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Abstract. Counting the number of solutions to CSP instances has ap-
plications in several areas, ranging from statistical physics to artificial
intelligence. We give an algorithm for counting the number of solutions to
binary CSPs, which works by transforming the problem into a number of
2-sat instances, where the total number of solutions to these instances is
the same as those of the original problem. The algorithm consists of two
main cases, depending on whether the domain size d is even, in which
case the algorithm runs in O(1.3247n · (d/2)n) time, or odd, in which
case it runs in O(1.3247n · ((d2 + d + 2)/4)n/2) if d = 4 · k + 1, and
O(1.3247n · ((d2 + d)/4)n/2) if d = 4 · k + 3. We also give an algorithm
for counting the number of possible 3-colourings of a given graph, which
runs in O(1.8171n), an improvement over our general algorithm gained
by using problem specific knowledge.

1 Introduction

Constraint satisfaction problems (CSPs), first described by Montanari [17], al-
lows for natural descriptions of problems in a wide array of fields. These include
such varied areas as machine vision, scheduling, temporal reasoning, graph prob-
lems, floor plan design, machine design and manufacturing, and diagnostic rea-
soning [13]. In particular, it has proven invaluable to artificial intelligence.

Posed with an instance of a CSP problem, one can ask two questions. At first,
the question “Does there exist a solution?” might seem the most natural one to
ask – and indeed it is the most common one. This is what is usually called the
decision problem. The second question which might arise is “How many solutions
are there?” – known as the counting problem. In this paper we will study the
latter question.

For (d, l)-CSPs, i.e., CSPs where the variables have domain size d and the
constraints have arity l, the decision problem is known to be NP-complete [15],
and this may, or may not, imply the non-existence of a polynomial-time algo-
rithm for solving it (depending, as always, on the truth of the equation P = NP .)



We will avoid making any assumptions about this, since it has no impact on the
results we present. The numerous applications of CSPs have, however, caused
intense research, e.g., identifying tractable subclasses of problems [3, 18], and
constructing exact algorithms [9, 10, 20].

The corresponding counting problem belongs to a class known as #P (intro-
duced by Valiant [21, 22]) defined as the class of counting problems computable
in nondeterministic polynomial time. Computing the number of solutions to a
constraint satisfaction problem is, even if we restrict ourselves to binary CSPs,
complete for this class of problems [19]. In fact, for every fixed ε > 0, approxi-

mating the number of solutions to a binary CSP within 2n1−ε

is NP-hard. There
exists, however, randomised approximation algorithms which run in polynomial
time for certain restricted cases, e.g., finding an estimation of the number of
k-colourings of graphs with low degree [12].

Until quite recently, not much attention has been given to the problem of
counting solutions. The focus has been on solving the decision problem, rather
than the corresponding counting problem, and the algorithms are often proba-
bilistic [9, 10, 20]. Lately, however, several papers have discussed the complexity
of counting problems [4, 14], and a number of algorithms have been developed [2,
5–7]. One reason for this renewed interest for these kinds of problems may be
due to the multitude of applications for counting counterparts of several well-
studied decision problems. For example, many problems in artificial intelligence
can be reduced to counting the number of models to a formula [19]. Solving a
CSP instance is equivalent to finding a homomorphism between graphs [11], for
instance, finding a k-colouring of a graph G is equivalent to finding a homomor-
phism from G to a complete graph with k vertices, and determining the number
of graph homomorphisms from one graph to another has important applications
in statistical physics [12, 23].

Intuitively, it seems reasonable that decision problems which are known to
be NP-complete, have corresponding counting problems which are #P-complete,
and indeed it has been shown that this is the case for satisfiability problems [4].
However, several decision problems for which polynomial time algorithms are
known, also have associated counting problems which are #P-complete. 2-sat
belongs to this class of problems.

In this paper we will focus on exact, deterministic algorithms for the following
two problems: The counting problem for binary CSPs, denoted #(d, 2)-CSP3,
and the counting problem for 3-colourability of graphs, denoted #3COL.

The #(d, 2)-CSP algorithm we present has the following general outline:

1. Create 2-sat instances corresponding to the original CSP instance.
2. Count the number of solutions to each of these instances.
3. Return the total number of solutions found.

The reason the algorithm looks this way is twofold; First of all, the fastest
known algorithm for (3, 2)-CSP (and (4, 2)-CSP), suggested by Eppstein [9],

3 The necessary definitions for the CSP notions used in this paper are found in Sec-
tion 2, while the graph theoretic notions needed are located in Section 4



works by recursively breaking the problem down into 2-sat instances. This lead
us to believe that this approach would work well for the corresponding counting
problem. Secondly, by moving over to 2-sat, we gain access to the fast algorithms
developed for #2-sat [6, 7, 14, 24].

We chose to transform the problem into #2-sat mainly because of time
complexity reasons. Using #3-sat did not lead to a speed-up, probably due to the
rather high time complexity of the #3-sat algorithm. The fastest known #2-sat
algorithm [6] runs in O(1.3247n). Had we instead moved over to #3-sat, then
the fastest known algorithm would have been O(1.6894n), which is significantly
slower. It is possible that a faster algorithm could be achieved using the #3-sat
algorithm, but if and how this could be done remains an open question.

The running time of the algorithm (we omit polynomial factors here and
throughout the paper) is as follows:

– O(1.3247n · (d/2)n), if d = 2 · k, k > 0,

– O(1.3247n · ((d2 + d + 2)/4)n/2), if d = 4 · k + 1, k > 0, and

– O(1.3247n · ((d2 + d)/4)n/2), if d = 4 · k + 3, k ≥ 0.

This division into cases will be explained in detail in Section 3, but in short,
the algorithm works by dividing the domain into pairs of values. For even sized
domains, this is trivial, but when the domain is of odd size, this can, of course,
not be as easily done. One solution would be to add a ’dummy element’ to
the domain, a value which would then be discarded if found in a solution, but
this would give an increased complexity for all odd sized domains, thus we have
focused on efficiently dividing the domain. Numerical time complexities for some
domain sizes are presented in Table 1, where, for comparative reasons, the results
for Eppstein’s and Feder & Motwani’s algorithms for the corresponding decision
problem have been included. If we had chosen to add an element to domains of
odd size, the complexities given for, say, 3, 5 and 7, would have been the same
as those for 4, 6 and 8.

d Eppstein [9] Feder & Our result
Motwani [10]

3 1.3645n 1.8171n 2.2944n

4 1.8072n 2.2134n 2.6494n

5 2.2590n 2.6052n 3.7468n

6 2.7108n 2.9938n 3.9741n

7 3.1626n 3.3800n 4.9566n

8 3.6144n 3.7644n 5.2988n

10 4.5180n 4.5287n 6.6235n

20 9.0360n 8.3044n 13.2470n

Table 1. Time complexities for solving the decision problem (d, 2)-CSP and the cor-
responding counting problem #(d, 2)-CSP.



Asymptotically, the algorithm approaches O((0.6624d)n), where d is the do-
main size and n the number of variables. If we compare this to the (probabilistic)
algorithm of Eppstein [9], which has a complexity of O((0.4518d)n), the gap is
not very large. For domain sizes of 10 elements or more, the algorithm presented
by Feder & Motwani [10] is faster than Eppstein’s. Furthermore, given the mod-
ularity of the algorithm, if a faster method for counting the number of solutions
to a #2-sat formula is found, it would be easy to ’plug into’ our algorithm, thus
improving the time complexity with no extra work.

The second part of this paper contains an algorithm for #3COL, which runs
in O(1.8171n) time. This is an improvement in complexity compared to our
general algorithm, which is gained by using problem specific knowledge, in this
case graph-theoretical properties. In particular, rather than transforming the
problem into #2-sat, we move over to #2COL, which is solvable in polynomial
time.

The paper has the following organisation: Section 2 contains the basic def-
initions needed. Section 3 contains the algorithm for counting solutions to a
binary CSP, while Section 4 an algorithm for the #3COL problem, together
with the graph-theoretic notions it utilises. Section 5 summarises the discussion
and suggests future work.

2 Preliminaries

A binary constraint satisfaction problem ((d,2)-CSP), is a triple 〈V, D, C〉, with
V a finite set of variables, D a domain of values, with |D| = d, and C a set
of constraints {c1, c2, . . . , cq}. Each constraint ci ∈ C is a triple xRy, where
x, y ∈ V , and R ∈ D × D. To simplify the discussion, we will assume |V | to
be an even number, denoted n. A solution to a CSP instance is a function
f : V → D, such that for each constraint xRy, (f(x), f(y)) ∈ R. Given a CSP
instance, the computational problem is to decide whether the instance has a
solution, or not. The corresponding counting problem is to determine how many
solutions the instance has.

A 2-sat formula is a sentence consisting of the conjunction of a number of
clauses, where each clause contains at most two literals and is of one of the forms
(p∨ q), (¬p∨ q), (¬p∨¬q), (p), (¬p). The 2-sat problem is to decide whether a
given 2-sat formula is satisfiable or not, and this can be done in linear time [1],
whereas the #2-sat problem is to decide how many solutions a given formula
has. The currently best known algorithm runs in O(1.3247n) time [6].

3 Algorithm for #(d, 2)−CSP

The main points of the algorithm, which were mentioned in Section 1, will now
be discussed in more detail. To begin with, we give a simplified description,
which would give a much worse time complexity than what we eventually will
get. This speedup is gained by reducing the number of propositional variables
from 2 · n to n in the final step.



Assume we have a binary CSP instance P , with domain size d and n vari-
ables. The problem can be transformed into a number of instances of 2-sat,
I0, I1, . . . , Im, where m depends on the size of the domain and the number of
variables, such that the number of solutions to P equals the total number of
solutions to all these instances. In each instance Ik, the propositional variables
correspond to an assignment of a value to a variable in the original problem. For
a given variable x ∈ V , and a domain value e ∈ D, the propositional variable xe

is true iff x is assigned the value e.

A 2-sat instance Ik consists of two parts: First, we have clauses correspond-
ing to the constraints in the original problem. For example, say we have the
constraint x 6= y. Since x and y will never have the same value in a solution, we
get the clauses (¬xe ∨ ¬ye) for all e ∈ D.

The remaining clauses are constructed by dividing the domain into pairs.
For domains of even size, this is straightforward, and we get d/2 pairs of values,
where each value appears exactly once. Since a solution to the instance implies
a certain value for each variable, we know that this value will be represented in
one pair. For example, say we have a pair (e1, e2), and a variable x. We then
add the clauses (xe1

∨ xe2
), (¬xe1

∨¬xe2
) and, for all e ∈ D with e 6= e1, e 6= e2,

we add the clause (¬xe). This reads as: x can assume exactly one of the values
e1 or e2, and no other. For each variable, we get d/2 possible assignments, or
propositional variables, thus we need (d/2)n instances to cover all of the original
problem.

x1, x2 x1, x2 x1, x2 x1, x3 x1, x3 x1, x3 x2, x3 x2, x3 x2, x3

x y y1, y2 y1, y3 y2, y3 y1, y2 y1, y3 y2, y3 y1, y2 y1, y3 y2, y3

1 1 X X - X X - - - -

1 2 X - X X - X - - -

1 3 - X X - X X - - -

2 1 X X - - - - X X -

2 2 X - X - - - X - X

2 3 - X X - - - - X X

3 1 - - - X X - X X -

3 2 - - - X - X X - X

3 3 - - - - X X - X X

Table 2. The case of D = {1, 2, 3}, V = {x, y}. (xi, xj is short for xi ∨ xj)

A domain of odd size can, naturally, not be divided evenly into pairs. One
possible solution to this problem is to simply add a ’dummy element’ to the
domain, a value we ignore in the subsequent results. However, this would increase
the complexity of the algorithm unnecessarily. For instance, it would be equally
hard to solve problems with domain size 3 as 4. Instead, we use Proposition 1
to help us with the division of the domain. Note that, unlike the case with even



sized domains, where we only considered pairs of propositional variables, we now
consider two variables at a time, each with its associated pair of assignments, and
we assume we have an even number of variables in the problem. Proposition 1
tells us that we need (d2 + d + 2)/4 such cases to cover all possible assignments
if the domain size d is on the form 4 · k + 1, and (d2 + d)/4, if d = 4 · k + 3.
Table 2 shows how the situation looks for domains of size 3. The boxed columns
in the table clearly cover all possible assignments, but, as can be seen, there
are overlaps; some assignments occur in more than one pair of variables. The
propositional variables x1, y1 occur in columns 2 and 4, x2, y3 in columns 2 and
9, and x3, y2 are found in both columns 4 and 9. We need to make sure that
these assignments are not part of more than one solution, thus to avoid counting
these twice, we add the clause ¬(x1 ∧ y1), which is equivalent to (¬x1 ∨ ¬y1),
to one of the instances containing these assignments. In the general case, when
an overlap containing the propositional variables xi and yj is found, we add the
clause (¬xi∨¬yj) to all but one of the instances containing this overlap. Had we
considered more than two variables at a time, we would have been forced to use
more than two propositional variables per clause, thus leaving the 2-sat setting,
and the overall algorithm would have had a much higher time complexity.

For even sized domains, we now have n sets, each containing d/2 pairs, while
for odd sized domains, we have n/2 sets of 4-tuples, with (d2 + d+2)/4 or (d2 +
d)/4 elements, depending on whether d = 4 ·k +1 or d = 4 ·k +3. By combining
the clauses given by one element from each of these sets and the clauses coming
from the constraints, we get a set of 2-sat instances corresponding to the original
problem, and each of these instances contains n · d propositional variables. Note
that, for even sized domains, each pair give rise to d − 2 clauses on the form
¬xc, hence we can in each instance, using unit propagation, remove n · (d − 2)
propositional variables, and get 2 ·n in each instance. For odd sized domains, the
situation is similar. Each 4-tuple give rise to 2 · d propositional variables, out of
which 2 · (d − 2) can be removed through unit propagation, leaving 4. Since we
have n/2 sets to combine elements from, we get 2 · n propositional variables per
instance for this case too. In all instances, among these 2 · n variables, there are
n pairs where both cannot be true in a solution, since a variable in the original
problem cannot be assigned two different values. For each such pair xe1

, xe2
, take

a fresh variable ξxe
, with the interpretation that ξxe

is true iff xe1
is true and

xe2
is false, and vice versa, and replace all occurrences of xe1

with ξxe
and all

occurrences of xe2
with ¬ξxe

. Through this, we get n propositional variables in
each instance, both for even and odd sized domains.

Proposition 1. Let x, y be a pair of variables taking their values from the do-
main D, with |D| = d. For each odd d, define the set Cd recursively as:

C1 = { (x1 ∨ x1) ∧ (y1 ∨ y1)}

C3 = { (x1 ∨ x2) ∧ (y1 ∨ y3),

(x1 ∨ x3) ∧ (y1 ∨ y2),

(x2 ∨ x3) ∧ (y2 ∨ y3)}



and for d ≥ 5,

Cd = Cd−4 ∪ A1,d ∪ A2,d ∪ A3,d

where

A1,d =

(d−3)/2
⋃

i=1

{(xd−3 ∨ xd−2) ∧ (y2i−1 ∨ y2i), (xd−1 ∨ xd) ∧ (y2i−1 ∨ y2i)}

A2,d =

(d−3)/2
⋃

j=1

{(x2j−1 ∨ x2j) ∧ (yd−3 ∨ yd−2), (x2j−1 ∨ x2j) ∧ (yd−1 ∨ yd)}

A3,d = { (xd−2 ∨ xd−1) ∧ (yd−2 ∨ yd),

(xd−2 ∨ xd) ∧ (yd−2 ∨ yd−1),

(xd−1 ∨ xd) ∧ (yd−1 ∨ yd)}

Then Cd covers all possible assignments of x and y and this can not be done
with fewer than |Cd| cases, where

|Cd| =

{

(d2 + d + 2)/4 if d = 4k + 1

(d2 + d)/4 if d = 4k + 3.

Proof. C1 and C3 are easily verified. Figure 1 shows how the recursive definition
of Cd is constructed. Note that in this figure a case ’(xi ∨ xi+1) ∧ (yj ∨ yj+1)’
is represented by a 2 × 2 square covering the values in [i, i + 1] × [j, j + 1]. A1,d

and A2,d then cover the rectangles [d− 3, d]× [1, d− 3] and [1, d− 3]× [d− 3, d]
respectively. A3,d is the same as C3, but translated to cover the values in [d −
2, d] × [d − 2, d]. Combined with Cd−4 this proves that all possible assignments
are covered.

For d = 4k + 1 we have

|Cd| = |Cd−4| + |A1,d| + |A2,d| + |A3,d| =

= |Cd−4| + 2(d − 3)/2 + 2(d − 3)/2 + 3 = |Cd−4| + 2d − 3 =

= . . . = |C1| +
k

∑

i=1

(2(4i + 1) − 3) = (d2 + d + 2)/4

and for d = 4k + 3 we have

|Cd| = |Cd−4| + 2d − 3 = . . . = |C3| +
k

∑

i=1

(2(4i + 3) − 3) = (d2 + d)/4.

We finally prove that there can be no smaller set of cases covering all as-
signments. Every case covers at most 4 different assignments and there are d2

possible assignments. Since d is odd, we note that for each value of x there must
be a value of y such that this assignment is covered by at least two different
cases. Therefore there must be at least d assignments which are covered more
than once. This shows that ⌈(d2 +d)/4⌉ is a lower bound on the number of cases
needed to cover all possible assignments. ⊓⊔
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Fig. 1. The construction of Cd

Theorem 1. Given a binary CSP P = 〈V, D, C〉, with |V | = n and |D| = d,
there exists an algorithm for determining the number of solutions in

– O

(

1.3247n
(

d
2

)n
)

time, if d = 2 · k, k ≥ 1

– O

(

1.3247n
(

d2+d+2
4

)
n

2

)

time, if d = 4 · k + 1, and

– O

(

1.3247n
(

d2+d
4

)
n

2

)

time, if d = 4 · k + 3.

Proof. As was described in the previous discussion, we start with creating the
clauses corresponding to the constraints:

CxRy =
∧

i,j∈D,(i,j) 6∈R

(¬xi ∨ ¬yj)

For the value restricting clauses we have two cases.

Case 1: d = 2 · k, k > 0

Divide the domain into d/2 pairs of values. For each variable x from the
original problem instance, and each pair of values i, i+1, create the pair xi, xi+1,



and the clauses

(xi ∨ xi+1) ∧ (¬xi ∨ ¬xi+1)
∧

c∈D,c 6=i,c 6=i+1

(¬xc)

Combining these, as was described in the previous discussion, we get (d/2)n in-
stances, each with d·n propositional variables. In each instance, we have n·(d−2)
clauses on the form ¬xc, hence using unit propagation, we arrive at 2 · n propo-
sitional variables in each instance. Now let m = 2 · k, k ≥ 0, and, for each pair
of propositional variables xm, xm+1, introduce a fresh variable ξxm

, with the in-
terpretation that ξxm

is true iff xm is true and xm+1 is false, and ξxm
is false

iff xm is false and xm+1 is true. Replace all occurrences of xm and xm+1 with
the new variable ξxm

, and ¬ξxm
, respectively, thereby reducing the number of

propositional variables in each instance to n.

Case 2: d = 2 · k + 1, k > 0
Given a pair of variables from the original problem, each with an associ-

ated pair of assignments, Proposition 1 shows that, if d = 4 · k + 1, we need
(d2 + d + 2)/4, and if d = 4 · k + 3, we need (d2 + d)/4 such pairs to cover
all possible assignments of values to the variables. To ensure the uniqueness of
each solution we count, if there are overlaps between two assignments xi and
yj , i.e., these assignments occur in more than one pair of variables, we add the
clause (¬xi ∨ ¬yj) to all but one instance containing these assignments. If we
now perform a similar simplification as was done in the previous case, we get n
propositional variables in each of the resulting 2-sat instances.

Summary

Depending on the size of the domain, we now have

–
(

d
2

)n
instances if d = 2 · k,

–
(

d2+d+2
4

)
n

2 instances if d = 4 · k + 3, and

–
(

d2+d
4

)
n

2 instances if d = 4 · k + 1.

Using the algorithm for #2-sat presented in Dahllöf et al. [6], we can count
the number of solutions in each instance in O(1.3247n) time, and the result
follows. ⊓⊔

4 Algorithm for #3COL

We now present an algorithm for counting the number of 3-colourings of a graph.
If we were to use the previously described algorithm, we would get a time com-
plexity of O(2.2944n), but as will be seen, this can be improved to O(1.8171n)
by exploiting problem specific knowledge.

We start with the necessary graph-theoretic preliminaries. A graph G consists
of a set V (G) of vertices, and a set E(G) of edges, where each element of E is
an unordered pair of vertices. The size of a graph G, denoted |G|, is the number



of vertices. The neighbourhood of a vertex v is the set of all adjacent vertices,
{w | (v, w) ∈ E(G)}, denoted Nbd(v) An independent set S of G is a subset of
V (G), such that for every pair v, w ∈ S → (v, w) /∈ E(G). A 3-colouring of G is
a function C : V (G) → {R, G, B} such that for all v, w ∈ V (G), if C(v) = C(w)
then (v, w) /∈ E(G); that is, no adjacent vertices have the same colour. To 3-
assign v ∈ G means assigning colour(v) a value from the set {R, G, B}. If G is
a graph and S ⊆ V (G), the graph G|S has the vertex set S and

E(G|S) = {(u, v) ∈ E(G) | u, v ∈ S},

is called the subgraph of G induced by S. We write G − S to denote the graph
G|(V − S).

A matching in a graph is a set M of vertices such that each vertex v ∈ M has
an edge to one and only one other vertex in M . The maximum matching (wrt.
to the number of matched vertices) of a graph is computable in polynomial time
[16]. Let Match(G) be a function that computes a maximum matching of G and
returns a pair (Gu, Gm) where Gu ⊆ V (G) contains the unmatched vertices and
Gm ⊆ E(G) contains the matched pairs. We say that G is perfectly matched if
Gu = ∅.

We consider an arbitrary graph G with n vertices and assume, without loss
of generality, that it is connected.

A summary of the algorithm #3C for computing #3COL can be found in
Figure 2. The algorithm has two main branches, where the choice of which
branch to follow depends on the number of unmatched vertices. Section 4.1
contains the case where the unmatched vertices are less than a third of the total
number of vertices in the graph, and Section 4.2 deals with the opposite case.
The complexity analysis is done in Section 4.3.

1 algorithm #3C
2 (Gu, Gm) = Match(G)
3 c := 0
4 if |Gu| < |G|/3 then

5 for every R{G/B} assignment f of G do

6 if f is an R{G/B} colouring then c := c + Count2(G, f)
7 end if

8 end for

9 return c
10 else

11 for every 3-colouring f of Gm do

12 c := c +
Q

v∈Gu

(3 − |{f(w) | w ∈ Nbd(v)}|)
13 end for

14 return c
15 end if

Fig. 2. Algorithm #3C



4.1 Case 1: |Gu| < |G|/3

We define a R{G/B} assignment of the graph G as a total function f : V (G) →
{R, GB} satisfying the following requirement:

if v − w is a pair in Gm, then f(v) 6= R or f(w) 6= R.

We say that an R{G/B} assignment f is refineable to a 3-colouring of G iff for
each of the vertices v having colour GB, we can assign v := G or v := B in
such a manner that we obtain a 3-colouring of G. We call such an assignment
an R{GB}-colouring of G. We note that having an R{G/B} assignment for G
which is refineable to a 3-colouring of G, is equivalent to the assignment having
the following properties:

P1. the vertices with colour R form an independent set;

P2. the induced subgraph of vertices with colour GB is 2-colourable.

Obviously, these conditions can be checked in polynomial time. We can also
count the number of possible refinements of an R{G/B} assignment: consider
the graph G′ = G|{v ∈ V (G) | f(v) = GB} and note that the number of
refinements equals 2c where c is the number of connected components in G′.
Given an R{G/B} assignment f , let Count2(G, f) denote this number (which is
easily computable in polynomial time).

Now, let us take a closer look at the algorithm. All R{G/B} assignments
of G can be efficiently enumerated and there are exactly 2|Gu| · 3|Gm|/2 such
assignments to consider. For each assignment that can be refined to a colouring,
the algorithm counts the number of corresponding 3-colourings and adds this
number to the variable c. Obviously, c contains the total number of 3-colourings
after all assignments have been checked.

4.2 Case 2: |Gu| ≥ |G|/3

Let G′ = G|{v ∈ V ; v appears in Gm}. We begin by noting that G′ is perfectly
matched and each matched pair p−q can obtain at most six different assignments.
Hence, we need to consider at most 6|Gm|/2 assignments and, in the worst case,
6|Gm|/2 3-colourings.

For each 3-colouring f of G, we claim that

∏

v∈Gu

(3 − |{f(w) | w ∈ Nbd(v)}|)

is the number of ways f can be extended to a 3-colouring of G. Assume for
instance that v ∈ Gu has three neighbours x, y, z that are coloured with R, G
and B, respectively. Then, 3 − |{f(w) | w ∈ Nbd(v)}|) equals 0 which is correct
since f cannot be extended in this case. It is easy to realise that the expression



gives the right number of possible colours in all other cases, too. Since Gu is an
independent set, we can simply multiply the numbers of allowed colours in order
to count the number of possible extensions of f .

4.3 Complexity analysis

Assume n is the number of vertices in the graph and C satisfies |Gu| = C · n.

Case 1: |Gu| < n/3 and C < 1/3. The number of assignments we need to
consider are

3(n−|Gu|)/2 · 2|Gu| = (3(1−C)/2 · 2C)n.

Since the function f(C) = 3(1−C)/2 · 2C is strictly increasing when C > 0, the
largest number of assignments we need to consider appears when C is close to
1/3, i.e., |Gu| is close to n/3. In this case, the algorithm runs in O((31/3·21/3)n) =
O(6n/3) ≈ O(1.8171n) time.

Case 2: |Gu| ≥ n/3 and C ≥ 1/3. The number of assignments we need to
consider are

6(n−|Gu|)/2 = (6(1−C)/2)n.

Since the function f(C) = 6(1−C)/2 is strictly decreasing when C > 0, the
largest number of assignments we need to consider appears when C = 1/3, i.e.,
|Gu| = n/3. In this case, the algorithm runs in O(6n/3) ≈ O(1.8171n) time.

5 Conclusion

We have presented an algorithm for counting the number of solutions to binary
constraint satisfaction problem instances. It works by, given a CSP, creating a
set of 2-sat instances, where each instance corresponds to a set of assignments
of values to variables. A method for efficiently dividing domains of odd size
into pairs of values was given, which makes it possible to avoid an unnecessary
increase in time complexity for odd sized domains. The modularity of the algo-
rithm makes it possible to improve the time complexity of the algorithm with
no additional work whenever an improved algorithm for the #2-sat problem is
found. Furthermore, as was shown in the proof of Proposition 1, the construc-
tion we use cannot be done using fewer instances, thus in order to improve the
algorithm, we need to consider a different construction altogether.

We have also shown that using problem specific knowledge, we can improve
the complexity of the algorithm, and we give an algorithm for determining the
number of possible 3-colourings of a graph.

Several open questions remain, however. We have provided an algorithm
for binary CSPs, but it is not always the case that an n-ary relation can be
represented by binary constraints using n variables [17], thus the problem of
counting the number of solutions to a general CSP instance remains. How to
deal with the general #k-colouring problem also remains to be investigated.



Can ideas similar to those utilised in our algorithm for #3-colouring be found
for the general case?

Numerous tractable subclasses of CSPs have been found [18]. Jeavons et
al. [11] showed the equivalence between finding graph homomorphisms and solv-
ing constraint satisfaction problems. Counting graph homomorphisms is #P-
complete in most cases [8], so the existence of polynomial time algorithms for
the counting problem for the tractable subclasses is unlikely, but this has not
yet been investigated.
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