
Algorithms for the Maximum Hamming Distan
eProblemOla Angelsmark1⋆ and Johan Thapper2⋆⋆

1 olaan�ida.liu.seDepartment of Computer and Information S
ien
eLinköpings UniversitetS-581 83 Linköping, Sweden
2 jotha�mai.liu.seDepartment of Mathemati
sLinköpings UniversitetS-581 83 Linköping, SwedenAbstra
t. We study the problem of �nding two solutions to a
onstraintsatisfa
tion problem whi
h di�er on the assignment of as many vari-ables as possible�the Max Hamming Distan
e problem for CSPs�aproblem whi
h
an, among other things, be seen as a domain indepen-dent way of quantifying �ignoran
e.� The �rst algorithm we present isan O (1.7338n) mi
rostru
ture based algorithm for Max Hamming Dis-tan
e 2-SAT, improving the previously best known algorithm for thisproblem, whi
h has a running time of O (1.8409n). We also give algo-rithms based on enumeration te
hniques for solving bothMax HammingDistan
e l-SAT, and the general Max Hamming Distan
e (d, l)-CSP,the �rst non-trivial algorithms for these problems. The main results hereare that if we
an solve l-SAT in O (an) and (d, l)-CSP in O (bn), thenthe
orresponding Max Hamming problems
an be solved in O ((2a)n)and O (bn(1 + b)n), respe
tively.1 Introdu
tionIn its most basi
 form, a
onstraint satisfa
tion problem (CSP)
onsists of a
olle
tion of variables taking values from some domain, and a
olle
tion of
on-straints restri
ting the values di�erent variables
an simultaneously assume. Thequestion here is: Can we �nd an assignment of values to the variables whi
h doesnot violate any of the
onstraints? While this is
ertainly the most thoroughlystudied problem for CSPs, there are a number of alternative, equally interesting,questions one
an ask about a CSP. The question we will study in this paperasks us to �nd two solutions that are as far away from ea
h other as possible;i.e. we want to �nd two satisfying assignments that disagree on the values for

⋆ Supported in part by the National Graduate S
hool in Computer S
ien
e, Sweden,and in part by the Swedish Resear
h Coun
il (VR), grant 621-2002-4126.
⋆⋆ Supported by the Programme for Interdis
iplinary Mathemati
s, Department ofMathemati
s, Linköpings Universitet.

as many variables as possible. This is known as the Max Hamming Distan
eproblem, and was �rst introdu
ed in Cres
enzi & Rossi [3℄, where it was sug-gested as a domain independent measure of ignoran
e, quantifying how mu
h wedo not know of the world.We present three di�erent algorithms.The �rst one is a mi
rostru
ture basedalgorithm for the spe
ial
ase when the domains have size two and we have binary
onstraints, denotedMax Hamming Distan
e (2, 2)-CSP. (We will ex
lusively
onsider CSPs over �nite domains, denoted (d, l)-CSP, where d is the domainsize and l the arity of the
onstraints.) Even in this restri
ted form, the problemis NP-
omplete. In the mi
rostru
ture graph of a CSP [9℄, a vertex
orrespondsto an assignment of a value to a variable in the original problem (see Se
tion 2 forde�nitions.) The algorithm exploits this by sear
hing for a set of verti
es whereea
h vertex either does not have an edge to any other vertex�and thus
an beinterpreted as an assignment�or is part of a
onne
ted
omponent with 2 or4 verti
es. Ea
h vertex (i.e. assignment) in this set is then given a weight, andthe original instan
e together with these weights is given to a weighted 2-SATsolver. This algorithm returns a solution with maximum weight W , and we
anthen
onstru
t a solution whi
h di�ers on W variables.By using the weighted 2-SAT algorithm from [4℄, we arrive at a runningtime of O (1.7338n), where n is the number of variables in the problem. Thisis an improvement over the Max Hamming Distan
e (2, 2)-CSP algorithmpresented in [1℄, whi
h runs in O (1.8409n).When we allow domains with more than 2 elements, or
onstraints witharity higher than 2, it turns out that mi
rostru
tures are not as su

essful,and,
onsequently, the algorithms we present for these
ases are quite di�erent.Intuitively, the algorithm for Max Hamming Distan
e (d, l)-CSP works asfollows:1. Pi
k a subset of the variables whi
h should assume di�erent values in the twosolutions, dupli
ate and rename them and the
onstraints they are involvedin.2. Add a
onstraint for ea
h of these new variables, preventing it from assumingthe same value as the one it is a
opy of.3. Solve this new, larger, instan
e.Starting with assuming all variables are di�erent in the two solutions, and thenworking downwards, the algorithm will, by trying out the di�erent possible sub-sets of variables, arrive at a pair of solutions with maximum hamming distan
e.Given that we
an solve the (d, l)-CSP in the last step in time O (an), the entirealgorithm will have a running time of O (an(1 + a)n).The �nal algorithm is for the
ase when the domain has two elements andthe
onstraints have arity l, Max Hamming Distan
e (2, l)-CSP. Here, wenote that sin
e there are only two possible
hoi
es of values for a variable, itis unne
essary to dupli
ate the variables that should take di�erent values�instead, only the
onstraints they are involved in are dupli
ated, and then anyo

urren
e of a variable whi
h should assume di�erent values in the two solutionsis repla
ed by its negation in these
onstraints. The resulting algorithm will have

a running time of O ((2a)n), where O (an) is the time needed to solve the (2, l)-CSP problem in ea
h step.Overview of the paper: Se
tion 2
ontains most of the de�nitions we willneed in the dis
ussion. For
onvenien
e, it has been split into three parts, whereSe
tion 2.1
ontains the de�nitions related to CSPs, Se
tion 2.2 the graph andmi
rostru
ture de�nitions, while Se
tion 2.3 formally de�nes the problem wewill be studying,Max Hamming Distan
e. The algorithm forMax HammingDistan
e (2, 2)-CSP, together with its analysis, is presented in Se
tion 3, whileSe
tion 4
ontains the algorithms for Max Hamming Distan
e (d, l)-CSP andMax Hamming Distan
e (2, l)-CSP.2 PreliminariesThis se
tion is divided into three parts in order simplify the sear
h for aparti
ular de�nition. In Se
tion 2.1 we have the de�nitions related to
onstraintsatisfa
tion problems, while Se
tion 2.2 is devoted to graphs and the mi
rostru
-ture of CSPs. Finally, in Se
tion 2.3, we de�ne the problem we will be dis
ussingin this paper;Max Hamming Distan
e (d, l)-CSP. Note that Se
tion 3
ontainsadditional de�nitions spe
i�
 to that part of the paper.2.1 Constraint satisfa
tion problemsA (d, l)-
onstraint satisfa
tion problem ((d, l)-CSP) is a triple (X, D, C) where� X is a �nite set of variables,� D a �nite set of domain values, with |D| = d, and� C is a set of
onstraints {c1, c2, . . . , ck}.Ea
h
onstraint ci ∈ C is a stru
ture R(xi1 , . . . , xij
) where j ≤ l, xi1 , . . . , xij

∈ Xand R ⊆ Dj . A solution to a CSP instan
es is a fun
tion f : X → D s.t. for ea
h
onstraint R(xi1 , . . . , xij
) ∈ C, (f(xi1 , . . . , f(xij

))) ∈ R. Given a (d, l)-CSP, thebasi

omputational problem is to de
ide whether it has a solution or not�todetermine if it is satis�able.The spe
ial
ase when d = 2 and we have binary
onstraints, i.e. (2, 2)-CSP,will often be viewed as 2-SAT formulae. A 2-SAT formula is a
onjun
tion of anumber of
lauses, where ea
h
lause is on one of the forms (p ∨ q), (¬p ∨ q),
(¬p∨¬q), (p), (¬p). The set of variables of a formula F is denoted Var(F), andan o

urren
e of a variable or its
omplement in a formula is termed a literal.Determining whether a 2-SAT formula is satis�able
an be done in polynomialtime [2℄, while, in
ontrast, the more general l-SAT (i.e, the
lauses
onsist of atmost l literals) is known to be NP-
omplete for l ≥ 3 [7℄.De�nition 1 ([4℄). Let F be a 2-SAT formula, and let L be the set of all literalsfor all variables o

urring in F . Given a ve
tor w of weights and a model M for
F , we de�ne the weight W (M) of M as

W (M) =
∑

{l∈L | l is true in M}

w(l)

The problem of �nding a maximum weighted model for F is denoted 2-SATw.In [4℄, an algorithm for
ounting the number of maximum weighted solutionsto 2-SAT instan
es is presented whi
h has a running time of O (1.2561n), and it
an easily be modi�ed to return one of the solutions.2.2 Graphs and mi
rostru
turesA graph G
onsists of a set V (G) of verti
es and a set E(G) of edges, whereea
h element of E(G) is an unordered pair of verti
es. The neighbourhood of avertex v ∈ V (G) is the set of all verti
es adja
ent to v, ex
luding v itself, andis denoted NG(v), NG(v) := {u ∈ V (G) | (v, w) ∈ E(G)}. If, by following theedges of the graph, we
an get from a vertex v to v′, then v′ is rea
hable from
v. The
onne
ted
omponents of a graph are the equivalen
e
lasses of verti
esunder the �is rea
hable from� relation.De�nition 2 ([9℄). Given a binary CSP Θ = (X, D, C), the mi
rostru
ture of
Θ is an undire
ted graph G, de�ned as follows:1. For ea
h variable x ∈ X, and domain value d ∈ D, there is a vertex x[d] inG.2. There is an edge (x[d], y[e]) ∈ E(G) i� (d, e) satis�es the
onstraint between

x and y.We assume that there is exa
tly one
onstraint between any pair of variables, andvariables with no expli
it
onstraint between them is assumed to be
onstrainedby the universal
onstraint whi
h allows all values.For
onvenien
e, we will work ex
lusively with the
omplement of the graph inDe�nition 2. The
omplement of a (mi
rostru
ture) graphG is a graph
ontainingexa
tly those edges whi
h are not present in G (ex
luding loops), i.e. a graphwith edge set {(v, u) | v 6= u ∧ (v, u) 6∈ E(G)}.A variable with domain size d will in the mi
rostru
ture graph be a
lique ofsize d. When the domain has two elements and we have a
lique of size 2, we let
x[i] denote an arbitrary value for x, and use x[1− i] to denote the other possiblevalue. For example, if we look at the 2-SAT formula (x ∨ y) ∧ (¬x ∨ z), withdomain values 0 and 1, it has the mi
rostru
ture graph shown in Fig. 1. Oneindependent set the graph is {x[0], y[1], z[0]} whi
h
orresponds to the satisfyingassignment {x 7→ 0, y 7→ 1, z 7→ 0}.2.3 Hamming distan
e of CSPsThe algorithms we present in this paper are all designed to solve di�erent vari-ants of the Max Hamming Distan
e problem for
onstraint satisfa
tion prob-lems [3℄. Sin
e our algorithms are not limited to problems with two valued do-mains, the following de�nition di�ers somewhat from the one given in [3℄:

x[0]

x[1]

y[0] z [0]

z [1]y[1]Fig. 1. The mi
rostru
ture graph of (x ∨ y) ∧ (¬x ∨ z).algorithm MH1(α, G, Θ)1. if δ(x) ∈ {(3, 1), (2, 2), (2, 1), (1, 1)} for all variables x in G then2. return MH2 (α, G, Θ)3. end if4. Choose a variable x in G with δ(x) ∈ {(≥ 3,≥ 2), (≥ 4, 1)}5. (α0, β0) = MH1 (α ∪ {x[0]}, G − NG(x[0]) − {x[0]}, Θ)6. (α1, β1) = MH1 (α ∪ {x[1]}, G − NG(x[1]) − {x[1]}, Θ)7. return (αi, βi), i ∈ {0, 1} maximising dH(αi, βi)Fig. 2. The main algorithm for Max Hamming Distan
e (2, 2)-CSP.De�nition 3. Given a set of variables X over �nite domains, the Hammingdistan
e between a pair f1 and f2 of assignments of values to the variables in
X, denoted dH(f1, f2), is the number of variables on whi
h f1 and f2 disagree.For example,
onsider the 2-SAT formula (x ∨ y) ∧ (¬x ∨ z), and the twoassignments f1 = {x 7→ 0, y 7→ 1, z 7→ 0}, f2 = {x 7→ 1, y 7→ 1, z 7→ 1}. Clearly,both f1 and f2 satisfy the formula, and their Hamming distan
e is 2, sin
e theydisagree on the values for x and z.The following formalises the problem:De�nition 4 (Maximum Hamming Distan
e of (d, l)-CSPs). Let Θ =
(X, D, C) be an instan
e of (d, l)-CSP. The Max Hamming Distan
e (d, l)-CSP problem is to �nd two satisfying assignments f and g to Θ whi
h maximises
dH(f, g).A naïve enumeration algorithm for this problem would have a time
omplexityof O (d2n

). In the following se
tions we will present ways to signi�
antly improvethis running time.3 Algorithm for Max Hamming Distan
e (2, 2)-CSP

algorithm MH2(α, G, Θ)1. if δ(x) ∈ {(2, 1), (1, 1)} for all variables x in G then2. return MH3 (α, G, Θ)3. end if4. if G
ontains a
y
le then5. if all variables x has δ(x) = (2, 2) in a
y
le then6. Choose x in this
y
le7. else if there is a variable z with δ(z) = (2, 2) in a
y
le then8. Choose x in a
y
le s.t δ(x) = (3, 1) and x[i] has aneighbour y with δ(y) = (2, 2)9. else10. Choose x with δ(x) = (3, 1) in a
y
le11. end if12. else % G is
y
le-free13. Choose x whi
h is two variables from the end of a
hain, if possible,otherwise,
hoose x one variable from the end of a
hain14. end if15. (α0, β0) = MH2 (α ∪ {x[0]}, G − NG(x[0]) − {x[0]}, Θ)16. (α1, β1) = MH2 (α ∪ {x[1]}, G − NG(x[1]) − {x[1]}, Θ)17. return (αi, βi), i ∈ {0, 1} maximising dH(αi, βi)Fig. 3. The helper fun
tion MH2.In this se
tion we will dis
uss and analyse our algorithm for Max Ham-ming Distan
e (2, 2)-CSP. Sin
e the formulae for the time
omplexity of thealgorithm
an be rather lengthy, the �nal step, that of
alling a weighted 2-SATsolver for every leaf in the sear
h tree, has been left out (unless otherwise noted.)Furthermore, we will omit polynomial fa
tors in the time
omplexities.Before we start the dis
ussion of the algorithms, we will need some additionalde�nitions: The degree of a vertex v in a graph, usually denoted deg(v), is thesize of its neighbourhood, i.e. |NG(v)|. However, we are not really interested inthe degree of a single vertex, but rather in the degrees of the two verti
es thatmake up a variable. Thus let Θ = (X, D, C) be a (2, 2)-CSP and, for x ∈ X ,de�ne the variable degree δ(x) as a tuple (deg(x[i]), deg(x[1 − i])), where x[i]is the vertex with highest degree. If we are interested in variables with degreeshigher than a
ertain number, we write δ(x) = (≥ i,≥ j).In the analysis of the algorithm in this se
tion, we will often en
ounter re-
ursions on the form T (n) =
∑k

i=0 T (n − ri) + p(n), where p(n) is a polyno-mial in n and ri ∈ Z
+. These equations satisfy T (n) ∈ O (τ(r1, r2, . . . , rk)n),where τ(r1, r2, . . . , rk) is the largest real-valued solution to the equation 1 −

∑k
i=1 x−ri = 0 (see Kullman [10℄.) Note that this bound depends on neither

p(n) nor the boundary
onditions T (1) = b1, . . . , T (k) = bk. We will sometimesrefer to τ as the work fa
tor (in the sense of [5℄.)With that in mind, we are now ready to dis
uss the algorithm, whi
h
onsistsof three fun
tions: MH1, the main algorithm, whi
h
alls MH2 on
e no variable

x[i]

x[i]

a)

b)

Fig. 4. Bran
hing on x[i] will remove the shaded values and for
e the bla
k values.is involved in more than three
onstraints, whi
h, in turn,
alls MH3 when everyvariable is involved in at most one
onstraint.MH1: The main algorithm, MH1, given in Fig. 2, takes as input a partial as-signment α, a mi
rostru
ture graph G, and the original problem instan
e Θ. Ifevery variable in the mi
rostru
ture is involved in less than 3
onstraints, thehelper fun
tion MH2 is
alled. In the graph, this translates to every variable xhaving δ(x) in the set {(3, 1), (2, 2), (2, 1), (1, 1)}. Otherwise, a variable involvedin more than 3
onstraints is
hosen, and the algorithm bran
hes on the twopossible values. We note that for δ(x) = (3, 2), there will be at least 3 variablesless in one bran
h and 2 variables less in the se
ond bran
h, and for δ(x) = (4, 1),there are at least 4 and 1 variables less, respe
tively. Consequently, we get workfa
tors of τ(3, 2) and τ(4, 1) for these
ases, where τ(4, 1)
learly dominates.Example 1. Consider the 2-SAT formula Θ = (x ∨ y) ∧ (¬x ∨ y), whi
h hasthe mi
rostru
ture shown in Fig. 1. The variables in Θ have degrees δ(x) =
(2, 2), δ(y) = (2, 1) and δ(z) = (2, 1), thus we immediately jump to algorithmMH2. Had this not been the
ase, a variable with a degree of (≥ 3,≥ 2) or
(≥ 4, 1) would have been
hosen, and the algorithm would have bran
hed oneither of the possible values for it.MH2: The �rst helper fun
tion, MH2, shown in Fig. 3, takes over when everyvariable is involved in zero, one or two
onstraints. Unless there are no variablesinvolved in two
onstraints (in whi
h
ase we jump straight to algorithm MH3),we start with
he
king for
y
les. Any
y
les we en
ounter need to be broken,whi
h is done on lines 4 to 11.First of all, if there is a
y
le where every variable has a degree of (2, 2), thensele
ting one value for a variable in this
y
le will propagate through the entire

y
le, as is shown in the top part of Fig. 4. On line 8, by
hoosing a variable xwith δ(x) = (3, 1) with a neighbour y with δ(y) = (2, 2), one of the values for xwill propagate through y. (See Fig. 4b.) Consequently, 4 variables are removedin one bran
h, and one in the other, giving a work fa
tor of τ(4, 1) for this
ase.The obvious ex
eption is when the
y
le
ontains only 3 variables, as is shown inFig. 7a. Note that the
oloured vertex x[i] is the only possible
hoi
e�the otherassignment would lead to an in
onsisten
y.Now if every variable x in the
y
le has δ(x) = (3, 1), we get a number ofdi�erent possibilities, but before we dis
uss them, we need to make some obser-vations. On
e a variable has no neighbours (Fig. 6a), or is part of a
omponent
onsisting of only two variables and one edge between them, a 'hurdle,' (Fig. 6b),we need no longer
onsider it. The �rst
ase is obvious, sin
e if a variable hasno neighbours, it is not involved in any
onstraints, and we
an
hoose its valuefreely, while the se
ond
ase is somewhat harder; We will get ba
k to it whenwe dis
uss algorithm MH3. Consequently, when a
omponent of (3, 1) variableshas at most 3 variables, as in Fig. 7b, when
hoosing su
h a variable, in ef-fe
t, the entire
omponent is removed from the problem and need no longer be
onsidered�in one
ase we get a unique assignment for the remaining (bla
k)verti
es, and in the other
ase we get a hurdle. If there are no
y
les in the
om-ponent, e.g we have a '
omb-like' stru
ture, as in Fig. 8, then
hoosing any of thethree variables to bran
h on will, again, remove the entire
omponent, giving awork fa
tor of τ(3, 3). This also holds for
y
le-free
omponents of size 4 and 5.When there are more than 5 variables in the
omponent, by
hoosing a variablewhi
h is two variables removed from the end of the
omb (the marked variablein Fig. 8), the
hain is broken and we remove 3 variables in one bran
h and 4in the other. As was seen in the
ase for
y
les where all variables have degree
(2, 2), the number of removed variables in
reases if a neighbour of the bran
hingvariable has this property. Consequently, we will fo
us on the
ombs and merelynote that the time
omplexity will not be worse if we have more variables withdegree (2, 2).Getting ba
k to dis
ussing
y
les; When we rea
h line 10 of algorithm MH2,every
y
le
onsists ex
lusively of variables with degree (3, 1), and sin
e no vertexin the graph has degree higher than 3, there
an be at most one
y
le in a
omponent. The
ase with
y
les
ontaining 3 variables was dis
ussed earlier,and for the
ase with 4 variables we get one bran
h where the entire
omponentis removed, and one where we get a
omb with 3 variables, whi
h
an be removedin its entirety when we bran
h. There
an be no more than n/4
y
les with 4variables in the graph at this point. For ea
h of these
y
les, we
hoose onevariable to bran
h on, and in one bran
h the entire
omponent is removed,while in the other, we get a
omponent with 3 variables. Sin
e we want to lookat all of these
y
les, and both bran
hes, this is equivalent to sele
ting k
y
leswhere we remove the entire
omponent, and then examine the remaining n/4−k
omponents. In other words, it will require

n/4
∑

k=0

(

n/4

k

)

(

1k · τ(3, 3)3(n/4−k)
)

algorithm MH3(α, G, Θ)1. Let w be a ve
tor of weights, initially all set to 02. for ea
h x[i] ∈ α do3. add weight w(x[1 − i]) := 14. for ea
h
onne
ted
omponent of G do5. Add weights to w, as shown in Fig. 6.6. (β, W) := 2-SATw(Θ, w)7. for ea
h variable x in G do8. if x[i] in β then9. If possible, add x[1 − i] to α, otherwise, add x[i].10. end if11. end for12. return (α, β) Fig. 5. The helper fun
tion MH3.
1

1 1/2 1/2

3/2 3/2
a) b)

Fig. 6. Variables with no or exa
tly one neighbour, and the weights they are given byalgorithm MH3.steps to examine all the
y
les. Using the binomial theorem, this
an be simpli�edto (1 + τ(3, 3)3)n/4.For
y
les with 5 variables, the situation is similar, but for 6 we no longerremove the entire
omponent in one of the bran
hes. Instead, we get one bran
hwith 5 variables, and one with 3, whi
h, using the same reasoning as above, gives
n/6
∑

k=0

(

n/4

k

)

(

τ(3, 3)3k · τ(5, 5)5(n/6−k)
)

= (τ(3, 3)3 + τ(5, 5)5)n/6.Similarly, for
y
les of length 7, we get (τ(4, 4)4 + τ(3, 4)6)n/7. In general, if wehave
y
les of length c, one bran
h will have one variable less, and the otherthree variables less, giving the following general running time:
n/c
∑

k=0

(

n/c

k

)

(

τ(3, 4)(c−3)k · τ(3, 4)(c−1)(n/c−k
)

=

=
(

τ(3, 4)c−1 + τ(3, 4)c−3
)n/c

< (2τ(3, 4)c)n/c = (21/cτ(3, 4))n

x[i]

x[i]

a) b)

Fig. 7. The
ase when a
omponent is a
y
le with 3 variables.Example 2 (
ont'd). When we rea
h algorithm MH2 with our (still un
hanged)mi
rostru
ture graph, we note that for x, δ(x) = (2, 2), thus we will
ontinuepast the test on line 1. Sin
e the graph is
y
le-free, we will
hoose a variablewhi
h is not on the end of a
hain�in our
ase the only
hoi
e is x, and bran
hon the two possible values for x.1. The bran
h with x[0] removes y[0] and x[1] from the graph, for
ing y[1] andleaving z un
onstrained.2. For x[1], x[0] and z[0] are removed, for
ing z[1] and leaving y un
onstrained.Consequently, both of these bran
hes will result in MH3 being
alled in the nextre
ursive
all (sin
e we have a variable degree of (1, 1) for the un
onstrainedvariables left in the graph), with α = {x[0], y[1]} in the �rst
ase, and {x[1], z[1]}in the se
ond.MH3: Finally, when algorithm MH3 (see Fig. 5) is
alled, the graph G only
ontains variables involved in zero or one
onstraint, i.e. every variable will be ofone of the forms found in Fig. 6. The weights shown in the �gure is now addedto the
orresponding assignments in Θ, the original problem, and the resultingweighted 2-SAT problem is given to a 2-SATw solver. If the solution β returnedby the solver has weightW , this means that we
an add assignments (i.e. verti
es)to α and
reate a solution whi
h di�ers from β on W assignments in the followingway: First of all, sin
e all assignments in α are given weight 0, if any of these are
hosen, they will not add anything to the distan
e, while the other possible valuefor all these variables will add one to the distan
e (and are
onsequently givena weight of 1 on line 3.) For the un
onstrained variables in G, i.e. all verti
es
x with δ(x) = (1, 1), we
an
hoose freely whi
h value they should assume, andthus we
an always �nd an assignment whi
h adds one to the distan
e from βby
hoosing the other value for α. The remaining
omponents then
onsist ofpairs of variables with one edge between them, i.e. hurdles. If β
ontains both

Fig. 8. Choosing a variable in a
omb with more than 4 variables.assignments with weight 1/2, then obviously, we have to add one of them to
α, sin
e not both assignments with weight 3/2 are allowed simultaneously�andthus we get a distan
e of 1, whi
h is the sum of the weights in β. On the otherhand, if β
ontains one 3/2 and one 1/2 assignments, then we
an
hoose theopposing value for both of these and get a distan
e of 2. Consequently, the pairreturned on line 12 will have a Hamming distan
e equal to the weight of β, andwith α and G given, no pair with greater Hamming distan
e
an exist.Ex
ept for the
all to 2-SATw on line 6, every step of algorithm MH3
an be
arried out in polynomial time, thus the time
omplexity is fully determined bythat of the 2-SATw algorithm.Example 3 (
ont'd). Assuming we rea
h algorithm MH3 with α = {x[0], y[1]},i.e. from bran
h 1 in Example 2 earlier, the algorithm will now assign weights tothe assignments in the original problem. Ea
h assignment in α is given weight 0,while its negation is given weight 1. In our
ase, we get w(x[0]) = w(y[1]) = 0,and w(x[1]) = w(y[0]) = 1. We have no �hurdles� in our graph (see Fig. 6b), butwe have one free variable, z, whi
h we assign weights w(z[0]) = w(z[1]) = 1.Next, we
all the weighted 2-SAT solver with the original instan
e togetherwith the weight ve
tor. It is easy to see that in our
ase, the maximum weight of amodel will be 3; β = {x[1], y[0], z[1]} has this weight, for instan
e. Consequently,sin
e z is un
onstrained in our graph, we
an simply add z[0] to α and we havetwo satisfying assignment α, β with a hamming distan
e of 3.Theorem 1. Algorithm MH1
orre
tly solves Max Hamming Distan
e (2, 2)-CSP and has a running time of O ((a · 1.3803)n), where n is the number ofvariables in the problem, and O (an) is the time
omplexity of solving a weighted2-SAT problem.Proof. The highest work fa
tor in algorithmsMH1, MH2, MH3 is τ(4, 1), givinga running time of O (1.3803n). The
all to the weighted 2-SAT algorithm is donefor every leaf in the sear
h tree, and thus we get a total time
omplexity of
O ((a · 1.3803)) if we assume we
an solve weighted 2-SAT in O (an).In every
ase, the algorithm bran
hes on both values for a variable, thusfrom the
orre
tness of the 2-SATw algorithm we know that the two solutionsreturned will be at a maximum hamming distan
e from ea
h other. ⊓⊔Corollary 1. Max Hamming Distan
e (2, 2)-CSP
an be solved in O (1.7338n).

Proof. Dahllöf et al. [4℄ presents an algorithm for solving weighted 2-SAT in
O (1.2561n), and this together with Theorem 1 gives the result. ⊓⊔4 Algorithm for Max Hamming Distan
e (d, l)-CSPFor problems where the arity of the relations is greater than 2, mi
rostru
turesare not as
onvenient and we have to �nd a di�erent approa
h.Let us �rst
onsider the following problem: Given a CSP instan
e Θ =
(X, D, C),
an we �nd a pair of solutions with Hamming distan
e equal to k?One obvious way of doing this is the following:1. Pi
k a subset Y of X with |Y | = k2. Create a
opy Θ′ = (X ′, D, C′) of Θ over variables X ′3. For ea
h x ∈ Y , add the
onstraint x 6= x′ to C′, and4. for ea
h x 6∈ Y , add the
onstraint x = x′ to C′.5. If Θ′ is satis�able with solution s� Solve the instan
e (X ∪ X ′, D, C′), giving a satisfying assignment s.� For ea
h x ∈ X , add s(x) to α� For ea
h x′ ∈ X ′, add s(x′) to β� Return (α, β)There are 2n ways to
hoose Y on the �rst line, so if we
an solve the satis�a-bility problem for Θ in time O (h(n)), then, sin
e the number of variables in Θ′is twi
e that of Θ, we
an �nd a pair of solutions with maximum Hamming dis-tan
e in O (2nh(2n)). For example, sin
e 2-SAT
an be solved in linear time, wewould, using this approa
h, get a running time of O (2n) for theMax HammingDistan
e (2, 2)-CSP. This does give a slower running time than the algorithmwe presented in the previous se
tion, but it
an be applied to CSP instan
eswith domain size and
onstraint arity greater than 2.Example 4. Again,
onsider the instan
e (x ∨ y) ∧ (¬x ∨ z). Following the algo-rithm in Fig. 9, we begin with trying to determine if there are two solutions witha distan
e of 3. We get a new, larger instan
e, whi
h looks as follows:

(x ∨ y) ∧ (¬x ∨ z) ∧ (x′ ∨ y′) ∧ (¬x′ ∨ z′)∧
(x 6= x′) ∧ (y 6= y′) ∧ (z 6= z′)This instan
e has solution {x 7→ 1, y 7→ 0, z 7→ 1, x′ 7→ 0, y′ 7→ 1, z′ 7→ 0} and
onsequently, there are two solutions with a hamming distan
e of 3�we get onefrom reading the values of x, y, z and the other from the values of x′, y′, z′. Hadthis instan
e been unsatis�able, we would have had to move on to try hammingdistan
e 2, et
.A
tually, it is unne
essary to make a
opy of all the variables. Having sele
ted

k variables that should be di�erent in the two solutions, we only need to make
opies of those, leaving the remaining n − k variables un
hanged. Thus, we getthe algorithm for Max Hamming Distan
e (d, l)-CSP given in Fig. 9.

algorithm Max Hamming Distan
e (d, l)-CSP (Θ = (X, D, C))1. for k := |X| down to 0 do2. for ea
h χ ⊆ X, |χ| = k do3. Let Θ′ = (X ′, D, C′) be a
opy of Θ4. Let γ ⊆ C be all
onstraints involving variables from χ5. Create γ′ by ex
hanging all variables not in χ withtheir
ounterparts from X ′6. C′ := C′ ∪ γ′7. for ea
h x ∈ χ do8. C′ := C′ ∪ {x 6= x′}9. if (X ∪ X ′, D, C′) is satis�able then10. Let α, β be the two assignments found in a solution to Θ′11. return (α, β)12. end if13. end for14. end forFig. 9. Algorithm for Max Hamming Distan
e (d, l)-CSP.Theorem 2. If we
an solve (d, l)-CSP in O (an), then there exists an algorithmfor Max Hamming Distan
e (d, l)-CSP whi
h runs in O ((a(1 + a))n).Proof. In the algorithm presented in Fig. 9, the instan
e Θ′ will
ontain 2n − kvariables, and there are (nk) ways of
hoosing χ. Consequently, given that we
ansolve (d, l)-CSP in O (an), the algorithm has a total running time of
O

(

n
∑

k=0

(

n

k

)

a2n−k

)

= O

(

an
n
∑

k=0

(

n

k

)

an−k

)

= O (an(1 + a)n)and the result follows. ⊓⊔In Example 4 we saw how the algorithm forMax Hamming Distan
e (d, l)-CSP worked. On instan
es of l-SAT we
an a
tually do better than this. Sin
ethere are only two possible domain values, and we for
e x′ to always assume theopposite of x, there is no reason to
reate new variables. Instead, we dupli
atethe
lauses
ontaining variables on whi
h the two solutions should di�er, andamong these
lauses, we repla
e every literal
ontaining one of these variableswith its negation. In the example, we would get:
(x ∨ y) ∧ (¬x ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ ¬z)This formula has a solution {x 7→ 0, y 7→ 1, z 7→ 0}, and we
an easily derivea solution to the original formula whi
h di�er on the assignment of all threevariables.As
an be seen in Fig. 10, the algorithm forMax Hamming Distan
e (2, l)-CSP is similar to the one for the general
ase, but it does not add any variablesto the problem.

algorithm Max Hamming Distan
e (2, l)-CSP (F)1. for k := |Var(F)| down to 0 do2. for ea
h χ ⊆ Var(F) with |χ| = k do3. Let γ be all the
lauses of F
ontaining variables from χ4. Create γ by negating all o

urren
es of a variable x ∈ χ in γ5. Let F+ := F ∪ {γ}6. if F+ is satis�able then7. Let α, β be the two found in a solution to F+.8. return (α, β)9. end if10. end for11. end forFig. 10. The Max Hamming Distan
e (2, l)-CSP algorithm.Theorem 3. If we
an solve (2, l)-CSP in O (an), then there exists an algorithmfor solving Max Hamming Distan
e (2, l)-CSP whi
h runs in O ((2a)n).Proof. The algorithm in Fig. 10
onsiders all subsets of variables of the problem,as dis
ussed in this se
tion. Consequently, it will deliver a solution in O ((2a)n)time. ⊓⊔There exist a number of algorithms for spe
ial
ases of (d, l)-CSPs, and we
an use them in
onjun
tion with Theorems 2 and 3 to get the following
orollary:Corollary 2. There exist algorithms for solving Max Hamming Distan
e
(d, l)-CSP with running times1. O (3.2264n) for d = 3, l = 2,2. O ((d(0.4518 + 0.2042d))n) for 4 ≤ d ≤ 10, l = 2,3. O

(

(d!1/d(1 + d!1/d))n
) for d ≥ 11, l = 2,4. O (2.6604n) for d = 2, l = 3,5. O ((4 − 4/l + ǫ)n), for d = 2, l ≥ 4,6. O

(

((d − d/l)2 + d − d/l + ǫ)n
) for d ≥ 3, l ≥ 5.where ǫ > 0 is an arbitrarily small
onstant.Proof. Combine either of Theorems 2 and 3 with1. the (3, 2)-CSP algorithm by Eppstein [5℄,2. the (d, 2)-CSP algorithm by Eppstein [5℄,3. the (d, 2)-CSP algorithm by Feder & Motwani [6℄,4. the 3-SAT algorithm by Hofmeister et al. [8℄,5. the l-SAT algorithm by S
höning [11℄,6. the (d, l)-CSP algorithm by S
höning [11℄.and the result follows.

5 A
knowledgmentsThe authors would like to thank Peter Jonsson for useful
omments during thewriting of this paper.Referen
es1. O. Angelsmark and J. Thapper. Mi
rostru
ture based algorithms for three
on-straint satisfa
tion optimisation problems, 2004. Unpublished manus
ript. Avail-able for download at http://www.ida.liu.se/�olaan/papers/three_algorithms.ps.2. B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear time algorithm for testingthe truth of
ertain quanti�ed Boolean formulas. Information Pro
essing Letters,8(3):121�123, Mar. 1979.3. P. Cres
enzi and G. Rossi. On the Hamming distan
e of
onstraint satisfa
tionproblems. Theoreti
al Computer S
ien
e, 288(1):85�100, O
tober 2002.4. V. Dahllöf, P. Jonsson, and M. Wahlström. On
ounting models for 2satand 3sat formulae, 2003. Unpublished manus
ript. Available for download athttp://www.ida.liu.se/�magwa/resear
h/merge23sat.ps.5. D. Eppstein. Improved algorithms for 3-
oloring, 3-edge-
oloring, and
onstraintsatisfa
tion. In Pro
eedings of the 12th Annual Symposium on Dis
rete Algorithms(SODA-2001), pages 329�337, 2001.6. T. Feder and R. Motwani. Worst-
ase time bounds for
oloring and satis�abilityproblems. Journal of Algorithms, 45(2):192�201, Nov. 2002.7. M. R. Garey and D. S. Johnson. Computers and Intra
tability: A Guide to theTheory of NP-Completeness. W.H. Freeman and Company, New York, 1979.8. T. Hofmeister, U. S
höning, R. S
huler, and O. Watanabe. A probabilisti
 3-SAT algorithm further improved. In H. Alt and A. Ferriera, editors, Pro
eed-ings of the 19th International Symposium on Theoreti
al Aspe
ts of Computer S
i-en
e (STACS-2002), pages 192�202, Antibes Juan-les-Pins, Fran
e, 2002. Springer-Verlag, Berlin, Heidelberg.9. P. Jégou. De
omposition of domains based on the mi
ro-stru
ture of �nite
onstraint-satisfa
tion problems. In Pro
eedings of the 11th (US) National Confer-en
e on Arti�
ial Intelligen
e (AAAI-93), pages 731�736, Washington DC, USA,July 1993. AAAI.10. O. Kullman. New methods for 3-SAT de
ision and worst-
ase analysis. Theoreti
alComputer S
ien
e, 223(1�2):1�72, 1999.11. U. S
höning. A probabilisti
 algorithm for k-SAT and
onstraint satisfa
tion prob-lems. In 40th Annual Symposium on Foundations of Computer S
ien
e (FOCS-1999), pages 410�414. IEEE Computer So
iety, 1999.

