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Abstract. We study minimisation of integer linear programs with posi-
tive right-hand sides. We show that such programs can be approximated
within the maximum absolute row sum of the constraint matrix A when-
ever the variables are allowed to take values in N. This result is optimal
under the unique games conjecture. When the variables are restricted to
bounded domains, we show that finding a feasible solution is NP-hard
in almost all cases.

1 Introduction

We study the approximability of minimising integer linear programs
with positive right-hand sides. Let n and m be positive integers,
representing the number of variables and the number of inequalities,
respectively. Let x7 = (z1,...,2,) be a vector of n variables, A be
an integer m x n matrix, b € (Z*)™, and ¢ € (QTU{0})". Finally, let
X be some given subset of N”. We consider here various restrictions
of the following integer linear program:

Minimise c¢’x
subject to Ax > b, (IP)

x € X.

Typically, X is either N” or {x € Z" | 0 < x < d} for some
d € (Z*)", where the inequalities are to hold componentwise. A
commonly occurring instance of the latter case is when X = {0, 1}",
so-called 0-1 programming. In all but very restricted cases, (IP) is
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NP-hard to solve to optimality. Instead, the effort is directed to-
wards finding approximation algorithms and improving the bound
within which it is possible to find approximate solutions. Formally,
a minimisation problem [T is said to be approzimable within (a real
constant) ¢ > 1 if there exists a polynomial time algorithm A such
that for all instances x of IT, A(z)/OpT(z) < c.

Let a7 = (aji,...,a;,) € Z" be the jth row of A. We will
use the norm |jayll; = .., |a;i| as well as the mazimum absolute
row sum norm of A, defined as [|A||c = maxi<j<p, ||a]/1. Let (IP)g
denote the subset of (IP) where ||All.c < k. We show that (IP),
can unconditionally be approximated within & when X = N", but
cannot be approximated within £ — ¢, € > 0, if Khot’s unique games
conjecture holds [9]. We also show that finding a feasible solution to
(IP) is NP-hard in almost all cases when X = {0,...,a — 1}".

1.1 Previous work

The approximability of the program (IP) has been extensively stud-
ied in the case when A is restricted to non-negative entries. In this
case, the problem is usually referred to as a (generalised, or capac-
itated) covering problem. Among the problems described by such
programs one finds the MINIMUM KNAPSACK PROBLEM, MINI-
MUM VERTEX COVER (and its k-uniform hypergraph counterpart,
described below) and various network design problems |2]. We will
refer to (TP) with non-negative A as (CIP) (covering integer pro-
gram). Here, X is often taken to be {x € Z" | 0 < x < d}. Indeed,
optimal solutions remain feasible after introduction of the bounds
z; < [max; b;/aj;].

Hall and Hochbaum [7] restrict A in (CIP) to a 0/1-matrix and
give an || A||.o-approximating algorithm for the case when X = {0, 1}".
Bertsimas and Vohra |1] study the general (CIP) with X = {0,1}"
as well as X = N". They use both a randomised rounding heuristic
with a nonlinear rounding function and deterministic rounding us-
ing information about the dual program. For X = {0,1}", they show
that (CIP) can be approximated within ||A]|s using both a deter-
ministic rounding function and a dual heuristic. For X = N”, they
obtain an ||Al|. +1 approximating algorithm. Carr, Fleischer, Leung
and Phillips |2] lower the integrality gap of (CIP) with X = {0,1}"



by introducing additional inequalities into the program to obtain
an approximation ratio equal to the maximal number of non-zero
entries in a row of A. Their claim that the proof immediately gener-
alises to the case when the variables are bounded by any fixed d > 1
seems to be incorrect, but a complete proof for general d is given by
Pritchard [11]. Koufogiannakis and Young [10] present an approx-
imation algorithm for a general framework of monotone covering
problems, with an approximation ratio equal to the maximal num-
ber of variables upon which a constraint depends. The constraints
must be monotone (closed upwards), but can be non-convex. This
framework in particular includes problems such as (CIP) and MIN-
IMUM SET COVER.

2 Unbounded domain

We assume that X = N" throughout this section. Lower bounds for
(IP); are discussed in Section 2.1. We aim to prove the following
result:

Proposition 1. (IP); can be approzimated within k.

The problem (IP); is solvable in polynomial time: initially, let z; = 0
for all ¢, and for each inequality x; > b, update z; to max{z;, b}. Any
inequality of the form —x; > b implies that there are no solutions.
In order to prove Proposition 1 for k& > 2, we give a deterministic
‘rounding’-scheme, which produces an integer solution from a ratio-
nal one, while increasing the value of the objective function by at
most k. For an integer & > 2 and x € Q" U {0}, define the following
operation:

0 if 0<ax<1/k
z=4q1 it 1/k<z<2/k
[(k—1)x] otherwise.

For a vector x = (x1,2a,...,2,)7, let X = (&1,29,...,2,)T. Note
that ¢’x < k-cTx. We will show that in addition, % satisfies Ax > b
by showing that for any integer b > 1, we have a - X > b whenever
a-x > b for any vector a = (ay,...,a,)" with ||la||; < k. In order to
do this, we first introduce a scaling of & which will be easier to work



T

with. Let 2/ = &/(k—1) and extend to vectors, x' = (2,2}, ..., z})",

as before.

Our first step is to bound the difference A = a-x —a - x’ from
above. Let §; = a;(z; — 2}) so that A =3"", d;. Let t; = sgn(a;) - x;
and t; = sgn(a;) - ;. Then, 6; = |a;|(t; — t}). Figure 1 illustrates how
the t; are determined from the ¢; in the cases which give positive
contributions to A. Each arrow represents an interval, and for a ¢;
in a particular interval, ¢, can be found at the arrow head. Note that
there are only two such intervals on the positive axis. To the left of

Ls follows an infinite sequence of left arrows, each of size equal to
that of Ls.

L5 L4 L3 L2 Ll
—_— — =
_ le l€ | | L | | __
N I~ N “ \
=3 =2 =2 =1 -1 1 1 2
-1 -1 k k-1 k 0 k. k-1k

Fig. 1. The intervals L1, ..., Ls represented by arrows.

Formally, the intervals L;,7 > 1 are defined as follows:

Li={ze€Q]|1/(k—-1) <z <2/k}

Ly={ze€Q|0<z<1/k}

Ly={zeQ]| —1/(k—-1) <z < —-1/k}

Li={zeQ| —2/(k—1) <z < -2/k}

Li={zeQ| —(i-2)/(k—1) <z < —(i—3)/(k—1)}(i >5)
When k = 2, the interval L, vanishes while L3 and L, become adja-

cent. Let L = UZ.21 L;. Now, ¢; can be bounded as follows, given the
location of ¢;:

(0 < 6if|a;i| < (k—2)/k(k—1) if t;€ L,
0<6;/|asl <1/k if t; € Ly
0 < d;/la;) < 1/k(k —1) if t; € Ly
0 < d;/las) <2/k(k—1) if t; €Ly
0<6;/|a;] <1/(k—1) if t; € Lj,j>5
(6 <0 if t;¢ L.



Note that when k& = 2, the upper bound on §;/|a;| for t; € Ly is
actually strict, since —2/k is an integer. Thus, J; < |a;|/(k — 1), for
all ¢ > 1.

Lemma 1. Let b > 1 and k > 2 be integers. If a-x > b and
l|lal|l; <k, then A < 1.

Proof. Assume that there is an index [ such that t; ¢ L. Then,
;| > 050 37, |a;] <k — 1. We then have

;| -1
A<Z5<Z _1_k_1 = 1. (1)
1#£l 1#£l

Therefore, we can assume that for all 1 < i < n we have t; € L.
Let X7 = {i | t; € L1} and Xy = {i | t; € Ly}. We will bound
A by separately bounding the three parts of the sum with index
sets X1, Xy and {1,...,n} \ (X1 U Xy). Let p = >,y |a;| and
q= Zie% |a;|. Since t; > 0 if and only if i € X; U X5, we must have
that >,y ,ux, lailti > a-x>b>1, hence p-2/k+q-1/k > 1«
2p + q > k. Upper bounding the three parts yields:

k—2 1 1 k? —2p —q
A — —+(k—p—q)- = 1.
DLy Bl A Gt U e Sy S
The lemma follows. O

We can now use Lemma 1 to prove the following lemma, and
complete the proof of Proposition 1.

Lemma 2. Let b > 1 and k > 2 be integers. If a-x > b and
l|lal|l; < k, then a-%x > b.

Proof. From Lemma 1, we have A = a-x —a-x’ < 1 which can be
rearranged to a-x’ >a-x — 1> b— 1. Multiplication by £ — 1 now
yields

a-x=(k—-1la-x'>k-10-1).

When k > 2and b > 1, we have (k—1)(b—1) > b—1,1.e.,a-x > b—1.
By integrality, it follows that a - X must in fact be greater than, or
equal to b. O



Proof (Proposition 1). Tt remains to prove the statement for k > 2.
For an instance of (IP)g, we solve the LP-relaxation and obtain a
solution x such that Ax > b, and c¢’x is less than or equal to
the optimum of the corresponding integer program. In particular,
a-x > b for every row vector a of A. By Lemma 2, it follows that
a-X > b, and therefore Ax > b. The value of the objective function
for the solution % is ¢’%x < k- c'x, hence we have approximated
(IP); within k. O

2.1 Lower bounds

A Ek-uniform hypergraph H is a pair (V, E), where V' is a set of ver-
tices and each hyperedge e € E is a k-element subset of V. The
EE-VERTEX-COVER problem is that of finding a minimum size ver-
tex cover in a k-uniform hypergraph. Note that E2-VERTEX-COVER
is identical to the well-known MINIMUM VERTEX COVER for ordi-
nary graphs. Given H, there is an immediate reduction to a (CIP)
with one variable z; for each vertex v; € V' and one inequality of the
form

xj1+xj2+...+xjk21

for each hyperedge e; = {v;,,v;,,...,v;,} € E. Here, the domain X
may be any superset of {0,1}" since we can always obtain a feasi-
ble solution x’ = min{1,x} (componentwise) with at least as small
measure. Consequently, if EA-VERTEX-COVER is not approximable
within a constant «, then (IP), is not approximable within « either.

The best lower bounds currently known under the assumption
of P # NP is 1.3606 for MINIMUM VERTEX COVER by Dinur and
Safra [4] and k — 1 — ¢ for Ek-VERTEX-COVER by Dinur et al. [3].
Stronger bounds are obtainable by exploiting stronger complexity
theoretical assumptions such as Khot’s unique games conjecture:
Khot and Regev [9] show that modulo the truth of this conjecture,
Ek-VERTEX-COVER cannot be approximated within k& — ¢ for any
€ > 0. Thus, we have good reasons to believe that it may in fact be
NP-hard to approximate EA-VERTEX-COVER within k — ¢ for any
e. Combined with Proposition 1, this bound yields a (conjectured)
tight approximation constant of k of (IP),. This bound also matches
the upper bound on (CIP) by Carr et al. [2].



3 Bounded domain

Let X ={0,1,...,a—1},a > 2 and k > 3, with at least one of the
inequalities strict. In this case, we show that it is NP-hard to find
any feasible solution to (IP)s. The exceptional case a = 2 and k = 3
turns out to be approximable within 3.

Proposition 2. Leta >2 and X ={0,1,...,a—1}". When k > 4,
it is an NP-hard problem to find feasible solutions to (IP)y.

Proof. We reduce from the problem ONE-IN-THREE SAT, which
has been shown to be NP-hard by Schaefer [12]|. An instance of
ONE-IN-THREE SAT is given by a set of clauses {C1,...,C,,} over
variables U = {uy,...,u,}, where each clause is a disjunction w; V
u; V u of exactly three variables. The question is whether or not
there exists a satisfying assignment such that precisely one variable
in each clause is assigned the value 1. Note that we do not allow nega-
tions of the variables. This is in agreement with Schaefer’s original
formulation.

For each propositional variable u; occurring in a ONE-IN-THREE
SAT instance, create a variable x;, and for each clause C' = u; Vu; V
ug, add the following inequalities:

T, Tj, Ty > a — 2 (2)
ri+zj+ax,>3@—2)+1

The first equation restricts the variables xz;, x;, z; to the set {a—2, a—
1}. The second equation ensures that at least one of the variables
x;,x; and x; is assigned the value a — 1. Furthermore, we add a
(unique) new variable y, and the following inequalities

y>a—1
vt <2y—1&2y—o,—x;>1 (3)
v +x <2y —1

rj+r <2y—1

Since y must be a — 1, the last three inequalities, together with the
fact that x;, z;,2; € {a —2,a — 1} implies that at most one variable
from {z;, x;, 7;} takes the value a — 1. We can now solve the original
ONE-IN-THREE SAT-instance by assigning u; = 0 if x; = a — 2 and
u; = 1if x; = a — 1. It follows that finding a solution to (IP) is
NP-hard. O



Corollary 1. If X = {0,1,...,a—1}" with a > 2, then the problem
of finding a feasible solution to (IP)s is NP-hard.

Proof. The proof of Proposition 2 can be altered in the following way
to produce the result in the corollary. First, replace the equations
(2) with x; +x; +2; > 1. Then, replace 2y — 1 in equations (3) with
y — (a — 2). Finally, let u; = 0 if and only if z; = 0. O

We are left with one remaining case:

Proposition 3. The problem (IP)s with domain X = {0,1} can be
approzimated within 3.

Proof. Let x be an optimal solution to the [LP-relaxation of IP5. We
round x to an integer solution x as follows:

) {o if 2, < 1/3,

' 1 otherwise.

This increases the value of the objective function by at most 3. The
proof follows a similar strategy as that of Proposition 1. Define t; =
sgn(a;) - 2; and £; = sgn(a;) - 2;. We note again that it suffices to
show that

n
A=a-x—a-x=Y |a|(t; —1;) <1,
=1

since we then have a-x > a-x—1 > b — 1, and the result follows
from the integrality of a - x.
and let p = > .\ [a;] and ¢ = ),y |a;|. The values of p and ¢
must satisfy

b<a-x<p-(-1/3)+¢-1/3+B-p—q)-1 (4)
which implies p-2/3 4+ ¢-1/3 < 1, where we have used 1 as a lower
bound for b. In fact, we have p-2/3+4¢-1/3 < 1: if ¢ = 0, this follows

immediately from the non-strict inequality, and if ¢ > 0, then the
term ¢ - 1/3 in (4) is a strict upper bound on ), ;.

To finish the proof, note that {i | t; —; > 0} C X; U X,. We
therefore have the bound
A< Z Jail(t: = 1) <p-2/3+¢-1/3 <1,
i€ X1UX>o
and the proposition follows. O



4 Discussion and Future Work

We have obtained a tight approximation of a general class of integer
linear programs under the parameterisation ||A|| < k. It is however
important to note, that the result in Section 2 is tight only with re-
spect to this particular parameterisation. It is still imaginable that
there exists an approximation algorithm which approximates (IP)
within, for example, the maximum number of non-zero entries in
any row of A as was the case for the (CIP) problems. The approach
of Carr et al. [2| and Pritchard [11]| is based on adding so-called
Knapsack Cover (KC) inequalities to the program, which lowers the
integrality gap. The exponentially many inequalities are then han-
dled using a separation oracle. We note that for (IP), there seems to
be no natural counterpart to the KC-inequalities. The main obstacle
is that the validity of the inequalities of (IP) does not uniformly im-
prove upon increasing individual variables, as is the case for ordinary
covering problems.

A first step in this direction could be to look for a 2-approximation
of (IP) with at most two variables per inequality (or, indeed, prove
that such an algorithm is unlikely to exist.) An algorithm is known
for arbitrary right-hand sides when the variables are bounded, see
Hochbaum et al. |8]. The idea behind the proof is to reduce the prob-
lem to program with only monotone inequalities (ax — by > ¢, where
a,b > 0.) This system can then be solved in pseudo-polynomial time,
depending on the upper bounds of the variables. The value of the
final solution can then easily be seen to be off by at most a factor
of 2. To use a similar approach, one would like to prove that poly-
nomial time solvability is retained for monotone inequalities, when
arbitrary right-hand sides and bounded domain is substituted with
positive right-hand sides and unbounded domain. We note that this
can be seen as a constraint satisfaction problem over an infinite do-
main, and that the constraint language of monotone inequalities is
invariant under the operations min and max.

Dobson [5] and Fisher and Wolsey [6] both analyse greedy al-
gorithms for (CIP) and derive bounds of O(logd), where d is the
maximum column sum of A. As for the KC-inequalities, the cor-
rectness of these algorithms crucially uses the non-negativity of the
A-matrix, and a direct generalisation to (IP) fails. Nevertheless, it



seems reasonable to assume that some kind of column-sum bound
for (IP) should exist.

References

1.

2.

10.

11.

12.

D. Bertsimas and R. Vohra. Rounding algorithms for covering problems. Mathe-
matical Programming, 80(1):63-89, 1998.

R. D. Carr, L. K. Fleischer, V. J. Leung, and C. A. Phillips. Strengthening integral-
ity gaps for capacitated network design and covering problems. In Proceedings of
the eleventh annual ACM-SIAM symposium on Discrete algorithms (SODA-2000),
pages 106 115, 2000.

. L. Dinur, V. Guruswami, S. Khot, and O. Regev. A new multilayered PCP and the

hardness of hypergraph vertex cover. SIAM Journal on Computing, 34(5):1129-
1146, 2005.

I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162(1):439-485, 2005.

G. Dobson. Worst-case analysis of greedy heuristics for integer programming with
nonnegative data. Mathematics of Operations Research, 7(4):515-531, 1982.

M. L. Fisher and L. A. Wolsey. On the greedy heuristic for continuous covering
and packing problems. SIAM Journal on Algebraic Discrete Methods, 3(4):584
591, 1982.

N. G. Hall and D. S. Hochbaum. A fast approximation algorithm for the multi-
covering problem. Discrete Applied Mathematics, 15:35 40, 1986.

D. S. Hochbaum, N. Megiddo, J. Naor, and A. Tamir. Tight bounds and 2-
approximation algorithms for integer programs with two variables per inequality.
Mathematical Programming, 62:69 83, 1993.

S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2 —e.
Journal of Computer and System Sciences, 74(3):335 349, 2008.

C. Koufogiannakis and N. E. Young. Greedy A-approximation algorithm for cover-
ing with arbitrary constraints and submodular cost. In Proceedings of the 36th In-
ternational Colloquium on Automata, Languages and Programming (ICALP-2009),
pages 634 652, 2009.

D. Pritchard. Approximability of sparse integer programs. In Proceedings of the
17th Annual European Symposium on Algorithms (ESA-2009), pages 83 94, 2009.
T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the
tenth annual ACM symposium on Theory of computing (STOC-1978), pages 216—
226, 1978.



