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Abstract

The instances of thé/eighted Maximun#/ -Colourable Subgrapproblem Max H-Cor)

are edge-weighted graplisand the objective is to find a subgraph®@that has maximal
total edge weight, under the condition that the subgrapraHaamomorphism td{; note
that for H = K}, this problem is equivalent tlax k-cut. Farnqvist et al. have introduced
a parameter on the space of graphs that allows close stutig approximability properties
of Max H-CoL. Here, we investigate the properties of this parameterrenlar complete
graphsk, ,, where2 < p/q < 3. The results are extended k,-minor-free graphs. We
also consider connections wiamal's work on fractional covering by cuts: we address,
and decide, two conjectures concerning cubical chromaiichers.
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1 Introduction

Denote byg the set of all simple, undirected and finite graphggraph homomor-

phismfrom G € G to H € G, denoted byG — H, is a vertex map which carries
the edges ity to edges inH. Now, Weighted Maximuni/-Colourable Subgraph
(Max H-Cot) is the maximisation problem with

Instance: An edge-weighted graptG, w), whereG € G andw : E(G) — Q.
Solution: A subgraph’ of G such that’ — H.
Measure: The sum of the weights af' (G’) with respect taw.

Given an edge-weighted graghy, w), denote bymcy (G, w) the measure of an
optimal solution to the problemiax H-Cor. Denote bymc, (G, w) the (weighted)
size of a largest-cut in (G, w). This notation is well justified by the fact that
meg(G,w) = meg, (G,w). In this senseMax H-Cor generalises\iax k-cur
which is a well-known and well-studied problem that is cotapionally hard when
k > 1. SinceMax H-Cor is a hard problem to solve exactly, efforts have been
made to find suitable approximation algorithms. Farnggtsal. [3] introduce a
method that can be used to extend previously known (in)apiatility bounds
onMax H-CoL to new and larger classes of graphs. Assumindthgjue Games
Conjecture Raghavendra’s semidefinite programming algorithi$éve optimal
performance for everynaximum constraint satisfaction problefxiax CSP), a
problem which generalisegax H-Cot, but the exact approximation ratios are not
yet known. In fact, even though an algorithm (doubly expdiaéim the domain
size) for computing these ratios for specificx Csp problems has emerge@]]
this should be contrasted to the infinite classes of graphsithod of Farnqvist
et al. gives new bounds for.

The fundament of this promising technique is the abilityaapute (or closely
approximate) a function : G x G — R defined as follows:

SOMLN) = i TemlGw) )
ceg  men(G,w)
w:E(G)—>Q+

It is shown [3] that s satisfies the following property: i/ — N andmc,; can be
approximated withiny, thenmcy can be approximated withim - s(M, N). Using
this technique, Farnqvist et aB][present concrete approximation ratios for certain
graphs (such as the odd cycles) and near-optimal asympastitts for large graph
classes. Lef A;};_, be the set of orbits of the edge automorphism group @V,
and for eachf : V(M) — V(N), let f; be the number of edges iy that f maps

to some edge iN. Then,s(M, N) can be obtained by the linear program which
minimises the objective functior, subjecttoy ;_, f;-w; < s, for each vertex map



frand>"l_ |A;| - w; = 1. Itis clear that Aut(N) may be prohibitively large for a
direct application of this technique. However, bounds caolitained by using the
following lemma

Lemmal.l([3]) LetM — H — N. Then,s(M,H) > s(M,N)ands(H,N) >
s(M,N).

In order to use this result effectively, we need a large seleof graphs\/, N
that are known to be close to each other with respect Eor the moment, the set of
such examples is quite meagre. In this paper, we initiatstiay ofs on the class
of circular complete graphs. In particular, we take a cdrefok at 3-colourable
circular complete graphs and, amongst other things, findstleaconstant between
a large number of these graphs. Moreover, we extend thasesu to £ ,-minor-
free graphs with some additional constraints.

Another way to bound the functionis to relate it to other known graph param-
eters. We do this by connecting our work with thatS#mal P,10] on fractional
covering by cuts to obtain a new family of ‘chromatic numbeTdis reveals that
s(M, N) and the new chromatic numbexs,(/N) are closely related gquantities,
which provides us with an alternative way of computingVe also use our knowl-
edge about the behaviour efto disprove a conjecture b$amal concerning the
cubical chromatic number and, finally, we decide in the pgessanother conjecture
by Samal concerning the same parameter. All proofs are @eféorthe technical
report ] available atht t p: / / www. ar xi v. or g/ abs/ 0904. 4600.

2 Calculating s for Circular Complete Graphs

A circular complete graplk, , is a graph with vertex sefvy, v1, ..., v,-1} and
edge set’(K,,,) = {viv; | ¢ < |i —j| < p — q}. This can be seen as placing
the vertices on a circle and connecting two vertices by are efithey are at a
distance at least from each other. A fundamental property of these graphsais th
Kpq — Ky iff p/g < p'/¢'. Due to this fact, when we writé, ,,, we will
assume thap andq are relatively prime. We note that a homomorphism from a
graphG to K, , is called a (circular)p/q)-colouring of G. The book by Hell and
NesSetfil @] and the survey by Zhulfl] give more information on this topic.

In the following, we investigate( K, K,) for rational numberg < r < ¢ < 3.
First, we fixr = 2 and choose so that Aut(K;) has few orbits. We find some
interesting properties of these numbers which lead us to dohe case = 2 +
1/k. Our approach is based on relaxing the linear prograr float was mentioned
in Sectionl, combined with arguments that our chosen relaxations infifac the
optimum in the original program.


http://www.arxiv.org/abs/0904.4600

Proposition 2.1 Letk > 1 be aninteger and < r < 2£tL <y < Mk
(i) (K>, K e ) = 5% (Prop. 3.1 P)),

7 Then,

(i) s(K,,K;) = 52 (Corr. 3.2[2)),
(il)) (K, Koess) = Shshs — ] — Tt (Prop. 3.3 ),
(V) (K M) = Setivis = 1~ arrsers (Prop- 3.4 B).

We see that there are intervdls= {t c Q |2+ 1/k <t <2+2/(2k—1)}
wheres(t) = s(K,., K;) is constant. In Figuré these intervals are shown for the
first few values oft. The intervals/, form an infinite sequence with endpoints
tending to2. Similar intervals appear throughout the space of circatanplete
graphs. More specifically, Farnqgvist et a)] have shown that( K, Kop—1) =
s(Ky,, Ko, ) for arbitrary integersi, m > 2. Furthermore, it can be proved that
s(Ky, K,,) = s(Kgy3, K,,) forn > 3. Two applications of Lemma.1 now shows
thats( K., K;) is constant on each regio® 8/3] x [2m — 1,2m], m € Z™.
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Fig. 1. The space betwe@rand3 with the intervals/;, marked fork = 2, 3, 4.

Sinces(K,, K;) is constant on the regio, t) € [2,2 + 1/k) x I, itis inter-
esting to see what happens wheremains in/y, butr is set to2 + 1/k. Smaller
t € I can be expressed &s= 2 + 1/(k — x), where0 < z < 1/2. We will write
x = m/n for positive integersn andn which implies the formt = 24+-n/(kn—m),
with m < n/2. Form = 1 andm = 2, we get the following results:

Proposition 2.2 (Prop. 3.5[2]) Letk > 2 andn be integers. Then,

. 2(kn—1)+n)(4k—1)
() s(Cakr, Kiﬂ’“g;_lﬁ") (2(k(n( 1)+73)J(r4k)( 1)+4k 5, forn > 2.

i (2(kn—2)+n)({n (4k—1)+(2k—1)) _
(W) 5(Cop1, Kavmonien) 2 mayin)e, mh-0+ @e-ny+ -2 WNEren =
(ag"*“” + (" 2 /2> /4, anday, o, are the reciprocals of the roots of

k5,2 — 22+ 1, forn > 3 and odd.

3 Extensionsand Connections

We start by applying known bounds on the circular chromatimber for certain
classes of planar graphs. Much of the extensive study céeduc this direction



was instigated by the restriction of a conjecture by Jaegleto| planar graphs,
which is equivalent to the claim that every planar graph dahgat leastdk has a
circular chromatic number at mo8t+ 1/k, for £ > 2. We remark that Jaeger’s
conjecture implies a weaker statement in our setting. Ngnilel is a planar
graph with girth greater thatk, thenG — Cj, impliess(K>, G) > s(K3, C) =
2k/(2k + 1). Deciding this to be true would certainly provide suppont foe
original conjecture, and would be an interesting resultsrown right. Currently,
the best proven girth for when the circular chromatic numifea planar graph
is guaranteed to be at mast 1/k is 22=2 and due to Borodin et al1]. This
result was used by Farnqvist et al. to achieve the ba@hd, G) < % for planar
graphsG of girth at Ieast‘lo’“T‘Q. Here, we improve on this result for the class of
K4-minor-free graphs by using a result by Pan and Aju [

Proposition 3.1 (Prop. 3.8[2]) Let G be a K4-minor-free graph, and: > 1 an
integer. IfG has an odd girth of at leastk — 1, thens(K,, G) < . If G has an

— 4k+1°
odd girth of at leastk + 3, thens(K,, G) < 2.

Connections can also be made to the worlsamal p,10] on fractional cover-
ing by cuts. In this paper, we generaliS8@mal’scubical chromatic numbey, to a
family of such ‘chromatic numbersy,; (G), H € G, wherey,(G) appears fof =
K,. Let H} be the graph on vertex set(H)" and an edge betweén,, ..., u,)
and(vi, ..., v,) when|{i| (u;,v;) € E(H)}| > k. xu(G) = inf{% |G — H}'}.
From a linear programming formulation of this parameteraneable to show that
xu(G)=1/s(H,G)forall G, H € G. In particulary,(G) = 1/s(Ks, G).

In Section2 we obtained lower bounds onby relaxing a linear program. In
most cases, the corresponding solution was proven fedsibldne original lin-
ear program, and hence optimal. Another source of upperdsons can be
derived as follows. Letd, H € G, with G — H and take an arbitrary such
thatG — S — H. Then, applying Lemma.1 followed by Lemma 8 fromJ]
givess(G, H) < s(G,S) = inf,.(s)=1 mea(S,w) < meq(S,1/]E(S)|). For
G = K, itfollows thats( K, H) < mingcg b(S), whereb(S) denotes the bipartite
density ofS. Samal [LO] conjectured that this inequality, expressed on the form
Xq(S) > 1/(mingcq b(S)), can be replaced by an equality. We answer this in the
negative, using<,, 4, as our counterexample. Propositi:(iii) with £ = 1 gives
S(Ky, Ky1a) = 17/22. If s(K5, K1174) = b(S) for someS C Ky, it means that
S must have at leas2 edges. Sincés;;,4 has exactly22 edges, thery = K, 4.
However, a cut in a cycle must contain an even number of edgjese the edges
of K1,,4 can be partitioned into two cycles, we find that the maximumrcu’; /4
must be of even size, hentB (K, ,4)| - b(K71/4) # 17. This is a contradiction.

As a part of his investigation of,, Samal L] studied the value of,(Q./x)



(Qn/r = (K3)}). He provided an upper bound and an approach to a lower bound
using the largest eigenvalue of the Laplacian of a subgraph @. Computing this
eigenvalue boils down to an inequality (Conjecture 5.4@)[involving some bi-
nomial coefficients. Using an inductive argument on a comioinal interpretation
of his Conjecture 5.4.210], we complete the proof of the following proposition:

Proposition 3.2 (Prop. 4.2 [2]) Letk,n be integers such thdt < n < 2k. Then,
Xq(Qnsi) = n/kif kisevenandn +1)/(k + 1) if k is odd.
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