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Abstract. We study the approximability of the maximum solution problem. This
problem is an optimisation variant of the constraint satisfaction problem and it
captures a wide range of interesting problems in, for example, integer program-
ming, equation solving, and graph theory. The approximability of this problem
has previously been studied in the two-element case [Khanna et al, ‘The approx-
imability of constraint satisfaction’, SIAM Journal on Computing 23(6), 2000]
and in some algebraically motivated cases [Jonsson et al, ‘MAX ONES gener-
alized to larger domains’, SIAM Journal on Computing 38(1), 2008]. We con-
tinue this line of research by considering the approximability of MAX SOL for
different types of constraints. Our investigation combined with the older results
strengthens the hypothesis that MAX SOL exhibits a pentachotomy with respect
to approximability.

Keywords: optimisation, approximability, constraint satisfaction, algebra, com-
putational complexity

1 Introduction

We study the maximum solution problem, a problem perhaps most intuitively described
as a generalisation of MAX ONES. The latter problem is that of finding an assignment
from a set of variables to a domain {0, 1} such that a given set of constraints are satisfied
and the number of variables assigned to 1 are maximised. This type of constraint satis-
faction problems are commonly parametrised by a constraint language Γ , i.e., a set of
relations describing the structure of the constraints that are allowed to appear. Among
the problems realisable by MAX ONES(Γ ) one finds the MAX INDEPENDENT SET-
problem for graphs and certain variants of MAX 0/1 PROGRAMMING. The maximum
solution problem, or MAX SOL(Γ ) for short, generalises the domain of the variable as-
signment from {0, 1} to an arbitrary finite subset of the natural numbers. The measure
of a solution is now the sum of a variable weight times its assigned value, taken over all
variables. This allows us to capture a wider array of problems, including certain prob-
lems in integer linear programming, problems in multi-valued logic [8], and in equation
solving over various algebraic structures [11]. The problem has also been studied (with
respect to computational complexity) on undirected graphs [9], i.e., when Γ consists
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of a single, symmetric binary relation. However, it is quite obvious that the systematic
study of MAX SOL is still in its infancy; for example, given an arbitrary constraint lan-
guage Γ , no plausible conjecture has been suggested for the approximability (or even
the complexity) of MAX SOL(Γ ).

The situation is quite different for MAX ONES: for any constraint language Γ , MAX
ONES(Γ ) is either polynomial-time solvable, APX-complete, poly-APX-complete, it is
NP-hard to obtain a solution of nonzero measure, or it is NP-hard to obtain any solution.
This classification and the borderlines between the different cases were presented by
Khanna et al. in [10]. For MAX SOL(Γ ), a similar classification of approximability for
homogeneous constraint languages Γ was obtained in [7], together with a (conjectured
complete) classification of the approximability for maximal constraint languages. Such
classifications are obviously interesting from a theoretical point of view, but also from a
practical point of view, where they can help identifying families of tractable constraints
and algorithms for them.

A constraint language can be extended in a complexity-preserving way to a larger
set of relations called a relational clone. Furthermore, the relational clones can be de-
scribed by algebraic operations so it makes sense talking about MAX SOL(A) where
A is an algebra. In this way, we can consider complexity-theoretic problems from an
algebraic angle and this algebraic approach [3, 6] has proved to be very fruitful when
studying constraint problems. The study of MAX SOL using the algebraic approach was
initiated in [7] and we continue the algebraic study of MAX SOL in this paper. We be-
gin by providing approximability results for certain affine algebras and 2-element alge-
bras; these results are used extensively in the ‘main’ classification results. These results
appear to be useful for studying other algebras as well. For instance, a classification
of para-primal algebras probably hinges on a classification of all affine algebras (via
Corollary 4.12 in [14]). Our proof is based on combinatorial properties in the subspace
lattices of finite vector spaces.

The first classification determines the approximability of MAX SOL(A) when A
is a strictly simple surjective algebra. Such an algebra has a very ‘simple’ structure:
all its smaller homomorphic images and all its proper subalgebras are one-element.
These algebras can be viewed as building blocks for more complex algebras and they
are well-studied in the literature; an understanding of such algebras is probably needed
in order to make further progress using the algebraic approach. We note, for example,
that the proof of our second classification result is partly based on the results for strictly
simple surjective algebras. Concrete examples include when A is a finite field of prime
order or a Post algebra. Furthermore, these algebras generalise the two-element case
nicely since every surjective two-element algebra is strictly simple. Our proof is based
on Szendrei’s characterisation of strictly simple surjective algebras. In each case of
the characterisation, we can either use results from [7] or our new results for affine
and 2-element algebras in order to determine the approximability. The corresponding
classification of the CSP problem was carried out in [3].

The second classification considers algebras that are symmetric in the sense of
[15]. Examples include algebras whose automorphism group contains the alternating
group (i.e. the permutation group containing only even permutations) and certain three-
element algebras with cyclic automorphism groups [15]. Well-known examples are



the homogeneous algebras; an algebra A is homogeneous if its automorphism group
Aut(A) is the full symmetric group. The approximability of MAX SOL(A) is known
for all homogeneous algebras [7] and our result generalises this result. The proof is
basically a mix of Szendrei’s classification for symmetric algebras [15] and our approx-
imability results for affine and strictly simple surjective algebras. It should be noted
that our proof is considerably simpler than the original proof for homogeneous algebras
(which is a fairly tedious case analysis). As a by-product of the proof, we also get a
classification of CSP(A) for symmetric algebras (Theorem 12.)

In order to concretise, consider the equation x = y + 1 (mod 3) over the domain
A = {0, 1, 2}. For brevity, we define R = {(x, y) | x = y + 1 (mod 3)} and note
that R = {(x, σ(x)) | x ∈ A} for the permutation σ(0) = 2, σ(1) = 0, and σ(2) = 1.
Let Γ be any relational clone containing R. It is known that for every permutation
π : A → A, {(x, π(x)) | x ∈ A} ∈ Γ if and only if π(x) ∈ Aut(Pol(Γ )) where
Pol(Γ ) denotes the algebra with universe A and the functions that preserve Γ . It is
now easy to see that Aut(Pol(Γ )) contains every even permutation on A: the identity
is always an automorphism and σ−1 is generated by σ. Thus, Pol(Γ ) is symmetric and
the approximability of MAX SOL(Γ ) can be determined using Theorem 11.

2 Preliminaries

This section is divided into two parts: we begin by giving the formal definition of the
constraint satisfaction and the maximum solution problems, and continue by review-
ing algebraic techniques for analysing relations. We will assume basic familiarity with
complexity and approximability classes (such as PO, NPO, APX and poly-APX), and
reductions (such as AP-, S-, and L-reductions) [1, 10].

We formally define constraint satisfaction as follows: let A (the domain) be a finite
set and let RA denote the set of all finitary relations over A. A constraint language A
is a subset Γ ⊆ RA. The constraint satisfaction problem over the constraint language
Γ , denoted CSP(Γ ), is the decision problem with instance (V,A, C). Here, V is a set
of variables, A is a finite set of values, and C is a set of constraints {C1, . . . , Cq}, in
which each constraint Ci is a pair (si, %i) with si a list of variables of length mi, called
the constraint scope, and %i an mi-ary relation over the set A, belonging to Γ , called
the constraint relation. The question is whether or not there exists a function from V to
A such that, for each constraint in C, the image of the constraint scope is a member of
the constraint relation.

We define the maximum solution problem over a constraint language Γ (MAX
SOL(Γ )) as the maximisation problem with

Instance A tuple (V,A, C, w), where A is a finite subset of N, (V,A, C) is a CSP
instance over Γ , and w : V → Q+ is a weight function.

Solution An assignment f : V → A such that all constraints are satisfied.
Measure

∑
v∈V w(v) · f(v)

Next, we consider clones and operations. As usual, let A be a domain. An operation
on A is an arbitrary function f : Ak → A and the set of all finitary operations on A is



denoted by OA. A k-ary operation f ∈ OA can be extended to an operation on n-tuples
t1, t2, . . . , tk by f(t1, t2, . . . , tk) =

(f(t1[1], t2[1], . . . , tk[1]), f(t1[2], t2[2], . . . , tk[2]), . . . f(t1[n], t2[n], . . . , tk[n])),

where tj [i] is the i-th component of tj . Let % ∈ RA. If f is an operation such that for
all t1, t2, . . . , tk ∈ %i f(t1, t2, . . . , tk) ∈ %i, then % is preserved by f . If all constraint
relations in Γ are preserved by f , then Γ is preserved by f . An operation f which
preserves Γ is called a polymorphism of Γ and the set of polymorphisms is denoted
Pol(Γ ). Given a set of operations F , the set of all relations that are preserved by the
operations in F is denoted Inv(F ).

Sets of operations of the form Pol(Γ ) are known as clones, and they are well-studied
objects in algebra (cf. [12, 14]). We remark that the operators Inv and Pol form a Galois
correspondence between the set of relations over A and the set of operations on A. A
comprehensive study of this correspondence can be found in [12].

A first-order formula ϕ over a constraint language Γ is said to be primitive positive
(we say ϕ is a pp-formula for short) if it is of the form ∃x : (%1(x1) ∧ . . . ∧ %k(xk))
where %1, . . . , %k ∈ Γ and x1, . . . ,xk are vectors of variables of size equal to the arity
of the corresponding relation. Note that a pp-formula ϕ with m free variables defines
an m-ary relation % ⊆ Am; % is the set of all tuples satisfying the formula ϕ.

We define a closure operation 〈·〉 such that % ∈ 〈Γ 〉 if and only if the relation % can
be obtained from Γ by pp-formulas. Sets of relations of the form 〈Γ 〉 are called rela-
tional clones. The following theorem states that we have access to a handy S-reduction
from MAX SOL over finite subsets of 〈Γ 〉 to MAX SOL over Γ itself.

Theorem 1 ([7]). Let Γ be a constraint language and Γ ′ ⊆ 〈Γ 〉 a finite subset. Then,
MAX SOL(Γ ′) is S-reducible to MAX SOL(Γ ).

The concept of a core of a constraint language Γ has previously shown its value
when classifying the complexity of CSP(Γ ). The analogous concept of a max-core for
the optimization problem MAX SOL(Γ ) was defined in [8]: a constraint language Γ is
a max-core if and only if there is no noninjective unary operation f in Pol(Γ ) such that
f(a) ≥ a for all a ∈ A. A constraint language Γ ′ is a max-core of Γ if and only if Γ ′

is a max-core and Γ ′ = f(Γ ) for some unary operation f ∈ Pol(Γ ) such that f(a) ≥ a
for all a ∈ A. We have the following result:

Lemma 2 ([8]). If Γ ′ is a max-core of Γ , then MAX SOL(Γ ) and MAX SOL(Γ ′) are
equivalent under S-reductions.

We will now introduce the concept of an algebra and some of the terminology re-
lated to it. For a coherent treatment of this subject, we refer to [14]. Let A be a domain.
An algebra A over A is a tuple (A;F ), where F ⊆ OA is a family of operations on
A. For the purposes of this paper, all algebras will be finite, i.e., the set A will be fi-
nite. An operation f ∈ OA is called a term operation of A if f ∈ Pol(Inv(F )). The
set of all term operations of A will be denoted by Term(A). Two algebras over the
same universe are called term equivalent if they have the same set of term operations.
An operation f is called idempotent if f(a, . . . , a) = a for all a ∈ A. The set of
all idempotent term operations of A will be denoted by Termid(A). For a domain A,



let CA denote the constraint language consisting of all constant, unary constraints, i.e.,
CA = {{(a)} | a ∈ A}. We use algebras to specify constraint languages and we will
often write MAX SOL(A) for the problem MAX SOL(Inv(Term(A))).

Next, we present some operations that will be important in the sequel. If A is an
abelian group, then the affine operation aA(a, b, c) : A3 → A satisfies aA(a, b, c) =
a − b + c. The discriminator operation t : A3 → A satisfies t(a, b, c) = c if a = b
and t(a, b, c) = a otherwise. The dual discriminator operation d : A3 → A satisfies
d(a, b, c) = a if a = b and d(a, b, c) = c otherwise. Finally, the switching operation
s : A3 → A satisfies s(a, b, c) = c if a = b, s(a, b, c) = b if a = c, and s(a, b, c) = a
otherwise. We remind the reader that CSP(Inv(r)) ∈ P when r ∈ {aA, t, d, s}, cf. [3,
6]. The following proposition is a summary of the results from [7] which we will need:

Proposition 3. (1) MAX SOL(Inv(t)) is in PO. (2) Let R = {(a, a), (a, b), (b, a)} with
a, b ∈ A and 0 < a < b. Then, MAX SOL({R}) is APX-complete. (3) Let R =
{(0, 0), (0, b), (b, 0)} with b ∈ A and 0 < b. Then, MAX SOL({R}) is poly-APX-
complete.

3 Affine algebras and two-element algebras

In this section, we look at certain affine algebras and constraint languages over 2-
element domains. Let A = (A; +) be a finite abelian group. The finite-dimensional
vector space on A over K will be denoted KA = (A; +,K). An algebra A is said to be
affine with respect to an abelian group A if (1) A and A have the same universe, (2) the
4-ary relation QA = {(a, b, c, d) ∈ A4 | a − b + c = d} is in Inv(A), and (3) aA is a
term operation of A. It is known that MAX SOL(A) is in APX for all affine algebras A
and that MAX SOL(A) is APX-complete for the affine algebra A = (A; aA) [7]. Here,
we will extend the latter result to cover some affine algebras with a larger set of term
operations, where the underlying group is a finite vector space.

Let KA be an n-dimensional vector space over a finite field K of size q. Let Λ0(KA)
be the constraint language consisting of all relations {(x1, . . . , xn) |

∑n
i=1 cixi = d},

for some ci ∈ K, d ∈ A and with
∑n

i=1 ci = 0. The algebra over A with operations
Pol(Λ0(KA)) is affine and we have the following result:

Theorem 4. MAX SOL(Λ0(KA)) is APX-hard for any finite dimensional vector space
KA over a finite field Kof size q ≥ 2.

The proof of this theorem relies on Lemma 5 which will be presented below. The
lemma uses the subspace structure in finite vector spaces and we will need some termi-
nology and notation: an affine hyperplane in KA is a coset a+S, where a ∈ A and S is
a codimension 1 subspace of KA. Let H be the set of affine hyperplanes in KA. Denote
by V the qn-dimensional vector space over Q with basis A. For any subset B ⊆ A, let
χ(B) denote the characteristic vector of B, i.e., χ(B) =

∑
a∈B a. Let g : A → Q be

any function from A to the rational numbers. We can then extend g to a linear transfor-
mation g : V → Q by letting g(v) =

∑
i vig(ai), when v =

∑
i viai. In particular,

g(χ(B)) =
∑

a∈B g(a).



Lemma 5. If g(χ(H)) = C for all H ∈ H and some constant C, then g(a) = C/qn−1

for all a ∈ A.

Proof. We will show that the set X = {χ(H) | H ∈ H} spans V . From this it follows
that g is uniquely determined by its values on X . The q-binomial coefficients are defined
by

bq(n, k) =
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

They count, among other things, the number of k-dimensional subspaces in an n-
dimensional vector space over a finite field of size q. The number of codimension 1
subspaces (hyperplanes) containing a fixed 1-dimensional subspace (line) is counted
by bq(n− 1, 1) (cf. [4].) We let a ∈ A be fixed and for each v ∈ A, v 6= a, we
count the number of (affine) hyperplanes through a that also contain v. They are ex-
actly the hyperplanes containing the unique line through a and v and this number is
bq(n− 1, 1) = qn−1−1

q−1 . Thus,
∑

a∈H∈H χ(H) = bq(n, n− 1) · a + bq(n− 1, 1) ·
χ(A− a) = qn−1 · a+ bq(n− 1, 1) ·χ(A). Now, choose an arbitrary affine hyperplane
H1 ∈ H, let H2, . . . ,Hq denote its translations and note that

∑q
i=1 χ(Hi) = χ(A).

This implies that a can be written as the following linear combination of vectors in
X: a = q1−n

(∑
a∈H∈H χ(H)− bq(n− 1, 1) ·

∑q
i=1 χ(Hi)

)
. Apply g to both sides

and use linearity to obtain g(a) = q1−n (bq(n, n− 1) · C − bq(n− 1, 1) · q · C) =

q1−n
(

qn−1
q−1 − qn−q

q−1

)
· C, from which the lemma follows. ut

The proof of Theorem 4 is a reduction from the problem MAX q-CUT. In this prob-
lem, one is given a graph G = (V,E), and a solution σ to G is an assignment from V
to some set K of size q. The objective is to maximise the number of edges (u, v) ∈ E
such that σ(u) 6= σ(v). It is well known that MAX q-CUT is APX-complete for q ≥ 2.

Proof (of Theorem 4). Let KA = (A; +,K) be a vector space of size |A| = qn. We
present an L-reduction from MAX q-CUT to MAX SOL(Λ0(KA)), which proves that
the latter is APX-hard.

Remember that we view the set of elements, A, as a subset of the natural numbers. In
order to avoid ambiguity, we will use a+ b and a− b to denote addition and subtraction
in the group and a ⊕ b for the addition of the values of the group elements a, b ∈ A.
Define g : A → N as follows:

g(a) = max
x,y∈A

{x⊕ y | x− y = a} = max
x∈A

{x⊕ (x− a)}.

Extend g to arbitrary subsets B ⊆ A through g(B) =
∑

a∈B g(a). Let 0A denote the
zero vector and note that g(0A) = 2 · max A > g(a) for all a ∈ A \ {0A}. Hence,
g is nonconstant on A, and by Lemma 5, g must be nonconstant on the set of affine
hyperplanes in KA. Therefore, we can let H ⊆ A be a hyperplane (through the origin)
in KA and e ∈ A an element such that g(e+H) = min{g(a+H) | a ∈ A} < g(A)/q.

Let I = (V,E) be an instance of MAX q-CUT. We create an instance F (I) of MAX
SOL(Λ0(KA)) as follows. For each vi ∈ V , we create |A|/q variables xs

i , s ∈ H and
add the (|A|/q)−1 equations xs

i −x0A
i = s to F (I), for s ∈ H \{0A}. These equations



ensure that in a solution σ′ to F (I) it must hold that {σ′(xs
i ) | s ∈ H} = a + H for

some a ∈ A. For each edge (vi, vj) ∈ E, we create 2|A|2/q new variables yst,k
ij and

zst,k
ij for s, t ∈ H , k ∈ K, and add the following |A|2/q equations:

e + k(xs
i − xt

j) = yst,k
ij − zst,k

ij . (1)

Finally, we let w(xs
i ) = 0 and w(y(s,t)

ij ) = w(z(s,t)
ij ) = 1. From a solution σ′ to F (I),

we derive a solution σ to I by fixing an element h⊥ ∈ A\H and letting σ(vi) = k ∈ K
when {σ′(xs

i ) | s ∈ H} = kh⊥ + H . Note that the measure of σ is independent of the
choice of h⊥.

We will now determine the measure of σ′. Note that in any solution, due to (1) and
the definition of g, we have

σ′(yst,k
ij )⊕ σ′(zst,k

ij ) ≤ g(e + k(σ′(xs
i )− σ′(xt

j))). (2)

Assume that {σ′(xs
i ) | s ∈ H} = a + H and {σ′(xt

j) | t ∈ H} = b + H . Then,

{e + k(σ′(xs
i )− σ′(xt

j)) | s ∈ H} = e + k(a− b) + H,

for any fixed t ∈ H and k ∈ K. Therefore,∑
s,t∈H,k∈K

σ′(yst,k
ij )⊕ σ′(zst,k

ij ) ≤
∑

s,t∈H,k∈K

g(e + k(σ′(xs
i )− σ′(xt

j))) =

qn−1
∑
k∈K

g(e + k(a− b) + H)

If σ(vi) = σ(vj), then a − b ∈ H , so the right-hand side equals C = qng(e + H).
Otherwise, a−b 6∈ H and the right-hand side equals D = qn−1g(A). Now, assume that
the q-cut determined by σ contains m(σ) edges. Then, the measure m′ of the solution
σ′ to F (I) is bounded by

m′(σ′) ≤ |E| · C + m(σ) · (D − C). (3)

When σ′ is an optimal solution, the inequality in (2) can be replaced by an equality and
it follows that

OPT(F (I)) = |E| · C + OPT(I) · (D − C). (4)

By a straightforward probabilistic argument, it follows that OPT(I) ≥ |E| · (1 − 1/q),
which in turn implies that

OPT(F (I)) = OPT(I)
(
|E| · C
OPT(I)

+ (D − C)
)
≤ OPT(I) · (C/(q − 1) + D) . (5)

Note that both C and D are independent of the instance I . By subtracting (3) from (4)
we get

OPT(F (I))−m′(σ′) ≥ (OPT(I)−m(σ)) · (D − C). (6)

By the choice of H and e, we have C = qng(e + H) < qng(A)/q = qn−1g(A) = D.
Consequently, (5) and (6) shows that F is the desired L-reduction. ut



The following consequence of Theorem 4 will be needed in the forthcoming proofs.
The endomorphism ring of KA, i.e., the ring of linear transformations on KA, will be
denoted End KA. One can consider A as a module over End KA and this module will
be denoted (End KA)A. The group of translations {x+a | a ∈ A}will be denoted T (A).

Corollary 6. Let KA be a finite dimensional vector space over a finite field K. Then,
MAX SOL(Inv(Termid(KA))) and MAX SOL(Inv(Termid((End KA)A) ∪ T (A))) are
APX-complete.

We now use Theorem 4 to extend the classification of MAX ONES(Γ ) by Khanna et
al. [10]; this result will be needed several times in the sequel. Khanna et al. have proved
a complete classification result for D = {0, 1} and their proof is easy to generalise to
the case when D = {0, a}, a > 0. If D = {a, b}, 0 < a < b, then it is possible to
exploit Post’s lattice [13] for proving a similar result. The next lemma follows without
difficulties by combining this lattice with results from Proposition 3 and Theorem 4.

Lemma 7. Let Γ be a constraint language over a 2-element domain. Then, MAX
SOL(Γ ) is either in PO, APX-complete, poly-APX-complete, it is NP-hard to find
a nonzero solution or it is NP-hard to find a feasible solution.

4 Strictly Simple Surjective Algebras

The strictly simple surjective algebras were classified by Szendrei in [16], and the com-
plexity of constraint satisfaction over such algebras was studied in [3]. Here, we do the
corresponding classification of the approximability of MAX SOL. First, we will need a
few definitions to be able to state Szendrei’s theorem.

Let A = (A;F ) be an algebra and let B ⊆ A. Let f |B denote the restriction of f
to B and let F |B = {f |B | f ∈ F}. If for every f ∈ F , it holds that f |B(B) ⊆ B, then
B = (B;F |B) is called a subalgebra of A and B is said to support this subalgebra. If
|B| < |A|, then B is called a proper subalgebra of A.

Let I be an index set and let A = (A;F ) and B = (B;F ′) be two algebras with
F = {fi : i ∈ I} and F ′ = {f ′i : i ∈ I} such that fi and f ′i have the same arity
ki for all i ∈ I . Then, a map h : A → B is called a homomorphism if for all i ∈ I ,
h(fi(a1, . . . , aki

)) = f ′i(h(a1), . . . , h(aki)). When h is surjective, B is called a homo-
morphic image of A. An algebra is called simple if all its smaller homomorphic images
are trivial (one-element) and strictly simple if, in addition, all its proper subalgebras are
one-element. An algebra is called surjective if all of its term operations are surjective.

Let I be a family of bijections between subsets of a set A. By R(I) we denote the
set of operations on A which preserve each relation of the form {(a, π(a)) | a ∈ A} for
π ∈ I. By Rid(I) we denote the set of idempotent operations in R(I).

Let G be a permutation group on A. Then, G is called transitive if, for any a, b ∈ A,
there exists g ∈ G such that g(a) = b. G is called regular if it is transitive and each
nonidentity member has no fixed point. G is called primitive, or is said to act primitively
on A, if it is transitive and the algebra (A;G) is simple.

Let a be some fixed element in A, and define the relation Xa
k = {(a1, . . . , ak) ∈

Ak | ai = a for at least one i, 1 ≤ i ≤ k}. Let Fa
k denote the set of all operations pre-

serving Xa
k , and let Fa

ω =
⋂∞

k=2 Fa
k .



Theorem 8 ([16]). Let A be a finite strictly simple surjective algebra. If A has no one-
element subalgebras, then A is term equivalent to one of the following: (a) (A;R(G))
for a regular permutation group G acting on A; (b) (A;Termid((End KA)A)∪T (A)) for
some vector space KA = (A; +,K) over a finite field K; or (c) (A,G) for a primitive
permutation group G on A. If A has one-element subalgebras, then A is idempotent
and term equivalent to one of the following algebras:

(a◦) (A;Rid(G)) for a permutation group G on A such that every nonidentity member
of G has at most one fixed point;

(b◦) (A;Termid((End KA)A)) for some vector space KA over a finite field K;
(d) (A;Rid(G) ∩ Fa

k ) for some k (2 ≤ k ≤ ω), some element a ∈ A, and some
permutation group G acting on A such that a is the unique fixed point of every
nonidentity member of G;

(e) (A;F ) where |A| = 2 and F contains a semilattice operation; or
(f) a two-element algebra with an empty set of basic operations.

Using the results from Section 3, we can give the following classification of approx-
imability of MAX SOL(A) for finite strictly simple surjective algebras A.

Theorem 9. Let A be a finite strictly simple surjective algebra. Then, MAX SOL(A) is
either in PO, it is APX-complete, it is poly-APX-complete, or it is NP-hard to find a
solution.

Proof (sketch). If A is of type (c) or (f), then CSP(A) is NP-complete [3]. If A is
of type (a) or (a◦), then the discriminator operation t(x, y, z) is a term operation
of A and tractability follows from Proposition 3(1). If A is of type (b) or (b◦), then
APX-completeness follows from Corollary 6. If A is of type (d), then from [2, 3,
7], one can deduce tractability when a = maxA, membership in poly-APX when
a = 0 ∈ A and membership in APX otherwise. To prove APX- and poly-APX-
hardness in the relevant cases, note that Xa

k ∈ Inv(A) for some k ≥ 2 and that A
is idempotent. The relation r = (A× {a}) ∪ ({a} × A) is pp-definable in {Xa

k} ∪ CA

via r(x, y) ≡pp ∃z : Xa
k (x, y, z, . . . , z) ∧ {max A}(z) and the max-core of r is the re-

lation {(a, a), (a,max A), (max A, a)}. Thus, APX- and poly-APX-hardness follows
from Lemma 2 combined with Proposition 3(2) and 3(3). Finally, if A = (A;F ) is of
type (e), then since |A| = 2, the result follows from Lemma 7. ut

5 Symmetric Algebras

A bijective homomorphism from A to itself is called an automorphism. An algebra
A is symmetric (in the sense of Szendrei [15]) if for every subalgebra B = (B;F )
of A, (1) the automorphism group of B acts primitively on B; and (2) for any set
C ⊆ A with |C| = |B|, C supports a subalgebra of A isomorphic to B. Examples of
symmetric algebras include homogeneous algebras and algebras whose automorphism
group contains the alternating group. Condition (2) on symmetric algebras implies that
if B = (B;F |B) is a proper subalgebra of A, then (C;F |C) is a subalgebra of A
whenever C is a subset of A with |C| ≤ |B|. Consequently, we can assign a number



ν(A), 0 ≤ ν(A) ≤ |A| − 1, to every symmetric algebra such that a proper subset
B ⊂ A is the universe of a subalgebra of A if and only if |B| ≤ ν(A). One may note
that ν(A) ≥ 1 if and only if A is idempotent.

We need some notation for describing symmetric algebras: a bijective homomor-
phism is called an isomorphism and an isomorphism between two subalgebras of an
algebra A is called an internal isomorphism of A. The set of all internal isomor-
phisms will be denoted Iso A. A k × l cross (k, l ≥ 2) is a relation on A2 of the
form X(B1, B2, b1, b2) = (B1 × {b2}) ∪ ({b1} × B2), where b1 ∈ B1, b2 ∈ B2,
|B1| = k, and |B2| = l. Let D1 denote the clone of all idempotent operations on A, and
let E1 denote the subclone of D1 consisting of all operations which in addition preserve
every relation La,b = {(a, a, a), (a, b, b), (b, a, b), (b, b, a)} where a, b ∈ A and a 6= b.
For 2 ≤ m ≤ |A|, let Dm be the clone of all operations in D1 preserving every m × 2
cross. For 2 ≤ m ≤ |A|, let Em be the clone consisting of all operations f ∈ D1 for
which there exists a projection p agreeing with f on every m-element subset B of A.

Theorem 10 ([15]). Let A be a finite symmetric algebra. If A is not idempotent, then
|A| is prime and there is a cyclic group A = (A; +) such that A is term equivalent to
(A;R(T (A))), (A;Termid(A) ∪ T (A)), or (A;T (A)). If A is idempotent, then A is
term equivalent to one of the following algebras:

1. (A;R(Iso A) ∩ Dm) for some m with 1 ≤ m ≤ ν(A) or m = |A|;
2. (A;R(Iso A) ∩ Em) for some m with 1 ≤ m ≤ ν(A) or m = |A|;
3. (A;Termid(KA)) for a 1-dimensional vector space KA = (A; +,K) over a finite

field K; or
4. (A;Termid(A)) for a 4-element abelian group A = (A; +) of exponent 2.

Theorem 11. Let A be a symmetric algebra. Then, MAX SOL(A) is either in PO, it is
APX-complete, it is poly-APX-complete, or it is NP-hard to find a solution.

Proof (sketch). If A is not idempotent, then one can show that A is strictly simple and
surjective. In this case, the the result follows from Theorem 9.

Assume instead that A is idempotent; cases 3 and 4 are now immediately covered
by Corollary 6 so we suppose that A = (A;R(IsoA)∩Dm). If m = 1, then t is a term
operation and tractability follows from Proposition 3(1). When m > 1, then d is a term
operation and the membership results in APX and poly-APX follow. Furthermore, all
m× 2 crosses are in InvA and hardness can be shown by utilising max-cores.

Finally assume that A = (A;R(IsoA)∩Em) for some 1 ≤ m ≤ ν(A) or m = |A|.
When m = 1, then membership in APX can be shown based on the fact that s is a term
operation; hardness can be proved by using Lemma 7. If m > 1, then A contains
2-element subalgebras {a, b} such that each operation in A restricted to {a, b} is a
projection. Consequently, MAX SOL(A) is NP-hard for all m ≥ 2. ut

By following the proof of Theorem 11, the complexity of CSP(A) can be deter-
mined, too. We note that this result agrees with Conjecture 7.5 in [3] on the source of
intractability in finite, idempotent algebras.

Theorem 12. Let A be an idempotent symmetric algebra. If there exists a nontrivial
homomorphic image B of a subalgebra of A such that the operations of B are all
projections, then CSP(Inv(A)) is NP-complete. Otherwise, CSP(Inv(A)) is in P.



6 Discussion

The results in this paper together with the approximability classifications in [7, 10] pro-
vide support for the following conjecture: for every constraint language Γ over a finite
domain D ⊆ N, MAX SOL(Γ ) is either polynomial-time solvable, APX-complete,
poly-APX-complete, it is NP-hard to obtain a solution of nonzero measure, or it is NP-
hard to obtain any solution. Where the exact borderlines between the cases lie is largely
unknown, though, and a plausible conjecture seems remote for the moment. Therefore,
we present a selection of questions that may be considered before attacking the ‘main’
approximability classification for MAX SOL.

It has been observed that classifying the complexity of CSP for all strictly simple
algebras could be seen as a possible ‘base case for induction’ [3]. This is due to the
necessary condition that for a tractable algebra, all of its subalgebras and homomorphic
images must be tractable. Furthermore, it is sufficient to study surjective algebras with
respect to CSP since the application of a unary polymorphism to a set of relations does
not change the complexity of the set [5]. For MAX SOL, however, it is possible to
turn an APX-hard problem into a problem in PO by applying a unary polymorphism
f , unless it satisfies some additional condition, such as f(a) ≥ a for all a ∈ A. It
therefore looks appealing to replace the property of the algebra being surjective by that
of the constraint language being a max-core. It should be noted that being a max-core
is not a purely algebraic property and that we do not know how, or if, it is possible to
obtain a usable characterisation of such algebras.

Kuivinen [11] has given tight inapproximability bounds (provided that P 6= NP)
for the problem of solving systems of equations with integer coefficients over an arbi-
trary abelian group. In [7], this problem was shown to be APX-hard for cyclic groups
of prime order. Theorem 4 extends this result to show APX-hardness when the un-
derlying group is a finite vector space and the sum of the coefficients is 0. The next
step would be to prove APX-hardness for arbitrary abelian groups. We note that the
proof of Theorem 4 relies on a result which utilises the subspace structure of finite vec-
tor spaces. Informally, this is needed to be able to distinguish one affine hyperplane
from the average of the others. Unfortunately, it is not hard to find an abelian group
on A = {0, 1, 2, 4, 5, 6} in which the sum of the elements in all cosets of the same
nontrivial subgroup is the same: let A be the abelian group defined by the isomor-
phism f : Z6 → A, where f(0) = 0, f(1) = 1, f(2) = 4, f(3) = 6, f(4) = 5
and f(5) = 2. It is easy to check that if a + H is a coset with |H| > 1, then∑

a′∈a+H a′ = |H|
|A|

∑
a∈A a = 3 · |H|. A deeper analysis of these abelian groups is

thus needed to settle this case.
Algebras preserving relations obtained from unrestricted systems of equations over

abelian groups are full idempotent reducts of affine algebras. Corollary 6 covers some
nonidempotent cases as well, due to the restriction of the coefficients in the equations
defining Λ0(KA). However, in the proof of Lemma 7 we find an example of a constraint
language corresponding to an affine algebra which is max A-valid. The question which
arises is, whether or not MAX SOL(A) can be shown to be APX-hard for all affine
algebras A such that Inv(A) is not max A-valid. As observed in the introduction, this
is probably a key question when it comes to deciding the approximability of MAX
SOL(A) when A is, for example, para-primal.
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