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Planar maps

Planar map m = embedding on the sphere of a connected
planar graph,
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Planar maps

Planar map m = embedding on the sphere of a connected
planar graph, considered up to homeomorphisms

O

& Planar map = planar graph +

cyclic order on neighbours




Terminology on planar maps

Rooted planar map = map endowed with a marked oriented
edge (represented by an arrow)

Size |m| = number of edges

Corner (does not exist for graphs!) = space between two
consecutive edges around a vertex (trigonometric order)

Distance = minimum number of edges in-between
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Terminology on planar maps

d(u,v) =4

Rooted planar map = map endowed with a marked oriented
edge (represented by an arrow)

Size |m| = number of edges

Corner (does not exist for graphs!) = space between two
consecutive edges around a vertex (trigonometric order)

Distance = minimum number of edges in-between
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Families of maps

72-connected map = at least two vertices must be
removed to disconnect

— cut vertex => not
2-connected
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Families of maps

72-connected map = at least two vertices must be
removed to disconnect

— cut vertex => not
2-connected

Quadrangulation = map with all faces of degree 4 (= 4 sides
of edges border the face)

] N

Simple quadrangulation = no multiple edges

Triangulation = map with all faces of degree 3
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Enumeration of maps

| - 2. 3" 2n
Maps with n edges m, = (n+ D(n +2) < L >

2-connected maps - 2 <3n>
with n edges " (m+ D@+ 1)

Quadrangulations g = 2-3" <2n)

with n faces T i+ D +2) \n

2-connected o o <3n>

2n faces g

n

triangulations with =775 "y,

[Tutte 1963; Mullin 1965]
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Bijective study of maps

 Tutte’s bijection between maps and quadrangulations
[Tutte 1963];

« Cori-Vauquelin-Schaeffer bijection between
quadrangulations and labelled trees [cori, Vauquelin 1981;
Schaeffer 1998];

» Bijection between 2-connected maps and skew ternary
trees [Jacquard, Schaeffer 1998];

« Bouttier-Di Francesco-Guitter bijection between
oipartite Maps and mobiles [Bouttier, Di Francesco, Guitter 2004];

- Unified bijective scheme between maps and decorated
trees [Bernardi, Fusy 2012; Albenque, Poulalhon 2015]...

=> Very active domain Bonichon, Bousquet-Mélou, Chapuy, Fang, Miermont...
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Behaviour of a random quadrangulation

- Typical distance between two random vertices in a

quadrangulation of size n: ® (n

& distance profile converges [c
« Definition of the Brownian sp

1/4

nassaing, Schaeffer 2004],

nNere [Marckert, Mokkadem 2006]

» Scaling limit: Brownian sphere [Le Gall 2013; Miermont 2013].
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Behaviour of a random quadrangulation

- Typical distance between two random vertices in a

quadrangulation of size n: ® (n'"*)

& distance profile converges [Chassaing, Schaeffer 2004];

« Definition of the Brownian sphere [Marckert, Mokkadem 20061;
» Scaling limit: Brownian sphere [Le Gall 2013; Miermont 2013].

Universality of the Brownian sphere as scaling limit:

random triangulations & 2g-angulations [Le Gall 2013], general
maps [Bettinelli, Jacob, Miermont 20141, simple quadrangulations
and simple triangulations [Addario-Berry, Albenque 2017]

& results by Carrance, Curien, Fusy, Kortchemski, Lehéricy, Marzouk, Stufler
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Universality in enumeration of maps

th o od B 23" <2n>
Maps with n edges m, = n+ D+ \ n
2-connected maps - y) <3n>
with n edges " (m+DC2n+ D \n

Quadrangulations 5 . 3n o
with n faces = (n+ DH(n+2) < n >

2-connected
: : : 2" 3n
triangulations with ¢, =
m+1D2n+1) \ n

2n faces

[Tutte 1963; Mullin 1965]
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Universality in enumeration of maps

| 2.3 2n\  ~ k122
Maps with n edges m, = (n+ D(n +2) < L >
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Universality in enumeration of maps

. - 23" 2n ~ Kp—nn—5/2
Maps with n edges m, = STy < ) >
2-connected maps , 0 <3n> ~ kN
with n edges " (m+DC2n+ D \n
Quadrangulations 5. 3 b\~ kp S
with n faces T F D+ 2) < " >

2-connected

n - —n,,—5/2
triangulations with ¢, = - <3n> e
m+1)2n+1) \ n

2n faces
=> Universality phenomenon

[Tutte 1963; Mullin 1965] [Drmota, Noy, Yu 2022; Schaeffer 2023; Duchi Schaeffer 2024+]
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Background. Trees



Universality for tree families

(Rooted plane) tree = tree where children are ordered

Trees of size n Cat, =
n -+ 1

Comy TN
N

Ternary trees of size 3n
4 o+ 1
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Universality for tree families

(Rooted plane) tree = tree where children are ordered

| 2n
Trees of size n Cat, = ~ K[ =302
n+1 \n

. 1 3n —n,,—3/2
Ternary trees of size 3n ~ Kp n
2n+1 \ n

1/72



Behaviour of arandom tree

. Diameter & height of a uniform binary tree of size n: @(nl/z)

[Flajolet, Odlyzko 1982]
» Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006]

Brownian Tree I,
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Escaping universality via blocks

2-c map = at least two vertices must be removed to disconnect
Block = maximal (for inclusion) 2-connected submap
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Outline

Phase transitions of block-weighted planar maps

. Model
|. Block tree of a map and its applications

Il. Scaling limits
— W. Fleurat & Z. S. (Electronic Journal of Probability, 2024)

V. Extension to other families of maps
— 7. S. (Eurocomb’23)

V. Extension to tree-rooted maps
— M. Albenque, E. Fusy & Z. S. (AofA24)

VI. Perspectives
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l. Model




Model

Fix u > 0, define #blocks(m)
o U m € {maps of size n},
n,M(m) o 7 Z. .. = normalisation.
n,u ’

[Bonzom, Delepouve, Rivasseau 2015; Stufler 2020]
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Model

Fix u > 0, define #blocks(m)
o U m € {maps of size n},
n,M(m) o 7 Z. .. = normalisation.
n,u ’

[Bonzom, Delepouve, Rivasseau 2015; Stufler 2020]

- u = 1: uniform distribution on maps of size n;
- u — 0: minimising the number of blocks (=2-connected maps);

« 4 — 00: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour whenn — co0?

16/72






n ~ 55000






s g

B,

n =~ 75000






Phase transition

Theorem [Fleurat, S. 24] Model exhibits a phase transition
atu = 9/5. When n — oo:

« Subcritical phase u < 9/5: “general map phase” one
macroscopic block;

» Critical phase u = 9/5: a few large blocks;

« Supercritical phase u > 9/3: “tree phase” only small
blocks.

We obtain explicit results on enumeration, limit laws for the
size of the largest blocks and scaling limits in each case.
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ForM, < P, ,

u<9/5

Results

u=9/5

u>9/5

Enumeration

Size of

- the largest
block

- the second
one

Scaling limit of
M

n
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A focus on the uniform case, i.e. u = 1

Studied by

- Analytic combinatorics methods [Banderier, Flajolet,
Schaeffer, Soria 2001];

« Probability methods [aAddario-Berry 2019];

=> Show condensation phenomenon: a large block
concentrates a macroscopic part of the mass.

2472



ll. Block tree of amap
and its applications




Decomposition of a map into blocks (1/2)

[Tutte 1963]
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Decomposition of a map into blocks (1/2)
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Decomposition of a map into blocks (1/2)

D — /ﬂ\\f\\

M) = BzM*(2))

GS of maps
GS of 2-connected maps —

[Tutte 1963]



Decomposition of a map into blocks (1/2)

D — /ﬂ\\f\\

M) = BzM*(2))

GS of maps
GS of 2-connected maps —

For M(z, u) = Z ZImly #blocks(m)

me/
M(z,u) = uB(zM?*(z,u)) + 1 — u

[ Tutte 1963]
26/72



Results
ForM, < P, , u < 9/5 u=9/5 u>9/5

—Ny —5/2 —y —5/3 —Ny —3/2

Enumeration p(u) p(u)

[Bonzom 2016]

p(u)

Size of

- the largest
block

- the second
one

Scaling limit of
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Decomposition of a map into blocks (2/2)

= Underlying block tree structure.

[Tutte 1963]
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Decomposition of a map into blocks (2/2)
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Decomposition of a map into blocks (2/2)

= Underlying block tree structure.

[Tutte 1963]



Block tree: properties T

. //\\\\
AN '/\O ‘ \

block of m represented by vin T

- m is entirely determined by T, and (B veT,)
+ Internal node (with k children) of T,,, <> block of m of size k/2

Iy, gives the block sizes of arandom map M,
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Block trees are BGW-trees

For u probability law on N, x-Bienayme-Galton-Watson
(BGW) tree: random tree where the number of children of

each node is given by u independently.

Theorem [Fleurat, S. 24] u>0
tM, <> P, ,andy € (0,pg], then 7}, has the law of a BGW

tree of reproduction law u”"" conditioned to be of size 2n,
with

by utio

uB(y)+ 1 —u

prt(12k}) =

Generalisation of [Addario-Berry 2019]
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Conditioning the BGW trees

When is the probability of the tree having size 2n not

exponentially small, cf can one have y s.t. E(u”*") = 17
(critical BGW)

1
E(u>) = 1 =
W=l 2yB'(y) — B(y) + 1 7

covers [9/5, + co) when y covers (0,pz = 4/27]

=> E(u”") = 1 is possible iff u > 9/5
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Phase transition for y(u)

Sety = y(u) in the following way:
11 e =9/5

4/27
0.14

0.12-

0.10-

y 4

0.08~

0.06-

|y(w) = 4/27
0.04-

y() =ys.t. Eu"") =1

| Subcritical
0.02+ BGW

Critical BGW

L L] v | | v L] L | | v | | v L] L |
0 1 9/ 34 4 5 6 7
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Largest degrees of a BGW tree

u < 9/5 u=9/5 u>9/5
BGW tree subcritical critical
WOH((Dh)) ~ ¢ k=52 ~ ¢ k=52 N Cuﬂfk_si .
Variance 00 00 < 00
/ Largest degree belhaves as
Condensation phenomenon maximum of independent

variables with geometric tail

[Jonsson, Stefansson 2011; Janson 2012]
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Size L, , of the k-th largest block

ForM, < P, , u<9/5 u=9/3 u>9/3
Ln,l N (1 _ [E(,u4/27’“))n
[Stufler 2020] In(n)  5In(n(n))

+ O(1)

®(n2/3) 21n (%) 41n (;‘Ty)

Ln,2 (n2/3)

[Stufler 2020]

1\Size of the largest block X n™!




Results

ForM, < P, , u < 9/5 u=9/5 u>9/5

Enumeration p(u)""'n=>" p(u)"n >3 p(u)'n =3/
[Bonzom 2016]

Size of a : . ")

- thelargest |~ (1 —E@™"")n In()  5ln(in()
block ®(n2/3) 21n<27y) 41n<2‘7‘y) .

- the second O(n*"°)
one [Stufler 2020]

Scaling limit of
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Results

ForM, < P, , u < 9/5 u=9/5 u>9/5

Enumeration p(u)"'n > p(u)~"'n=>"3 p(u)'n =3/
[Bonzom 2016]
Size of
4127

- thelargest |~ —E@™"")n () 5In(ln(m))

plock - O™ (] (e "
/3 27y 27y

- the second O®n")

one / [Stufler 2020]

Ordered atoms of a Poisson Point Process

Scaling limit of
M

n
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lll. Scaling limits



Scaling limits

Convergence of the whole object considered as a (compact)
metric space (with the graph distance), after renormalisation.

dlu,v) =4

Mn = ”:Dn,u
What is the limit of the sequence of metric spaces (M,,, d/n’)), N ?

(Convergence for Gromov-Hausdorff-Prokhorov topology)
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Scaling limit of supercritical and critical maps

Lemma ForM, < P, ,

- If u > 9/5,
C(u) (d) @ o Brownian tree
2172 T, = 7
o If u = 9/51
¢ d) o
m M= T Stable tree

Proof Known scaling limits of critical BGW trees
« with finite variance [Aldous 1993, Le Gall 2006];
« infinite variance and polynomial tails [Duquesne 2003].
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Scaling limit of supercritical and critical maps

Lemma ForM, < P, ,

e Ifu>9/5,

e Ifu=29/5,

Brownian tree

Stable tree

Brownian Tree I,

38/72
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Scaling limit of supercritical and critical maps

Theorem For M, < P, ,

+ [stufler 2020] If u > 9/5,

c(u) d) C(u)

[Fleurat, S. 241 If u = 9/5,
C . @) o

L/
M 3/2
13 M "

Brownian Tree 7, 39/72 Stable Tree 7 3,



Scaling limit of supercritical and critical maps

Theorem For M, < P, ,

+ [stufler 2020] If u > 9/5,

cw), . @ - C(u)
T,, — I- — Y9
172 = My 2 pli2 2
* [Fleurat, S. 24] If u = 9/5
C (d) C (d)
M, — T3 —M, = T3

Proof Distances in M, behave like distances in T},

n
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Supercritical and critical cases

Goal = show that distances in M, behave like distances in T, .

Let k = E("diameter" bipointed block). By a “law of large

numbers -type argument Difficult for the

dMn(el, 62) il KdTM (61, 62) . critical case => large
" deviation estimates

40/72




Supercritical and critical cases

Goal = show that distances in M, behave like distances in T, .

Let k = E("diameter" bipointed block). By a “law of large
numbers”-type argument IS

dMn(el, 62) il KdTM (61, 62) . critical case => large
" deviation estimates

40/72







s g

B,

n =~ 75000






Scaling limits of subcritical maps

Theorem [Fleurat, S. 24] It u < 9/5, for M, < P, , and
denoting B(M,) its largest block:

C(u) 1 (d)

Brownian Sphere &,

So, if cn_1/4B cS’ then
C(u
(1) v @

.y :‘ \:’b:‘f‘
,; ' ' 2 3\ Y % 3% AN Q) s, y)
W SR ~ SR
A\ ¥ e STl N
‘ > / 4 B ,S‘«VS‘Q‘ \ > (g’;’ RS > p e ;/
n o s e ‘;f 3 = {/‘ . \ ot ).
= Ly KR 3 ! / L3114 & )
AR ¥ A 7 b St ot RIS
P A A i AN f
o “ y 2 S ¥
2 L ! o
0 T

which is assumed for 2-c maps.

See [Addario-Berry, Wen 2019] for a similar result and method.
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Subcritical case

Decorations = groups of smaller blocks

Large block of size
-~ (1 . [E(,u4/27’”))n

Diameter of a decoration < blocks to cross X max diameter of blocks
< diam(Ty; ) X (Om*P)V40 = diam(T,, ) X O(n/6+9)

TMn is a subcritical ~ 0(71 1/6+25) _ 0(n 1/4) \
BGW tree

[Chapuy Fusy Giménez Noy 2015]
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Subcritical case

Decorations = groups of smaller blocks

Large block of size
~ (1 = E@")n

- . .
Diameters of decorations = o(n'/4).

The scaling limit of M (rescaled by n is the scaling limit of
uniform blocks!
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ForM, < P, ,

Results

u<9/5

u=9/5

u>9/5

Enumeration
[Bonzom 2016]

p(u)—nn—S/Z

p(u)—nn—5/3

p(u)—nn—3/2

Size of

- the largest
block

- the second
one

~ (1 = E@*?7)n

@(n2/3)

[Stufler 2020]

@(n2/3)

In(n) B 5 In(In(n))

+ O(1)

4 4
o (2—7y) 41n <2_7y)

Scaling limit of

C(u)
174

(d)

—

Ml’l

€

Assuming the convergence of 2-
connected maps towards the
Brownian sphere

48/72

Cu) . ()

—

M, — 7,

[Stufler 2020]
74 e
§ ¥ /"L‘ T
g ! Y [tA” [}
] h Y e K%,
p Y Bt 1 & e e ¢
Lol WY HC TN
7 \g\\ et S ! g ‘*)52;\':
i VAR L SO PR {X
Y /' 1: t’i\ \- 7"4;;{7‘[ f { r’;‘v -( \\
ﬁ »a(f:ﬁ'} 7;;\‘\}\ ‘;ﬁ\;\ :\ *- \&g
N x Lo Y
X3 2 S
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Interlude.
Quadrangulations




Block-weighted quadrangulations

Quadrangulation = map with all faces of degree 4.
Simple quadrangulation = no multiple edges.

=> Same enumeration (Tutte’s bijection), metric properties
better known
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Scaling limits of subcritical maps

Theorem [Fleurat, S. 24] If u < 9/5,for O, < P, , a
quadrangulation and denoting B(Q,) its largest block

C
n(lz) (0,.B(0,)) Y (8,.8,)

Proof
« Previous theorem:

 Scaling limit of uniform

simple quad. rescaled by n'’*
= Brownian sphere [Addario-Berry
Albenque 2017].

51/72 Brownian Sphere &,



V. Extension to other
families of maps




Extension to other models

TABLE 3. Composition schemas, of the form M = C o H + D,

except the last one where M = (1 + M) x (C o H).

maps, M (z) cores, C(z) submaps, H(z) coreless, D(z)
all, M (2) Z’:lﬁ)goe;fz:é My(z)  z/(1—2(1+M))?  z(1+ M)
loopless Ms(z) simple M3(z) z2(14+ M) —

all, M1(z) nonsep., M4 (z2) z(1+ M)? —
nonsep. My(z) — z nonsep. simple M5(z) 2(1+ M) -
nonsep. Mus(z)/z —2 3-connected Ms(2) M z+2M?/(1+ M)
bipartite, B1(z) bip. simple, B2(z) 2(1+ M) -
bipartite, Bi(z) bip. bridgeless, B3(z) z/(1 —z(1+ M))? z(1+ M)?
bipartite, B1(z) bip. nonsep., B4(z) z(1+4 M)? B

bip. nonsep., B4(z)  bip. ns. smpl, Bs(2) z(1+ M) .
singular tri., 71 (2) triang., z + 2712(2) z(1+ M)° —
triangulations, T»>(z) irreducible tri., T3(2) z(1+4 M)? -

[Banderier, Flajolet, Schaeffer, Soria 2001]
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Statement of the results

Theorem [S. 23] Each model of the preceding table without
coreless maps exhibits a phase transition at some explicit u,.

When n — o0:

- Subcritical phase u < u,: “general map phase” one
macroscopic block;

- Critical phase u = u,: a few large blocks;

- Supercritical phase u > u: “tree phase” only small
blocks.

We obtain explicit results on enumeration and limit laws for
the size of the largest blocks in each case.
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V. Extension to tree-
rooted maps




Escaping universality: decorated maps

Theoretical physics point of view:
- Undecorated maps: “pure gravity” case;

- Decorated maps: enables to study models in the
presence of matter => new asymptotic behaviours & new
universality classes!
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Tree-rooted maps

= (rooted planar) maps endowed with a spanning tree.

+
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Tree-rooted maps

= (rooted planar) maps endowed with a spanning tree.

+

Combinatorics well understood: Mullin’s bijection

[z"]M(z) = Cat,Cat, 4
[Mullin 1967; Bernardi 2006]
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Model

Phase transition for tree-rooted maps => block-weighting

Fix u > 0, define

u#blacks(m) m € {tree-rooted
Pnu(m) — ~ maps of size n},
n,u /.= normalisation.

n,u

- u = 1: uniform distribution on tree-rooted maps of size n;
- u — 0: 2-connected tree-rooted maps;
« U — 00: tree-rooted trees = trees!

Given u, asymptotic behaviour whenn — co0?

[Stufler 2020]
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Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a
decomposition of tree-rooted maps into tree-rooted blocks.

\\\
/P\J\ ‘\

M(z) = B(zM*(2))

/—j — GS of tree-rooted maps
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Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a
decomposition of tree-rooted maps into tree-rooted blocks.

\\\
/P\J\ ‘\

M(z,u) = uB(zMz(z, u)+1—u

/—j — GS of tree-rooted maps

59/72

GS of 2-connected tree-rooted maps



So everything should be easy, right?
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Tree-rooted maps are not so easy

M(Z) — Z Catncatn+1zn SO

n>0
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Tree-rooted maps are not so easy

M(Z) — Z Catncatn+1zn SO

n>0

4
. [ZIM(2) ~ — X 16" X n~~ so M is not algebraic...
T
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Tree-rooted maps are not so easy

M(Z) — Z Catncatn+1zn SO

n>0 P (z, M(z)) =0
4 /"
. [ZIM(2) ~ — X 16" X n~~ so M is not algebraic...
T
1 64

16 3
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o M is still D-finite

Tree-rooted maps are not so easy

M(Z) — Z Catncatn+lzn SO

n>0 P (z, M(z)) =0
4 /"
. [2"IM(2) ~ — X 16" X n~ ' so M is not algebraic...
T
1 64 D-finite
. = —, M =8 ~ 1.2
P 16 (P11) .

Algebraic

0%\ oM
Po(z)ﬁ(z) + P, (Z)a_z(Z) + Py(2)M(z) + P3(z) =0
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o M is still D-finite

Tree-rooted maps are not so easy

M(Z) — Z Catncatn+lzn SO

n>0 P (z, M(z)) =0
4 /"
. [2"IM(2) ~ — X 16" X n~ ' so M is not algebraic...
T
1 64 D-finite
. = —, M =8 ~ 1.2
P 16 (P11) .

Algebraic

, 0*M oM
27(1 —167)— () +4z(1 — 12— () + 2(1 —62)M(z) —2 =0
072 0z
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2-connected tree-rooted maps are tricky

Using M(z) = B(zM?*(z)) and the properties of M/, we show
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2-connected tree-rooted maps are tricky

Using M(z) = B(zM?*(z)) and the properties of M/, we show

, 437 — 8)*
e Pp=p,M(p,) = > ~ 0.091
I

Is not algebraic so B is not D-finite
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2-connected tree-rooted maps are tricky

Using M(z) = B(zM?*(z)) and the properties of M/, we show

, 437 — 8)? D-algebraic
e P =pi,M(p,) = > ~ 0.091
74

Is not algebraic so B is not D-finite

D-finite

Algebraic

« Bis D-algebraic
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2-connected tree-rooted maps are tricky

Using M(z) = B(zM?*(z)) and the properties of M/, we show

, 437 — 8)? D-algebraic
e P =pi,M(p,) = > ~ 0.091
74

Is not algebraic so B is not D-finite

D-finite

Algebraic

« Bis D-algebraic

P az—B()()—B()B() =0
ayzyaayy’ Y)Yy | = V.
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2-connected tree-rooted maps are tricky

Using M(z) = B(zM?*(z)) and the properties of M/, we show

, 437 — 8)? D-algebraic
e P =pi,M(p,) = > ~ 0.091
/4

Is not algebraic so B is not D-finite

D-finite

Algebraic
~ (.22
\
Theorem [Albenque, Fusy, S. 24]
[ 15) ~ I L s
~ n--.
YA o~
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Phase transition

Theorem [Albenque, Fusy, S. 24] Model exhibits a phase

N (4 — )
transition at u, = 07 — 8122 — 517 ~ 3.02.
w—8lm~ —

When n — oo:

- Subcritical phase u < 11,: “general tree-rooted map
nhase” one macroscopic block;

- Critical phase u = 1,: a few large blocks;

- Supercritical phase u > 1,: “tree phase” only small
blocks.

63/72




For (N

n n,u

u <

Results

u =

u >

Enumeration

Size of

- the largest
block

- the second
one

Scaling limit of

n
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For (N

n n,u

Results

u <

U =

u >

Enumeration

(u)—n -3

(u)—nn —3/2 ln(n)_ 1/2

(u)—n —3/2

Size of

- the largest
block

- the second
one

Scaling limit of

n
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Results

Enumeration (u)"'n=> ()"~ In(n)~ 12 ()"~
Size of ~ (1 — E(/")n
- the largest o1 Sy |
n p
- Efizcslécond O(n'? %) ()
one

Scaling limit of

n
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Results

For M, & n u < u= u >
Enumeration (u)"n=> ()"~ In(n)~ 12 ()"~
-Siztfeu: ]Icargest ~ (1= k@ )n - o
: Efizcsl;cond On'?) @)f(n ) ) ()

one

A

\

/

Ordered atoms of a Poisson Point Process

Scaling limit of

n
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Results

Enumeration (u)"n=> ()"~ In(n)~ 12 ()"~
Size of ~ (1 — E(/")n
- the largest 0 oy 3o
blOCk @(l’l ) ln< p ) ln< p )
- the second O(n'?) @ m
one
( ) [Stufler 2020]
In(n)'? _ 7} .
nl/2 n = e n1/2 n" L/e
Scaling limit of )

n

v
b=
g
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Results

Enumeration (u)_”n_3 (u)—nn—3/2 ln(n)—1/2 (u)—nn—3/2
Size of ~ (1 — E(/")n
- the largest o ) 3ndny
block O ') (2 )— N +0(1)
- the second O(n'?) @ m
one
[Stufler 2020]
In(n)""? > (u) @
nl/2 " € pli2 m
Scaling limit of )
4y
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VI. Perspectives



Extensions to more involved decompositions

Block-weighted

« Maps into loopless blocks;

» (Bipartite) maps into (bipartite) bridgeless blocks;
« 2-connected maps into 3-connected blocks;

- Simple quadrangulations into irreducible blocks...
Require new methods, same results expected
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Extensions to more involved decompositions

Block-weighted

- Tree-rooted quadrangulations;

« Forested maps;

- Maps endowed with a Ising model or a Potts model;

« 2-oriented quadrangulations decomposed into
irreducible blocks;

» 3-oriented triangulations decomposed into irreducible
blocks...
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Critical window?

Phase transition very sharp => what if u = 9/5 *+ e(n)?
Block size results still hold
e ifu, =9/5 —¢e(n), e3n > oo;
e Ifu, =9/5+ e(n), e3n > o:
L,, ~2.7648 ¢*In(e’n)

(analogous to [tuczak 1990]'s result for Erdos-Rényi graphs!);

Results exist for scaling limits in ER graphs [Addario-Berry, Broutin,
Goldschmidt 2010].

Is there a critical window? If so, what is its width?
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Thank you!



