for everyf ∈ Pol1(Γ )\F it
holds that

∑l

i=1 ai ·di >
∑l

i=1 ai ·f(di). Then,MAX SOL(Γ ∪{{(d1)}, . . . , {(dl)}})
andMAX SOL(Γ ) are polynomial time equivalent problems.

Proof. The non-trivial reduction follows from a construction which uses the concept of
an indicator problem[11].

Corollary 1. Let Γ be an arbitrary constraint language and letU be a unary relation
onD. If MAX SOL(Γ ) andMAX SOL(Γ ∪{U}) are polynomial time equivalent prob-
lems, then so areMAX SOL(Γ ) andMAX SOL(Γ ∪{{(max U)}}). In particular,MAX

SOL(Γ ) andMAX SOL(Γ ∪ {(dk)}) are polynomial time equivalent.

Proof. Use Lemma 2 onΓ ∪ {U}, k = 1, d1 = m anda1 > 0.

Lemma 3. Let Γ be a constraint language on a finite domainD. Assume that there is
a setF ⊆ Pol1(Γ ), such that for eachf ∈ F , MAX SOL(f(Γ )) is in PO and such
that for each choice ofa1, . . . , ad ∈ Q+ there is af ∈ F for which

∑d

i=1 ai · di ≤
∑d

i=1 ai · f(di). Then,MAX SOL(Γ ) is in PO.

Let H = {H1, . . . ,Hn} be a set of connected graphs and letH be the disjoint
union of these graphs. We are interested in the complexity ofMAX SOL(H), given the
complexities of the individual problems. LetHi = H \ {Hi}. We say thatHi extends
the setHi if there exists an instanceI = (V,D,C,w) of MAX SOL(Hi) for which
OPT(I) > OPT(Ij) whereIj = (V,Dj , {xHjy | xHiy ∈ C}, w), for all j such that
1 ≤ j 6= i ≤ n. We callI awitnessto the extension.

Assume that for some1 ≤ i ≤ n, it holds thatHi does not extendHi. It is
clear that for any connected instanceI = (V,D,C,w) of MAX SOL(H), we have
OPT(I) = OPT(Ij) for somej, whereIj = (V,Dj , {xHjy | xHy ∈ C}, w). Fur-
thermore, sinceHi does not extendHi, we know that we can choose thisj 6= i.
Let H ′ be the disjoint union of the graphs inHi. Then,OPT(I) = OPT(I ′), where
I ′ = (V,D, {xH ′y | xHy ∈ C}, w) is an instance of MAX SOL(H ′). For this reason,
we may assume that everyHi ∈ H extends every graph inHi.

Lemma 4. Let H1, . . . ,Hn be connected graphs andH their disjoint union. If the
problemsMAX SOL(Hi), 1 ≤ i ≤ n are all tractable, thenMAX SOL(H) is tractable.
If MAX SOL(Hi) is NP-hard andHi extends the set{H1, . . . ,Hi−1,Hi+1, . . . ,Hn}
for somei, thenMAX SOL(H) is NP-hard.

The next lemma can be shown by a reduction from MAXIMUM INDEPENDENTSET.

Lemma 5. If a < b andR = {(a, a), (a, b), (b, a)}, thenMAX SOL(R) is NP-hard.

4 Results forMAX SOL

Throughout this section, we will assume that all graphs defining constraint languages
are max-cores and connected. Due to Lemma 1 and Lemma 4, we cando this without



loss of generality. There is a straightforward reduction from MAX SOL to MIN HOM,
so polynomiality results for MIN HOM translates directly to MAX SOL. Additionally,
the following reduction can sometimes be used to show hardness.

Lemma 6. Let H be a graph for which the retraction problem isNP-complete. Then
MAX SOL(H ∪ {{(d1)}, . . . , {(dk)}}) is NP-hard.

4.1 Irreflexive graphs with deg(v) ≤ 2

There are two types of irreflexive graphsH with deg(v) ≤ 2 for all v ∈ V (H), paths
and cycles. Since irreflexive paths are proper interval bigraphs, a reduction to MIN
HOM, and [5, Corollary 2.6] shows that:

Proposition 1. LetH be an irreflexive path. ThenMAX SOL(H) is in PO.

When H is an odd cycle, we have that CSP(H) is NP-complete and therefore
MAX SOL(H) is NP-hard. It remains to investigate even cycles. Since we do notal-
low multiple edges,C2 is a single edge, for which MAX SOL is trivially in PO. When
H ∼= C4

∼= K2,2, there is always an increasing endomorphism fromH to one of its
edges. Thus no max-core is isomorphic toC4. For even cycles of length greater or
equal to 6, it has been shown in [4] that the retraction problem isNP-complete. We will
use this with Lemma 6 to prove theNP-hard cases. The tractable cases are proven by
Lemma 3. We will assume a bipartitionV (H) = {d1, . . . , dk} ∪ {d′1, . . . , d

′

k} of H
with d1 < d2 < · · · < dk andd′1 < d′2 < · · · < d′k and without loss of generality that
dk > d′k.

d′

4d2d4 d′

2

d′

1 d3 d′

3 d1

Fig. 1. The graphH in Proposition 3.

Proposition 2. Let H be isomorphic toC6 and a max-core. Then,MAX SOL(H ) is
NP-hard.

Proposition 3. Let H be isomorphic toC8 and a max-core. IfH is isomorphic to the
graph in Figure 1 and(d4 − d3)(d

′

4 − d′3) ≥ (d3 − d2)(d
′

3 − d′2), thenMAX SOL(H )
is in PO. Otherwise it isNP-hard.

In general, for even cycles, the following holds:



Proposition 4. Let H be a max-core isomorphic toC2k, k ≥ 3. ThenMAX SOL(H)
andMAX SOL(H ∪ {{(dk)}, {(d′k)}}) are polynomial time equivalent problems.

Assume that there exists non-negative constantsa1, . . . , ak−1, a
′

1, . . . , a
′

k−1 such
that for eachf ∈ Pol1(H) \ F , whereF = {f ∈ Pol1(Γ ) | ∃j 6= k : f(dj) 6=
dj ∨ f(d′j) 6= d′j}, it is true that

k−1
∑

i=1

(

ai · di + a′

i · d
′

i

)

>

k−1
∑

i=1

(

ai · f(di) + a′

i · f(d′i)
)

. (1)

ThenMAX SOL(H) is NP-hard, otherwise it is inPO.

4.2 Small Graphs

In this section we determine the complexity of MAX SOL(H) for all graphsH =
(V,E) on at most4 vertices, i.e.,|V (H)| ≤ 4. For |V (H)| = 4 we only consider
the case whereV = {0, 1, 2, 3}, but for |V (H)| ≤ 3 we classify the complexity for
all V (H) ⊂ N. In the process we discover a new tractable class for the MAX SOL(H)
problem which is closely related to the critical independent set problem [1, 17].

We know from Lemma 1 that it is sufficient to consider graphsH that are max-
cores. The case|V (H)| = 1 is trivial since there are only two such graphs and both
are tractable. For|V (H)| = 2 there are two graphs that are max-cores, namely, the
irreflexive path on two vertices (inPOby Proposition 1) and the graph onV = {d1, d2},
d1 < d2 whered1 is adjacent tod2 andd1 is looped (which isNP-hard by Lemma 5).

When|V (H)| = 3 we have the following classification.

Theorem 1. There are six (types of) max-cores over{d1, d2, d3} whered1 < d2 < d3,
denotedH1, . . . ,H6 and shown in Figure 2.MAX SOL(H) is NP-hard for all of these
exceptH5. MAX SOL(H5) is in PO if d3 + d1 ≤ 2d2 andNP-hard otherwise.

d1

d2

d3

H1

d3 d2d1

H3

d2 d1d3

H2

H4

d3 d1 d2

H6H5

d3 d1 d2

d1

d2

d3

Fig. 2.The graphsHi.



The MAX SOL(H5) problem is related to the critical independent set problem [1,
17] in the following way. An independent setIC ⊆ V (G) is called critical if

|IC | − |N(IC)| = max{|I| − |N(I)| | I is an independent set inG},

whereN(I) denote the neighborhood ofI, i.e., the set of vertices inG that are adjacent
to at least one vertex inI. Zhang [17] proved that critical independent sets can be found
in polynomial time.

We extend the notion of a critical independent sets to(k,m)-critical independent
sets. A(k,m)-critical independent set is an independent setIC ⊆ V (G) such that

k · |IC | − m · |N(IC)| = max{k · |I| − m · |N(I)| | I is an independent set inG}.

Note that the maximum independent set problem is exactly theproblem of finding a
(1, 0)-critical independent set. The following proposition shows that that MAX SOL(H5)
is polynomial-time equivalent to the(d3−d2, d2−d1)-critical independent set problem.

Proposition 5. IC is a(d3−d2, d2−d1)-critical independent set inG if and only if the
homomorphismh fromG to H5, defined byh−1(d3) = IC andh−1(d1) = Nbd(IC) is
an optimal solution forMAX SOL(H5).

Proof. Assume thatIC is a(d3 − d2, d2 − d1)-critical independent set inG buth is not
an optimal solution to MAX SOL(H5), i.e., there exists a homomorphismg from G to
H5 such thatm(g) > m(h). That is,

w(g−1(d3)) · d3 + w(g−1(d1)) · d1 + w(g−1(d2)) · d2 >

w(h−1(d3)) · d3 + w(h−1(d1)) · d1 + w(h−1(d2)) · d2.

Subtractingw(V (G)) · d2 from both sides, we get

w(g−1(d3)) · (d3 − d2) − w(g−1(d1)) · (d2 − d1) >

w(h−1(d3)) · (d3 − d2) − w(h−1(d1)) · (d2 − d1).

This contradicts the fact thatIC is a (d3 − d2, d2 − d1)-critical independent set. The
proof in the other direction is similar. ⊓⊔

Building upon the results in [1], we are able to completely classify the complexity of
the (k,m)-critical independent set problem and, hence, also the complexity of MAX

SOL(H5). More specifically, we prove that the(k,m)-critical independent set problem
is in PO if k ≤ m and that it isNP-hard ifk > m.

Finally, we present the complexity classification of MAX SOL for all graphsH =
(V,E) whereV = {0, 1, 2, 3}. Just as in the case where|V (H)| ≤ 3 we make heavy
use of the fact that only graphs that are max-cores need to be classified. Our second tool
is the following lemma, stating that we can assume that we have access to all constants.

Lemma 7. Let H be a max-core over{0, 1, 2, 3}. ThenMAX SOL(H) is in PO (NP-
hard) if and only ifMAX SOL(H ∪ {{(0)}, {(1)}, {(2)}, {(3)}}) is in PO (NP-hard).



As an immediate corollary, we get that MAX SOL(H) is NP-hard for all max-cores
H on D = {0, 1, 2, 3} when the retraction problem (RET(H)) is NP-complete. Note
that the complexity of the retraction problem for all graphson at most4 vertices have
been classified in [16]. The classification is completed by considering the remaining
max-cores (for which RET(H) is in P) one by one. Our result is the following.

Theorem 2. Let H be a max-core onD = {0, 1, 2, 3}. Then,MAX SOL(H) is in PO
if H is an irreflexive path, and otherwise,MAX SOL(H) is NP-hard.

5 Results forL IST MAX AW SOL

The main theorem of this section is stated as follows.

Theorem 3. Let H be an undirected graph with loops allowed. ThenL IST MAX AW
SOL(H) is solvable in polynomial time if all components ofH are proper interval
graphs or proper interval bigraphs. Otherwise,L IST MAX AW SOL(H) is NP-hard.

Corollary 2. LetH be an undirected graph with loops allowed. Then,L IST MAX AW
SOL(H) is polynomial time equivalent toM IN HOM(H).

The reduction from LIST MAX AW SOL(H) is easy. The lists are replaced by weights
of ∞ for the appropriate variable-value pairs. Remaining weights are negated and trans-
lated so that the smallest weight becomes 0 for MIN HOM. The rest of this section is
devoted to proving the other direction. We assume that the input instance is connected.
If it is not, then we can solve each component separately and add the solutions.

Lemma 8. LetH be an undirected graph. Then,L IST MAX AW SOL(H) is NP-hard
if there exists a connected componentH ′ of H such thatL IST MAX AW SOL(H ′) is
NP-hard. Otherwise, if for each connected componentH ′ of H we have thatL IST MAX

AW SOL(H ′) is in PO, thenL IST MAX AW SOL(H) is in PO.

Lemma 9. Let H be an undirected graph in which there exists both loop-free vertices
and vertices with loops. Then,L IST MAX AW SOL(H) is NP-hard.

Proof. This is proved by reduction from MAXIMUM INDEPENDENTSET.

Proposition 6. If H is a connected graph which is a proper interval graph or a proper
interval bigraph, thenL IST MAX AW SOL(H) is polynomial time solvable.

Proof. This follows from [5, Corollary 2.6] which states that the corresponding MIN

HOM(H)-problem is polynomial time solvable. ⊓⊔

Theorem 4 (P. Hell, J. Huang [8]).A bipartite graphH is a proper interval bigraph
if and only if it does not contain an induced cycle of length atleast six, or a bipartite
claw, or a bipartite net, or a bipartite tent.

Figure 3 displays the bipartite net and bipartite tent graphs.

Lemma 10. Let H be a cycle of length at least six. ThenL IST MAX AW SOL(H) is
NP-hard.
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Fig. 3. (a) reflexive claw,(b) bipartite net,(c) bipartite tent.

Proof. The proof is by a simple reduction from the retraction problem on H. This
problem is shown to beNP-complete in [4]. ⊓⊔

Lemma 11. Let H be one of the graphs shown in Figure 3. ThenL IST MAX AW
SOL(H) is NP-hard.

Proof. The proof follows the same ideas as those in [5]. That is, one reduces from the
problem of finding a maximum independent set in a 3-partite graph. The apparent lack
of expressive power of the LIST MAX AW SOL-framework, and the dependence on the
labels of the target graph, are resolved by a precise choice of weights in the constructed
instances. We carry out the case in Figure 3(a) in detail.

Let G be a 3-partite graph with partite setsX,Y and Z. We create an instance
I = (V,D,C,L,w) of L IST MAX AW SOL(H) as follows. LetV = V (G), D =
V (H) = {x1, x2, x3, x4} and create a constraintuHv in C for each(u, v) ∈ E(G).
Now, define the lists and weights as follows.

L(u) =











{x4, x1} whenu ∈ X

{x4, x2} whenu ∈ Y

{x4, x3} whenu ∈ Z.

w(u) =











1/(x1 − x4) whenu ∈ X

1/(x2 − x4) whenu ∈ Y

1/(x3 − x4) whenu ∈ Z.

Now, if s is a solution toI, letX1 = s−1(x1),X0 = X\X1 and define similarlyY0,
Y1 andZ0, Z1. Note thats defines an independent setX1 ∪ Y1 ∪ Z1 of G. Conversely,
it is also clear that any independent set ofG yields a solution toI by assigning each
variable tox4 precisely when it is not a part of the independent set. The value ofs can
be written as

∑

u∈V

s(u) · w(u) =
∑

x∈X

s(x) · w(x) +
∑

y∈Y

s(y) · w(y) +
∑

z∈Z

s(z) · w(z) =

|X0| · x4 + |X1| · x1

x1 − x4
+

|Y0| · x4 + |Y1| · x2

x2 − x4
+

|Z0| · x4 + |Z1| · x3

x3 − x4
=



|X| · x4

x1 − x4
+ |X1| +

|Y | · x4

x2 − x4
+ |Y1| +

|Z| · x4

x3 − x4
+ |Z1| = M + |X1| + |Y1| + |Z1|,

whereM is independent ofs and can be calculated in polynomial time fromI. Thus,
an optimal solution toI gives a maximal independent set inG. ⊓⊔

We now have all the tools necessary to complete the proof of Theorem 3.

Proof of Theorem 3.According to Lemma 8 we can assume thatH is connected. Fur-
thermore, due to Lemma 9 we can assume thatH is either loop-free or reflexive, or
L IST MAX AW SOL(H) is NP-hard. Proposition 6 gives the polynomial cases.

If H is loop-free and non-bipartite, we can reduce from HOM(H), which is NP-
complete for non-bipartite graphs. So assume thatH is bipartite. IfH is not a proper
interval bigraph, then, due to Theorem 4,H has either an induced cycle of length at
least 6, an induced bipartite claw, an induced bipartite netor an induced bipartite tent.
We can use the listsL to induce each of these graphs, soNP-hardness follows from
Lemma 10 and 11. Note that hardness for the reflexive claw implies hardness for the
bipartite claw.

Finally, if H is reflexive, then it is either not an interval graph, or a non-proper
interval graph. IfH is not an interval graph, then we can reduce from the list homomor-
phism problem L-HOMH which is shown to beNP-complete for reflexive, non-interval
graphs in [3]. In the second case, it has been shown by Roberts[14] thatH must con-
tain an induced claw. Lemma 11 shows that this problem isNP-hard, which finishes the
proof. ⊓⊔

6 Discussion and future work

In this paper we have initiated a study of the complexity of the maximum solution
problem on graphs. Our results indicate that giving a complete complexity classification
of MAX SOL(H) for every fixed graphH is probably harder than first anticipated. In
particular, the new tractable class for the MAX SOL problem identified in Section 4.2
depends very subtly on the values of the domain elements and we have not yet been able
to characterize this tractable class in terms of polymorphisms. Hence, this tractable class
seems to be of a very different flavour compared to the previously identified tractable
classes for the MAX SOL problem [13].

On the other hand, we are able to give a complete classification for the complex-
ity of the arbitrary weighted list version of the problem, LIST MAX AW SOL(H).
Interestingly, the borderline between tractability andNP-hardness for LIST MAX AW
SOL(H) coincide exactly with Gutin et al.’s [5] recent complexity classification of MIN

HOM(H). This is surprising, since the MIN HOM(H) problem is much more expressive
than the LIST MAX AW SOL(H) problem, and hence, we were expecting graphsH
such that MIN HOM(H) wereNP-hard and LIST MAX AW SOL(H) were inPO. The
obvious question raised by this result is how far can we extend the agreement in com-
plexity between LIST MAX AW SOL(Γ ) and MIN HOM(Γ )? To this end, we state the
M IN HOM problem for general constraint languages.

Minimum Cost Homomorphismover constraint languageΓ , denoted MIN HOM(Γ ),
is the minimization problem with



Instance: Tuple (V,D,C, ci(v)), whereD is a finite subset ofN, (V,D,C) is a CSP

instance overΓ , ci : V → Q+ are costs fori ∈ V (H).
Solution: An assignmentf : V → D to the variables such that all constraints are

satisfied.
Measure:

∑

v∈V cf(v)(v)

Problem 1. Is it the case that the complexity of LIST MAX AW SOL(Γ ) and MIN

HOM(Γ ) are equal for all constraint languagesΓ?

It can be shown, using results from [2, 12], that LIST MAX AW SOL(Γ ) and MIN

HOM(Γ ) are polynomial time equivalent whenΓ is a boolean constraint language.
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