A Microstructure Based Approach to Constraint Satisfaction Optimisation
Problems

Ola Angelsmark*

Department of Computer and Information Science

Link6pings Universitet, Sweden
ol aan@da. | i u. se

Abstract

We study two constraint satisfaction optimisation protdem
The Max VALUE problem for CSPs, which, somewhat sim-
plified, aims at maximising the sum of the (weighted) vaiabl
values in the solution, and the A% IND problem, where the
goal is to find a satisfiablsubinstancef the original instance
containing as many variables as possible. Both problems are
NP-hard to approximate within'~¢, ¢ > 0, wheren is the
number of variables in the problems, which implies that it is
of interest to find exact algorithms. By exploiting propesti

of the microstructure, we construct algorithms for solviimg
stances of these problems with small domain sizes, and then,
using a probabilistic reasoning, we show how to get algo-
rithms for more general versions of the problems. The re-
sulting algorithms have running times 6f((0.585d)™) for

MaAXx VALUE (d,2)-CSP, andD ((0.503d)™) for MAX IND
(d,2)-CSP. Both algorithms represent the best known theo-
retical bounds for their respective problem, and, more impo
tantly, the methods used are applicable to a wide range of
optimisation problems.

Introduction

Johan Thapper'
Department of Mathematics
Link6pings Universitet, Sweden

jotha@rai .liu.se

question is now whether the variables can be assigned values
consistent with all of the constraints. This is called deei-

sion problem for CSRsand it is known to béNP-complete

in general (Garey & Johnson 1979). Hat,[)-CSPs, i.e.
CSPs with domain sizé and constraint arity, the currently

best known algorithms are, far< 11, the O ((0.4518d)™)

time algorithm by Eppstein (2001), and, fér> 11, Feder

& Motwani's (2002) algorithm which has a running time of

O ((d)™/4). (Here, and throughout the paperis the num-

ber of variables and the size of the domain of a problem.)

We will discuss twooptimisationproblems for CSPs, i.e.
problems where we are not satisfied with just any solution,
but have some additional requirements. Of course, the al-
gorithms for the classical decision problem are somewhat
faster than the ones we present, but the gap is not a large
one—and it can certainly be shrunk even further using the
methods we describe.

The problems under discussion area¥IND CSP and
MAX VALUE CSP. Both problems afgP-hard to approxi-
mate withinn! —¢ (see Jonsson & Liberatore (1999) and Jon-
sson (1998), respectively) unleBs= NP. Consequently, it

Constraint satisfaction problems (CSPs) provide a natural is of interest to find efficient exact algorithms.

and efficient way of formulating problems in a wide range The first problem we look at is the Ak IND (d, 2)-CSP

of areas, such as machine vision, scheduling, temporal rea- problem. In this setting, we want to find a satisfiabldin-
soning, graph problems and diagnostic reasoning (Kumar stancecontaining as many variables as possible. A subin-
1992), just to name a few. Computer science in general, stance is here a subset of the variables, together with the
and artificial intelligence in particular, has benefitedagiye constraints that involve all of these, and only these véegb
from CSPs. Many of the most well-studied computational MAX IND (d, 2)-CSP is in some sense dual to the classical
problems are, in fact, constraint satisfaction problen, e ~ MAX CSP in that it does not attempt to maximise the num-
the satisfiability problem for propositional logic, the ber of satisfiecconstraints but rather tries to maximise the
colouring problem for graphs and the graph homomorphism number ofvariablesthat are assigned values without violat-
problem, cf. Jeavons (1998). The most thoroughly stud- ing any constraints. It is not difficult to come up with exam-
ied problem regarding CSPs is the following: We are given ples where Mx IND CSP is a more natural problem than

a set of variables taking their values from a finite domain,
and a set of constraints, e.g. relations, restricting wiath

Max CSP, e.g. in real-time scheduling. Say the scheduler
has discovered that the tasks cannot be scheduled due.to, e.g

ues the different variables can simultaneously assume. The resource limitations. If it were to consider the problem as a

*Ola Angelsmark is supported in part by the Swedish National
Graduate School in Computer Science (CUGS), and in partdy th
Swedish Research Counf¥R), under grant 621-2002-4126.

fJohan Thapper is supported by tReogramme for Interdis-
ciplinary Mathematics Department of Mathematics, Linkopings
Universitet, Sweden.

Copyright © 2010, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Max CSP instance, then the resulting schedule might still
not be of any use, since the relaxation does not introduce ad-
ditional resources. If, on the other hand, it were to solee th
corresponding Mx IND CSP instance, it would get a partial
schedule which would be guaranteed to run—since no con-
straints are violated. Jonsson & Liberatore (1999) costain
several results regarding the complexity of this problem. |
particular, it is shown that the problem is either always sat

isfiable (and trivial) oiNP-hard. We exploit properties of andR C DJ. A solutionto a CSP instance is a function
the microstructure graph(Jégou 1993) of the instance by f : X — D s.t. for each constraim®(z;,,...,z;,) € C,

first observing that a maximum independent set in the mi- (f(x;,),..., f(z;;)) € R. Given a variabler and a set
crostructure corresponds to a maximum induced subinstance E C D, we let(z; E') denote the unary constrainte F.

of the original problem. From this observation, we get a Given a(d,!)-CSP instance, the basic computational prob-
specialised algorithm for kX IND (2, 2)-CSP, and then we lem is to decide whether it has a solution or not. The special

arrive at an algorithm for the more generahi IND (d, 2)- case whenl = 2 and we have binary constraints, i(€, 2)-

CSP which has a running time 6f((0.5029d)™). (The nec- CSP, can be viewed as a 2-SAT formula. A 2-SAT formula

essary definitions can be found in the next section.) is a conjunction of a number of clauses, where each clause is
The Max VALUE CSP problem, which we look at next, on one of the formép V q), (—pV q), (-pV —q), (p), (—p).

can be seen as a generalisation of sevPatomplete prob- The set of variables of a formul& is denotedvar(F’), and

lems, such as Mx ONESand Max DONES, as well as the an occurrence of a variable or its complement in a formula

restricted variant of NTEGER PROGRAMMING where we is termed diteral.

have bounded variables and a bounded number of non-zero
entries in each matrix row. Strictly speaking, the algamth
we propose is not limited to solving instances of this partic
ular problem; In fact, it is applicable to any problem where . - .
we are given a CSP instance together with a function assign- er]'\%hts and a model/ for ', we define the weight’ (A1)
ing weights to the variables, and the goal is to maximise the orilas
sum of these weights—while at the same time finding a sat- _ _
isfying assignment, of course. One problem which matches WM) = Z w(l)
this description iSNTEGERPROGRAMMING, and in the fu-
ture it would be interesting to see how the algorithm applies The problem of finding a maximum weighted modelFas
to this problem, since it is different from the typical brinc genoted 2-SAT.

Al
and-bound approach.) _ _

In order to solve the general Ak VALUE (d,2)-CSP, Dahllof et al. (20Q4) presents an algor!thm for counting

we first construct a specialised algorithm for the case with the number of maximum weighted solutions to 2-SAT in-
domain size 3. Again, the algorithm exploits properties of Stances. This algorithm has a running time(bf1.2561"),
the microstructure graph of the instances, and, through car and it can easily be mo<_j|_f|ed to return one of the solutions.
ful analysis, we get an algorithm for solvingA® VALUE We will denote this modified algorithi2-SAT, .
(3,2)-CSP within© (1.7548™). We can then use this spe- A graph G consists of a set’(G) of vertices and a set
cialised, deterministic, algorithm to construct a general £(G) ofedgeswhere each element éf(G) is an unordered
probabilistic, algorithm for Mx VALUE (d,2)-CSP (see Pair of vertices. Theizeof a graph, denotef/| is the num-
Theorem 3) which has a running time ©f((0.5849d)™). ber of vertices. Thaeighbourhoof a vertexv € V(G)

An interesting property shared by both of these problems S the set of all vertices adjacenttov itself excluded, de-
is that for certain CSPs, we can efficiently extended algo- notedNg(v); No(v) = {w € V(G) | (v,w) € E(G)}.
rithms for small domains into algorithms for larger domain 1 he degreedeg (v) of a vertexw is the size of its neigh-
sizes by selecting a large number of restricted instanags an P0ourhood,N¢(v)|. WhenG is obvious from the context,
solving these. Both the algorithms in Theorem 1 and 3 use It can be omitted as a subscript. If we pick a subSet
this technique. In Theorem 3 the smaller instances must Of the vertices of a graph together with the edges between
have domain size 3 but in Theorem 1 they can be of any them (but no other edges), then we get subgraph of
size, and it turns out we can choose this size optimally. induced bysS, G(S). G(S) has vertex sef and edge set

The algorithms we present for the two problems are both é(”’ u) | 1;’ u g S, (”,’[1{[)h€ Et(fG)}' If tge ind(Lche'([j SL:bgraph
probabilistic and they have a probability of error less than as empty edge set, then it formsiadependent set.

equal toe~!. While this may seem rather higér(* ~ 0.38), Definition 2 (Jégou (1993))Given a binary CSPO =

it is possible to achieve arbitrarily low error probabillty (X, D, C), themicrostructure grapbf © is an undirected

iterating the algorithm; For example, after only 5 iterato graphG defined as follows:

we have a probability cduccesgreater tha®9.3%, and af- _ .

ter 5 more it is greater tha#9.99%. For a given probability ~ 1- For every variable: € X, and domain value € D,

of error, the number of iterations is constant, and thus does thereis avertex|a] € V(G).

not add to the time complexity of the algorithm. 2. There is an edggrfa:], y[az]) € E(G) iff (a1, a2) satis-
fies the constraint betweanandy.

Definition 1 (Dahlléf, Jonsson, & Wahlstrom (2004))
Let F' be a 2-SAT formula, and Idt be the set of all literals
for all variables occurring inF. Given a vectorw of

{leL |l is true in M}

Preliminaries We assume that there is exactly one constraint between any
pair of variables, and any variables with no explicit con-
straint is assumed to be constrained by the universal con-
straint which allows all values.

A (d,l)-constraint satisfaction problem(d,!)-CSP)is a
triple (X, D, C) with X a finite set of variablesD a fi-
nite set of domain values, withD| = d, andC a set of
constraints{ci, ca,...,cr . Each constraint; € C is a (For technical reasons, we consider the complement of the
structureR(xz;,, ..., x;,), wherej < [, z;,,...,2;, € X microstructure graph.) Obviously, the microstructure of a

J

finite domain problem will use polynomial space, since there
will be dn vertices in the graph.

In order to avoid confusing the size of a graph with the
number of variables in a problem (both of which are tra-
ditionally denotedn), we will explicitly write |V (G)| for

the problem size whenever we are using the running time g

of a graph algorithm. By adding weights to the vertices of
the microstructure, we get weighted microstructurand

since each vertex corresponds to a variable being assigned.

a value, we can efficiently move from a 2-SAihstances to
its weighted microstructure, and back.

In the analysis of the algorithm for Mk VALUE, we will
often encounter recursions on the form

k

> T(n—ri)+p(n)

i=1

T(n)

wherep(n) is a polynomial inn, andr; € NT. These
equations satisfyT'(n) € O (\(rq,...,r:)"), where
A(r1, ...,) isthe largestreal-valued rootIc—erz1 x "
(see Kullmann (1999).) Note that this bound does not de-
pend on neithep(n) nor the boundary conditiorB(1) =
b1,...,T(k) = br. We will usually callx thework factor

(in the sense of (Eppstein 2001).)

Algorithm for Max Ind CSP

The first problem we turn our attention to is the following:
Max IND (d,1)-CSP

Instance: A CSP instanc® = (V, D, C)

Output: A subsetl’”” C V such tha® |V’ is satisfiable and
[V'| is maximal.

Here,©|V' = (V', D, ") is thesubinstance induced By,
and

C'={ceC|c(x1,x2,...,21) € C,x1,...,20 € V'}.
Or, in words,C” is the subset o which contains all the
constraints involving only variables frofft’. First, we need
the following proposition.

Proposition 1 A binary CSPO = (V,D,C) contains a
maximum induced subinstan&gV’ = (V’, D, ") iff the
microstructure graph o® contains a maximum independent
seta with |a| = |V/].

This immediately gives us the following corollary:

Corollary 1 There exists an algorithm for solvinigl AX
IND (d, 2)-CSP inO (1.2025%") time.

The combination of Corollary 1 with the following lemma
turns out to be a powerful one, as we will see later.

Lemma 1 Assume there exists af (¢™) algorithm for
MAX IND (k,1)-CSP. LetZ;, denote the set dfi, 1)-CSP in-
stances satisfying the following: For eatK, D, C) € T,
and everyr € X, there exists a unary constraift; S) in
C s.t. |S| < k. Then, theMax IND problem restricted to
instances irZ;, can be solved it© (c").

Algorithm 1 Algorithm for MAX IND (d, 2)-CSP.
MazInd(©)

1.s:=10

2. repeat(d/k)™ times

Randomly choosA € S,

LetG be the microstructure graph 6fa

a :=MIS(G)

if |s| < |o then

4,

6.
7.
8. end repeat
9. return s

S =«

Now we use Corollary 1 to solve randomly cho-
sen, restricted instances of the original CSP-instance—an
Lemma 1 lets us do this. In Algorithm 1 we assume that we
have an algorithmMIS for finding maximum independent
sets in arbitrary graphs.

Theorem 1 Given an O (c!V()1) algorithm for solving
MAXIMUM INDEPENDENTSET for arbitrary graphs, there
exists an algorithm foMAx IND (d, 2)-CSP, which returns
an optimal solution with probability at least— e~!, where
e = 2.7182..., and has a running time @ ((d/k - ¢*)"),
for d > k. Furthermore, eithef (Inc)=!] or [(Inc)~] is
the best choice fok.

Corollary 2 For d > 5, there exists a probabilistic algo-
rithm for solvingMAX IND (d, 2)-CSP returning an optimal
solution with probability at least — e~ in O ((0.5029d)™)
time.

As was observed in the introduction, the probability of er-
ror can be made arbitrarily small; By iterating the algarith
—[In k] times, we get an error probability af > 0. Since,
for fixed x, the number of iterations is constant, this does not
add to the time complexity of the algorithm.

Algorithm for Max Value CSP

The next problem under consideration is the MVALUE
problem, defined as follows:

MAX VALUE (d,1)-CSP

Instance: (d,!)-CSP instanc® = (X, D,C) where the
domainD = {ay,...,aq} C R, together with a real vector

w = (wy,...,w,) € R™.
Output: A solution f X — D maximising
D1 Wi e f(@i).

Note that even though the domain consists of real-valued
elements, we are still dealing withfiaite domain.

The currently best known algorithm for this problem, by
Angelsmarket al. (2004), runs inO (d/2 - v; + €), where
v = M1,2,...,0), ande > 0. Forl = 2, this is
O(d/2-1.6180+¢) C O(0.8091d+€). The algorithm
we will now present for the case with binary constraints is
significantly faster.

We start by constructing an algorithm forAM VALUE
(3,2)-CSP with a running time i©(1.7458™), which will
later form the basis for a probabilistic algorithm foraM
VALUE (d,2)-CSP. The algorithm actually solves a more
general problem where we are given a weight function
X x D — R and find the assignment which maximises
> sldjea (2, d). The idea behind the algorithm is to use
the microstructure graph and recursively branch on vaeabl
with three possible values until all variables are either as
signed a value or only have two possible values left. We then
transform the remaining microstructure graph to a weighted
2-SAT instance and solve this.

Before we start, we need some additional definitions: A 5.

variable having three possible domain values we call a 3-
variable, and a variable having two possible domain values
will be called a 2-variable. In order to analyse the alganith
we define the size of an instance ag0) ng + 2ng.
Here,n, andns denote the number of 2- and 3-variables
in ©, respectively. This means that the size of an instance
can be decreased by 1 by either removing a 2-variable or
removing one of the possible values for a 3-variable, thus
turning it into a 2-variable.

For a variabler € X with possible valuegds, dz, ds}
ordered so thatw(xz,di) > w(z,d2) > w(z,ds), let
d(x) (c1,c2,c3) Wheree; = degg(z[d;]), G being
the microstructure graph. If is a 2-variable then, simi-
larly, we defined(v) := (c1,c2). We will sometimes use
expressions such as ¢ or - (dot) in this vector, for ex-
ampledé(v) = (>¢,-,-). This should be read afv) €
{(c1,c2,¢3) | ¢c1 > ¢}. Themaximalweight of a variabler,

i.e. the domain valud for which w(z, d) is maximal, will
be denoted: .. The algorithm is presented as a series of
lemmata. Applying these as shown in Algorithm 2 solves
the slightly generalised Wx VALUE (3,2)-CSP problem.

Lemma 2 For any instanced, we can find an instanc®’

with the same optimal solution &3, with size smaller or

equal to that 0® and to whichnoneof the following cases

apply.

1. There is a 2-variable for whichd(x) = (2, > 1).

2. There is a variable for which the maximal weight is un-
constrained.

Lemma 3 If there is a variablez with §(z) = (> 3,> 2)
then we can reduce the instance with a work factor of
A(3,2).

Lemma 4 If there is a variabler for whiché(x) = (3, -,)
then we can reduce the instance with a work factor of
A(3,2).

Lemma 5 If there is a variablex with §(z) = (> 5,,")
then we can reduce the instance with a work factor of
A(5,1).

If none of Lemma 2 to Lemma 5 is applicable, any 3-
variable must satisf§(z) = (5, -, -) and any 2-variable must
satisfyd(z) = (> 4,-) ord(z) = (3,0)

Lemma 6 If none of Lemma 2 to Lemma 5 is applicable
then we can remove remaining 3-variable with a work factor
of A\(4,4,4).

2.

3

Algorithm 2 Algorithm for MAx VALUE (3,2)-CSP.
MazVal(G, w)

1. If, at any time, the domain of a variable becomes empty,

that branch can be pruned.

Apply the transformations in Lemma 2, keeping track of
eliminated variables.

. If applicable, return the maximum result of the branches
described in Lemma 3to 5

4. else, if applicable, return the maximum result of the

branches described in Lemma 6
else retur2-SAT, (G, w)

The input to Algorithm 2 is the microstructure graph
and a weight functionv, and the algorithm returns an as-
signment with maximal weight. Note that in order to actu-
ally get a solution to the original problem, one has to a) keep
track of the variables eliminated by Lemma 2, and b) extract
them from the solution returned on line 4.

Theorem 2 MAX VALUE (3, 2)-CSP can be solved by a de-
terministic algorithm inO (1.7548™) time.

If we now note that Lemma 1 holds forAX VALUE CSP
as well as M\x IND CSP, we can this time combine it with
Theorem 2 and get the following theorem:

Theorem 3 There exists an algorithm for solving
MAX VALUE (d,2)-CSP which has a running time
of 0 ((0.5849d)™) and finds an optimal solution with
probability 1 — e~!, wheree = 2.7182. . ..

As was the case for the Ak IND (d, 2)-CSP algorithm
earlier, the probability of success can be made arbitrarily
high by iterating the algorithm.

Conclusion

We have presented algorithms for two constraint satis-
faction optimisation problems; Mx IND CSP and Mx
VALUE CSP. The algorithms, while both based on the mi-
crostructure of the underlying constraint satisfactioabpr
lem, are quite different. The algorithm for At IND can

be seen as the “quick-and-dirty” approach, since little ef-
fort is spent on constructing the base algorithm—we sim-
ply apply an existing maximum independent set algorithm
to the microstructure—whereas the base algorithm faxM
VALUE is a lot more intricate and utilises properties of the
microstructure a lot more efficiently than a general maxi-
mum independent set algorithm could. It would of course
be interesting to see how much improvement we would get
by careful case analysis for theAW IND algorithm as well.

As was mentioned in the introduction, the algorithm for
MaAX VALUE is more general than strictly necessary, and it
can be applied to any problem where, given a CSP instance
together with a weight function, the goal is to maximise the
sum of these weights. We have not yet fully explored the
possibilities here, but it is worth noting that our approach
is quite different from the standard branch-and-bound one

when it comes to, say,NTEGER PROGRAMMING. Con-
sequently, a future direction would be to compare this and
other approaches.

To summarise, we have shown that by exploiting the mi-
crostructure graph of a CSP we can either a) quickly develop
algorithms for optimisation problems (as we did forakl
IND), or b) carefully analyse it in order to get more efficient
algorithms (as we did for Mx VALUE.) This would suggest
that the microstructure graphs deserve further study.

Acknowledgments

The authors would like to thank Peter Jonsson for helpful
comments.

Proofs

In order to keep the discussion flowing, we present the
proofs of the theorems in this paper here.

Corollary 1 (Proof). The microstructure graph contaiis
vertices, and using th® (1.2025!V ()1 time maximum in-
dependent set algorithm by Robson (2001), we can find a
solution inO (1.2025%") time O

Lemma 1 (Proof). For each variable i(X, D, C), we know

it can be assigned at moktout of thed possible values.
Thus, we can modify the constraints so that every variable
picks its value from the seftl, ... k}. This transformation
can obviously be done in polynomial time, and the resulting
instance is an instance of A IND (k,1)-CSP, which can

be solved inD (¢™) time O

Theorem 1 (Proof). Combining Lemma 1 with the fact that
we can solve Mx IND (k,2)-CSP inO (c*™) using mi-
crostructures, we can solve aaM IND (d, 2)-CSP instance
where the variables are restricted to domains of &ize
O () time.

Let Sy :{D1XD2X...XDn C D™ s.t. |D1| :k,l <
i <n}. ForA € S, define®a to be the instanc® where
each variable; has been restricted to take its value from the
setD;,—i.e. for eachr; € X we add the constrairt:;; D;).

No additional solution can be introduced by restricting the
domains in this way, and a solutigiwhich is optimal for®,

is still a solution (and optimal) to ary o for which f(z;) €
AVIRS {1,,77,}

For a randomly choseA < S, the probability that an
optimal solution toO is still in ©4 is at least(k/d)". It
follows that the probability of not finding an optimal solu-
tion in ¢ iterations is at mostl — (k/d)")! < e tk/d",
Therefore, by repeatedly selectidg € S; at random and
solving the induced Mx IND (k,2)-CSP problem, we can
reduce the probability of error te~! in (d/k)™ iterations.
The resulting algorithm, Algorithm 1 has a running time of
O ((d/k-c™)m™).

Now, let g(z) = ¢*/z. The functiong is convex and
assumes its minimum at = (Inc¢)~!. Thus, for a given,
finding the minimum of([z']) andg(|«’|) determines the
best choice of.O

Lemma 2 (Proof). The transformation in Fig. 1 takes care
of the first case, removing one 2-variable (and therefore de-

Figure 1: The transformation done in Lemma 2. (Note that
v;, w; are theweightsof the vertices.)

can simply assign the maximal weight to the variable, leav-
ing us with a smaller instance.

Lemma 3 (Proof). We branch on the two possible values of

x and propagate the chosen value to the neighbours lof

one of the branches, the size will decrease by at least 3 and
in the other by at least 2.

Lemma 4 (Proof). In one of the branches, we choase=

Tmax @nd propagate this value, decreasing the size by at least
3. In the other branch, choosing# ... implies that the
value of its exterior neighbour must be chosen in order to
force a non-maximal weight to be choseninTherefore, in

this branch, the size decreases by at least 2.

Lemma 5 (Proof). Choosingr = z,,x decreases the size

of the instance by at least 5. In the other branch, we choose
T # Tmax, tUrning a 3-variable into a 2-variable and thereby
decreasing the size byl.

Lemma 6 (Proof). Letx; be a 3-variable and, its maximal
value, with neighbours, andz3 as in Fig. 2.

If 25 is a 2-variable and(x2) = (3,0) (see Fig. 2a) then
we can let one of the branches be = d; and the other
x1 # di. This makesi(z2) = (2,0) in the latter branch,
andzs can be removed by Lemma 2 which means we can
decrease the size by 2 in this branch, giving a work fac-
tor of A(4,2) < A(4,4,4). Otherwise ifzs[ds] has only
three neighboursys must be a 3-variable, which implies
that z3[ds] can not be maximally weighted. If this holds
for 0 or 1 of the neighbours af; (Fig. 2b), we can branch
onxy = dy, r3 = ds and{:z:z = dg,mg 7é dg} In this
case, we decrease the size by 4 in each branch. If both of
x9[ds] andxs[ds] are of degree 3 (Fig. 2c) and it is not pos-
sible to choose am; without this property, then for every
3-variable remaining, the maximal weighted value can be
assigned without branching at all.
Theorem 2 (Proof). We claim that Algorithm 2 correctly
solves MaAX VALUE (3,2)-CSP.

First we show the correctness of the algorithm. Lemma 2
does not remove any solutions to the problem, it merely re-

creasing the size of the instance). For the second case, weduces the number of vertices in the microstructure. Lemma 3

a) b)

c)

Figure 2: The 3 cases discussed in Lemma 6. (Notexthdénotes a variable, whilé;, denotes a value.)

branches on both possible values for the chosen variable,
while Lemmata 4 and 5 try all three possible assignments, as
is the case for Lemma 6. This, together with the proof of cor-
rectness of th@-SAT, algorithm by Dahlltfet al. (2004),
shows the correctness of the algorithm.

Now, apart from the call t@-SAT,, the highest work fac-
tor found in the algorithm is\(3,2) = A(1,5) ~ 1.3247.
Recall that we measure the size@by m(0) = ns + 2n3
which, for (3, 2)-CSP, is2n, wheren is the number of vari-
ables in©. If we can solve weighted 2-SAT i@ (c¢"),
then the entire algorithm will run i (max(1.3247, ¢)?").
Using the construction with weighted microstructures men-
tioned earlier, a weight functiow(z;,d) = w; - d, to-
gether with the algorithm for weighted 2-SAT by Dahll6f
et al.(2004), we get = 1.2561, and the result follows]

Theorem 3 (Proof). Similar to the proof of Theorem 2.
For eachA € S5, we again defin® A to be the instance
© where each variable; has been restricted to take its
value from the seD,, with |D;| = 3. Theorem 2 together
with Lemma 1 tells us that we can solve this instance in
O (1.7548™).

For a randomly chosefl € S, the probability that an op-
timal solution to© is still in © 4 is atleas{3/d)™. It follows
that the probability of not finding an optimal solutiontiiit-
erations is at mostl — (3/d)")* < e~*(3/9" Therefore,
by repeatedly selecting € S at random and solving the
induced Max VALUE (3,2)-CSP problem, we can reduce
the probability of error te~! in (d/3)" iterations. Conse-
quently, we get a running time @ ((d/3)" - 1.7548"™) ~
O ((0.5849d)™).00

References

Angelsmark, O.; Jonsson, P.; and Thapper, J. 2004. Two
methods for constructing new CSP algorithms from old.
Unpublished manuscript.

Dahlléf, V.; Jonsson, P.; and Wahlstrom, M.
2004. Counting models for sAT and 3AT formu-
lae. To appear inTheoretical Computer Science.

DOI:10.1016/j.tcs.2004.10.037.

Eppstein, D. 2001. Improved algorithms for 3-coloring, 3-
edge-coloring, and constraint satisfaction.Pimceedings

of the Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA-2001), January 7-9, 2001, Washington,
DC, USA 329-337. ACM/SIAM.

Feder, T., and Motwani, R. 2002. Worst-case time bounds
for coloring and satisfiability problemslournal of Algo-
rithms45(2):192-201.

Garey, M. R., and Johnson, D. S. 197G@omputers and
Intractability: A Guide to the Theory of NP-Completeness
New York: W.H. Freeman and Company.

Jeavons, P. 1998. On the algebraic structure of combina-
torial problems. Theoretical Computer Scien@90:185—
204.

Jégou, P. 1993. Decomposition of domains based on the
micro-structure of finite constraint-satisfaction prohke

In Proceedings of the 11th (US) National Conference on
Artificial Intelligence (AAAI-93) 731-736. Washington
DC, USA: American Association for Artificial Intelligence
(AAA).

Jonsson, P, and Liberatore, P. 1999. On the complex-
ity of finding satisfiable subinstances in constraint satisf
tion. Technical Report TR99-038, Electronic Colloquium
on Computational Complexity.

Jonsson, P. 1998. Near-optimal nonapproximability result
for some NPO PB-complete problemiformation Pro-
cessing Letter68(5):249-253.

Kullmann, O. 1999. New methods for 3-SAT decision and
worst-case analysiheoretical Computer Scien223(1-
2):1-72.

Kumar, V. 1992. Algorithms for constraint-satisfaction
problems: A surveyAl Magazinel3(1):32—-44.

Robson, M. 2001. Finding a maximum independent set
in time O(2"/4). Technical report, LaBRI, Université Bor-
deaux I.

