
A Microstructure Based Approach to Constraint Satisfaction Optimisation
Problems

Ola Angelsmark∗
Department of Computer and Information Science

Linköpings Universitet, Sweden
olaan@ida.liu.se

Johan Thapper†
Department of Mathematics

Linköpings Universitet, Sweden
jotha@mai.liu.se

Abstract

We study two constraint satisfaction optimisation problems:
The MAX VALUE problem for CSPs, which, somewhat sim-
plified, aims at maximising the sum of the (weighted) variable
values in the solution, and the MAX IND problem, where the
goal is to find a satisfiablesubinstanceof the original instance
containing as many variables as possible. Both problems are
NP-hard to approximate withinn1−ǫ, ǫ > 0, wheren is the
number of variables in the problems, which implies that it is
of interest to find exact algorithms. By exploiting properties
of the microstructure, we construct algorithms for solvingin-
stances of these problems with small domain sizes, and then,
using a probabilistic reasoning, we show how to get algo-
rithms for more general versions of the problems. The re-
sulting algorithms have running times ofO ((0.585d)n) for
MAX VALUE (d, 2)-CSP, andO ((0.503d)n) for MAX IND
(d, 2)-CSP. Both algorithms represent the best known theo-
retical bounds for their respective problem, and, more impor-
tantly, the methods used are applicable to a wide range of
optimisation problems.

Introduction
Constraint satisfaction problems (CSPs) provide a natural
and efficient way of formulating problems in a wide range
of areas, such as machine vision, scheduling, temporal rea-
soning, graph problems and diagnostic reasoning (Kumar
1992), just to name a few. Computer science in general,
and artificial intelligence in particular, has benefited greatly
from CSPs. Many of the most well-studied computational
problems are, in fact, constraint satisfaction problems, e.g.
the satisfiability problem for propositional logic, thek-
colouring problem for graphs and the graph homomorphism
problem, cf. Jeavons (1998). The most thoroughly stud-
ied problem regarding CSPs is the following: We are given
a set of variables taking their values from a finite domain,
and a set of constraints, e.g. relations, restricting whichval-
ues the different variables can simultaneously assume. The

∗Ola Angelsmark is supported in part by the Swedish National
Graduate School in Computer Science (CUGS), and in part by the
Swedish Research Council(VR), under grant 621-2002-4126.

†Johan Thapper is supported by theProgramme for Interdis-
ciplinary Mathematics, Department of Mathematics, Linköpings
Universitet, Sweden.
Copyright c© 2010, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

question is now whether the variables can be assigned values
consistent with all of the constraints. This is called thedeci-
sion problem for CSPs, and it is known to beNP-complete
in general (Garey & Johnson 1979). For(d, l)-CSPs, i.e.
CSPs with domain sized and constraint arityl, the currently
best known algorithms are, ford < 11, theO ((0.4518d)n)
time algorithm by Eppstein (2001), and, ford ≥ 11, Feder
& Motwani’s (2002) algorithm which has a running time of
O

(

(d!)n/d
)

. (Here, and throughout the paper,n is the num-
ber of variables andd the size of the domain of a problem.)

We will discuss twooptimisationproblems for CSPs, i.e.
problems where we are not satisfied with just any solution,
but have some additional requirements. Of course, the al-
gorithms for the classical decision problem are somewhat
faster than the ones we present, but the gap is not a large
one—and it can certainly be shrunk even further using the
methods we describe.

The problems under discussion are MAX IND CSP and
MAX VALUE CSP. Both problems areNP-hard to approxi-
mate withinn1−ǫ (see Jonsson & Liberatore (1999) and Jon-
sson (1998), respectively) unlessP = NP . Consequently, it
is of interest to find efficient exact algorithms.

The first problem we look at is the MAX IND (d, 2)-CSP
problem. In this setting, we want to find a satisfiablesubin-
stancecontaining as many variables as possible. A subin-
stance is here a subset of the variables, together with the
constraints that involve all of these, and only these variables.
MAX IND (d, 2)-CSP is in some sense dual to the classical
MAX CSP in that it does not attempt to maximise the num-
ber of satisfiedconstraints, but rather tries to maximise the
number ofvariablesthat are assigned values without violat-
ing any constraints. It is not difficult to come up with exam-
ples where MAX IND CSP is a more natural problem than
MAX CSP, e.g. in real-time scheduling. Say the scheduler
has discovered that the tasks cannot be scheduled due to, e.g.
resource limitations. If it were to consider the problem as a
MAX CSP instance, then the resulting schedule might still
not be of any use, since the relaxation does not introduce ad-
ditional resources. If, on the other hand, it were to solve the
corresponding MAX IND CSP instance, it would get a partial
schedule which would be guaranteed to run—since no con-
straints are violated. Jonsson & Liberatore (1999) contains
several results regarding the complexity of this problem. In
particular, it is shown that the problem is either always sat-

isfiable (and trivial) orNP-hard. We exploit properties of
the microstructure graph(Jégou 1993) of the instance by
first observing that a maximum independent set in the mi-
crostructure corresponds to a maximum induced subinstance
of the original problem. From this observation, we get a
specialised algorithm for MAX IND (2, 2)-CSP, and then we
arrive at an algorithm for the more general MAX IND (d, 2)-
CSP which has a running time ofO ((0.5029d)n). (The nec-
essary definitions can be found in the next section.)

The MAX VALUE CSP problem, which we look at next,
can be seen as a generalisation of severalNP-complete prob-
lems, such as MAX ONES and MAX DONES, as well as the
restricted variant of INTEGER PROGRAMMING where we
have bounded variables and a bounded number of non-zero
entries in each matrix row. Strictly speaking, the algorithm
we propose is not limited to solving instances of this partic-
ular problem; In fact, it is applicable to any problem where
we are given a CSP instance together with a function assign-
ing weights to the variables, and the goal is to maximise the
sum of these weights—while at the same time finding a sat-
isfying assignment, of course. One problem which matches
this description is INTEGERPROGRAMMING, and in the fu-
ture it would be interesting to see how the algorithm applies
to this problem, since it is different from the typical branch-
and-bound approach.

In order to solve the general MAX VALUE (d, 2)-CSP,
we first construct a specialised algorithm for the case with
domain size 3. Again, the algorithm exploits properties of
the microstructure graph of the instances, and, through care-
ful analysis, we get an algorithm for solving MAX VALUE
(3, 2)-CSP withinO (1.7548n). We can then use this spe-
cialised, deterministic, algorithm to construct a general,
probabilistic, algorithm for MAX VALUE (d, 2)-CSP (see
Theorem 3) which has a running time ofO ((0.5849d)n).

An interesting property shared by both of these problems
is that for certain CSPs, we can efficiently extended algo-
rithms for small domains into algorithms for larger domain
sizes by selecting a large number of restricted instances and
solving these. Both the algorithms in Theorem 1 and 3 use
this technique. In Theorem 3 the smaller instances must
have domain size 3 but in Theorem 1 they can be of any
size, and it turns out we can choose this size optimally.

The algorithms we present for the two problems are both
probabilistic and they have a probability of error less thanor
equal toe−1. While this may seem rather high (e−1 ≈ 0.38),
it is possible to achieve arbitrarily low error probabilityby
iterating the algorithm; For example, after only 5 iterations
we have a probability ofsuccessgreater than99.3%, and af-
ter 5 more it is greater than99.99%. For a given probability
of error, the number of iterations is constant, and thus does
not add to the time complexity of the algorithm.

Preliminaries
A (d, l)-constraint satisfaction problem ((d, l)-CSP) is a
triple (X, D, C) with X a finite set of variables,D a fi-
nite set of domain values, with|D| = d, andC a set of
constraints{c1, c2, . . . , ck}. Each constraintci ∈ C is a
structureR(xi1 , . . . , xij

), wherej ≤ l, xi1 , . . . , xij
∈ X

andR ⊆ Dj . A solution to a CSP instance is a function
f : X → D s.t. for each constraintR(xi1 , . . . , xij

) ∈ C,
(f(xi1), . . . , f(xij

)) ∈ R. Given a variablex and a set
E ⊆ D, we let(x; E) denote the unary constraintx ∈ E.
Given a(d, l)-CSP instance, the basic computational prob-
lem is to decide whether it has a solution or not. The special
case whend = 2 and we have binary constraints, i.e.(2, 2)-
CSP, can be viewed as a 2-SAT formula. A 2-SAT formula
is a conjunction of a number of clauses, where each clause is
on one of the forms(p∨ q), (¬p∨ q), (¬p∨ ¬q), (p), (¬p).
The set of variables of a formulaF is denotedVar(F), and
an occurrence of a variable or its complement in a formula
is termed aliteral.

Definition 1 (Dahllöf, Jonsson, & Wahlström (2004))
LetF be a 2-SAT formula, and letL be the set of all literals
for all variables occurring inF . Given a vectorw̄ of
weights and a modelM for F , we define the weightW (M)
of M as

W (M) =
∑

{l∈L | l is true in M}

w̄(l)

The problem of finding a maximum weighted model forF is
denoted 2-SATw.

Dahllöf et al. (2004) presents an algorithm for counting
the number of maximum weighted solutions to 2-SAT in-
stances. This algorithm has a running time ofO (1.2561n),
and it can easily be modified to return one of the solutions.
We will denote this modified algorithm2-SATw.

A graphG consists of a setV (G) of vertices, and a set
E(G) of edges, where each element ofE(G) is an unordered
pair of vertices. Thesizeof a graph, denoted|G| is the num-
ber of vertices. Theneighbourhoodof a vertexv ∈ V (G)
is the set of all vertices adjacent tov, v itself excluded, de-
notedNG(v); NG(v) = {w ∈ V (G) | (v, w) ∈ E(G)}.
The degreedegG(v) of a vertexv is the size of its neigh-
bourhood,|NG(v)|. WhenG is obvious from the context,
it can be omitted as a subscript. If we pick a subsetS
of the vertices of a graph together with the edges between
them (but no other edges), then we get thesubgraph ofG
induced byS, G(S). G(S) has vertex setS and edge set
{(v, u) | v, u ∈ S, (v, u) ∈ E(G)}. If the induced subgraph
has empty edge set, then it forms anindependent set.

Definition 2 (Jégou (1993))Given a binary CSPΘ =
(X, D, C), themicrostructure graphof Θ is an undirected
graphG defined as follows:

1. For every variablex ∈ X , and domain valuea ∈ D,
there is a vertexx[a] ∈ V (G).

2. There is an edge(x[a1], y[a2]) ∈ E(G) iff (a1, a2) satis-
fies the constraint betweenx andy.

We assume that there is exactly one constraint between any
pair of variables, and any variables with no explicit con-
straint is assumed to be constrained by the universal con-
straint which allows all values.

(For technical reasons, we consider the complement of the
microstructure graph.) Obviously, the microstructure of a

finite domain problem will use polynomial space, since there
will be dn vertices in the graph.

In order to avoid confusing the size of a graph with the
number of variables in a problem (both of which are tra-
ditionally denotedn), we will explicitly write |V (G)| for
the problem size whenever we are using the running time
of a graph algorithm. By adding weights to the vertices of
the microstructure, we get aweighted microstructureand
since each vertex corresponds to a variable being assigned
a value, we can efficiently move from a 2-SATw instances to
its weighted microstructure, and back.

In the analysis of the algorithm for MAX VALUE, we will
often encounter recursions on the form

T (n) =

k
∑

i=1

T (n− ri) + p(n)

wherep(n) is a polynomial inn, and ri ∈ N
+. These

equations satisfyT (n) ∈ O (λ(r1, . . . , rk)n), where
λ(r1, . . . , rk) is the largest real-valued root to1−

∑k
i=1 x−ri

(see Kullmann (1999).) Note that this bound does not de-
pend on neitherp(n) nor the boundary conditionsT (1) =
b1, . . . , T (k) = bk. We will usually callλ thework factor
(in the sense of (Eppstein 2001).)

Algorithm for Max Ind CSP
The first problem we turn our attention to is the following:
MAX IND (d, l)-CSP
Instance: A CSP instanceΘ = (V, D, C)
Output: A subsetV ′ ⊆ V such thatΘ|V ′ is satisfiable and
|V ′| is maximal.

Here,Θ|V ′ = (V ′, D, C′) is thesubinstance induced byV ′,
and

C′ = {c ∈ C | c(x1, x2, . . . , xl) ∈ C, x1, . . . , xl ∈ V ′}.

Or, in words,C′ is the subset ofC which contains all the
constraints involving only variables fromV ′. First, we need
the following proposition.

Proposition 1 A binary CSPΘ = (V, D, C) contains a
maximum induced subinstanceΘ|V ′ = (V ′, D, C′) iff the
microstructure graph ofΘ contains a maximum independent
setα with |α| = |V ′|.

This immediately gives us the following corollary:

Corollary 1 There exists an algorithm for solvingMAX
IND (d, 2)-CSP inO

(

1.2025dn
)

time.

The combination of Corollary 1 with the following lemma
turns out to be a powerful one, as we will see later.

Lemma 1 Assume there exists anO (cn) algorithm for
MAX IND (k, l)-CSP. LetIk denote the set of(d, l)-CSP in-
stances satisfying the following: For each(X, D, C) ∈ Ik,
and everyx ∈ X , there exists a unary constraint(x; S) in
C s.t. |S| ≤ k. Then, theMAX IND problem restricted to
instances inIk can be solved inO (cn).

Algorithm 1 Algorithm for MAX IND (d, 2)-CSP.

MaxInd(Θ)

1. s := ∅

2. repeat (d/k)n times

3. Randomly choose∆ ∈ Sk

4. LetG be the microstructure graph ofΘ∆

5. α :=MIS(G)

6. if |s | < |α| then

7. s := α

8. end repeat

9. return s

Now we use Corollary 1 to solve randomly cho-
sen, restricted instances of the original CSP-instance—and
Lemma 1 lets us do this. In Algorithm 1 we assume that we
have an algorithmMIS for finding maximum independent
sets in arbitrary graphs.

Theorem 1 Given an O
(

c|V (G)|
)

algorithm for solving
MAXIMUM INDEPENDENTSET for arbitrary graphs, there
exists an algorithm forMAX IND (d, 2)-CSP, which returns
an optimal solution with probability at least1 − e−1, where
e = 2.7182 . . ., and has a running time ofO

(

(d/k · ck)n
)

,
for d ≥ k. Furthermore, either⌈(ln c)−1⌉ or ⌊(ln c)−1⌋ is
the best choice fork.

Corollary 2 For d ≥ 5, there exists a probabilistic algo-
rithm for solvingMAX IND (d, 2)-CSP returning an optimal
solution with probability at least1− e−1 in O ((0.5029d)n)
time.

As was observed in the introduction, the probability of er-
ror can be made arbitrarily small; By iterating the algorithm
−⌈lnκ⌉ times, we get an error probability ofκ > 0. Since,
for fixedκ, the number of iterations is constant, this does not
add to the time complexity of the algorithm.

Algorithm for Max Value CSP
The next problem under consideration is the MAX VALUE
problem, defined as follows:
MAX VALUE (d, l)-CSP
Instance: (d, l)-CSP instanceΘ = (X, D, C) where the
domainD = {a1, . . . , ad} ⊆ R, together with a real vector
w = (w1, . . . , wn) ∈ R

n.
Output: A solution f : X → D maximising
∑n

i=1 wi · f(xi).

Note that even though the domain consists of real-valued
elements, we are still dealing with afinitedomain.

The currently best known algorithm for this problem, by
Angelsmarket al. (2004), runs inO (d/2 · γl + ǫ), where
γl = λ(1, 2, . . . , l), and ǫ > 0. For l = 2, this is
O (d/2 · 1.6180 + ǫ) ⊆ O (0.8091d + ǫ). The algorithm
we will now present for the case with binary constraints is
significantly faster.

We start by constructing an algorithm for MAX VALUE
(3, 2)-CSP with a running time inO(1.7458n), which will
later form the basis for a probabilistic algorithm for MAX
VALUE (d, 2)-CSP. The algorithm actually solves a more
general problem where we are given a weight functionw :
X × D → R and find the assignmentα which maximises
∑

x[d]∈α w(x, d). The idea behind the algorithm is to use
the microstructure graph and recursively branch on variables
with three possible values until all variables are either as-
signed a value or only have two possible values left. We then
transform the remaining microstructure graph to a weighted
2-SAT instance and solve this.

Before we start, we need some additional definitions: A
variable having three possible domain values we call a 3-
variable, and a variable having two possible domain values
will be called a 2-variable. In order to analyse the algorithm
we define the size of an instance asm(Θ) = n2 + 2n3.
Here,n2 andn3 denote the number of 2- and 3-variables
in Θ, respectively. This means that the size of an instance
can be decreased by 1 by either removing a 2-variable or
removing one of the possible values for a 3-variable, thus
turning it into a 2-variable.

For a variablex ∈ X with possible values{d1, d2, d3}
ordered so thatw(x, d1) > w(x, d2) > w(x, d3), let
δ(x) := (c1, c2, c3) where ci = degG(x[di]), G being
the microstructure graph. Ifx is a 2-variable then, simi-
larly, we defineδ(v) := (c1, c2). We will sometimes use
expressions such as≥ c or · (dot) in this vector, for ex-
ampleδ(v) = (≥ c, ·, ·). This should be read asδ(v) ∈
{(c1, c2, c3) | c1 ≥ c}. Themaximalweight of a variablex,
i.e. the domain valued for which w(x, d) is maximal, will
be denotedxmax. The algorithm is presented as a series of
lemmata. Applying these as shown in Algorithm 2 solves
the slightly generalised MAX VALUE (3, 2)-CSP problem.

Lemma 2 For any instanceΘ, we can find an instanceΘ′

with the same optimal solution asΘ, with size smaller or
equal to that ofΘ and to whichnoneof the following cases
apply.

1. There is a 2-variablex for whichδ(x) = (2,≥ 1).
2. There is a variablex for which the maximal weight is un-

constrained.

Lemma 3 If there is a variablex with δ(x) = (≥ 3,≥ 2)
then we can reduce the instance with a work factor of
λ(3, 2).

Lemma 4 If there is a variablex for whichδ(x) = (3, ·, ·)
then we can reduce the instance with a work factor of
λ(3, 2).

Lemma 5 If there is a variablex with δ(x) = (≥ 5, ·, ·)
then we can reduce the instance with a work factor of
λ(5, 1).

If none of Lemma 2 to Lemma 5 is applicable, any 3-
variable must satisfyδ(x) = (5, ·, ·) and any 2-variable must
satisfyδ(x) = (≥ 4, ·) or δ(x) = (3, 0).

Lemma 6 If none of Lemma 2 to Lemma 5 is applicable
then we can remove remaining 3-variable with a work factor
of λ(4, 4, 4).

Algorithm 2 Algorithm for MAX VALUE (3, 2)-CSP.

MaxVal(G, w)

1. If, at any time, the domain of a variable becomes empty,
that branch can be pruned.

2. Apply the transformations in Lemma 2, keeping track of
eliminated variables.

3. If applicable, return the maximum result of the branches
described in Lemma 3 to 5

4. else, if applicable, return the maximum result of the
branches described in Lemma 6

5. else return2-SATw(G, w)

The input to Algorithm 2 is the microstructure graphG
and a weight functionw, and the algorithm returns an as-
signment with maximal weight. Note that in order to actu-
ally get a solution to the original problem, one has to a) keep
track of the variables eliminated by Lemma 2, and b) extract
them from the solution returned on line 4.

Theorem 2 MAX VALUE (3, 2)-CSP can be solved by a de-
terministic algorithm inO (1.7548n) time.

If we now note that Lemma 1 holds for MAX VALUE CSP
as well as MAX IND CSP, we can this time combine it with
Theorem 2 and get the following theorem:

Theorem 3 There exists an algorithm for solving
MAX VALUE (d, 2)-CSP which has a running time
of O ((0.5849d)n) and finds an optimal solution with
probability1 − e−1, wheree = 2.7182

As was the case for the MAX IND (d, 2)-CSP algorithm
earlier, the probability of success can be made arbitrarily
high by iterating the algorithm.

Conclusion
We have presented algorithms for two constraint satis-
faction optimisation problems; MAX IND CSP and MAX
VALUE CSP. The algorithms, while both based on the mi-
crostructure of the underlying constraint satisfaction prob-
lem, are quite different. The algorithm for MAX IND can
be seen as the “quick-and-dirty” approach, since little ef-
fort is spent on constructing the base algorithm—we sim-
ply apply an existing maximum independent set algorithm
to the microstructure—whereas the base algorithm for MAX
VALUE is a lot more intricate and utilises properties of the
microstructure a lot more efficiently than a general maxi-
mum independent set algorithm could. It would of course
be interesting to see how much improvement we would get
by careful case analysis for the MAX IND algorithm as well.

As was mentioned in the introduction, the algorithm for
MAX VALUE is more general than strictly necessary, and it
can be applied to any problem where, given a CSP instance
together with a weight function, the goal is to maximise the
sum of these weights. We have not yet fully explored the
possibilities here, but it is worth noting that our approach
is quite different from the standard branch-and-bound one

when it comes to, say, INTEGER PROGRAMMING. Con-
sequently, a future direction would be to compare this and
other approaches.

To summarise, we have shown that by exploiting the mi-
crostructure graph of a CSP we can either a) quickly develop
algorithms for optimisation problems (as we did for MAX
IND), or b) carefully analyse it in order to get more efficient
algorithms (as we did for MAX VALUE.) This would suggest
that the microstructure graphs deserve further study.

Acknowledgments
The authors would like to thank Peter Jonsson for helpful
comments.

Proofs
In order to keep the discussion flowing, we present the
proofs of the theorems in this paper here.
Corollary 1 (Proof). The microstructure graph containsdn
vertices, and using theO

(

1.2025|V (G)|
)

time maximum in-
dependent set algorithm by Robson (2001), we can find a
solution inO

(

1.2025dn
)

time.2

Lemma 1 (Proof).For each variable in(X, D, C), we know
it can be assigned at mostk out of thed possible values.
Thus, we can modify the constraints so that every variable
picks its value from the set{1, . . . k}. This transformation
can obviously be done in polynomial time, and the resulting
instance is an instance of MAX IND (k, l)-CSP, which can
be solved inO (cn) time.2
Theorem 1 (Proof).Combining Lemma 1 with the fact that
we can solve MAX IND (k, 2)-CSP inO

(

ckn
)

using mi-
crostructures, we can solve a MAX IND (d, 2)-CSP instance
where the variables are restricted to domains of sizek in
O

(

ckn
)

time.
Let Sk = {D1×D2× . . .×Dn ⊆ Dn s.t. |Di| = k, 1 ≤

i ≤ n}. For∆ ∈ Sk, defineΘ∆ to be the instanceΘ where
each variablexi has been restricted to take its value from the
setDi—i.e. for eachxi ∈ X we add the constraint(xi; Di).
No additional solution can be introduced by restricting the
domains in this way, and a solutionf which is optimal forΘ,
is still a solution (and optimal) to anyΘ∆ for whichf(xi) ∈
∆i, i ∈ {1, . . . , n}.

For a randomly chosen∆ ∈ Sk, the probability that an
optimal solution toΘ is still in Θ∆ is at least(k/d)n. It
follows that the probability of not finding an optimal solu-
tion in t iterations is at most(1 − (k/d)n)t < e−t(k/d)n

.
Therefore, by repeatedly selecting∆ ∈ Sk at random and
solving the induced MAX IND (k, 2)-CSP problem, we can
reduce the probability of error toe−1 in (d/k)n iterations.
The resulting algorithm, Algorithm 1 has a running time of
O

(

(d/k · ck)n
)

.
Now, let g(x) = cx/x. The functiong is convex and

assumes its minimum atx′ = (ln c)−1. Thus, for a givenc,
finding the minimum ofg(⌈x′⌉) andg(⌊x′⌋) determines the
best choice ofk.2
Lemma 2 (Proof). The transformation in Fig. 1 takes care
of the first case, removing one 2-variable (and therefore de-
creasing the size of the instance). For the second case, we

1+v1 w
1

+v2

w
2+v3

w

w
1

w
2

v1 v2

v3

Figure 1: The transformation done in Lemma 2. (Note that
vi, wj are theweightsof the vertices.)

can simply assign the maximal weight to the variable, leav-
ing us with a smaller instance.2

Lemma 3 (Proof).We branch on the two possible values of
x and propagate the chosen value to the neighbours ofx. In
one of the branches, the size will decrease by at least 3 and
in the other by at least 2.2

Lemma 4 (Proof). In one of the branches, we choosex =
xmax and propagate this value, decreasing the size by at least
3. In the other branch, choosingx 6= xmax implies that the
value of its exterior neighbour must be chosen in order to
force a non-maximal weight to be chosen inx. Therefore, in
this branch, the size decreases by at least 2.2

Lemma 5 (Proof). Choosingx = xmax decreases the size
of the instance by at least 5. In the other branch, we choose
x 6= xmax, turning a 3-variable into a 2-variable and thereby
decreasing the size by 1.2

Lemma 6 (Proof).Letx1 be a 3-variable andd1 its maximal
value, with neighboursx2 andx3 as in Fig. 2.

If x2 is a 2-variable andδ(x2) = (3, 0) (see Fig. 2a) then
we can let one of the branches bex1 = d1 and the other
x1 6= d1. This makesδ(x2) = (2, 0) in the latter branch,
andx2 can be removed by Lemma 2 which means we can
decrease the size by 2 in this branch, giving a work fac-
tor of λ(4, 2) < λ(4, 4, 4). Otherwise ifx3[d3] has only
three neighbours,x3 must be a 3-variable, which implies
that x3[d3] can not be maximally weighted. If this holds
for 0 or 1 of the neighbours ofx1 (Fig. 2b), we can branch
on x1 = d1, x3 = d3 and{x2 = d2, x3 6= d3}. In this
case, we decrease the size by 4 in each branch. If both of
x2[d2] andx3[d3] are of degree 3 (Fig. 2c) and it is not pos-
sible to choose anx1 without this property, then for every
3-variable remaining, the maximal weighted value can be
assigned without branching at all.2

Theorem 2 (Proof). We claim that Algorithm 2 correctly
solves MAX VALUE (3, 2)-CSP.

First we show the correctness of the algorithm. Lemma 2
does not remove any solutions to the problem, it merely re-
duces the number of vertices in the microstructure. Lemma 3

b)

d1

x1

x2

d2

x3

d3

c)

x2

x3

d1

d3

x1

d2

1

d2

x

a)

x2

x3

d1

d3

Figure 2: The 3 cases discussed in Lemma 6. (Note thatxi denotes a variable, whiledj denotes a value.)

branches on both possible values for the chosen variable,
while Lemmata 4 and 5 try all three possible assignments, as
is the case for Lemma 6. This, together with the proof of cor-
rectness of the2-SATw algorithm by Dahllöfet al. (2004),
shows the correctness of the algorithm.

Now, apart from the call to2-SATw, the highest work fac-
tor found in the algorithm isλ(3, 2) = λ(1, 5) ≈ 1.3247.
Recall that we measure the size ofΘ by m(Θ) = n2 + 2n3

which, for(3, 2)-CSP, is2n, wheren is the number of vari-
ables inΘ. If we can solve weighted 2-SAT inO (cn),
then the entire algorithm will run inO

(

max(1.3247, c)2n
)

.
Using the construction with weighted microstructures men-
tioned earlier, a weight functionw(xi, d) = wi · d, to-
gether with the algorithm for weighted 2-SAT by Dahllöf
et al. (2004), we getc ≈ 1.2561, and the result follows.2

Theorem 3 (Proof). Similar to the proof of Theorem 2.
For each∆ ∈ S3, we again defineΘ∆ to be the instance
Θ where each variablexi has been restricted to take its
value from the setDi, with |Di| = 3. Theorem 2 together
with Lemma 1 tells us that we can solve this instance in
O (1.7548n).

For a randomly chosen∆ ∈ S, the probability that an op-
timal solution toΘ is still in Θ∆ is at least(3/d)n. It follows
that the probability of not finding an optimal solution int it-
erations is at most(1 − (3/d)n)t < e−t(3/d)n

. Therefore,
by repeatedly selecting∆ ∈ S at random and solving the
induced MAX VALUE (3, 2)-CSP problem, we can reduce
the probability of error toe−1 in (d/3)n iterations. Conse-
quently, we get a running time ofO ((d/3)n · 1.7548n) ≈
O ((0.5849d)n).2

References
Angelsmark, O.; Jonsson, P.; and Thapper, J. 2004. Two
methods for constructing new CSP algorithms from old.
Unpublished manuscript.

Dahllöf, V.; Jonsson, P.; and Wahlström, M.
2004. Counting models for 2SAT and 3SAT formu-
lae. To appear inTheoretical Computer Science.
DOI:10.1016/j.tcs.2004.10.037.

Eppstein, D. 2001. Improved algorithms for 3-coloring, 3-
edge-coloring, and constraint satisfaction. InProceedings
of the Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA-2001), January 7-9, 2001, Washington,
DC, USA, 329–337. ACM/SIAM.
Feder, T., and Motwani, R. 2002. Worst-case time bounds
for coloring and satisfiability problems.Journal of Algo-
rithms45(2):192–201.
Garey, M. R., and Johnson, D. S. 1979.Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York: W.H. Freeman and Company.
Jeavons, P. 1998. On the algebraic structure of combina-
torial problems.Theoretical Computer Science200:185–
204.
Jégou, P. 1993. Decomposition of domains based on the
micro-structure of finite constraint-satisfaction problems.
In Proceedings of the 11th (US) National Conference on
Artificial Intelligence (AAAI-93), 731–736. Washington
DC, USA: American Association for Artificial Intelligence
(AAAI).
Jonsson, P., and Liberatore, P. 1999. On the complex-
ity of finding satisfiable subinstances in constraint satisfac-
tion. Technical Report TR99-038, Electronic Colloquium
on Computational Complexity.
Jonsson, P. 1998. Near-optimal nonapproximability results
for some NPO PB-complete problems.Information Pro-
cessing Letters68(5):249–253.
Kullmann, O. 1999. New methods for 3-SAT decision and
worst-case analysis.Theoretical Computer Science223(1–
2):1–72.
Kumar, V. 1992. Algorithms for constraint-satisfaction
problems: A survey.AI Magazine13(1):32–44.
Robson, M. 2001. Finding a maximum independent set
in timeO(2n/4). Technical report, LaBRI, Université Bor-
deaux I.

