

Phase transitions of blockweighted planar maps

Soutenance de thèse 16 décembre 2024

Zéphyr Salvy (he/they)

Sous la direction de Marie Albenque et Éric Fusy

Planar map \mathfrak{m} = embedding on the sphere of a connected planar graph,

Planar map \mathfrak{m} = embedding on the sphere of a connected planar graph, considered up to homeomorphisms

Planar map \mathfrak{m} = embedding on the sphere of a connected planar graph, considered up to homeomorphisms

Planar map = planar graph + cyclic order on neighbours

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow)
- Size |m| = number of edges
- Corner (does not exist for graphs!) = space between two consecutive edges around a vertex (trigonometric order)
- Distance = minimum number of edges in-between

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow)
- Size |m| = number of edges
- Corner (does not exist for graphs!) = space between two consecutive edges around a vertex (trigonometric order)
- Distance = minimum number of edges in-between

$$|\mathfrak{m}| = 10$$

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow)
- Size |m| = number of edges
- Corner (does not exist for graphs!) = space between two consecutive edges around a vertex (trigonometric order)
- Distance = minimum number of edges in-between

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow)
- Size |m| = number of edges
- Corner (does not exist for graphs!) = space between two consecutive edges around a vertex (trigonometric order)
- Distance = minimum number of edges in-between

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow)
- Size |m| = number of edges
- Corner (does not exist for graphs!) = space between two consecutive edges around a vertex (trigonometric order)
- Distance = minimum number of edges in-between

Families of maps

2-connected map = at least two vertices must be

removed to disconnect

Families of maps

2-connected map = at least two vertices must be

removed to disconnect

Quadrangulation = map with all faces of degree 4 (= 4 sides of edges border the face)

Simple quadrangulation = no multiple edges

Triangulation = map with all faces of degree 3

Enumeration of maps

Maps with
$$n$$
 edges

Maps with
$$n$$
 edges $m_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n}$

2-connected maps $b_n = \frac{2}{(n+1)(2n+1)} {3n \choose n}$ with n edges with n edges

$$b_n = \frac{2}{(n+1)(2n+1)} \begin{pmatrix} 3n \\ n \end{pmatrix}$$

with *n* faces

Quadrangulations
$$q_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n}$$

2-connected

triangulations with
$$t_n = \frac{2^n}{(n+1)(2n+1)} \binom{3n}{n}$$

2n faces

Bijective study of maps

- Tutte's bijection between maps and quadrangulations
 [Tutte 1963];
- Cori-Vauquelin-Schaeffer bijection between quadrangulations and labelled trees [Cori, Vauquelin 1981; Schaeffer 1998];
- Bijection between 2-connected maps and skew ternary trees [Jacquard, Schaeffer 1998];
- Bouttier-Di Francesco-Guitter bijection between bipartite maps and mobiles [Bouttier, Di Francesco, Guitter 2004];
- Unified bijective scheme between maps and decorated trees [Bernardi, Fusy 2012; Albenque, Poulalhon 2015]...
- => Very active domain Bonichon, Bousquet-Mélou, Chapuy, Fang, Miermont...

Behaviour of a random quadrangulation

- Typical distance between two random vertices in a quadrangulation of size n: $\Theta\left(n^{1/4}\right)$
- & distance profile converges [Chassaing, Schaeffer 2004];
- Definition of the Brownian sphere [Marckert, Mokkadem 2006];
- Scaling limit: Brownian sphere [Le Gall 2013; Miermont 2013].

Behaviour of a random quadrangulation

- Typical distance between two random vertices in a quadrangulation of size n: $\Theta\left(n^{1/4}\right)$
- & distance profile converges [Chassaing, Schaeffer 2004];
- Definition of the Brownian sphere [Marckert, Mokkadem 2006];
- Scaling limit: Brownian sphere [Le Gall 2013; Miermont 2013].

Universality of the Brownian sphere as scaling limit: random triangulations & 2q-angulations [Le Gall 2013], general maps [Bettinelli, Jacob, Miermont 2014], simple quadrangulations and simple triangulations [Addario-Berry, Albenque 2017]

& results by Carrance, Curien, Fusy, Kortchemski, Lehéricy, Marzouk, Stufler

Maps with
$$n$$
 edges $m_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n}$

2-connected maps $b_n = \frac{2}{(n+1)(2n+1)} {3n \choose n}$ with n edges

$$b_n = \frac{2}{(n+1)(2n+1)} \begin{pmatrix} 3n \\ n \end{pmatrix}$$

Quadrangulations with *n* faces

$$q_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n}$$

2-connected 2n faces

triangulations with
$$t_n = \frac{2^n}{(n+1)(2n+1)} \binom{3n}{n}$$

Maps with *n* edges
$$m_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} \sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2}$$

2-connected maps
$$b_n = \frac{2}{(n+1)(2n+1)} \binom{3n}{n} \sim \frac{2\sqrt{3}}{27\sqrt{\pi}} \left(\frac{27}{4}\right)^n n^{-5/2}$$
 with n edges

$$\sim \frac{2\sqrt{3}}{27\sqrt{\pi}} \left(\frac{27}{4}\right)^n n^{-5/2}$$

Quadrangulations
$$q_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} \sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2}$$
 with n faces

$$\sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2}$$

2-connected 2n faces

2-connected triangulations with
$$t_n = \frac{2^n}{(n+1)(2n+1)} \binom{3n}{n} \sim \frac{\sqrt{3}}{4\sqrt{\pi}} \left(\frac{27}{2}\right)^n n^{-5/2}$$

$$\sim \frac{\sqrt{3}}{4\sqrt{\pi}} \left(\frac{27}{2}\right)^n n^{-5/2}$$

Maps with
$$n$$
 edges $m_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} \sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2}$

$$\sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2}$$

2-connected maps
$$b_n = \frac{2}{(n+1)(2n+1)} {3n \choose n} \sim \frac{2\sqrt{3}}{27\sqrt{\pi}} \left(\frac{27}{4}\right)^n n^{-5/2}$$
 with n edges

$$\sim \frac{2\sqrt{3}}{27\sqrt{\pi}} \left(\frac{27}{4}\right)^n n^{-5/2}$$

Quadrangulations with
$$n$$
 faces
$$q_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} \sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2}$$

$$\sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2}$$

triangulations with $t_n = \frac{2^n}{(n+1)(2n+1)} {3n \choose n} \sim \frac{\sqrt{3}}{4\sqrt{\pi}} \left(\frac{27}{2}\right)^n n^{-5/2}$ 2-connected 2n faces

$$t_n = \frac{2^n}{(n+1)(2n+1)} \binom{3n}{n}$$

$$\sim \frac{\sqrt{3}}{4\sqrt{\pi}} \left(\frac{27}{2}\right)^n n^{-5/2}$$

Maps with *n* edges
$$m_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} \sim \kappa 12^n n^{-5/2}$$

2-connected maps
$$b_n = \frac{2}{(n+1)(2n+1)} \binom{3n}{n} \sim \kappa \left(\frac{27}{4}\right)^n n^{-5/2}$$
 with n edges

$$\sim \kappa \left(\frac{27}{4}\right)^n n^{-5/2}$$

Quadrangulations
$$q_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} \sim \kappa 12^n n^{-5/2}$$
 with n faces

$$\sim \kappa 12^n n^{-5/2}$$

2-connected 2n faces

triangulations with
$$t_n = \frac{2^n}{(n+1)(2n+1)} {3n \choose n} \sim \kappa \left(\frac{27}{2}\right)^n n^{-5/2}$$

Maps with *n* edges
$$m_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} \sim \kappa 12^n n^{-5/2}$$

2-connected maps
$$b_n = \frac{2}{(n+1)(2n+1)} \binom{3n}{n} \sim \kappa \left(\frac{27}{4}\right)^n n^{-5/2}$$
 with n edges

$$\sim \kappa \left(\frac{27}{4}\right)^n n^{-5/2}$$

Quadrangulations
$$q_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} \sim \kappa 12^n n^{-5/2}$$
 with n faces

$$\sim \kappa 12^n n^{-5/2}$$

2-connected 2n faces

2-connected triangulations with
$$t_n = \frac{2^n}{(n+1)(2n+1)} {3n \choose n} \sim \kappa \left(\frac{27}{2}\right)^n n^{-5/2}$$

Maps with *n* edges
$$m_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} \sim \kappa \rho^{-n} n^{-5/2}$$

2-connected maps
$$b_n = \frac{2}{(n+1)(2n+1)} \binom{3n}{n} \sim \kappa \rho^{-n} n^{-5/2}$$
 with n edges

Quadrangulations
$$q_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} \sim \kappa \rho^{-n} n^{-5/2}$$
 with n faces

2-connected 2n faces

triangulations with
$$t_n = \frac{2^n}{(n+1)(2n+1)} {3n \choose n} \sim \kappa \rho^{-n} n^{-5/2}$$

=> Universality phenomenon

[Tutte 1963; Mullin 1965] [Drmota, Noy, Yu 2022; Schaeffer 2023; Duchi Schaeffer 2024+] 9 /72

Background. Trees

(Rooted plane) tree = tree where children are ordered

Trees of size *n*

$$Cat_n = \frac{1}{n+1} \binom{2n}{n}$$

Ternary trees of size
$$3n$$
 $\frac{1}{2n+1} \binom{3n}{n}$

(Rooted plane) tree = tree where children are ordered

$$\operatorname{Cat}_{n} = \frac{1}{n+1} {2n \choose n} \sim \frac{1}{\sqrt{\pi}} 4^{n} n^{-3/2}$$

Ternary trees of size
$$3n$$
 $\frac{1}{2n+1} \binom{3n}{n} \sim \frac{\sqrt{3}}{4\sqrt{\pi}} \left(\frac{27}{4}\right)^n n^{-3/2}$

(Rooted plane) tree = tree where children are ordered

$$\operatorname{Cat}_{n} = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix} \sim \sqrt{\frac{1}{\pi}} 4^{n} n^{-3/2}$$

Ternary trees of size
$$3n$$
 $\frac{1}{2n+1} \binom{3n}{n} \sim \frac{\sqrt{3}}{4\sqrt{\pi}} \left(\frac{27}{4}\right)^n n^{-3/2}$

(Rooted plane) tree = tree where children are ordered

Trees of size
$$n$$
 Cat_n = $\frac{1}{n+1} \binom{2n}{n} \sim \kappa \rho^{-n} n^{-3/2}$

Ternary trees of size
$$3n$$
 $\frac{1}{2n+1} \binom{3n}{n} \sim \kappa \rho^{-n} n^{-3/2}$

Behaviour of a random tree

- Diameter & height of a uniform binary tree of size n: $\Theta(n^{1/2})$ [Flajolet, Odlyzko 1982]
- Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006]

Escaping universality via blocks

2-c map = at least two vertices must be removed to disconnect Block = maximal (for inclusion) 2-connected submap

Outline

Phase transitions of block-weighted planar maps

- Í. Model
- II. Block tree of a map and its applications
- III. Scaling limits
 - \rightarrow W. Fleurat & Z. S. (Electronic Journal of Probability, 2024)
 - IV. Extension to other families of maps
 - \rightarrow Z. S. (Eurocomb'23)
 - V. Extension to tree-rooted maps
 - → M. Albenque, É. Fusy & Z. S. (AofA'24)
 - VI. Perspectives

I. Model

Model

Fix u > 0, define

$$\mathbb{P}_{n,u}(\mathbf{m}) = \frac{u^{\#blocks(\mathbf{m})}}{Z_{n,u}}$$

 $\mathfrak{m} \in \{\text{maps of size } n\},\$ $Z_{n,u} = \text{normalisation}.$

[Bonzom, Delepouve, Rivasseau 2015; Stufler 2020]

Model

Fix u > 0, define

$$\mathbb{D}_{n,u}(\mathfrak{m}) = \frac{u^{\#blocks(\mathfrak{m})}}{Z_{n,u}}$$

 $\mathfrak{m} \in \{\text{maps of size } n\},$ $Z_{n,u} = \text{normalisation}.$

[Bonzom, Delepouve, Rivasseau 2015; Stufler 2020]

- u = 1: uniform distribution on maps of size n;
- $u \to 0$: minimising the number of blocks (=2-connected maps);
- $u \to \infty$: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour when $n \to \infty$?

Phase transition

Theorem [Fleurat, S. 24] Model exhibits a phase transition at u = 9/5. When $n \to \infty$:

- Subcritical phase u < 9/5: "general map phase" one macroscopic block;
- Critical phase u = 9/5: a few large blocks;
- Supercritical phase u > 9/5: "tree phase" only small blocks.

We obtain explicit results on enumeration, limit laws for the size of the largest blocks and scaling limits in each case.

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration			
Size of - the largest block - the second one			
Scaling limit of M_n			

A focus on the uniform case, i.e. u=1

Studied by

- Analytic combinatorics methods [Banderier, Flajolet, Schaeffer, Soria 2001];
- Probability methods [Addario-Berry 2019];
- => Show condensation phenomenon: a large block concentrates a macroscopic part of the mass.

II. Block tree of a map and its applications

GS of maps

GS of 2-connected maps

For
$$M(z, u) = \sum_{\mathfrak{m} \in \mathcal{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = uB(zM^{2}(z, u)) + 1 - u$$

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one			
Scaling limit of M_n			

⇒ Underlying block tree structure.

⇒ Underlying block tree structure.

⇒ Underlying block tree structure.

Decomposition of a map into blocks (2/2)

⇒ Underlying block tree structure.

Decomposition of a map into blocks (2/2)

⇒ Underlying block tree structure.

Decomposition of a map into blocks (2/2)

⇒ Underlying block tree structure.

Block tree: properties

- \mathfrak{m} is entirely determined by $T_{\mathfrak{m}}$ and $(\mathfrak{b}_{v}, v \in T_{\mathfrak{m}})$
- Internal node (with k children) of $T_{\mathfrak{m}} \leftrightarrow \mathsf{block}$ of \mathfrak{m} of size k/2

 T_{M_n} gives the block sizes of a random map M_n

Block trees are BGW-trees

For μ probability law on \mathbb{N} , μ -Bienaymé-Galton-Watson (BGW) tree: random tree where the number of children of each node is given by μ independently.

Theorem [Fleurat, S. 24]

u > 0

If $M_n \hookrightarrow \mathbb{P}_{n,u}$ and $y \in (0, \rho_B]$, then T_{M_n} has the law of a BGW

tree of reproduction law $\mu^{y,u}$ conditioned to be of size 2n, with

$$\mu^{y,u}(\{2k\}) = \frac{b_k y^k u^{\mathbf{1}_{k\neq 0}}}{uB(y) + 1 - u}$$

Generalisation of [Addario-Berry 2019]

Conditioning the BGW trees

When is the probability of the tree having size 2n not exponentially small, cf can one have y s.t. $\mathbb{E}(\mu^{y,u}) = 1$? (critical BGW)

$$\mathbb{E}(\mu^{y,u}) = 1 \Leftrightarrow u = \frac{1}{2yB'(y) - B(y) + 1}$$

covers $[9/5, +\infty)$ when y covers $(0, \rho_B = 4/27]$

$$\Rightarrow \mathbb{E}(\mu^{y,u}) = 1$$
 is possible iff $u \ge 9/5$

Phase transition for y(u)

Set y = y(u) in the following way:

Largest degrees of a BGW tree

	u < 9/5	u = 9/5	<i>u</i> > 9/5
BGW tree	subcritical	critical	
$\mu^{y(u),u}(\{2k\})$	$\sim c_u k^{-5/2}$	$\sim c_u k^{-5/2}$	$\sim c_u \pi_u^k k^{-5/2}$ $\pi_u < 1$
Variance	∞	∞	< ∞

Condensation phenomenon

Largest degree behaves as maximum of independent variables with geometric tail

[Jonsson, Stefánsson 2011; Janson 2012]

Size $L_{n,k}$ of the k-th largest block

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5	
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$	
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$	
Scaling limit of M_n				

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$
Ordered a Scaling limit of M_n	toms of a Poisso	n Point Process	

III. Scaling limits

Scaling limits

Convergence of the whole object considered as a (compact) metric space (with the graph distance), after renormalisation.

$$M_n \hookrightarrow \mathbb{P}_{n,u}$$

What is the limit of the sequence of metric spaces $((M_n, d/n^{\gamma}))_{n \in \mathbb{N}}$?

(Convergence for Gromov-Hausdorff-Prokhorov topology)

Lemma For $M_n \hookrightarrow \mathbb{P}_{n,u}$

• If u > 9/5,

$$\frac{c(u)}{n^{1/2}}T_{M_n} \stackrel{(d)}{\to} \mathcal{T}_2$$

Brownian tree

• If u = 9/5,

$$\frac{c}{n^{1/3}}T_{M_n} \stackrel{(d)}{\to} \mathcal{T}_{3/2}$$

Stable tree

Proof Known scaling limits of critical BGW trees

- with finite variance [Aldous 1993, Le Gall 2006];
- infinite variance and polynomial tails [Duquesne 2003].

Lemma For $M_n \hookrightarrow \mathbb{P}_{n,u}$

• If u > 9/5,

$$\frac{c(u)}{n^{1/2}}T_{M_n} \stackrel{(d)}{\to} \mathcal{T}_2$$

Brownian tree

• If u = 9/5,

Stable tree

Brownian Tree \mathcal{T}_2

Stable Tree $\mathcal{T}_{3/2}$

Theorem For $M_n \hookrightarrow \mathbb{P}_{n,u}$

• [Stufler 2020] If u > 9/5,

$$\frac{c(u)}{n^{1/2}}T_{M_n} \stackrel{(d)}{\to} \mathcal{T}_2$$

$$\frac{C(u)}{n^{1/2}}M_n \stackrel{(d)}{\to} \mathcal{T}_2$$

• [Fleurat, S. 24] If u = 9/5,

$$\frac{c}{n^{1/3}}T_{M_n} \stackrel{(d)}{\to} \mathcal{T}_{3/2}$$

$$\frac{C}{n^{1/3}}M_n \stackrel{(d)}{\longrightarrow} \mathcal{T}_{3/2}$$

Theorem For $M_n \hookrightarrow \mathbb{P}_{n,u}$

• [Stufler 2020] If u > 9/5,

$$\frac{c(u)}{n^{1/2}}T_{M_n} \stackrel{(d)}{\to} \mathcal{T}_2$$

$$\frac{C(u)}{n^{1/2}}M_n \stackrel{(d)}{\to} \mathcal{T}_2$$

• [Fleurat, S. 24] If u = 9/5,

$$\frac{c}{n^{1/3}}T_{M_n} \xrightarrow{(d)} \mathcal{T}_{3/2}$$

$$\frac{C}{n^{1/3}}M_n \xrightarrow{(d)} \mathcal{T}_{3/2}$$

Proof Distances in M_n behave like distances in T_{M_n} !

Supercritical and critical cases

Goal = show that distances in M_n behave like distances in T_{M_n} .

Let $\kappa = \mathbb{E}$ ("diameter" bipointed block). By a "law of large numbers"-type argument

$$d_{M_n}(e_1, e_2) \simeq \kappa d_{T_{M_n}}(e_1, e_2)$$
.

Difficult for the critical case => large deviation estimates

Supercritical and critical cases

Goal = show that distances in M_n behave like distances in T_{M_n} .

Let $\kappa = \mathbb{E}$ ("diameter" bipointed block). By a "law of large numbers"-type argument

$$d_{M_n}(e_1, e_2) \simeq \kappa d_{T_{M_n}}(e_1, e_2)$$
.

Difficult for the critical case => large deviation estimates

Scaling limits of subcritical maps

Theorem [Fleurat, S. 24] If u < 9/5, for $M_n \hookrightarrow \mathbb{P}_{n,u}$ and denoting $B(M_n)$ its largest block:

$$d_{GHP}\left(\frac{C(u)}{n^{1/4}}M_n, \frac{1}{n^{1/4}}B(M_n)\right) \stackrel{(d)}{\to} 0$$

So, if $cn^{-1/4}B_n \stackrel{(d)}{\to} \mathcal{S}_e$ then

$$\frac{C(u)}{cn^{1/4}}M_n \stackrel{(d)}{\to} \mathcal{S}_e$$

which is assumed for 2-c maps.

Brownian Sphere \mathcal{S}_e

See [Addario-Berry, Wen 2019] for a similar result and method.

Subcritical case

Diameter of a decoration ≤ blocks to cross × max diameter of blocks

$$\leq \operatorname{diam}(T_{M_n}) \times (O(n^{2/3}))^{1/4+\delta} = \operatorname{diam}(T_{M_n}) \times O(n^{1/6+\delta})$$

$$= O(n^{1/6+2\delta}) = o(n^{1/4}).$$
 [Chapuy Fusy Giménez Noy 2015]

45/72

Subcritical case

The scaling limit of M_n (rescaled by $n^{1/4}$) is the scaling limit of uniform blocks!

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$
Scaling limit of M_n	$\frac{C(u)}{n^{1/4}}M_n \overset{(d)}{\longrightarrow} \mathcal{S}_e$ Assuming the convergence of 2-	$\frac{C}{n^{1/3}}M_n \xrightarrow{(d)} \mathcal{F}_{3/2}$	$\frac{C(u)}{n^{1/2}}M_n \xrightarrow{(d)} \mathcal{F}_2$ [Stufler 2020]
	Assuming the convergence of 2-connected maps towards the	19/70	

48/72

Brownian sphere

Interlude. Quadrangulations

Block-weighted quadrangulations

Quadrangulation = map with all faces of degree 4.

Simple quadrangulation = no multiple edges.

=> Same enumeration (Tutte's bijection), metric properties better known

Scaling limits of subcritical maps

Theorem [Fleurat, S. 24] If u < 9/5, for $Q_n \hookrightarrow \mathbb{P}_{n,u}$ a quadrangulation and denoting $B(Q_n)$ its largest block

$$\frac{C(u)}{n^{1/4}} \left(Q_n, B(Q_n) \right) \stackrel{(d)}{\to} \left(\mathcal{S}_e, \mathcal{S}_e \right)$$

Proof

- Previous theorem;
- Scaling limit of uniform simple quad. rescaled by $n^{1/4}$ = Brownian sphere [Addario-Berry Albenque 2017].

IV. Extension to other families of maps

Extension to other models

Table 3. Composition schemas, of the form $\mathcal{M} = \mathcal{C} \circ \mathcal{H} + \mathcal{D}$, except the last one where $\mathcal{M} = (1 + \mathcal{M}) \times (\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$	u_C
all, $M_1(z)$	bridgeless, or loopless $M_2(z)$	$z/(1-z(1+M))^2$	$z(1+M)^2$	
loopless $M_2(z)$	simple $M_3(z)$	z(1+M)	_	81/17
all, $M_1(z)$	nonsep., $M_4(z)$	$z(1+M)^2$	_	9/5
nonsep. $M_4(z)-z$	nonsep. simple $M_5(z)$	z(1+M)	_	135/7
nonsep. $M_4(z)/z-2$	3-connected $M_6(z)$	M	$z + 2M^2/(1+M)$	
bipartite, $B_1(z)$	bip. simple, $B_2(z)$	z(1+M)		36/11
bipartite, $B_1(z)$	bip. bridgeless, $B_3(z)$	$z/(1-z(1+M))^2$	$z(1+M)^{2}$	
bipartite, $B_1(z)$	bip. nonsep., $B_4(z)$	$z(1+M)^{2}$	_	52/27
bip. nonsep., $B_4(z)$	bip. ns. smpl, $B_5(z)$	z(1+M)	_	68/3
singular tri., $T_1(z)$	triang., $z + zT_2(z)$	$z(1+M)^{3}$	_	16/7
triangulations, $T_2(z)$	irreducible tri., $T_3(z)$	$z(1+M)^{2}$	_	64/37

[Banderier, Flajolet, Schaeffer, Soria 2001]

Statement of the results

Theorem [S. 23] Each model of the preceding table without coreless maps exhibits a phase transition at some explicit u_C .

When $n \to \infty$:

- Subcritical phase $u < u_C$: "general map phase" one macroscopic block;
- Critical phase $u = u_C$: a few large blocks;
- Supercritical phase $u>u_C$: "tree phase" only small blocks.

We obtain explicit results on enumeration and limit laws for the largest blocks in each case.

V. Extension to treerooted maps

Escaping universality: decorated maps

Theoretical physics point of view:

- Undecorated maps: "pure gravity" case;
- Decorated maps: enables to study models in the presence of matter => new asymptotic behaviours & new universality classes!

Tree-rooted maps

= (rooted planar) maps endowed with a spanning tree.

Tree-rooted maps

= (rooted planar) maps endowed with a spanning tree.

Combinatorics well understood: Mullin's bijection

[Mullin 1967; Bernardi 2006]

Model

Phase transition for tree-rooted maps => block-weighting

Fix u > 0, define

$$\mathbb{P}_{n,u}(\mathbf{m}) = \frac{u^{\#blocks(\mathbf{m})}}{Z_{n,u}}$$

 $m \in \{\text{tree-rooted} \\ \text{maps of size } n\},$ $Z_{n,u} = \text{normalisation}.$

- u = 1: uniform distribution on tree-rooted maps of size n;
- $u \rightarrow 0$: 2-connected tree-rooted maps;
- $u \to \infty$: tree-rooted trees = trees!

Given u, asymptotic behaviour when $n \to \infty$?

[Stufler 2020]

Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a decomposition of tree-rooted maps into tree-rooted blocks.

GS of 2-connected tree-rooted maps

GS of tree-rooted maps

Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a decomposition of tree-rooted maps into tree-rooted blocks.

$$M(z, u) = uB(zM^{2}(z, u)) + 1 - u$$
e-rooted maps

GS of tree-rooted maps

GS of 2-connected tree-rooted maps

59/72

So everything should be easy, right?

$$M(z) = \sum_{n>0} Cat_n Cat_{n+1} z^n$$
 so

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \operatorname{so}$$

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$

$$M(z) = \sum_{n>0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \operatorname{so}$$

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$
 $\rho_M = \frac{1}{16}$

$$M(z) = \sum_{n>0} Cat_n Cat_{n+1} z^n$$
 so

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$
 $\rho_M = \frac{1}{16}$

.
$$M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2$$
 so M is not algebraic...

$$P\left(z, M(z)\right) = 0$$

$$M(z) = \sum_{n \ge 0} Cat_n Cat_{n+1} z^n$$
 so

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$
 $\rho_M = \frac{1}{16}$

$$\rho_{M} = \frac{1}{16}$$

D-finite

Algebraic M, B

.
$$M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2$$
 so M is not algebraic...

$$P\left(z, M(z)\right) = 0$$

• M is still D-finite

$$P_0(z)\frac{\partial^2 M}{\partial z^2}(z) + P_1(z)\frac{\partial M}{\partial z}(z) + P_2(z)M(z) + P_3(z) = 0$$

$$M(z) = \sum_{n \ge 0} \text{Cat}_n \text{Cat}_{n+1} z^n \text{ so}$$

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$
 $\rho_M = \frac{1}{16}$

$$\rho_{M} = \frac{1}{16}$$

D-finite

Algebraic M, B

.
$$M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2$$
 so M is not algebraic...

$$P\left(z, M(z)\right) = 0$$

• M is still D-finite

$$z^{2}(1-16z)\frac{\partial^{2}M}{\partial z^{2}}(z) + 4z(1-12z)\frac{\partial M}{\partial z}(z) + 2(1-6z)M(z) - 2 = 0$$

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so B is not D-finite

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so ${\it B}$ is not ${\it D}$ -finite

• B is D-algebraic

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so ${\it B}$ is not ${\it D}$ -finite

• B is D-algebraic

$$P\left(\frac{\partial^2 B}{\partial y^2}(y), \frac{\partial B}{\partial y}(y), B(y), y\right) = 0.$$

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so ${\it B}$ is not ${\it D}$ -finite

D-algebraic
B

D-finite
M

Algebraic
M, B

$$\simeq 0.22$$

$$[y^n]_B(y) \sim \frac{4(3\pi - 8)^3}{27\pi(4 - \pi)^3} \times \rho_B^{-n} \times n^{-3}$$
.

Phase transition

Theorem [Albenque, Fusy, S. 24] Model exhibits a phase

transition at
$$u_C = \frac{9\pi(4-\pi)}{420\pi - 81\pi^2 - 512} \simeq 3.02$$
.

When $n \to \infty$:

- Subcritical phase $u < u_C$: "general tree-rooted map phase" one macroscopic block;
- Critical phase $u = u_C$: a few large blocks;
- Supercritical phase $u > u_C$: "tree phase" only small blocks.

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration			
Size of - the largest block - the second one			
Scaling limit of M_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one			
Scaling limit of M_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^u))n$ $\Theta(n^{1/2})$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$
Scaling limit of M_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{u}))n$ $\Theta(n^{1/2})$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$

Ordered atoms of a Poisson Point Process

Scaling limit of		
IVI n		

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest	$\sim (1 - \mathbb{E}(\mu^u))n$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln(n)} - \frac{3\ln(\ln(n))}{\ln(n)} + O(1)$
block - the second one	$\Theta(n^{1/2})$	$\Theta(n^{-1})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$
		$\frac{C \ln(n)^{1/2}}{n^{1/2}} M_n \to \mathcal{T}_e$	[Stufler 2020] $\frac{C(u)}{n^{1/2}}M_n \to \mathcal{T}_e$
Scaling limit of M_n	?		The state of the s
		67/72	

67/72

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest	$\sim (1 - \mathbb{E}(\mu^u))n$	$\Omega(n^{1/2})$	$\frac{\ln(n)}{\ln(n)} = \frac{3\ln(\ln(n))}{\ln(n)} + O(1)$
block - the second one	$\Theta(n^{1/2})$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$
		$\frac{C \ln(n)^{1/2}}{n^{1/2}} M_n - \mathcal{T}_e$	$ \begin{array}{c} C(u) \\ \hline n^{1/2} M_n \\ \end{array} \longrightarrow \underbrace{\mathcal{T}_e} $ [Stufler 2020]
Scaling limit of M_n	?		The state of the s
	i	67/72	

67/72

VI. Perspectives

Extensions to more involved decompositions

Block-weighted

- Maps into loopless blocks;
- (Bipartite) maps into (bipartite) bridgeless blocks;
- 2-connected maps into 3-connected blocks;
- Simple quadrangulations into irreducible blocks...

Require new methods, same results expected

Extensions to more involved decompositions

Block-weighted

- Tree-rooted quadrangulations;
- Forested maps;
- Maps endowed with a Ising model or a Potts model;
- 2-oriented quadrangulations decomposed into irreducible blocks;
- 3-oriented triangulations decomposed into irreducible blocks...

Critical window?

Phase transition very sharp => what if $u = 9/5 \pm \varepsilon(n)$?

Block size results still hold

• if
$$u_n = 9/5 - \varepsilon(n)$$
, $\varepsilon^3 n \to \infty$;

• If
$$u_n = 9/5 + \varepsilon(n)$$
, $\varepsilon^3 n \to \infty$:

$$L_{n,1} \sim 2.7648 \,\varepsilon^{-2} \ln(\varepsilon^3 n)$$

(analogous to [Łuczak 1990]'s result for Erdős-Rényi graphs!);

Results exist for scaling limits in ER graphs [Addario-Berry, Broutin, Goldschmidt 2010].

Is there a critical window? If so, what is its width?

Thank you!