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Planar map = planar graph + 
cyclic order on neighbours 

Planar map  = embedding on the sphere of a connected 
planar graph,

𝔪

=

≠

=

Planar maps

considered up to homeomorphisms
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Terminology on planar maps

• Rooted planar map = map endowed with a marked oriented 
edge (represented by an arrow) 

• Size  = number of edges 
• Corner (does not exist for graphs!) = space between two 

consecutive edges around a vertex (trigonometric order) 
• Distance = minimum number of edges in-between

|𝔪 |
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Terminology on planar maps

• Rooted planar map = map endowed with a marked oriented 
edge (represented by an arrow) 

• Size  = number of edges 
• Corner (does not exist for graphs!) = space between two 

consecutive edges around a vertex (trigonometric order) 
• Distance = minimum number of edges in-between

|𝔪 |

u

v

d(u, v) = 4
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Families of maps
2-connected map = at least two vertices must be 
removed to disconnect

→ cut vertex => not 
2-connected
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Families of maps

Quadrangulation = map with all faces of degree 4 (= 4 sides 
of edges border the face)

2-connected map = at least two vertices must be 
removed to disconnect

Simple quadrangulation = no multiple edges 
Triangulation = map with all faces of degree 3

→ cut vertex => not 
2-connected
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Enumeration of maps

mn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )Maps with  edgesn

2-connected maps 
with  edgesn

Quadrangulations 
with  facesn

2-connected 
triangulations with 

 faces2n
tn = 2n

(n + 1)(2n + 1) (3n
n )

bn = 2
(n + 1)(2n + 1) (3n

n )

qn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )

 [Tutte 1963; Mullin 1965]
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Bijective study of maps
• Tutte’s bijection between maps and quadrangulations 

[Tutte 1963]; 
• Cori–Vauquelin–Schaeffer bijection between 

quadrangulations and labelled trees [Cori, Vauquelin 1981; 

Schaeffer 1998]; 
• Bijection between 2-connected maps and skew ternary 

trees [Jacquard, Schaeffer 1998]; 
• Bouttier–Di Francesco–Guitter bijection between 

bipartite maps and mobiles [Bouttier, Di Francesco, Guitter 2004]; 
• Unified bijective scheme between maps and decorated 

trees [Bernardi, Fusy 2012; Albenque, Poulalhon 2015]…

=> Very active domain Bonichon, Bousquet-Mélou, Chapuy, Fang, Miermont…
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Behaviour of a random quadrangulation
• Typical distance between two random vertices in a 

quadrangulation of size :  

& distance profile converges [Chassaing, Schaeffer 2004]; 
• Definition of the Brownian sphere [Marckert, Mokkadem 2006]; 

• Scaling limit: Brownian sphere [Le Gall 2013; Miermont 2013].

n Θ (n1/4)
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Behaviour of a random quadrangulation
• Typical distance between two random vertices in a 

quadrangulation of size :  

& distance profile converges [Chassaing, Schaeffer 2004]; 
• Definition of the Brownian sphere [Marckert, Mokkadem 2006]; 

• Scaling limit: Brownian sphere [Le Gall 2013; Miermont 2013].

n Θ (n1/4)

Universality of the Brownian sphere as scaling limit: 
random triangulations & -angulations [Le Gall 2013], general 
maps [Bettinelli, Jacob, Miermont 2014], simple quadrangulations  
and simple triangulations [Addario-Berry, Albenque 2017] 

& results by Carrance, Curien, Fusy, Kortchemski, Lehéricy, Marzouk, Stufler

2q
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Universality in enumeration of maps
Maps with  edgesn

2-connected maps 
with  edgesn

Quadrangulations 
with  facesn

2-connected 
triangulations with 

 faces2n
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mn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )

tn = 2n

(n + 1)(2n + 1) (3n
n )

bn = 2
(n + 1)(2n + 1) (3n

n )

qn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )



9 /72

Universality in enumeration of maps
∼ 2

π
12nn−5/2

∼ 2
π

12nn−5/2

∼ 2 3
27 π ( 27

4 )
n

n−5/2

∼ 3
4 π ( 27

2 )
n

n−5/2

Maps with  edgesn

2-connected maps 
with  edgesn

Quadrangulations 
with  facesn

2-connected 
triangulations with 

 faces2n

 [Tutte 1963; Mullin 1965]

mn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )

tn = 2n

(n + 1)(2n + 1) (3n
n )

bn = 2
(n + 1)(2n + 1) (3n

n )

qn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )



9 /72

Universality in enumeration of maps
∼ 2

π
12nn−5/2

∼ 2
π

12nn−5/2

∼ 2 3
27 π ( 27

4 )
n

n−5/2

∼ 3
4 π ( 27

2 )
n

n−5/2

Maps with  edgesn

2-connected maps 
with  edgesn

Quadrangulations 
with  facesn

2-connected 
triangulations with 

 faces2n

 [Tutte 1963; Mullin 1965]

mn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )

tn = 2n

(n + 1)(2n + 1) (3n
n )

bn = 2
(n + 1)(2n + 1) (3n

n )

qn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )



9 /72

Universality in enumeration of maps
∼ κ12nn−5/2

∼ κ12nn−5/2

∼ κ ( 27
4 )

n

n−5/2

∼ κ ( 27
2 )

n

n−5/2

Maps with  edgesn

2-connected maps 
with  edgesn

Quadrangulations 
with  facesn

2-connected 
triangulations with 

 faces2n

 [Tutte 1963; Mullin 1965]

mn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )

tn = 2n

(n + 1)(2n + 1) (3n
n )

bn = 2
(n + 1)(2n + 1) (3n

n )

qn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )



9 /72

Universality in enumeration of maps
∼ κ12nn−5/2

∼ κ12nn−5/2

∼ κ ( 27
4 )

n

n−5/2

∼ κ ( 27
2 )

n

n−5/2

Maps with  edgesn

2-connected maps 
with  edgesn

Quadrangulations 
with  facesn

2-connected 
triangulations with 

 faces2n

 [Tutte 1963; Mullin 1965]

mn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )

tn = 2n

(n + 1)(2n + 1) (3n
n )

bn = 2
(n + 1)(2n + 1) (3n

n )

qn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )



9 /72

Universality in enumeration of maps

∼ κρ−nn−5/2

∼ κρ−nn−5/2

∼ κρ−nn−5/2

∼ κρ−nn−5/2

=> Universality phenomenon 

Maps with  edgesn

2-connected maps 
with  edgesn

Quadrangulations 
with  facesn

2-connected 
triangulations with 

 faces2n

 [Tutte 1963; Mullin 1965]

mn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )

tn = 2n

(n + 1)(2n + 1) (3n
n )

bn = 2
(n + 1)(2n + 1) (3n

n )

qn = 2 ⋅ 3n

(n + 1)(n + 2) (2n
n )

[Drmota, Noy, Yu 2022; Schaeffer 2023; Duchi Schaeffer 2024+]
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Background. Trees

10
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Universality for tree families

Trees of size n

Ternary trees of size 3n
1

2n + 1 (3n
n )

Catn = 1
n + 1 (2n

n )

(Rooted plane) tree = tree where children are ordered
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Universality for tree families

Trees of size n

Ternary trees of size 3n
1

2n + 1 (3n
n )

Catn = 1
n + 1 (2n

n )

(Rooted plane) tree = tree where children are ordered

∼ κρ−nn−3/2

∼ κρ−nn−3/2
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Behaviour of a random tree
• Diameter & height of a uniform binary tree of size :  

[Flajolet, Odlyzko 1982] 
• Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006]

n Θ(n1/2)

Brownian Tree 𝒯2
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Escaping universality via blocks
2-c map = at least two vertices must be removed to disconnect 
Block = maximal (for inclusion) 2-connected submap



14/72

Phase transitions of block-weighted planar maps
Outline

I. Model 
II. Block tree of a map and its applications 
III. Scaling limits 
→ W. Fleurat & Z. S. (Electronic Journal of Probability, 2024) 

IV. Extension to other families of maps 
→ Z. S. (Eurocomb’23) 

V. Extension to tree-rooted maps 
→ M. Albenque, É. Fusy & Z. S. (AofA’24) 

VI. Perspectives
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I. Model

15
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{maps of size }, 

normalisation. 

𝔪 ∈ n
Zn,u =

[Bonzom, Delepouve, Rivasseau 2015; Stufler 2020]

Fix , defineu > 0

Model

ℙn,u(𝔪) = u#blocks(𝔪)

Zn,u
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{maps of size }, 

normalisation. 

𝔪 ∈ n
Zn,u =

• : uniform distribution on maps of size ; 

• : minimising the number of blocks (=2-connected maps); 

• : maximising the number of blocks (= trees!).

u = 1 n
u → 0
u → ∞

Given , asymptotic behaviour when ?u n → ∞

[Bonzom, Delepouve, Rivasseau 2015; Stufler 2020]

Fix , defineu > 0

Model

ℙn,u(𝔪) = u#blocks(𝔪)

Zn,u
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Subcritical case u = 1

n ≈ 55 000
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(Less) subcritical case u = 8/5

n ≈ 55 000
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Critical case u = 9/5

n ≈ 80 000
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Supercritical case u = 5/2

n ≈ 75 000
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(More) supercritical case u = 5

n ≈ 50 000
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Phase transition

Theorem [Fleurat, S. 24] Model exhibits a phase transition 
at . When : 

• Subcritical phase : “general map phase” one 
macroscopic block; 

• Critical phase : a few large blocks; 

• Supercritical phase : “tree phase” only small 
blocks. 

We obtain explicit results on enumeration, limit laws for the 
size of the largest blocks and scaling limits in each case.

u = 9/5 n → ∞
u < 9/5

u = 9/5
u > 9/5
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u < 9/5 u = 9/5 u > 9/5For Mn ↪ ℙn,u

Enumeration

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn

Results
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A focus on the uniform case, i.e. u = 1
Studied by 
• Analytic combinatorics methods [Banderier, Flajolet, 

Schaeffer, Soria 2001]; 
• Probability methods [Addario-Berry 2019]; 
=> Show condensation phenomenon: a large block 
concentrates a macroscopic part of the mass.
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II. Block tree of a map 
and its applications

25
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1
2

34

5
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GS of 2-connected maps

M(z) = B(zM2(z))
GS of maps

[Tutte 1963]

Decomposition of a map into blocks (1/2)

1 2

34

56
7

8
9 10



26/72

 For M(z, u) = ∑
𝔪∈ℳ

z|𝔪|u#blocks(𝔪)

1
2

34

5
6

7

8
9 10

GS of 2-connected maps

M(z) = B(zM2(z))
GS of maps

[Tutte 1963]

Decomposition of a map into blocks (1/2)

1 2

34

56
7

8
9 10

M(z, u) = uB(zM2(z, u)) + 1 − u
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u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3 ρ(u)−nn−3/2Enumeration
[Bonzom 2016]

Size of 
- the largest 

block 
- the second 

one

Results
For Mn ↪ ℙn,u

Scaling limit of 
Mn
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⇒ Underlying block tree structure.

Decomposition of a map into blocks (2/2)

[Tutte 1963]
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1
2

34

5
6

7

8
9 10

1
2

3

4

1
2 1 2

1

2

⇒ Underlying block tree structure.

𝔪
T𝔪

Decomposition of a map into blocks (2/2)

[Tutte 1963]
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•  is entirely determined by  and  
• Internal node (with  children) of   block of  of size 

𝔪 T𝔪 (𝔟v, v ∈ T𝔪)
k T𝔪 ↔ 𝔪 k/2

 gives the block sizes of a random map TMn
Mn

𝔪 T𝔪
Block tree: properties

block of  represented by  in 𝔪 v T𝔪
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Theorem [Fleurat, S. 24] 

If  and , then  has the law of a BGW 

tree of reproduction law  conditioned to be of size , 
with  

Mn ↪ ℙn,u y ∈ (0,ρB] TMn

μy,u 2n

μy,u({2k}) = bkyku1k≠0

uB(y) + 1 − u

u > 0

Block trees are BGW-trees
For  probability law on , -Bienaymé-Galton-Watson 
(BGW) tree: random tree where the number of children of 
each node is given by  independently.

μ ℕ μ

μ

Generalisation of [Addario-Berry 2019] 
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Conditioning the BGW trees

When is the probability of the tree having size  not 
exponentially small, cf can one have  s.t. ? 
(critical BGW)

2n
y 𝔼(μy,u) = 1

covers  when  covers [9/5, + ∞) y (0,ρB = 4/27]

𝔼(μy,u) = 1 ⇔ u = 1
2yB′ (y) − B(y) + 1

=>  is possible iff 𝔼(μy,u) = 1 u ≥ 9/5



u

y

9/5

4/27

Critical BGW
Subcritical 

BGW

y(u) = 4/27 y(u) = y s.t. 𝔼(μy,u) = 1

uC = 9/5

32/72

Phase transition for  y(u)
Set  in the following way:y = y(u)



BGW tree subcritical critical

Variance

33/72

u < 9/5 u = 9/5 u > 9/5

∼ cuk−5/2μy(u),u({2k}) ∼ cuπk
uk−5/2

∞ < ∞

Condensation phenomenon
Largest degree behaves as 
maximum of independent 
variables with geometric tail

∼ cuk−5/2

∞

πu < 1

Largest degrees of a BGW tree

[Jonsson, Stefánsson 2011; Janson 2012]
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u < 9/5 u = 9/5 u > 9/5For Mn ↪ ℙn,u

ln(n)
2 ln ( 4

27y )
− 5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)
∼ (1 − 𝔼(μ4/27,u))n

Θ(n2/3)
Θ(n2/3)Ln,2

Ln,1
[Stufler 2020]

Size of the largest block × n−1
[Stufler 2020]

Size  of the -th largest blockLn,k k
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ln(n)
2 ln ( 4

27y )
− 5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3 ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

∼ (1 − 𝔼(μ4/27,u))n
Θ(n2/3)

Θ(n2/3)
[Stufler 2020]

[Bonzom 2016]

Results
For Mn ↪ ℙn,u

Scaling limit of 
Mn
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ln(n)
2 ln ( 4

27y )
− 5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3 ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

∼ (1 − 𝔼(μ4/27,u))n
Θ(n2/3)

Θ(n2/3)
[Stufler 2020]

[Bonzom 2016]

Results

Ordered atoms of a Poisson Point Process

For Mn ↪ ℙn,u

Scaling limit of 
Mn
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III. Scaling limits

36
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What is the limit of the sequence of metric spaces  ?((Mn, d/nγ))n∈ℕ
(Convergence for Gromov-Hausdorff-Prokhorov topology)

Mn ↪ ℙn,u

Scaling limits
Convergence of the whole object considered as a (compact) 
metric space (with the graph distance), after renormalisation.

u

v

d(u, v) = 4
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Lemma For  

• If , 

 

• If , 

Mn ↪ ℙn,u

u > 9/5
c(u)
n1/2 TMn

(d) 𝒯2

u = 9/5
c

n1/3 TMn

(d) 𝒯3/2

Scaling limit of supercritical and critical maps

Brownian tree

Stable tree

Proof Known scaling limits of critical BGW trees 
• with finite variance [Aldous 1993, Le Gall 2006]; 
• infinite variance and polynomial tails [Duquesne 2003].



Brownian Tree 𝒯2 Stable Tree 𝒯3/238/72

Lemma For  

• If , 

 

• If , 

Mn ↪ ℙn,u

u > 9/5
c(u)
n1/2 TMn

(d) 𝒯2

u = 9/5
c

n1/3 TMn

(d) 𝒯3/2

Scaling limit of supercritical and critical maps

Brownian tree

Stable tree
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Theorem For  

• [Stufler 2020] If , 

             

• [Fleurat, S. 24] If , 

           

Mn ↪ ℙn,u

u > 9/5
c(u)
n1/2 TMn

(d) 𝒯2
C(u)
n1/2 Mn

(d) 𝒯2

u = 9/5
c

n1/3 TMn

(d) 𝒯3/2
C

n1/3 Mn
(d) 𝒯3/2

Scaling limit of supercritical and critical maps
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Theorem For  

• [Stufler 2020] If , 

             

• [Fleurat, S. 24] If , 

           

Mn ↪ ℙn,u

u > 9/5
c(u)
n1/2 TMn

(d) 𝒯2
C(u)
n1/2 Mn

(d) 𝒯2

u = 9/5
c

n1/3 TMn

(d) 𝒯3/2
C

n1/3 Mn
(d) 𝒯3/2

Scaling limit of supercritical and critical maps

Proof Distances in  behave like distances in !Mn TMn
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e1

e2

Let . By a “law of large 
numbers”-type argument

κ = 𝔼("diameter" bipointed block)

dMn
(e1, e2) ≃ κdTMn

(e1, e2) .
Difficult for the 

critical case => large 
deviation estimates

Supercritical and critical cases
Goal = show that distances in  behave like distances in .Mn TMn
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Let . By a “law of large 
numbers”-type argument

κ = 𝔼("diameter" bipointed block)

dMn
(e1, e2) ≃ κdTMn

(e1, e2) .
Difficult for the 

critical case => large 
deviation estimates

Supercritical and critical cases
Goal = show that distances in  behave like distances in .Mn TMn

e1
e2



41/72

Critical case u = 9/5

n ≈ 80 000
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Supercritical case u = 5/2

n ≈ 75 000
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(More) supercritical case u = 5

n ≈ 50 000



Brownian Sphere 𝒮e

Theorem [Fleurat, S. 24] If , for  and 
denoting  its largest block: 

u < 9/5 Mn ↪ ℙn,u
B(Mn)

dGHP ( C(u)
n1/4 Mn,

1
n1/4 B(Mn)) (d) 0

44/72

See [Addario-Berry, Wen 2019] for a similar result and method.

So, if  then 

 

which is assumed for 2-c maps.

cn−1/4Bn
(d) 𝒮e

C(u)
cn1/4 Mn

(d) 𝒮e

Scaling limits of subcritical maps
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Decorations = groups of smaller blocks

≤ diam(TMn
) × (O(n2/3))1/4+δ = diam(TMn

) × O(n1/6+δ)
 is a subcritical 
BGW tree

TMn = O(n1/6+2δ) = o(n1/4) .
[Chapuy Fusy Giménez Noy 2015]

Large block of size 

∼ (1 − 𝔼(μ4/27,u))n

Diameter of a decoration ≤ blocks to cross  max diameter of blocks ×

Subcritical case
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Diameters of decorations = .o(n1/4)

Decorations = groups of smaller blocks

Large block of size 

∼ (1 − 𝔼(μ4/27,u))n

The scaling limit of  (rescaled by ) is the scaling limit of 
uniform blocks!

Mn n1/4

Subcritical case
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Subcritical case u = 1

n ≈ 55 000
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(Less) subcritical case u = 8/5

n ≈ 55 000
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C
n1/3 Mn

(d) 𝒯3/2
C(u)
n1/2 Mn

(d) 𝒯2
C(u)
n1/4 Mn

(d) 𝒮e

ln(n)
2 ln ( 4

27y )
− 5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

Assuming the convergence of 2-
connected maps towards the 
Brownian sphere

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3 ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

Θ(n2/3)
Θ(n2/3)

[Stufler 2020]

[Stufler 2020]

[Bonzom 2016]

∼ (1 − 𝔼(μ4/27,u))n

Results
For Mn ↪ ℙn,u

Scaling limit of 
Mn
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Interlude. 
Quadrangulations

49
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Block-weighted quadrangulations
Quadrangulation = map with all faces of degree 4. 

Simple quadrangulation = no multiple edges.

=> Same enumeration (Tutte’s bijection), metric properties 
better known



Brownian Sphere 𝒮e

Theorem [Fleurat, S. 24] If , for  a 
quadrangulation and denoting  its largest block 

u < 9/5 Qn ↪ ℙn,u
B(Qn)

C(u)
n1/4 (Qn, B(Qn)) (d) (𝒮e, 𝒮e)

51/72

Proof 
• Previous theorem; 
• Scaling limit of uniform 

simple quad. rescaled by  
= Brownian sphere [Addario-Berry 

Albenque 2017]. 

n1/4

Scaling limits of subcritical maps
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IV. Extension to other 
families of maps

52
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uC

81/17
9/5

135/7

36/11

52/27
68/3
16/7
64/37

[Banderier, Flajolet, Schaeffer, Soria 2001]

Extension to other models
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Statement of the results

Theorem [S. 23] Each model of the preceding table without 
coreless maps exhibits a phase transition at some explicit . 

When : 

• Subcritical phase : “general map phase” one 
macroscopic block; 

• Critical phase : a few large blocks; 

• Supercritical phase : “tree phase” only small 
blocks. 

We obtain explicit results on enumeration and limit laws for 
the size of the largest blocks in each case.

uC

n → ∞
u < uC

u = uC

u > uC
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V. Extension to tree-
rooted maps

55
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Escaping universality: decorated maps

Theoretical physics point of view: 
• Undecorated maps: “pure gravity” case; 
• Decorated maps: enables to study models in the 

presence of matter => new asymptotic behaviours & new 
universality classes!



57/72

 = (rooted planar) maps endowed with a spanning tree.

≠

Tree-rooted maps
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 = (rooted planar) maps endowed with a spanning tree.

≠

Tree-rooted maps

Combinatorics well understood: Mullin’s bijection 

[zn]M(z) = CatnCatn+1
[Mullin 1967; Bernardi 2006]



58/72

{tree-rooted 
maps of size }, 

normalisation. 

𝔪 ∈
n

Zn,u =

• : uniform distribution on tree-rooted maps of size ; 

• : 2-connected tree-rooted maps; 

• : tree-rooted trees = trees!

u = 1 n
u → 0
u → ∞

Given , asymptotic behaviour when ?u n → ∞

Model

Fix , defineu > 0

ℙn,u(𝔪) = u#blocks(𝔪)

Zn,u

[Stufler 2020]

Phase transition for tree-rooted maps => block-weighting
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The decomposition of maps into blocks extends into a 
decomposition of tree-rooted maps into tree-rooted blocks.

M(z) = B(zM2(z))
GS of 2-connected tree-rooted maps GS of tree-rooted maps

Block decomposition of tree-rooted maps



M(z, u) = uB(zM2(z, u)) + 1 − u
59/72

The decomposition of maps into blocks extends into a 
decomposition of tree-rooted maps into tree-rooted blocks.

GS of 2-connected tree-rooted maps GS of tree-rooted maps

Block decomposition of tree-rooted maps
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So everything should be easy, right?
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M(z) = ∑
n≥0

CatnCatn+1zn so

Tree-rooted maps are not so easy
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M(z) = ∑
n≥0

CatnCatn+1zn so

• [zn]M(z) ∼ 4
π

× 16n × n−3

Tree-rooted maps are not so easy
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CatnCatn+1zn so

• [zn]M(z) ∼ 4
π

× 16n × n−3 ρM = 1
16

Tree-rooted maps are not so easy
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M(z) = ∑
n≥0

CatnCatn+1zn so

• [zn]M(z) ∼ 4
π

× 16n × n−3 ρM = 1
16

•  so  is not algebraic… M(ρM) = 8 − 64
3π

≃ 1.2 M

P (z, M(z)) = 0

Tree-rooted maps are not so easy
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M(z) = ∑
n≥0

CatnCatn+1zn so

•  is still -finiteM D

• [zn]M(z) ∼ 4
π

× 16n × n−3 ρM = 1
16

•  so  is not algebraic… M(ρM) = 8 − 64
3π

≃ 1.2 M

P0(z) ∂2M
∂z2 (z) + P1(z) ∂M

∂z
(z) + P2(z)M(z) + P3(z) = 0

P (z, M(z)) = 0

Tree-rooted maps are not so easy

-finite D

Algebraic

M

M, B
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M(z) = ∑
n≥0

CatnCatn+1zn so

•  is still -finiteM D

• [zn]M(z) ∼ 4
π

× 16n × n−3 ρM = 1
16

•  so  is not algebraic… M(ρM) = 8 − 64
3π

≃ 1.2 M

P (z, M(z)) = 0

Tree-rooted maps are not so easy

-finite D

Algebraic

M

M, B

z2(1 − 16z) ∂2M
∂z2 (z) + 4z(1 − 12z) ∂M

∂z
(z) + 2(1 − 6z)M(z) − 2 = 0
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Using  and the properties of , we showM(z) = B(zM2(z)) M

2-connected tree-rooted maps are tricky
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Using  and the properties of , we showM(z) = B(zM2(z)) M

•  

is not algebraic so  is not -finite

ρB = ρMM2(ρM) = 4(3π − 8)2

9π2 ≈ 0.091

B D

2-connected tree-rooted maps are tricky
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Using  and the properties of , we showM(z) = B(zM2(z)) M

•  is -algebraicB D

•  

is not algebraic so  is not -finite
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B D
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Using  and the properties of , we showM(z) = B(zM2(z)) M

•  is -algebraicB D

•  

is not algebraic so  is not -finite

ρB = ρMM2(ρM) = 4(3π − 8)2

9π2 ≈ 0.091

B D

P ( ∂2B
∂y2 (y), ∂B

∂y
(y), B(y), y) = 0.

2-connected tree-rooted maps are tricky

-algebraic D

-finite D

Algebraic

M

B

M, B
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Using  and the properties of , we showM(z) = B(zM2(z)) M

•  

is not algebraic so  is not -finite

ρB = ρMM2(ρM) = 4(3π − 8)2

9π2 ≈ 0.091

B D

2-connected tree-rooted maps are tricky

-algebraic D

-finite D

Algebraic

M

B

M, B

Theorem [Albenque, Fusy, S. 24] 

[yn]B(y) ∼ 4(3π − 8)3

27π(4 − π)3 × ρ−n
B × n−3 .

≃ 0.22
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Theorem [Albenque, Fusy, S. 24] Model exhibits a phase 

transition at . 

When : 

• Subcritical phase : “general tree-rooted map 
phase” one macroscopic block; 

• Critical phase : a few large blocks; 

• Supercritical phase : “tree phase” only small 
blocks.

uC = 9π(4 − π)
420π − 81π2 − 512 ≃ 3.02

n → ∞

u < uC

u = uC

u > uC

Phase transition
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u < uC u = uC u > uCFor Mn ↪ ℙn,u

Enumeration

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn

Results
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Enumeration

Size of 
- the largest 

block 
- the second 

one

ρ(u)−nn−3 ρ(u)−nn−3/2 ln(n)−1/2 ρ(u)−nn−3/2

Results
For Mn ↪ ℙn,u

Scaling limit of 
Mn

u < uC u = uC u > uC
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Enumeration

Size of 
- the largest 

block 
- the second 

one

ln(n)
ln ( ρB

y(u) )
− 3 ln(ln(n))

ln ( ρB

y(u) )
+ O(1)Θ(n1/2)

Θ(n1/2)

∼ (1 − 𝔼(μu))n

Results

ρ(u)−nn−3 ρ(u)−nn−3/2 ln(n)−1/2 ρ(u)−nn−3/2

For Mn ↪ ℙn,u

Scaling limit of 
Mn

u < uC u = uC u > uC
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Enumeration

Size of 
- the largest 

block 
- the second 

one

ln(n)
ln ( ρB

y(u) )
− 3 ln(ln(n))

ln ( ρB

y(u) )
+ O(1)Θ(n1/2)

Θ(n1/2)

∼ (1 − 𝔼(μu))n

Ordered atoms of a Poisson Point Process

Results

ρ(u)−nn−3 ρ(u)−nn−3/2 ln(n)−1/2 ρ(u)−nn−3/2

For Mn ↪ ℙn,u

Scaling limit of 
Mn

u < uC u = uC u > uC
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Enumeration

Size of 
- the largest 

block 
- the second 

one

Θ(n1/2)
Θ(n1/2)

C(u)
n1/2 Mn → 𝒯e

C ln(n)1/2

n1/2 Mn → 𝒯e

?

[Stufler 2020]

Results

ρ(u)−nn−3 ρ(u)−nn−3/2 ln(n)−1/2 ρ(u)−nn−3/2

For Mn ↪ ℙn,u

Scaling limit of 
Mn

u < uC u = uC u > uC

∼ (1 − 𝔼(μu))n
ln(n)

ln ( ρB

y(u) )
− 3 ln(ln(n))

ln ( ρB

y(u) )
+ O(1)
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Enumeration

Size of 
- the largest 

block 
- the second 

one

Θ(n1/2)
Θ(n1/2)

C(u)
n1/2 Mn → 𝒯e

C ln(n)1/2

n1/2 Mn → 𝒯e

?

[Stufler 2020]

Results

ρ(u)−nn−3 ρ(u)−nn−3/2 ln(n)−1/2 ρ(u)−nn−3/2

For Mn ↪ ℙn,u

Scaling limit of 
Mn

u < uC u = uC u > uC

∼ (1 − 𝔼(μu))n
ln(n)

ln ( ρB

y(u) )
− 3 ln(ln(n))

ln ( ρB

y(u) )
+ O(1)



/72

VI. Perspectives

68
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Block-weighted 
• Maps into loopless blocks; 
• (Bipartite) maps into (bipartite) bridgeless blocks; 
• 2-connected maps into 3-connected blocks; 
• Simple quadrangulations into irreducible blocks… 
Require new methods, same results expected

Extensions to more involved decompositions
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Block-weighted 
• Tree-rooted quadrangulations; 
• Forested maps; 
• Maps endowed with a Ising model or a Potts model; 
• 2-oriented quadrangulations decomposed into 

irreducible blocks; 
• 3-oriented triangulations decomposed into irreducible 

blocks…

Extensions to more involved decompositions
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Is there a critical window? If so, what is its width?

Phase transition very sharp => what if ?u = 9/5 ± ε(n)

Critical window?

Block size results still hold 

• if , ; 

• If , :  

 

(analogous to [Łuczak 1990]’s result for Erdős-Rényi graphs!);

un = 9/5 − ε(n) ε3n → ∞
un = 9/5 + ε(n) ε3n → ∞

Ln,1 ∼ 2.7648 ε−2 ln(ε3n)

Results exist for scaling limits in ER graphs [Addario-Berry, Broutin, 
Goldschmidt 2010].



Thank you!
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