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as many variables as possible. This is known as the Max Hamming Distaneproblem, and was �rst introdued in Cresenzi & Rossi [3℄, where it was sug-gested as a domain independent measure of ignorane, quantifying how muh wedo not know of the world.We present three di�erent algorithms.The �rst one is a mirostruture basedalgorithm for the speial ase when the domains have size two and we have binaryonstraints, denotedMax Hamming Distane (2, 2)-CSP. (We will exlusivelyonsider CSPs over �nite domains, denoted (d, l)-CSP, where d is the domainsize and l the arity of the onstraints.) Even in this restrited form, the problemis NP-omplete. In the mirostruture graph of a CSP [9℄, a vertex orrespondsto an assignment of a value to a variable in the original problem (see Setion 2 forde�nitions.) The algorithm exploits this by searhing for a set of verties whereeah vertex either does not have an edge to any other vertex�and thus an beinterpreted as an assignment�or is part of a onneted omponent with 2 or4 verties. Eah vertex (i.e. assignment) in this set is then given a weight, andthe original instane together with these weights is given to a weighted 2-SATsolver. This algorithm returns a solution with maximum weight W , and we anthen onstrut a solution whih di�ers on W variables.By using the weighted 2-SAT algorithm from [4℄, we arrive at a runningtime of O (1.7338n), where n is the number of variables in the problem. Thisis an improvement over the Max Hamming Distane (2, 2)-CSP algorithmpresented in [1℄, whih runs in O (1.8409n).When we allow domains with more than 2 elements, or onstraints witharity higher than 2, it turns out that mirostrutures are not as suessful,and, onsequently, the algorithms we present for these ases are quite di�erent.Intuitively, the algorithm for Max Hamming Distane (d, l)-CSP works asfollows:1. Pik a subset of the variables whih should assume di�erent values in the twosolutions, dupliate and rename them and the onstraints they are involvedin.2. Add a onstraint for eah of these new variables, preventing it from assumingthe same value as the one it is a opy of.3. Solve this new, larger, instane.Starting with assuming all variables are di�erent in the two solutions, and thenworking downwards, the algorithm will, by trying out the di�erent possible sub-sets of variables, arrive at a pair of solutions with maximum hamming distane.Given that we an solve the (d, l)-CSP in the last step in time O (an), the entirealgorithm will have a running time of O (an(1 + a)n).The �nal algorithm is for the ase when the domain has two elements andthe onstraints have arity l, Max Hamming Distane (2, l)-CSP. Here, wenote that sine there are only two possible hoies of values for a variable, itis unneessary to dupliate the variables that should take di�erent values�instead, only the onstraints they are involved in are dupliated, and then anyourrene of a variable whih should assume di�erent values in the two solutionsis replaed by its negation in these onstraints. The resulting algorithm will have



a running time of O ((2a)n), where O (an) is the time needed to solve the (2, l)-CSP problem in eah step.Overview of the paper: Setion 2 ontains most of the de�nitions we willneed in the disussion. For onveniene, it has been split into three parts, whereSetion 2.1 ontains the de�nitions related to CSPs, Setion 2.2 the graph andmirostruture de�nitions, while Setion 2.3 formally de�nes the problem wewill be studying,Max Hamming Distane. The algorithm forMax HammingDistane (2, 2)-CSP, together with its analysis, is presented in Setion 3, whileSetion 4 ontains the algorithms for Max Hamming Distane (d, l)-CSP andMax Hamming Distane (2, l)-CSP.2 PreliminariesThis setion is divided into three parts in order simplify the searh for apartiular de�nition. In Setion 2.1 we have the de�nitions related to onstraintsatisfation problems, while Setion 2.2 is devoted to graphs and the mirostru-ture of CSPs. Finally, in Setion 2.3, we de�ne the problem we will be disussingin this paper;Max Hamming Distane (d, l)-CSP. Note that Setion 3 ontainsadditional de�nitions spei� to that part of the paper.2.1 Constraint satisfation problemsA (d, l)-onstraint satisfation problem ((d, l)-CSP) is a triple (X, D, C) where� X is a �nite set of variables,� D a �nite set of domain values, with |D| = d, and� C is a set of onstraints {c1, c2, . . . , ck}.Eah onstraint ci ∈ C is a struture R(xi1 , . . . , xij
) where j ≤ l, xi1 , . . . , xij

∈ Xand R ⊆ Dj . A solution to a CSP instanes is a funtion f : X → D s.t. for eahonstraint R(xi1 , . . . , xij
) ∈ C, (f(xi1 , . . . , f(xij

))) ∈ R. Given a (d, l)-CSP, thebasi omputational problem is to deide whether it has a solution or not�todetermine if it is satis�able.The speial ase when d = 2 and we have binary onstraints, i.e. (2, 2)-CSP,will often be viewed as 2-SAT formulae. A 2-SAT formula is a onjuntion of anumber of lauses, where eah lause is on one of the forms (p ∨ q), (¬p ∨ q),
(¬p∨¬q), (p), (¬p). The set of variables of a formula F is denoted Var(F ), andan ourrene of a variable or its omplement in a formula is termed a literal.Determining whether a 2-SAT formula is satis�able an be done in polynomialtime [2℄, while, in ontrast, the more general l-SAT (i.e, the lauses onsist of atmost l literals) is known to be NP-omplete for l ≥ 3 [7℄.De�nition 1 ([4℄). Let F be a 2-SAT formula, and let L be the set of all literalsfor all variables ourring in F . Given a vetor w of weights and a model M for
F , we de�ne the weight W (M) of M as

W (M) =
∑

{l∈L | l is true in M}

w(l)



The problem of �nding a maximum weighted model for F is denoted 2-SATw.In [4℄, an algorithm for ounting the number of maximum weighted solutionsto 2-SAT instanes is presented whih has a running time of O (1.2561n), and itan easily be modi�ed to return one of the solutions.2.2 Graphs and mirostruturesA graph G onsists of a set V (G) of verties and a set E(G) of edges, whereeah element of E(G) is an unordered pair of verties. The neighbourhood of avertex v ∈ V (G) is the set of all verties adjaent to v, exluding v itself, andis denoted NG(v), NG(v) := {u ∈ V (G) | (v, w) ∈ E(G)}. If, by following theedges of the graph, we an get from a vertex v to v′, then v′ is reahable from
v. The onneted omponents of a graph are the equivalene lasses of vertiesunder the �is reahable from� relation.De�nition 2 ([9℄). Given a binary CSP Θ = (X, D, C), the mirostruture of
Θ is an undireted graph G, de�ned as follows:1. For eah variable x ∈ X, and domain value d ∈ D, there is a vertex x[d] inG.2. There is an edge (x[d], y[e]) ∈ E(G) i� (d, e) satis�es the onstraint between

x and y.We assume that there is exatly one onstraint between any pair of variables, andvariables with no expliit onstraint between them is assumed to be onstrainedby the universal onstraint whih allows all values.For onveniene, we will work exlusively with the omplement of the graph inDe�nition 2. The omplement of a (mirostruture) graphG is a graph ontainingexatly those edges whih are not present in G (exluding loops), i.e. a graphwith edge set {(v, u) | v 6= u ∧ (v, u) 6∈ E(G)}.A variable with domain size d will in the mirostruture graph be a lique ofsize d. When the domain has two elements and we have a lique of size 2, we let
x[i] denote an arbitrary value for x, and use x[1− i] to denote the other possiblevalue. For example, if we look at the 2-SAT formula (x ∨ y) ∧ (¬x ∨ z), withdomain values 0 and 1, it has the mirostruture graph shown in Fig. 1. Oneindependent set the graph is {x[0], y[1], z[0]} whih orresponds to the satisfyingassignment {x 7→ 0, y 7→ 1, z 7→ 0}.2.3 Hamming distane of CSPsThe algorithms we present in this paper are all designed to solve di�erent vari-ants of the Max Hamming Distane problem for onstraint satisfation prob-lems [3℄. Sine our algorithms are not limited to problems with two valued do-mains, the following de�nition di�ers somewhat from the one given in [3℄:
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y[0] z [0]

z [1]y[1]Fig. 1. The mirostruture graph of (x ∨ y) ∧ (¬x ∨ z).algorithm MH1(α, G, Θ)1. if δ(x) ∈ {(3, 1), (2, 2), (2, 1), (1, 1)} for all variables x in G then2. return MH2 (α, G, Θ)3. end if4. Choose a variable x in G with δ(x) ∈ {(≥ 3,≥ 2), (≥ 4, 1)}5. (α0, β0) = MH1 (α ∪ {x[0]}, G − NG(x[0]) − {x[0]}, Θ)6. (α1, β1) = MH1 (α ∪ {x[1]}, G − NG(x[1]) − {x[1]}, Θ)7. return (αi, βi), i ∈ {0, 1} maximising dH(αi, βi)Fig. 2. The main algorithm for Max Hamming Distane (2, 2)-CSP.De�nition 3. Given a set of variables X over �nite domains, the Hammingdistane between a pair f1 and f2 of assignments of values to the variables in
X, denoted dH(f1, f2), is the number of variables on whih f1 and f2 disagree.For example, onsider the 2-SAT formula (x ∨ y) ∧ (¬x ∨ z), and the twoassignments f1 = {x 7→ 0, y 7→ 1, z 7→ 0}, f2 = {x 7→ 1, y 7→ 1, z 7→ 1}. Clearly,both f1 and f2 satisfy the formula, and their Hamming distane is 2, sine theydisagree on the values for x and z.The following formalises the problem:De�nition 4 (Maximum Hamming Distane of (d, l)-CSPs). Let Θ =
(X, D, C) be an instane of (d, l)-CSP. The Max Hamming Distane (d, l)-CSP problem is to �nd two satisfying assignments f and g to Θ whih maximises
dH(f, g).A naïve enumeration algorithm for this problem would have a time omplexityof O (d2n

). In the following setions we will present ways to signi�antly improvethis running time.3 Algorithm for Max Hamming Distane (2, 2)-CSP



algorithm MH2(α, G, Θ)1. if δ(x) ∈ {(2, 1), (1, 1)} for all variables x in G then2. return MH3 (α, G, Θ)3. end if4. if G ontains a yle then5. if all variables x has δ(x) = (2, 2) in a yle then6. Choose x in this yle7. else if there is a variable z with δ(z) = (2, 2) in a yle then8. Choose x in a yle s.t δ(x) = (3, 1) and x[i] has aneighbour y with δ(y) = (2, 2)9. else10. Choose x with δ(x) = (3, 1) in a yle11. end if12. else % G is yle-free13. Choose x whih is two variables from the end of a hain, if possible,otherwise, hoose x one variable from the end of a hain14. end if15. (α0, β0) = MH2 (α ∪ {x[0]}, G − NG(x[0]) − {x[0]}, Θ)16. (α1, β1) = MH2 (α ∪ {x[1]}, G − NG(x[1]) − {x[1]}, Θ)17. return (αi, βi), i ∈ {0, 1} maximising dH(αi, βi)Fig. 3. The helper funtion MH2.In this setion we will disuss and analyse our algorithm for Max Ham-ming Distane (2, 2)-CSP. Sine the formulae for the time omplexity of thealgorithm an be rather lengthy, the �nal step, that of alling a weighted 2-SATsolver for every leaf in the searh tree, has been left out (unless otherwise noted.)Furthermore, we will omit polynomial fators in the time omplexities.Before we start the disussion of the algorithms, we will need some additionalde�nitions: The degree of a vertex v in a graph, usually denoted deg(v), is thesize of its neighbourhood, i.e. |NG(v)|. However, we are not really interested inthe degree of a single vertex, but rather in the degrees of the two verties thatmake up a variable. Thus let Θ = (X, D, C) be a (2, 2)-CSP and, for x ∈ X ,de�ne the variable degree δ(x) as a tuple (deg(x[i]), deg(x[1 − i])), where x[i]is the vertex with highest degree. If we are interested in variables with degreeshigher than a ertain number, we write δ(x) = (≥ i,≥ j).In the analysis of the algorithm in this setion, we will often enounter re-ursions on the form T (n) =
∑k

i=0 T (n − ri) + p(n), where p(n) is a polyno-mial in n and ri ∈ Z
+. These equations satisfy T (n) ∈ O (τ(r1, r2, . . . , rk)n),where τ(r1, r2, . . . , rk) is the largest real-valued solution to the equation 1 −

∑k
i=1 x−ri = 0 (see Kullman [10℄.) Note that this bound depends on neither

p(n) nor the boundary onditions T (1) = b1, . . . , T (k) = bk. We will sometimesrefer to τ as the work fator (in the sense of [5℄.)With that in mind, we are now ready to disuss the algorithm, whih onsistsof three funtions: MH1, the main algorithm, whih alls MH2 one no variable
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Fig. 4. Branhing on x[i] will remove the shaded values and fore the blak values.is involved in more than three onstraints, whih, in turn, alls MH3 when everyvariable is involved in at most one onstraint.MH1: The main algorithm, MH1, given in Fig. 2, takes as input a partial as-signment α, a mirostruture graph G, and the original problem instane Θ. Ifevery variable in the mirostruture is involved in less than 3 onstraints, thehelper funtion MH2 is alled. In the graph, this translates to every variable xhaving δ(x) in the set {(3, 1), (2, 2), (2, 1), (1, 1)}. Otherwise, a variable involvedin more than 3 onstraints is hosen, and the algorithm branhes on the twopossible values. We note that for δ(x) = (3, 2), there will be at least 3 variablesless in one branh and 2 variables less in the seond branh, and for δ(x) = (4, 1),there are at least 4 and 1 variables less, respetively. Consequently, we get workfators of τ(3, 2) and τ(4, 1) for these ases, where τ(4, 1) learly dominates.Example 1. Consider the 2-SAT formula Θ = (x ∨ y) ∧ (¬x ∨ y), whih hasthe mirostruture shown in Fig. 1. The variables in Θ have degrees δ(x) =
(2, 2), δ(y) = (2, 1) and δ(z) = (2, 1), thus we immediately jump to algorithmMH2. Had this not been the ase, a variable with a degree of (≥ 3,≥ 2) or
(≥ 4, 1) would have been hosen, and the algorithm would have branhed oneither of the possible values for it.MH2: The �rst helper funtion, MH2, shown in Fig. 3, takes over when everyvariable is involved in zero, one or two onstraints. Unless there are no variablesinvolved in two onstraints (in whih ase we jump straight to algorithm MH3),we start with heking for yles. Any yles we enounter need to be broken,whih is done on lines 4 to 11.First of all, if there is a yle where every variable has a degree of (2, 2), thenseleting one value for a variable in this yle will propagate through the entire



yle, as is shown in the top part of Fig. 4. On line 8, by hoosing a variable xwith δ(x) = (3, 1) with a neighbour y with δ(y) = (2, 2), one of the values for xwill propagate through y. (See Fig. 4b.) Consequently, 4 variables are removedin one branh, and one in the other, giving a work fator of τ(4, 1) for this ase.The obvious exeption is when the yle ontains only 3 variables, as is shown inFig. 7a. Note that the oloured vertex x[i] is the only possible hoie�the otherassignment would lead to an inonsisteny.Now if every variable x in the yle has δ(x) = (3, 1), we get a number ofdi�erent possibilities, but before we disuss them, we need to make some obser-vations. One a variable has no neighbours (Fig. 6a), or is part of a omponentonsisting of only two variables and one edge between them, a 'hurdle,' (Fig. 6b),we need no longer onsider it. The �rst ase is obvious, sine if a variable hasno neighbours, it is not involved in any onstraints, and we an hoose its valuefreely, while the seond ase is somewhat harder; We will get bak to it whenwe disuss algorithm MH3. Consequently, when a omponent of (3, 1) variableshas at most 3 variables, as in Fig. 7b, when hoosing suh a variable, in ef-fet, the entire omponent is removed from the problem and need no longer beonsidered�in one ase we get a unique assignment for the remaining (blak)verties, and in the other ase we get a hurdle. If there are no yles in the om-ponent, e.g we have a 'omb-like' struture, as in Fig. 8, then hoosing any of thethree variables to branh on will, again, remove the entire omponent, giving awork fator of τ(3, 3). This also holds for yle-free omponents of size 4 and 5.When there are more than 5 variables in the omponent, by hoosing a variablewhih is two variables removed from the end of the omb (the marked variablein Fig. 8), the hain is broken and we remove 3 variables in one branh and 4in the other. As was seen in the ase for yles where all variables have degree
(2, 2), the number of removed variables inreases if a neighbour of the branhingvariable has this property. Consequently, we will fous on the ombs and merelynote that the time omplexity will not be worse if we have more variables withdegree (2, 2).Getting bak to disussing yles; When we reah line 10 of algorithm MH2,every yle onsists exlusively of variables with degree (3, 1), and sine no vertexin the graph has degree higher than 3, there an be at most one yle in aomponent. The ase with yles ontaining 3 variables was disussed earlier,and for the ase with 4 variables we get one branh where the entire omponentis removed, and one where we get a omb with 3 variables, whih an be removedin its entirety when we branh. There an be no more than n/4 yles with 4variables in the graph at this point. For eah of these yles, we hoose onevariable to branh on, and in one branh the entire omponent is removed,while in the other, we get a omponent with 3 variables. Sine we want to lookat all of these yles, and both branhes, this is equivalent to seleting k yleswhere we remove the entire omponent, and then examine the remaining n/4−komponents. In other words, it will require

n/4
∑

k=0

(

n/4

k

)

(

1k · τ(3, 3)3(n/4−k)
)



algorithm MH3(α, G, Θ)1. Let w be a vetor of weights, initially all set to 02. for eah x[i] ∈ α do3. add weight w(x[1 − i]) := 14. for eah onneted omponent of G do5. Add weights to w, as shown in Fig. 6.6. (β, W ) := 2-SATw(Θ, w)7. for eah variable x in G do8. if x[i] in β then9. If possible, add x[1 − i] to α, otherwise, add x[i].10. end if11. end for12. return (α, β) Fig. 5. The helper funtion MH3.
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Fig. 6. Variables with no or exatly one neighbour, and the weights they are given byalgorithm MH3.steps to examine all the yles. Using the binomial theorem, this an be simpli�edto (1 + τ(3, 3)3)n/4.For yles with 5 variables, the situation is similar, but for 6 we no longerremove the entire omponent in one of the branhes. Instead, we get one branhwith 5 variables, and one with 3, whih, using the same reasoning as above, gives
n/6
∑

k=0

(

n/4

k

)

(

τ(3, 3)3k · τ(5, 5)5(n/6−k)
)

= (τ(3, 3)3 + τ(5, 5)5)n/6.Similarly, for yles of length 7, we get (τ(4, 4)4 + τ(3, 4)6)n/7. In general, if wehave yles of length c, one branh will have one variable less, and the otherthree variables less, giving the following general running time:
n/c
∑

k=0

(

n/c

k

)

(

τ(3, 4)(c−3)k · τ(3, 4)(c−1)(n/c−k
)

=

=
(

τ(3, 4)c−1 + τ(3, 4)c−3
)n/c

< (2τ(3, 4)c)n/c = (21/cτ(3, 4))n
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Fig. 7. The ase when a omponent is a yle with 3 variables.Example 2 (ont'd). When we reah algorithm MH2 with our (still unhanged)mirostruture graph, we note that for x, δ(x) = (2, 2), thus we will ontinuepast the test on line 1. Sine the graph is yle-free, we will hoose a variablewhih is not on the end of a hain�in our ase the only hoie is x, and branhon the two possible values for x.1. The branh with x[0] removes y[0] and x[1] from the graph, foring y[1] andleaving z unonstrained.2. For x[1], x[0] and z[0] are removed, foring z[1] and leaving y unonstrained.Consequently, both of these branhes will result in MH3 being alled in the nextreursive all (sine we have a variable degree of (1, 1) for the unonstrainedvariables left in the graph), with α = {x[0], y[1]} in the �rst ase, and {x[1], z[1]}in the seond.MH3: Finally, when algorithm MH3 (see Fig. 5) is alled, the graph G onlyontains variables involved in zero or one onstraint, i.e. every variable will be ofone of the forms found in Fig. 6. The weights shown in the �gure is now addedto the orresponding assignments in Θ, the original problem, and the resultingweighted 2-SAT problem is given to a 2-SATw solver. If the solution β returnedby the solver has weightW , this means that we an add assignments (i.e. verties)to α and reate a solution whih di�ers from β on W assignments in the followingway: First of all, sine all assignments in α are given weight 0, if any of these arehosen, they will not add anything to the distane, while the other possible valuefor all these variables will add one to the distane (and are onsequently givena weight of 1 on line 3.) For the unonstrained variables in G, i.e. all verties
x with δ(x) = (1, 1), we an hoose freely whih value they should assume, andthus we an always �nd an assignment whih adds one to the distane from βby hoosing the other value for α. The remaining omponents then onsist ofpairs of variables with one edge between them, i.e. hurdles. If β ontains both



Fig. 8. Choosing a variable in a omb with more than 4 variables.assignments with weight 1/2, then obviously, we have to add one of them to
α, sine not both assignments with weight 3/2 are allowed simultaneously�andthus we get a distane of 1, whih is the sum of the weights in β. On the otherhand, if β ontains one 3/2 and one 1/2 assignments, then we an hoose theopposing value for both of these and get a distane of 2. Consequently, the pairreturned on line 12 will have a Hamming distane equal to the weight of β, andwith α and G given, no pair with greater Hamming distane an exist.Exept for the all to 2-SATw on line 6, every step of algorithm MH3 an bearried out in polynomial time, thus the time omplexity is fully determined bythat of the 2-SATw algorithm.Example 3 (ont'd). Assuming we reah algorithm MH3 with α = {x[0], y[1]},i.e. from branh 1 in Example 2 earlier, the algorithm will now assign weights tothe assignments in the original problem. Eah assignment in α is given weight 0,while its negation is given weight 1. In our ase, we get w(x[0]) = w(y[1]) = 0,and w(x[1]) = w(y[0]) = 1. We have no �hurdles� in our graph (see Fig. 6b), butwe have one free variable, z, whih we assign weights w(z[0]) = w(z[1]) = 1.Next, we all the weighted 2-SAT solver with the original instane togetherwith the weight vetor. It is easy to see that in our ase, the maximum weight of amodel will be 3; β = {x[1], y[0], z[1]} has this weight, for instane. Consequently,sine z is unonstrained in our graph, we an simply add z[0] to α and we havetwo satisfying assignment α, β with a hamming distane of 3.Theorem 1. Algorithm MH1 orretly solves Max Hamming Distane (2, 2)-CSP and has a running time of O ((a · 1.3803)n), where n is the number ofvariables in the problem, and O (an) is the time omplexity of solving a weighted2-SAT problem.Proof. The highest work fator in algorithmsMH1, MH2, MH3 is τ(4, 1), givinga running time of O (1.3803n). The all to the weighted 2-SAT algorithm is donefor every leaf in the searh tree, and thus we get a total time omplexity of
O ((a · 1.3803)) if we assume we an solve weighted 2-SAT in O (an).In every ase, the algorithm branhes on both values for a variable, thusfrom the orretness of the 2-SATw algorithm we know that the two solutionsreturned will be at a maximum hamming distane from eah other. ⊓⊔Corollary 1. Max Hamming Distane (2, 2)-CSP an be solved in O (1.7338n).



Proof. Dahllöf et al. [4℄ presents an algorithm for solving weighted 2-SAT in
O (1.2561n), and this together with Theorem 1 gives the result. ⊓⊔4 Algorithm for Max Hamming Distane (d, l)-CSPFor problems where the arity of the relations is greater than 2, mirostruturesare not as onvenient and we have to �nd a di�erent approah.Let us �rst onsider the following problem: Given a CSP instane Θ =
(X, D, C), an we �nd a pair of solutions with Hamming distane equal to k?One obvious way of doing this is the following:1. Pik a subset Y of X with |Y | = k2. Create a opy Θ′ = (X ′, D, C′) of Θ over variables X ′3. For eah x ∈ Y , add the onstraint x 6= x′ to C′, and4. for eah x 6∈ Y , add the onstraint x = x′ to C′.5. If Θ′ is satis�able with solution s� Solve the instane (X ∪ X ′, D, C′), giving a satisfying assignment s.� For eah x ∈ X , add s(x) to α� For eah x′ ∈ X ′, add s(x′) to β� Return (α, β)There are 2n ways to hoose Y on the �rst line, so if we an solve the satis�a-bility problem for Θ in time O (h(n)), then, sine the number of variables in Θ′is twie that of Θ, we an �nd a pair of solutions with maximum Hamming dis-tane in O (2nh(2n)). For example, sine 2-SAT an be solved in linear time, wewould, using this approah, get a running time of O (2n) for theMax HammingDistane (2, 2)-CSP. This does give a slower running time than the algorithmwe presented in the previous setion, but it an be applied to CSP instaneswith domain size and onstraint arity greater than 2.Example 4. Again, onsider the instane (x ∨ y) ∧ (¬x ∨ z). Following the algo-rithm in Fig. 9, we begin with trying to determine if there are two solutions witha distane of 3. We get a new, larger instane, whih looks as follows:

(x ∨ y) ∧ (¬x ∨ z) ∧ (x′ ∨ y′) ∧ (¬x′ ∨ z′)∧
(x 6= x′) ∧ (y 6= y′) ∧ (z 6= z′)This instane has solution {x 7→ 1, y 7→ 0, z 7→ 1, x′ 7→ 0, y′ 7→ 1, z′ 7→ 0} andonsequently, there are two solutions with a hamming distane of 3�we get onefrom reading the values of x, y, z and the other from the values of x′, y′, z′. Hadthis instane been unsatis�able, we would have had to move on to try hammingdistane 2, et.Atually, it is unneessary to make a opy of all the variables. Having seleted

k variables that should be di�erent in the two solutions, we only need to makeopies of those, leaving the remaining n − k variables unhanged. Thus, we getthe algorithm for Max Hamming Distane (d, l)-CSP given in Fig. 9.



algorithm Max Hamming Distane (d, l)-CSP (Θ = (X, D, C))1. for k := |X| down to 0 do2. for eah χ ⊆ X, |χ| = k do3. Let Θ′ = (X ′, D, C′) be a opy of Θ4. Let γ ⊆ C be all onstraints involving variables from χ5. Create γ′ by exhanging all variables not in χ withtheir ounterparts from X ′6. C′ := C′ ∪ γ′7. for eah x ∈ χ do8. C′ := C′ ∪ {x 6= x′}9. if (X ∪ X ′, D, C′) is satis�able then10. Let α, β be the two assignments found in a solution to Θ′11. return (α, β)12. end if13. end for14. end forFig. 9. Algorithm for Max Hamming Distane (d, l)-CSP.Theorem 2. If we an solve (d, l)-CSP in O (an), then there exists an algorithmfor Max Hamming Distane (d, l)-CSP whih runs in O ((a(1 + a))n).Proof. In the algorithm presented in Fig. 9, the instane Θ′ will ontain 2n − kvariables, and there are (nk) ways of hoosing χ. Consequently, given that we ansolve (d, l)-CSP in O (an), the algorithm has a total running time of
O
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= O (an(1 + a)n)and the result follows. ⊓⊔In Example 4 we saw how the algorithm forMax Hamming Distane (d, l)-CSP worked. On instanes of l-SAT we an atually do better than this. Sinethere are only two possible domain values, and we fore x′ to always assume theopposite of x, there is no reason to reate new variables. Instead, we dupliatethe lauses ontaining variables on whih the two solutions should di�er, andamong these lauses, we replae every literal ontaining one of these variableswith its negation. In the example, we would get:
(x ∨ y) ∧ (¬x ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ ¬z)This formula has a solution {x 7→ 0, y 7→ 1, z 7→ 0}, and we an easily derivea solution to the original formula whih di�er on the assignment of all threevariables.As an be seen in Fig. 10, the algorithm forMax Hamming Distane (2, l)-CSP is similar to the one for the general ase, but it does not add any variablesto the problem.



algorithm Max Hamming Distane (2, l)-CSP (F )1. for k := |Var(F )| down to 0 do2. for eah χ ⊆ Var(F ) with |χ| = k do3. Let γ be all the lauses of F ontaining variables from χ4. Create γ by negating all ourrenes of a variable x ∈ χ in γ5. Let F+ := F ∪ {γ}6. if F+ is satis�able then7. Let α, β be the two found in a solution to F+.8. return (α, β)9. end if10. end for11. end forFig. 10. The Max Hamming Distane (2, l)-CSP algorithm.Theorem 3. If we an solve (2, l)-CSP in O (an), then there exists an algorithmfor solving Max Hamming Distane (2, l)-CSP whih runs in O ((2a)n).Proof. The algorithm in Fig. 10 onsiders all subsets of variables of the problem,as disussed in this setion. Consequently, it will deliver a solution in O ((2a)n)time. ⊓⊔There exist a number of algorithms for speial ases of (d, l)-CSPs, and wean use them in onjuntion with Theorems 2 and 3 to get the following orollary:Corollary 2. There exist algorithms for solving Max Hamming Distane
(d, l)-CSP with running times1. O (3.2264n) for d = 3, l = 2,2. O ((d(0.4518 + 0.2042d))n) for 4 ≤ d ≤ 10, l = 2,3. O

(

(d!1/d(1 + d!1/d))n
) for d ≥ 11, l = 2,4. O (2.6604n) for d = 2, l = 3,5. O ((4 − 4/l + ǫ)n), for d = 2, l ≥ 4,6. O

(

((d − d/l)2 + d − d/l + ǫ)n
) for d ≥ 3, l ≥ 5.where ǫ > 0 is an arbitrarily small onstant.Proof. Combine either of Theorems 2 and 3 with1. the (3, 2)-CSP algorithm by Eppstein [5℄,2. the (d, 2)-CSP algorithm by Eppstein [5℄,3. the (d, 2)-CSP algorithm by Feder & Motwani [6℄,4. the 3-SAT algorithm by Hofmeister et al. [8℄,5. the l-SAT algorithm by Shöning [11℄,6. the (d, l)-CSP algorithm by Shöning [11℄.and the result follows.
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