New Algorithms for the Maximum Hamming
Distance Problem

Ola Angelsmark!* and Johan Thapper?**

! olaan@ida.liu.se

Department of Computer and Information Science
Linkdpings Universitet
S-581 83 Linkdping, Sweden
2 jotha@mai.liu.se
Department of Mathematics
Link&pings Universitet
S-581 83 Link4ping, Sweden

Abstract. We study the problem of finding two solutions to a con-
straint satisfaction problem which differ on the assignment of as many
variables as possible - the Max HAMMING D1STANCE problem for CSPs —
a problem which can be seen as a domain independent way of quantifying
“ignorance.” The first algorithm we present is an O (1.7335™) microstruc-
ture based algorithm for MAax HAMMING DISTANCE (2, 2)-CSP, which is
an improvement over the previously best known algorithm for this prob-
lem, which has a running time of O (1.8409™). We also give algorithms
for MAx HAMMING DISTANCE (2,0)-CSP and the general MAx HAM-
MING DISTANCE (d,!)-CSP, which are enumerative in nature. The main
result for these problems is that if we can solve (2,[)-CSP (i.e. I-SAT) in
O (a™) and (d,1)-CSP in O (b"), then the corresponding Max Hamming
problems can be solved in O ((2a)™) and O (b™(1 + b)™), respectively.

1 Introduction

Ever since they were introduced in the 1970’s [13], constraint satisfaction prob-
lems (CSPs) have proven to be an important tool in the computer scientist’s
tool box. CSPs provide a natural and efficient way of formulating problems in a
wide variety of fields, cf [9,12], and, because of this, they have received a lot of
attention by the research community.

In its most basic form, a CSP consists of a collection of variables taking
values from some domain, and a collection of constraints restricting the values
different variables can simultaneously assume. Now the question is: Does there
exist an assignment of values to these variables which does not violate any of
the constraints? While this is certainly the most thoroughly studied problem for

* Supported in part by the National Graduate School in Computer Science, Sweden,
and in part by the Swedish Research Council (VR), grant 621-2002-4126.
** Supported by the Programme for Interdisciplinary Mathematics, Department of
Mathematics, Link6pings Universitet.

CSPs, there are a number of alternative, equally interesting, questions one can
ask about a CSP.

The question we will study in this paper asks us to find two solutions that
are as far away from each other as possible; i.e. we want to find two satisfying
assignments that disagree on the values for as many variables as possible. This
is known as the MAX HAMMING DISTANCE problem, and was first introduced in
Crescenzi & Rossi [3], where it was suggested as a domain independent measure
of ignorance, quantifying how much we do not know of the world.

We present three different algorithms in this paper. The first one is a mi-
crostructure based algorithm for the special case when the domains have size
two and we have binary constraints, denoted MAX HAMMING DISTANCE (2, 2)-
CSP. (We will exclusively consider CSPs over finite domains, denoted (d, [)-CSP,
where d is the domain size and [the arity of the constraints.) Even in this re-
stricted form, the problem is NP-complete. In the microstructure graph of a
CSP [10], a vertex corresponds to an assignment of a value to a variable in the
original problem (see Section 2 for definitions.) The algorithm exploits this by
searching for a set of vertices where each vertex either does not have an edge
to any other vertex — and thus can be interpreted as an assignment — or is part
of a connected component with 2 or 4 vertices. Each vertex (i.e. assignment)
in this set is then given a weight, and the original instance together with these
weights is given to a weighted 2-SAT solver. This algorithm returns a solution
with maximum weight W, and we can then construct a solution which differs on
W variables.

By using the weighted 2-SAT algorithm from [4], we arrive at a running
time of O (1.7335™), where n is the number of variables in the problem. This
is an improvement over the MAX HAMMING DISTANCE (2,2)-CSP algorithm
presented in [1], which runs in O (1.8409™).

When we allow domains with more than 2 elements, or constraints with
arity higher than 2, it turns out that microstructures are not as successful,
and, consequently, the algorithms we present for these cases are quite different.
Intuitively, the algorithm for MAX HAMMING DISTANCE (d,1)-CSP works as
follows:

1. Pick a subset of the variables which should assume different values in the two
solutions, duplicate and rename them and the constraints they are involved
in.

2. Add a constraint for each of these new variables, preventing it from assuming
the same value as the one it is a copy of.

3. Solve this new, larger, instance.

Starting with assuming all variables are different in the two solutions, and then
working downwards, the algorithm will, by trying out the different possible sub-
sets of variables, arrive at a pair of solutions with maximum hamming distance.
Given that we can solve the (d,!)-CSP in the last step in time O (a™), the entire
algorithm will have a running time of O (a™(1 + a)").

The final algorithm is for the case when the domain has two elements and
the constraints have arity I, MAX HAMMING DISTANCE (2,1)-CSP. Here, we

note that since there are only two possible choices of values for a variable, it
is unnecessary to duplicate the variables that should take different values —
instead, only the constraints they are involved in are duplicated, and then any
occurrence of a variable which should assume different values in the two solutions
is replaced by its negation in these constraints. The resulting algorithm will have
a running time of O ((2a)™), where O (a™) is the time needed to solve the (2,1)-
CSP problem in each step.

1.1 Overview of the paper

Section 2 contains most of the definitions we will need in the discussion. For
convenience, it has been split into three parts, where Section 2.1 contains the
definitions related to CSPs, Section 2.2 the graph and microstructure defini-
tions, while Section 2.3 formally defines the problem we will be studying, MAX
HAMMING DISTANCE. The algorithm for MAX HAMMING DISTANCE (2, 2)-CSP,
together with its analysis, is presented in Section 3, while Section 4 contains
the algorithms for MAX HAMMING DISTANCE (d,1)-CSP and MAX HAMMING
DISTANCE (2,1)-CSP.

2 Preliminaries

This section is divided into three parts in order simplify the search for a
particular definition. In Section 2.1 we have the definitions related to constraint
satisfaction problems, while Section 2.2 is devoted to graphs and the microstruc-
ture of CSPs. Finally, in Section 2.3, we define the problem we will be discussing
in this paper; MAX HAMMING DISTANCE (d, [)-CSP. Note that Section 3 contains
additional definitions specific to that part of the paper.

2.1 Constraint satisfaction problems
A (d,1)-constraint satisfaction problem ((d,1)-CSP) is a triple (X, D, C) where

— X is a finite set of variables,
— D afinite set of domain values, with |D| = d, and
— C is a set of constraints {c1,ca,...,Ck}-

Each constraint ¢; € C is a structure R(z;,,...,z;;) where j < I, z;,,...,z;; € X
and R C D’. A solution to a CSP instances is a function f : X — D s.t. for each
constraint R(z;,,...,z;;) € C, (f(zi,,--., f(zi;))) € R. Given a (d,1)-CSP, the
basic computational problem is to decide whether it has a solution or not — to
determine if it is satisfiable.

The special case when d = 2 and we have binary constraints, i.e. (2,2)-CSP,
will often be viewed as 2-SAT formulae. A 2-SAT formula is a conjunction of a
number of clauses, where each clause is on one of the forms (pV q), (—p V q),
(=pV —q), (p), (—p). The set of variables of a formula F' is denoted Var(F'), and

an occurrence of a variable or its complement in a formula is termed a literal
Determining whether a 2-SAT formula is satisfiable can be done in polynomial
time [2], while, in contrast, the more general I-SAT (i.e, the clauses consist of at
most [literals) is known to be NP-complete for [> 3 [7].

Definition 1 ([4]). Let F' be a 2-SAT formula, and let L be the set of all literals
for all variables occurring in F. Given a vector w of weights and a model M for
F, we define the weight W (M) of M as

W(M) = > w(l)

{leL | 1 is true in M}

The problem of finding a mazimum weighted model for F is denoted 2-SAT,,.

In [4], an algorithm for counting the number of maximum weighted solutions
to 2-SAT instances is presented which has a running time of O (1.2561"), and it
can easily be modified to return one of the solutions.

2.2 Graphs and microstructures

A graph G consists of a set V(G) of vertices and a set E(G) of edges, where
each element of E(G) is an unordered pair of vertices. The neighbourhood of a
vertex v € V(QG) is the set of all vertices adjacent to v, excluding v itself, and
is denoted Ng(v), Ng(v) := {u € V(G) | (v,w) € E(G)}. If, by following the
edges of the graph, we can get from a vertex v to v, then v is reachable from
v. The connected components of a graph are the equivalence classes of vertices
under the “is reachable from” relation.

Definition 2 ([10]). Giwen a binary CSP © = (X, D,C), the microstructure
of © is an undirected graph G, defined as follows:

1. For each variable z € X, and domain value d € D, there is a verter z[d] in
G.

2. There is an edge (z[d], y[e]) € E(G) iff (d,e) satisfies the constraint between
z and y.

We assume that there is ezactly one constraint between any pair of variables, and
variables with no explicit constraint between them is assumed to be constrained
by the universal constraint which allows all values.

For convenience, we will work exclusively with the complement of the graph
in Def. 2. The complement of a (microstructure) graph G is a graph contain-
ing exactly those edges which are not present in G, i.e. a graph with edge set
{(v,u) [v#uA(v,u) ¢ E(G)}.

A variable with domain size d will in the microstructure graph be a clique
of size d. When the domain has two elements and we have a clique of size 2, we
will use z[i] to denote an arbitrary value for z, and z[1 — 7] to denote the other
possible value.

algorithm MHI(ca, G, O)

1. if §(z) € {(3,1),(2,2),(2,1),(1,1)} for all variables z in G then
2 return MH2(a, G, O)

3. end if

4. Choose a variable z in G with §(z) € {(> 3,> 2),(>4,1)}
5 o)
6 e
7

(a0, fo) = MH1(a U {z[0]}, G — N (z[0]) - {m[O]%)

- (a1,p1) = MH1(a U {2[1]}, G — No(2[1]) — {a[1]
. return (o, 5;),t € {0,1} maximising dx (ci, 5;)

(

Fig. 1. The main algorithm for MAax HAMMING DISTANCE (2,2)-CSP.

2.3 Hamming distance of CSPs

The algorithms we present in this paper are all designed to solve different vari-
ants of the MAX HAMMING DISTANCE problem for constraint satisfaction prob-
lems [3]. Since our algorithms are not limited to problems with two valued do-
mains, the following definition differs somewhat from the one given in [3]:

Definition 3. Given a set of variables X over finite domains, the Hamming
distance between a pair f1 and fo of assignments of values to the variables in
X, denoted dg (f1, f2), is the number of variables on which f1 and fo disagree.

For example, consider the 2-SAT formula (z V y) A (-2 V z), and the two
assignments fi = {z — 0,y —» 1,2 0}, fo ={z — 1,y = 1,2 — 1}. Clearly,
both f; and f, satisfy the formula, and their Hamming distance is 2, since they
disagree on the values for z and z.

The following formalises the problem:

Definition 4 (Maximum Hamming Distance of (d,l)-CSPs). Let 6 =
(X,D,C) be an instance of (d,1)-CSP. The MaXx HAMMING DISTANCE (d,!)-
CSP problem is to find two satisfying assignments and g to © which mazimises

dH(fag)'

A naive enumeration algorithm for this problem would have a time complexity
of O (dzn). In the following sections we will present ways to significantly improve
this running time.

3 Algorithm for Max Hamming Distance (2, 2)-CSP

In this section we will discuss and analyse our algorithm for MAX HAMMING
DISTANCE (2,2)-CSP. Since the formulae for the time complexity of the algo-
rithm can be rather lengthy, the final step, that of calling a weighted 2-SAT
solver for every leaf in the search tree, has been left out unless otherwise noted.
Consequently, when, in the discussion, we say “O (a™),” this should be read as

algorithm MH2(ca, G, O)

1. if §(z) € {(2,1),(1,1)} for all variables z in G then
2 return MH3(a, G, O)
3. end if
4. if G contains a cycle then
5. if all variables z has §(z) = (2,2) in a cycle then
6 Choose z in this cycle
7 else if there is a variable z with §(2) = (2,2) in a cycle then
8 Choose z in a cycle s.t §(z) = (3,1) and z[¢] has a
neighbour y with é(y) = (2,2)
9. else
10. Choose ¢ with d(z) = (3,1) in a cycle
11. end if
12. else % G 1is cycle-free
13. Choose z which is two variables from the end of a chain, if possible,
otherwise, choose x one variable from the end of a chain
14. end if

15. (a0, B0) = MH1(a U {2[0]}, G — Na(z[0]) — {=[0]}, ©)
16. (a1,61) = MH1(aU{=[1]}, G — Na(2[1]) — {=[1]},)
17. return (a;,5:),¢ € {0,1} maximising d# (o, Bs)

Fig. 2. The helper function MH2.

“O (a™ - b™) where O (b™) is the running time of a weighted 2-SAT solver.” Fur-
thermore, we will omit polynomial factors in the time complexities.

Before we start the discussion of the algorithms, we will need some additional
definitions.

The degree of a vertex v in a graph, usually denoted deg(v), is the size of its
neighbourhood, i.e. |Ng(v)|. However, we are not really interested in the degree
of a single vertex, but rather in the degrees of the two vertices that make up
a variable. Thus let ® = (X, D,C) be a (2,2)-CSP and, for z € X, define the
variable degree §(z) as a tuple (deg(z[i]), deg(z[1 —i])), where z[i] is the vertex
with highest degree. If we are interested in variables with degrees higher than a
certain number, we write §(z) = (> ¢, > 7).

In the analysis of the algorithm in this section, we will often encounter re-
cursions on the form

k

T(n) =) T(n—r:)+p(n)

=0

where p(n) is a polynomial in n and r; € Zt. These equations satisfy T(n) €
O (r(ry,72,...,7)"), where 7(ry,72,...,7%) is the largest real-valued solution
to the equation 1 — Zle z~" = 0 (see Kullman [11].) Note that this bound
depends on neither p(n) nor the boundary conditions T'(1) = by, ...,T(k) = by.

With that in mind, we are now ready to discuss the algorithm.

Fig. 3. Branching on z[¢] will remove the shaded values and force the black values.

The main algorithm, MH1, takes as input a partial assignment «, a mi-
crostructure graph G, and the original problem instance ©. If every variable
in the microstructure is involved in less than 3 constraints, the helper function
MH?2 is called. In the graph, this translates to every variable z having 6(z) in
the set {(3,1), (2,2),(2,1), (1,1)}. Otherwise, a variable without this property is
chosen, and the algorithm branches on the two possible values. We note that for
d(z) = (3,2), there will be at least 3 variables less in one branch and 2 variables
less in the second branch, and for é(z) = (4, 1), there are at least 4 and 1 vari-
ables less, respectively. Thus the time complexity is described by the following
two recurrences:

T(3’2) (n) = T(’I’L - 3) + T(’I‘L — 2) + p(n)
and
T4)(n) =T(n—-4)+ T(n — 1) + p(n)

where p(n) is a polynomial. Using the method by Kullman [11] described ear-
lier, the two cases have running times of T(35) € O (7(3,2)") and T(4,1) €
O (7(4,1)™). Of these two, the latter grows faster, and will dominate the time
complexity.

The first helper function, MH2, found in Fig. 2, takes over when no variable
is involved in more than 2 constraints. Apart from lines 1 to 3, which we will
come back to later, the algorithm starts with checking for cycles. If there is a
cycle in the graph, we need to break it, and this is done on lines 4 to 11. First of
all, if there is a cycle where every variable has a degree of (2,2), then selecting
one value for a variable in this cycle will propagate through the entire cycle, as
is shown in the upper portion of Fig. 3. On line 8, by choosing a variable z with

algorithm MH3(c, G, O)

1. Let w be a vector of weights, initially all set to 0
2. for each z[i] € a do
3. add weight w(z[1 —1]) ;=1
4. for each connected component of G do
5. Add weights to @, as shown in Fig. 5.
6. (B,W):= 2-SAT, (O, w)
7. for each variable z in G do
8. if z[¢] in B then
9. If possible, add z[1 —] to a, otherwise, add z[z].
10. end if
11. end for
12. return (¢, ()

Fig. 4. The helper function MHS3.

0(z) = (3,1) with a neighbour y with §(y) = (2,2), one of the values for z will
propagate to y. (See lower part of Fig. 3.) Consequently, 4 variables are removed
in one branch, and one in the other, giving a running time of O (7(4,1)") for
this case. The obvious exception to this case is when the cycle contains only 3
variables, as is shown in the left part of Fig. 6. Note that the coloured vertex z[i]
is the only possible choice — the other assignment would lead to an inconsistency.
Now if every variable z in the cycle has §(z) = (3,1), we get a number
of different possibilities, but before we discuss them, we need to make some
observations. The first one is that once a variable has no neighbours, see Fig. 5,
we can choose any of the two values for it. Additionally, we get a similar situation
when a component has been reduced to two variables with one edge between then,
a ’hurdle.’ This means that when a component of (3,1) variables has at most 3
variables, as in Fig. 6, to the right, when choosing such a variable, in effect, the
entire component is removed from the problem and need no longer be considered
— in one case we get a unique assignment for the remaining (black) vertices in
the other case we get a hurdle. If there are no cycles in the component, e.g we
have a ’comb-like’ structure (see Fig. 7), then choosing any of the three variables
to branch on will, again, remove the entire component, giving a running time
of O (7(3,3)™). This also holds for cycle-free components of size 4 and 5. When
there are more than 5 variables in the component, by choosing a variable which
is two variables removed from the end of the comb (marked in Fig. 7), the chain
is broken and we remove 3 variables in one branch and 4 in the other. As was
seen in the case for cycles where all variables have degree (2,2), the number
of removed variables increases if a neighbour of the branching variable has this
property. Consequently, we will focus on the combs and merely note that the
time complexity will not be worse if we have more variables with degree (2, 2).
Getting back to discussing cycles; When we reach line 10 of algorithm MH2,
every cycle consists exclusively of variables with degree (3, 1), and since no vertex
in the graph has degree higher than 3, there can be at most one cycle in a

1 3/2 32

1 172 172
Fig. 5. Variables with no or exactly one neighbour, and the weights they are given by
algorithm MHS3.

Fig. 6. The case when a component is a cycle with 3 variables.

component. The case with cycles containing 3 variables was discussed earlier,
and for the case with 4 variables we get one branch where the entire component
is removed, and one where we get a comb with 3 variables, which can be removed
in its entirety when we branch. There can be no more than n/4 cycles with 4
variables in the graph at this point. For each of these cycles, we choose one
variable to branch on, and in one branch the entire component is removed,
while in the other, we get a component with 3 variables. Since we want to look
at all of these cycles, and both branches, this is equivalent to selecting k cycles
where we remove the entire component, and then examine the remaining n/4—k
components. In other words, it will require

n/4

) <n£4) (1k (3, 3)3("/4—k))

k=0

steps to examine all the cycles. Using the binomial theorem, this can be simplified
to (14 7(3,3)%)"/*.

For cycles with 5 variables, the situation is similar, but for 6 we no longer
remove the entire component in one of the branches. Instead, we get one branch
with 5 variables, and one with 3, which, using the same reasoning as above, gives

n/6

> ("44) (7(3,3)3’c -7(5, 5)5("/6*’“)) = (r(3,3)* + 7(5,5)")"/°.

k=0

Similarly, for cycles of length 7, we get (7(4,4)* + 7(3,4)%)/7. In general, if we
have cycles of length ¢, one branch will have one variable less, and the other
three variables less, giving the following general running time:

n/c
Z (’I’L/C> (7_(3, 4)(c—3)k . T(3, 4)(0—1)(n/c—k) — (7_(3,4)0—1 + T(3’4)c—3)n/c <

k
k=0
< (27(3,4)%)™¢ = (21/°7(3,4))"

Finally, when algorithm MHS (see Fig. 4) is called, the graph G only contains
variables involved in zero or one constraint, i.e. every variable will be of one of
the forms found in Fig. 5. The weights shown in the figure is now added to the
corresponding assignments in the original problem, @, and the resulting weighted
2-SAT problem is given to a 2-SAT,, solver. If the solution 3 returned by the
solver has weight W, this means that we can add assignments (i.e. vertices) to
a to create a solution which differs from 8 on W assignments. First of all, since
all assignments in a are given weight 0, if any of these are chosen, they will
not add anything to the distance, while the other possible value for all these
variables will add one to the distance (and are consequently given a weight of
1 on line 3.) For the free variables in G, i.e., all vertices z with §(z) = (1,1),
we can choose freely which value they should assume, and thus we can always
find an assignment which adds one to the distance from 3 by choosing the other
value for a. The remaining components then consist of pairs of variables with
one edge between them, i.e. hurdles. If 8 contains both assignments with weight
1/2, then obviously, we have to add one of them to «, since not both assignments
with weight 3/2 are allowed simultaneously — and thus we get a distance of 1,
which is the sum of the weights in 8. On the other hand, if 8 contains one 3/2
and one 1/2 assignments, then we can choose the opposing value for both of
these and get a distance of 2. Consequently, the pair returned on line 12 will
have a Hamming distance equal to the weight of 3, and with a and G given, no
pair with greater Hamming distance can exist.

Except for the call to 2-SAT,, on line 6, every step of algorithm MHS3 can be
carried out in polynomial time, thus the time complexity is fully determined by
that of the 2-SAT,, algorithm.

To summarise this section, we state the following theorem:

Theorem 1. Algorithm MH correctly solves MAX HAMMING DISTANCE (2,2)-
CSP and has a running time of O ((a-1.3803)"), where n is the number of

variables in the problem, and O (a™) is the time complezity of solving a weighted
2-SAT problem.

Fig. 7. Choosing a variable in a comb with more than 4 variables.

Proof. The correctness follows from the previous discussion, and among the steps
in the algorithm, O (7(4,1)™) € O (1.3803™) dominates. Since the 2-SAT,, algo-
rithm is called for every leaf in the search tree, we get a total time complexity
of O ((a-1.3803)"). O

Corollary 1. MaX HAMMING DISTANCE (2,2)-CSP can be solved in O (1.7338™).

Proof. Dahllof et al. [4] presents an algorithm for solving weighted 2-SAT in
0 (1.2561™), and this together with Theorem 1 gives the result. O

4 Algorithm for Max Hamming Distance (d,1)-CSP

For problems where the arity of the relations is greater than 2, microstructures
are not as convenient and we have to find a different approach.

Let us first consider the following problem: Given a CSP instance ©® =
(X,D,C), can we find a pair of solutions with Hamming distance equal to k?
One obvious way of doing this is the following:

Pick a subset Y of X with |Y| =k
Create a copy @' = (X', D,C") of © over variables X’
For each z € Y, add the constraint z # z' to C’, and
for each £ ¢ Y, add the constraint z = z’ to C".
If @' is satisfiable with solution s
— Solve the instance (X U X', D, C"), giving a satisfying assignment s.
— For each z € X, add s(z) to «
— For each 2’ € X', add s(z') to 8
— Return (o,)

Ol L=

There are 2" ways to choose Y on the first line, so if we can solve the satisfia-
bility problem for @ in time O (h(n)), then, since the number of variables in @'
is twice that of @, we can find a pair of solutions with maximum Hamming dis-
tance in O (2"h(2n)). For example, since 2-SAT can be solved in linear time, we
would, using this approach, get a running time of O (2") for the MAX HAMMING
DISTANCE (2, 2)-CSP. This does give a slower running time than the algorithm
we presented in the previous section, but it can be applied to CSP instances
with domain size and constraint arity greater than 2.

algorithm Max HammiNg DisTaNcE (d,1)-CSP (@ = (X, D, C))

1. for k := | X| down to 0 do

2 for each x C X, |x| =k do

3. Let ® = (X',D,C") be a copy of ©

4 Let v C C be all constraints involving variables from x

5 Create ' by exchanging all variables not in x with
their counterparts from X'

6. C'=C'uy
7. for each z € x do
8. C':=C'U{z#1z'}
9. if (X U X', D,C") is satisfiable then
10. Let a, 3 be the two assignments found in a solution to ©’
11. return (a, 8)
12. end if
13. end for

14. end for

Fig. 8. Algorithm for MAx HAMMING Di1sTANCE (d,1)-CSP.

Now note that in the algorithm sketch, it is actually unnecessary to make a
copy of all the variables. Having selected k variables that should be different in
the two solutions, we only need to make copies of those, leaving the remaining
n — k variables unchanged. Thus, we get the algorithm for MAX HAMMING
DISTANCE (d,1)-CSP given in Fig. 8.

Theorem 2. If we can solve (d,1)-CSP in O (a™), then there ezists an algorithm
for MaX HAMMING DISTANCE (d,1)-CSP which runs in O ((a(1 + a))™).

Proof. In the algorithm presented in Fig. 8, the instance @' will contain 2n — k

variables, and there are (Z) ways of choosing x. Consequently, given that we can

solve (d,1)-CSP in O (a™), the algorithm has a total running time of

R

and the result follows. O

Using previous results on algorithms for (d,l)-CSPs, we get the following
corollary.

Corollary 2. For € > 0, there exists an algorithm for solving MAX HAMMING
DISTANCE (d,1)-CSP in

J(CHES)

algorithm MAx HAMMING DISTANCE (2,1)-CSP (F)

1. for k := |Var(F')| down to 0 do

2 for each x C Var(F) with |x| = k do

3 Let 7 be all the clauses of F' containing variables from x

4. Create 4 by negating all occurrences of a variable ¢ € x in v
5. Let F* := FU {7}

6 if FT is satisfiable then

7 Let a, 3 be the two found in a solution to FT.

8. return (a, 8)

9. end if

10. end for
11. end for

Fig.9. The Max HAMMING DISTANCE (2,[)-CSP algorithm.

Proof. Follows from Theorem 2 together with the O ((d — d/l + €)™) (d,1)-CSP
algorithm from [14]. O

There exist a number of algorithms for special cases of (d,!)-CSPs, especially
for binary constraints. The currently best ones are due to Eppstein for 3 < d <
10 [5], and Feder & Motwani for d > 11 [6]. These algorithms are probabilistic,
but since they would only be applied once each time line 10 of the algorithm is
reached, the probability of error is not increased.

For problems with domain size 2 and [-ary constraints, i.e. [-SAT, we can do
even better than this. First, consider the following formula:

(zVy)A(-yV2)

If we want to find out if there are two solutions which differ on the assignment
on z and agree on y and z, we would, using the algorithm in Fig. 8, get the
following formula:

(VYY) A(yV2)A(Z' Vy)A(zV -z)A(-z V')

But there is a better way. Since there are only two possible domain values, and
we force z' to always assume the opposite of z, there is no reason to create new
variables. Instead, we duplicate the clauses containing variables on which the
two solutions should differ, and among these clauses, we replace every literal
containing one of these variables with its negation. In our example, we would
get:

(zVy)A(-yVz)A(-zVy)

This formula has a solution {z — 0,y — 1,z — 1}, and from this we can derive
two solutions to the original formula which differ on the assignment of z, and
agree on y and z.

As can be seen in Fig. 9, the algorithm for MAX HAMMING DISTANCE (2,1)-
CSP is similar to the one for the general case, but it does not add any variables
to the problem.

Theorem 3. If we can solve (2,1)-CSP in O (a™), then there exists an algorithm
for solving MAX HAMMING DISTANCE (2,1)-CSP which runs in O ((2a)™).

Proof. The algorithm in Fig. 9 considers all subsets of variables of the problem,
as discussed in this section. Consequently, it will deliver a solution in O ((2a)")
time. O

Corollary 3. For every € > 0, there exists an algorithm for solving the MAX
HAMMING DISTANCE (2,1)-CSP in O ((4 — 4/l +€)™) time. Additionally, the
special case of MAX HAMMING DISTANCE (2, 3)-CSP can be solved in O (2.6604™)
time.

Proof. Using the probabilistic O ((2 — 2/l + €)™) algorithm for I-SAT found in [14]
on line 7 of the algorithm in Fig. 9 gives the first result, and replacing it with
the (similarly probabilistic) 3-SAT algorithm from [8] gives the second. m|

As could be expected, the algorithms we get from Corollary 3 offer a large
improvement over the more general Corollary 2; Rather than an O (3.11117)
algorithm for MAX HAMMING DISTANCE (2,3)-CSP, we get an O (2.6604™).
(Note that the gain we get from using the 3-SAT algorithm in [8] is not too
impressive, since 4 —4/3 = 2.6666.. .)

5 Conclusions

We have presented two different ways of approaching the MAXx HAMMING Dis-
TANCE problem for CSPs. The first, and perhaps most complicated of them,
which solves the restricted case of when domains have 2 values, and the con-
straints are binary, is based on search in the microstructure graph of the (2, 2)-
CSP instance. There are several ways to improve the O (1.7338™) running time
of this algorithm. The first way is obviously to find a faster algorithm for solving
weighted 2-SAT, since this algorithm is applied an exponential number of times
during the search. The other way is to identify additional special cases and treat
them separately during the search — the prime candidate being variables with
degree (4,1) — and work is underway.

Originally, we had hoped that the techniques used for the first algorithm
would generalise to arbitrary domains, but it appears the size of the microstruc-
ture graph becomes too cumbersome as soon as we have more than two domain
values. This, together with the fact that microstructures are limited to problems
with binary constraints, forced us to come up with a completely different ap-
proach for larger domains and higher arity constraints. There is probably little
hope of getting around the size of the microstructure for arbitrary domains, but
it would be interesting to see if anything can be gained by restricting the domain,
but allowing constraints with arity higher than 2.

6 Acknowledgments

The authors would like to thank Peter Jonsson for useful comments and inter-
esting discussions during the writing of this paper.

References

1.

10.

11.

12.

13.

14.

O. Angelsmark and J. Thapper. Microstructure based algorithms for three con-
straint satisfaction optimisation problems, 2004. Unpublished manuscript. Avail-
able for download at http://www.ida.liu.se/ "olaan/papers/three_algorithms.ps.
B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear time algorithm for testing
the truth of certain quantified Boolean formulas. Information Processing Letters,
8(3):121-123, Mar. 1979.

P. Crescenzi and G. Rossi. On the hamming distance of constraint satisfaction
problems. Theoretical Computer Science, 288:85-100, 2002.

V. Dahllof, P. Jonsson, and M. Wahlstrém. On counting models for 2saT
and 3sAT formulae, 2003. Unpublished manuscript. Available for download at
http://www.ida.liu.se/ "magwa/research/merge23sat.ps.

D. Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and constraint
satisfaction. In Proceedings of the 12th Annual Symposium on Discrete Algorithms
(SODA-2001), pages 329-337, 2001.

T. Feder and R. Motwani. Worst-case time bounds for coloring and satisfiability
problems. Journal of Algorithms, 45(2):192-201, Nov. 2002.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

T. Hofmeister, U. Schoning, R. Schuler, and O. Watanabe. A probabilistic 3-
SAT algorithm further improved. In H. Alt and A. Ferriera, editors, Proceed-
ings of the 19th International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS-2002), pages 192202, Antibes Juan-les-Pins, France, 2002. Springer-
Verlag, Berlin, Heidelberg.

P. G. Jeavons. On the algebraic structure of combinatorial problems. Theoretical
Computer Science, 200:185-204, 1998.

P. Jégou. Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In Proceedings of the 11th (US) National Confer-
ence on Artificial Intelligence (AAAI-93), pages 731-736, Washington DC, USA,
July 1993. AAAL

O. Kullman. New methods for 3-SAT decision and worst-case analysis. Theoretical
Computer Science, 223(1-2):1-72, 1999.

V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Magazine,
13(1):32-44, Spring 1992.

U. Montanari. Networks of constraints: Fundamental properties and applications
to picture processing. Information Sciences, 7:95-132, 1974.

U. Schéning. A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In 40th Annual Symposium on Foundations of Computer Science (FOCS-
1999), pages 410-414. IEEE Computer Society, 1999.

