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Abstract

The instances of theWeighted MaximumH-Colourable Subgraphproblem (Max H-Col)
are edge-weighted graphsG and the objective is to find a subgraph ofG that has maximal
total edge weight, under the condition that the subgraph hasa homomorphism toH; note
that forH = Kk this problem is equivalent toMax k-cut. Färnqvist et al. have introduced
a parameter on the space of graphs that allows close study of the approximability properties
of Max H-Col. Here, we investigate the properties of this parameter on circular complete
graphsKp/q, where2 ≤ p/q ≤ 3. The results are extended toK4-minor-free graphs. We
also consider connections witȟSámal’s work on fractional covering by cuts: we address,
and decide, two conjectures concerning cubical chromatic numbers.
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1 Introduction

Denote byG the set of all simple, undirected and finite graphs. Agraph homomor-
phismfrom G ∈ G to H ∈ G, denoted byG → H, is a vertex map which carries
the edges inG to edges inH. Now, Weighted MaximumH-Colourable Subgraph
(Max H-Col) is the maximisation problem with

Instance: An edge-weighted graph(G, w), whereG ∈ G andw : E(G) → Q+.

Solution: A subgraphG′ of G such thatG′ → H.

Measure: The sum of the weights ofE(G′) with respect tow.

Given an edge-weighted graph(G, w), denote bymcH(G, w) the measure of an
optimal solution to the problemMax H-Col. Denote bymck(G, w) the (weighted)
size of a largestk-cut in (G, w). This notation is well justified by the fact that
mck(G, w) = mcKk

(G, w). In this sense,Max H-Col generalisesMax k-cut

which is a well-known and well-studied problem that is computationally hard when
k > 1. SinceMax H-Col is a hard problem to solve exactly, efforts have been
made to find suitable approximation algorithms. Färnqvistet al. [3] introduce a
method that can be used to extend previously known (in)approximability bounds
on Max H-Col to new and larger classes of graphs. Assuming theUnique Games
Conjecture, Raghavendra’s semidefinite programming algorithms [7] have optimal
performance for everymaximum constraint satisfaction problem(Max CSP), a
problem which generalisesMax H-Col, but the exact approximation ratios are not
yet known. In fact, even though an algorithm (doubly exponential in the domain
size) for computing these ratios for specificMax Csp problems has emerged [8],
this should be contrasted to the infinite classes of graphs the method of Färnqvist
et al. gives new bounds for.

The fundament of this promising technique is the ability to compute (or closely
approximate) a functions : G × G → R defined as follows:

s(M, N) = inf
G∈G

w:E(G)→Q+

mcM(G, w)

mcN(G, w)
. (1)

It is shown [3] that s satisfies the following property: ifM → N andmcM can be
approximated withinα, thenmcN can be approximated withinα · s(M, N). Using
this technique, Färnqvist et al. [3] present concrete approximation ratios for certain
graphs (such as the odd cycles) and near-optimal asymptoticresults for large graph
classes. Let{Ai}

r
i=1 be the set of orbits of the edge automorphism group Aut∗(N),

and for eachf : V (M) → V (N), let fi be the number of edges inAi thatf maps
to some edge inN . Then,s(M, N) can be obtained by the linear program which
minimises the objective function,s, subject to

∑r
i=1 fi ·wi ≤ s, for each vertex map



f , and
∑r

i=1 |Ai| · wi = 1. It is clear that Aut∗(N) may be prohibitively large for a
direct application of this technique. However, bounds can be obtained by using the
following lemma:

Lemma 1.1 ([3]) LetM → H → N . Then,s(M, H) ≥ s(M, N) ands(H, N) ≥
s(M, N).

In order to use this result effectively, we need a large selection of graphsM, N
that are known to be close to each other with respect tos. For the moment, the set of
such examples is quite meagre. In this paper, we initiate thestudy ofs on the class
of circular complete graphs. In particular, we take a careful look at 3-colourable
circular complete graphs and, amongst other things, find that s is constant between
a large number of these graphs. Moreover, we extend the results ons to K4-minor-
free graphs with some additional constraints.

Another way to bound the functions is to relate it to other known graph param-
eters. We do this by connecting our work with that ofŠámal [9,10] on fractional
covering by cuts to obtain a new family of ‘chromatic numbers’. This reveals that
s(M, N) and the new chromatic numbersχM(N) are closely related quantities,
which provides us with an alternative way of computings. We also use our knowl-
edge about the behaviour ofs to disprove a conjecture by̌Sámal concerning the
cubical chromatic number and, finally, we decide in the positive another conjecture
by Šámal concerning the same parameter. All proofs are deferred to the technical
report [2] available athttp://www.arxiv.org/abs/0904.4600.

2 Calculating s for Circular Complete Graphs

A circular complete graphKp/q is a graph with vertex set{v0, v1, . . . , vp−1} and
edge setE(Kp/q) = {vivj | q ≤ |i − j| ≤ p − q}. This can be seen as placing
the vertices on a circle and connecting two vertices by an edge if they are at a
distance at leastq from each other. A fundamental property of these graphs is that
Kp/q → Kp′/q′ iff p/q ≤ p′/q′. Due to this fact, when we writeKp/q, we will
assume thatp andq are relatively prime. We note that a homomorphism from a
graphG to Kp/q is called a (circular)(p/q)-colouring ofG. The book by Hell and
Nešetřil [4] and the survey by Zhu [11] give more information on this topic.

In the following, we investigates(Kr, Kt) for rational numbers2 ≤ r < t ≤ 3.
First, we fixr = 2 and chooset so that Aut∗(Kt) has few orbits. We find some
interesting properties of these numbers which lead us to look at the caser = 2 +
1/k. Our approach is based on relaxing the linear program fors that was mentioned
in Section1, combined with arguments that our chosen relaxations in fact find the
optimum in the original program.

http://www.arxiv.org/abs/0904.4600


Proposition 2.1 Letk ≥ 1 be an integer and2 ≤ r < 2k+1
k

≤ t ≤ 4k
2k−1

. Then,

(i) s(K2, K 4k

2k−1
) = 2k

2k+1
(Prop. 3.1 [2]),

(ii) s(Kr, Kt) = 2k
2k+1

(Corr. 3.2 [2]),

(iii) s(K2, K 6k+5
3k+1

) = 6k2+8k+3
6k2+11k+5

= 1 − 3k+2
(k+1)(6k+5)

(Prop. 3.3 [2]),

(iv) s(K2, K 8k+6
4k+1

) = 8k2+6k+2
8k2+10k+3

= 1 − 4k+1
(k+1/2)(8k+6)

(Prop. 3.4 [2]).

We see that there are intervalsIk = {t ∈ Q | 2 + 1/k ≤ t ≤ 2 + 2/(2k − 1)}
wheres(t) = s(Kr, Kt) is constant. In Figure1 these intervals are shown for the
first few values ofk. The intervalsIk form an infinite sequence with endpoints
tending to2. Similar intervals appear throughout the space of circularcomplete
graphs. More specifically, Färnqvist et al. [3] have shown thats(Kn, K2m−1) =
s(Kn, K2m) for arbitrary integersn, m ≥ 2. Furthermore, it can be proved that
s(K2, Kn) = s(K8/3, Kn) for n ≥ 3. Two applications of Lemma1.1 now shows
thats(Kr, Kt) is constant on each region[2, 8/3] × [2m − 1, 2m], m ∈ Z+.
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Fig. 1. The space between2 and3 with the intervalsIk marked fork = 2, 3, 4.

Sinces(Kr, Kt) is constant on the region(r, t) ∈ [2, 2 + 1/k) × Ik, it is inter-
esting to see what happens whent remains inIk, but r is set to2 + 1/k. Smaller
t ∈ Ik can be expressed ast = 2 + 1/(k − x), where0 ≤ x < 1/2. We will write
x = m/n for positive integersm andn which implies the formt = 2+n/(kn−m),
with m < n/2. Form = 1 andm = 2, we get the following results:

Proposition 2.2 (Prop. 3.5 [2]) Letk ≥ 2 andn be integers. Then,

(i) s(C2k+1, K 2(kn−1)+n

kn−1

) = (2(kn−1)+n)(4k−1)
(2(kn−1)+n)(4k−1)+4k−2

, for n ≥ 2.

(ii) s(C2k+1, K 2(kn−2)+n

kn−2

) ≥ (2(kn−2)+n)(ξn(4k−1)+(2k−1))
(2(kn−2)+n)(ξn(4k−1)+(2k−1))+(4k−2)(1−ξn)

, whereξn =
(

α
(n−1)/2
1 + α

(n−1)/2
2

)

/4, andα1, α2 are the reciprocals of the roots of
2k−3
4k−2

z2 − 2z + 1, for n ≥ 3 and odd.

3 Extensions and Connections

We start by applying known bounds on the circular chromatic number for certain
classes of planar graphs. Much of the extensive study conducted in this direction



was instigated by the restriction of a conjecture by Jaeger [5] to planar graphs,
which is equivalent to the claim that every planar graph of girth at least4k has a
circular chromatic number at most2 + 1/k, for k ≥ 2. We remark that Jaeger’s
conjecture implies a weaker statement in our setting. Namely, if G is a planar
graph with girth greater than4k, thenG → Ck impliess(K2, G) ≥ s(K2, Ck) =
2k/(2k + 1). Deciding this to be true would certainly provide support for the
original conjecture, and would be an interesting result in its own right. Currently,
the best proven girth for when the circular chromatic numberof a planar graph
is guaranteed to be at most2 + 1/k is 20k−2

3
and due to Borodin et al. [1]. This

result was used by Färnqvist et al. to achieve the bounds(K2, G) ≤ 4k
4k+1

for planar
graphsG of girth at least40k−2

3
. Here, we improve on this result for the class of

K4-minor-free graphs by using a result by Pan and Zhu [6]:

Proposition 3.1 (Prop. 3.8 [2]) Let G be aK4-minor-free graph, andk ≥ 1 an
integer. IfG has an odd girth of at least6k− 1, thens(K2, G) ≤ 4k

4k+1
. If G has an

odd girth of at least6k + 3, thens(K2, G) ≤ 4k+2
4k+3

.

Connections can also be made to the work ofŠámal [9,10] on fractional cover-
ing by cuts. In this paper, we generaliseŠámal’scubical chromatic numberχq to a
family of such ‘chromatic numbers’,χH(G), H ∈ G, whereχq(G) appears forH =
K2. Let Hn

k be the graph on vertex setV (H)n and an edge between(u1, . . . , un)
and(v1, . . . , vn) when|{i | (ui, vi) ∈ E(H)}| ≥ k. χH(G) = inf{n

k
|G → Hn

k }.
From a linear programming formulation of this parameter, weare able to show that
χH(G) = 1/s(H, G) for all G, H ∈ G. In particularχq(G) = 1/s(K2, G).

In Section2 we obtained lower bounds ons by relaxing a linear program. In
most cases, the corresponding solution was proven feasiblefor the original lin-
ear program, and hence optimal. Another source of upper bounds ons can be
derived as follows. LetG, H ∈ G, with G → H and take an arbitraryS such
that G → S → H. Then, applying Lemma1.1 followed by Lemma 8 from [3]
gives s(G, H) ≤ s(G, S) = infw:w(S)=1 mcG(S, w) ≤ mcG(S, 1/|E(S)|). For
G = K2 it follows thats(K2, H) ≤ minS⊆G b(S), whereb(S) denotes the bipartite
density ofS. Šámal [10] conjectured that this inequality, expressed on the form
χq(S) ≥ 1/(minS⊆G b(S)), can be replaced by an equality. We answer this in the
negative, usingK11/4 as our counterexample. Proposition2.1(iii) with k = 1 gives
s(K2, K11/4) = 17/22. If s(K2, K11/4) = b(S) for someS ⊆ K11/4 it means that
S must have at least22 edges. SinceK11/4 has exactly22 edges, thenS = K11/4.
However, a cut in a cycle must contain an even number of edges.Since the edges
of K11/4 can be partitioned into two cycles, we find that the maximum cut in K11/4

must be of even size, hence|E(K11/4)| · b(K11/4) 6= 17. This is a contradiction.

As a part of his investigation ofχq, Šámal [10] studied the value ofχq(Qn/k)



(Qn/k = (K2)
n
k ). He provided an upper bound and an approach to a lower bound

using the largest eigenvalue of the Laplacian of a subgraph of Qn/k. Computing this
eigenvalue boils down to an inequality (Conjecture 5.4.6 [10]) involving some bi-
nomial coefficients. Using an inductive argument on a combinatorial interpretation
of his Conjecture 5.4.2 [10], we complete the proof of the following proposition:

Proposition 3.2 (Prop. 4.2 [2]) Let k, n be integers such thatk ≤ n < 2k. Then,
χq(Qn/k) = n/k if k is even and(n + 1)/(k + 1) if k is odd.
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