Phase transitions of blockweighted planar maps

Arbeitsgemeinschaft Diskrete Mathematik
19 November 2024

Zéphyr Salvy (he/they)

Planar maps

Planar map \mathfrak{m} = embedding on the sphere of a connected planar graph, considered up to homeomorphisms

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow);
- Size |m| = number of edges;
- Corner (does not exist for graphs!) = space between two consecutive edges around a vertex (trigonometric order).

Planar maps

Planar map \mathfrak{m} = embedding on the sphere of a connected planar graph, considered up to homeomorphisms

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow);
- Size |m| = number of edges;
- Corner (does not exist for graphs!) = space between two consecutive edges around a vertex (trigonometric order).

Planar maps

Planar map \mathfrak{m} = embedding on the sphere of a connected planar graph, considered up to homeomorphisms

Planar map = planar graph + cyclic order on neighbours

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow);
- Size |m| = number of edges;
- Corner (does not exist for graphs!) = space between two consecutive edges around a vertex (trigonometric order).

Universality results for planar maps

- Enumeration: $\kappa \rho^{-n} n^{-5/2}$ [Tutte 1963];
- Distance between vertices: $n^{1/4}$ [Chassaing, Schaeffer 2004];
- Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont 2014];

Brownian Sphere \mathcal{S}_e

Universality results for planar maps

- Enumeration: $\kappa \rho^{-n} n^{-5/2}$ [Tutte 1963];
- Distance between vertices: $n^{1/4}$ [Chassaing, Schaeffer 2004];
- Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont 2014];

- Universality:
 - Same enumeration [Drmota, Noy, Yu 2020];
 - Same scaling limit, e.g. for triangulations & 2q-angulations [Le Gall 2013], simple quadrangulations [Addario-Berry, Alberque 2017].

Universality results for plane trees

- Enumeration: $\kappa \rho^{-n} n^{-3/2}$;
- Distance between vertices: $n^{1/2}$ [Flajolet, Odlyzko 1982];
- Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

Universality results for plane trees

- Enumeration: $\kappa \rho^{-n} n^{-3/2}$;
- Distance between vertices: $n^{1/2}$ [Flajolet, Odlyzko 1982];
- Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

- Universality:
 - Same enumeration;
 - Same scaling limit, even for some classes of maps, e.g. outerplanar maps [Caraceni 2016], maps with a boundary of size >> $n^{1/2}$ [Bettinelli 2015].

Models with (very) constrained boundaries

Motivation

Inspired by [Bonzom Delepouve Rivasseau 2015].

Two rich situations with universality results:

Model definition

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Model definition

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Model definition

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Only small blocks.

Interpolating model using blocks!

Outline of the talk

Phase transitions of block-weighted planar maps

- I. Model
- II. Block tree of a map and its applications Interlude. Quadrangulations
- III. Scaling limits
- IV. Extension to other families of maps
- V. Extension to tree-rooted maps
- VI. Perspectives

with William Fleurat

with Marie Albenque & Éric Fusy

I. Model

Introduced by [Bonzom Delepouve Rivasseau 2015];

General setting in [Stufler 2020].

Goal: parameter that affects the typical number of blocks.

We choose:
$$\mathbb{P}_{n,u}(\mathbf{m}) = \frac{u^{\#blocks(\mathbf{m})}}{Z_{n,u}}$$
 where $u > 0$, $\mathcal{M}_n = \{\text{maps of size } n\}$, $\mathbf{m} \in \mathcal{M}_n$, $Z_{n,u} = \text{normalisation.}$

- u = 1: uniform distribution on maps of size n;
- $u \to 0$: minimising the number of blocks (=2-connected maps);
- $u \to \infty$: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour when $n \to \infty$?

Phase transition

Theorem [Fleurat, S. 24] Model exhibits a phase transition at u = 9/5. When $n \to \infty$:

- Subcritical phase u < 9/5: "general map phase" one huge block;
- Critical phase u = 9/5: a few large blocks;
- Supercritical phase u > 9/5: "tree phase" only small blocks.

We obtain explicit results on enumeration, size of blocks and scaling limits in each case.

→ A phase transition in block-weighted random maps W. Fleurat & Z. S., Electronic Journal of Probability, 2024

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration			
Size of - the largest block - the second one			
Scaling limit of M_n			

II. Block tree of a map and its applications

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

GS of maps
$$M(z) = B(zM^2(z))$$
GS of 2-connected maps

With a weight u on blocks: $M(z, u) = uB(zM^2(z, u)) + 1 - u$

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one			
Scaling limit of M_n			

Inspiration from [Tutte 1963]

⇒ Underlying block tree structure, made explicit by [Addario-

Inspiration from [Tutte 1963]

⇒ Underlying block tree structure, made explicit by [Addario-

Inspiration from [Tutte 1963]

⇒ Underlying block tree structure, made explicit by [Addario-

Inspiration from [Tutte 1963]

⇒ Underlying block tree structure, made explicit by [Addario-

Inspiration from [Tutte 1963]

⇒ Underlying block tree structure, made explicit by [Addario-

Block tree: properties

- ${\mathfrak m}$ is entirely determined by $T_{\mathfrak m}$ and $({\mathfrak b}_v,v\in T_{\mathfrak m})$ where ${\mathfrak b}_v$ is the block of ${\mathfrak m}$ represented by v in $T_{\mathfrak m}$;
- Internal node (with k children) of $T_{\mathfrak{m}} \leftrightarrow$ block of \mathfrak{m} of size k/2.

 T_{M_n} gives the block sizes of a random map M_n .

Block trees are BGW-trees

 μ -Bienaymé-Galton-Watson (BGW) tree : random tree where the number of children of each node is given by μ independently, with μ = probability law on \mathbb{N} .

Theorem [Fleurat, S. 24]

u > 0

If $M_n \hookrightarrow \mathbb{P}_{n,u'}$ then there exists an (explicit) y = y(u) s.t.

 T_{M_n} has the law of a BGW tree of reproduction law $\mu^{y,u}$

conditioned to be of size 2n, with

$$\mu^{y,u}(\{2k\}) = \frac{B_k y^k u^{\mathbf{1}_{k\neq 0}}}{uB(y) + 1 - u}.$$

Phase transition for y(u)

Largest blocks?

- Degrees of T_{M_n} give the block sizes of the map M_{n} ;
- Largest degrees of a BGW tree are well-known [Janson 2012].

Rough intuition

	<i>u</i> < 9/5	u = 9/5	<i>u</i> > 9/5
$\mu^{y(u),u}(\{2k\})$	$\sim c_u k^{-5/2}$		$\sim c_u \pi_u^k k^{-5/2}$
BGW tree	subcritical	critical	

Dichotomy between situations:

- Subcritical: condensation, cf [Jonsson Stefánsson 2011];
- Supercritical: behaves as maximum of independent variables.

Size $L_{n,k}$ of the k-th largest block

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$
Scaling limit of M_n			

Interlude: quadrangulations

Quadrangulations

Def: map with all faces of degree 4.

Simple quadrangulation = no multiple edges.

Size |q| = number of faces.

$$|V(q)| = |q| + 2$$
, $|E(q)| = 2|q|$.

Construction of a quadrangulation from a simple core

Construction of a quadrangulation from a simple core

Construction of a quadrangulation from a simple core

Block tree for a quadrangulation

With a weight u on blocks: $Q(z, u) = uS(zQ^2(z, u)) + 1 - u$

Remember: $M(z, u) = uB(zM^{2}(z, u)) + 1 - u$

Tutte's bijection

Tutte's bijection for 2-connected maps

Cut vertex => multiple edge

2-connected maps <=> simple quadrangulations

Block trees under Tutte's bijection

Implications on results

We choose:
$$\mathbb{P}_{n,u}(\mathfrak{q}) = \frac{u^{\#blocks}(\mathfrak{q})}{Z_{n,u}}$$
 where $u > 0$, $\mathcal{Q}_n = \{\text{quadrangulations of size } n\}$, $\mathfrak{q} \in \mathcal{Q}_{n'}$, $Z_{n,u} = \text{normalisation.}$

Results on the size of (2-connected) blocks can be transferred immediately for quadrangulations and their simple blocks.

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	<i>u</i> > 9/5	
Enumeration [Bonzom 2016] for 2-c case	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$	
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$	
Scaling limit of M_n				

III. Scaling limits

Scaling limits

Convergence of the whole object considered as a (compact) metric space (with the graph distance), after renormalisation.

 $M_n \hookrightarrow \mathbb{P}_{n,u}$ (map or quadrangulation)

What is the limit of the sequence of metric spaces $((M_n, d/n^?))_{n \in \mathbb{N}}$?

(Convergence for Gromov-Hausdorff(-Prokhorov) topology)

Lemma For $M_n \hookrightarrow \mathbb{P}_{n,u'}$

• If u > 9/5,

$$\frac{c_3(u)}{n^{1/2}}T_{M_n}\to \mathcal{T}_e.$$

• If u = 9/5,

$$\frac{c_2}{n^{1/3}}T_{M_n}\to \mathcal{T}_{3/2}.$$

Brownian Tree \mathcal{T}_{ρ}

39/74

Stable Tree $\mathcal{T}_{3/2}$

Lemma For
$$M_n \hookrightarrow \mathbb{P}_{n,u'}$$

• If u > 9/5,

$$\frac{c_3(u)}{n^{1/2}}T_{M_n}\to \mathcal{T}_e.$$

• If u = 9/5,

$$\frac{c_2}{n^{1/3}}T_{M_n}\to \mathcal{T}_{3/2}.$$

Proof Known scaling limits of critical BGW trees

- with finite variance [Aldous 1993, Le Gall 2006];
- infinite variance and polynomial tails [Duquesne 2003].

Theorem For $M_n \hookrightarrow \mathbb{P}_{n,u'}$

• [Stufler 2020] If u > 9/5,

$$\frac{c_3(u)}{n^{1/2}}T_{M_n}\to \mathcal{T}_{e'}$$

$$\frac{C_3(u)}{n^{1/2}}M_n \to \mathcal{T}_e.$$

• [Fleurat, S. 24] If u = 9/5,

$$\frac{c_2}{n^{1/3}}T_{M_n} \to \mathcal{T}_{3/2},$$

$$\frac{C_2}{n^{1/3}}M_n \to \mathcal{T}_{3/2}.$$

Theorem For $M_n \hookrightarrow \mathbb{P}_{n,u'}$

• [Stufler 2020] If u > 9/5,

$$\frac{c_3(u)}{n^{1/2}}T_{M_n}\to \mathcal{T}_{e'}$$

$$\frac{C_3(u)}{n^{1/2}}M_n \to \mathcal{T}_e.$$

• [Fleurat, S. 24] If u = 9/5,

$$\frac{c_2}{n^{1/3}}T_{M_n}\to \mathcal{T}_{3/2},$$

$$\frac{C_2}{n^{1/3}}M_n \to \mathcal{T}_{3/2}.$$

Proof Distances in M_n behave like distances in T_{M_n} !

Supercritical and critical cases

Goal = show that distances in M_n behave like distances in T_{M_n} .

Let $\kappa = \mathbb{E}(\text{"diameter" bipointed block})$. By a "law of large numbers"-type argument

$$d_{M_n}(e_1, e_2) \simeq \kappa d_{T_{M_n}}(e_1, e_2)$$
.

Difficult for the critical case => large deviation estimates

Scaling limits of subcritical maps

Theorem [Fleurat, S. 24] If u < 9/5, for $M_n \hookrightarrow \mathbb{P}_{n,u}$ and denoting $B(M_n)$ its largest block:

$$d_{GHP}\left(\frac{C_1(u)}{n^{1/4}}M_n, \frac{1}{n^{1/4}}B(M_n)\right) \to 0.$$

Brownian Sphere \mathcal{S}_e

So, if
$$cn^{-1/4}B_n \to \mathcal{S}_e$$
, then
$$\frac{C_1(u)}{cn^{1/4}}M_n \to \mathcal{S}_e.$$

See [Addario-Berry, Wen 2019] for a similar result and method.

Subcritical case

Diameter of a decoration ≤ blocks to cross × max diameter of blocks

$$\leq diam(T_{M_n})\times (O(n^{2/3}))^{1/4+\delta}=diam(T_{M_n})\times O(n^{1/6+\delta})$$

$$=O(n^{1/6+2\delta})=o(n^{1/4}).$$
 [Chapuy Fusy Giménez Noy 2015]

Subcritical case

The scaling limit of M_n (rescaled by $n^{1/4}$) is the scaling limit of uniform blocks!

Scaling limits of subcritical maps

Theorem [Fleurat, S. 24] If u < 9/5, for $Q_n \hookrightarrow \mathbb{P}_{n,u}$ a quadrangulation:

$$\frac{C_1(u)}{n^{1/4}}Q_n \to \mathcal{S}_e.$$

Moreover, Q_n and its simple core converge jointly to the same Brownian sphere.

Proof

- Previous theorem;
- Scaling limit of uniform simple quad. rescaled by $n^{1/4}$
 - = Brownian sphere [Addario-Berry Albenque 2017].

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5				
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$				
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$				
Scaling limit of M_n		$\frac{C_2}{n^{1/3}}M_n \to \mathcal{T}_{3/2}$	$\frac{C_3(u)}{n^{1/2}}M_n \to \mathcal{T}_e$ [Stufler 2020]				
	Assuming the convergence of 2- connected maps towards the						

50/74

Brownian sphere

IV. Extension to other families of maps

Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

Table 3. Composition schemas, of the form $\mathcal{M} = \mathcal{C} \circ \mathcal{H} + \mathcal{D}$, except the last one where $\mathcal{M} = (1 + \mathcal{M}) \times (\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$
all, $M_1(z)$	bridgeless, or loopless $M_2(z)$	$z/(1-z(1+M))^2$	$z(1+M)^2$
loopless $M_2(z)$	simple $M_3(z)$	z(1+M)	_
all, $M_1(z)$	nonsep., $M_4(z)$	$z(1+M)^2$	_
nonsep. $M_4(z)-z$	nonsep. simple $M_5(z)$	z(1+M)	_
nonsep. $M_4(z)/z-2$	3-connected $M_6(z)$	M	$z + 2M^2/(1+M)$
bipartite, $B_1(z)$	bip. simple, $B_2(z)$	z(1+M)	_
bipartite, $B_1(z)$	bip. bridgeless, $B_3(z)$	$z/(1-z(1+M))^2$	$z(1+M)^2$
bipartite, $B_1(z)$	bip. nonsep., $B_4(z)$	$z(1+M)^{2}$	_
bip. nonsep., $B_4(z)$	bip. ns. smpl, $B_5(z)$	z(1+M)	_
singular tri., $T_1(z)$	triang., $z + zT_2(z)$	$z(1+M)^{3}$	_
triangulations, $T_2(z)$	irreducible tri., $T_3(z)$	$z(1+M)^2$	_

Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

Table 3. Composition schemas, of the form $\mathcal{M} = \mathcal{C} \circ \mathcal{H} + \mathcal{D}$, except the last one where $\mathcal{M} = (1 + \mathcal{M}) \times (\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$	u_C
all, $M_1(z)$	bridgeless, $M_2(z)$ or loopless	$z/(1-z(1+M))^2$	$z(1+M)^2$	
loopless $M_2(z)$	simple $M_3(z)$	z(1+M)	_	81/17
all, $M_1(z)$	nonsep., $M_4(z)$	$z(1+M)^2$	_	9/5
nonsep. $M_4(z)-z$	nonsep. simple $M_5(z)$	z(1+M)	_	135/7
nonsep. $M_4(z)/z-2$	3-connected $M_6(z)$	M	$z + 2M^2/(1+M)$	
bipartite, $B_1(z)$	bip. simple, $B_2(z)$	z(1+M)	_	36/11
bipartite, $B_1(z)$	bip. bridgeless, $B_3(z)$	$z/(1-z(1+M))^2$	$z(1+M)^{2}$	
bipartite, $B_1(z)$	bip. nonsep., $B_4(z)$	$z(1+M)^{2}$	_	52/27
bip. nonsep., $B_4(z)$	bip. ns. smpl, $B_5(z)$	z(1+M)	_	68/3
singular tri., $T_1(z)$	triang., $z + zT_2(z)$	$z(1+M)^{3}$	_	16/7
triangulations, $T_2(z)$	irreducible tri., $T_3(z)$	$z(1+M)^2$	_	64/37

→ Unified study of the phase transition for block-weighted random planar maps Z. Salvy (Eurocomb'23)

Statement of the results

Theorem [S. 23] Model of the preceding table without coreless maps exhibits a phase transition at some explicit u_C .

When $n \to \infty$:

- Subcritical phase $u < u_C$: "general map phase" one huge block;
- Critical phase $u = u_C$: a few large blocks;
- Supercritical phase $u>u_C$: "tree phase" only small blocks.

We obtain explicit results on enumeration and size of blocks in each case.

V. Extension to treerooted maps

Decorated maps are interesting

Theoretical physics point of view:

- Undecorated maps: "pure gravity" case (nothing happens on the surface);
- Decorated maps: things happen! new asymptotic behaviours! new universality classes! excitement!

Tree-rooted maps

= (rooted planar) maps endowed with a spanning tree.

Tree-rooted maps

 Combinatorics well understood : Mullin's bijection;

$$[z^n]M(z) = Cat_nCat_{n+1}$$
[Mullin 67]

· Geometry not so much.

Tree-rooted maps

 Combinatorics well understood : Mullin's bijection;

$$[z^n]M(z) = \operatorname{Cat}_n \operatorname{Cat}_{n+1}$$
[Mullin 67]

Geometry not so much.

We want a phase transition in tree-rooted maps.

=> Block-weighted tree-rooted maps.

$$[z^n]M(z) = Cat_nCat_{n+1}$$

$$[z^n]M(z) = Cat_nCat_{n+1}$$

[Mullin 67]

$$[z^n]M(z) = Cat_nCat_{n+1}$$

Mullin's bijection

$$[z^n]M(z) = Cat_nCat_{n+1}$$

[Mullin 67]

Mullin's bijection

size | t |

$$[z^n]M(z) = \sum_{k=0}^n {2n \choose 2k} \operatorname{Cat}_k \operatorname{Cat}_{n-k}$$

$$[z^n]M(z) = Cat_nCat_{n+1}$$

[Mullin 67]

size |m| - |t|

Mullin's bijection

Vandermonde $[z^n] \underline{M}(z) = \sum_{k=0}^n \binom{2n}{2k} \operatorname{Cat}_k \operatorname{Cat}_{n-k}$ identity $[z^n] \underline{M}(z) = \operatorname{Cat}_n \operatorname{Cat}_{n+1}$

size | t |

[Mullin 67]

size |m| - |t|

Model

Goal: parameter that affects the typical number of blocks.

We choose:
$$\mathbb{P}_{n,u}(\mathbf{m}) = \frac{u^{\#blocks(\mathbf{m})}}{Z_{n,u}}$$
 where $u > 0$, $\mathcal{M}_n = \{\text{tree-rooted maps of size } n\}$, $\mathbf{m} \in \mathcal{M}_n$, $\mathbf{Z}_{n,u} = \text{normalisation.}$

- u = 1: uniform distribution on tree-rooted maps of size n;
- $u \rightarrow 0$: minimising the number of blocks (=2-connected tree-rooted maps);
- $u \to \infty$: maximising the number of blocks (= tree-rooted trees!).

Given u, asymptotic behaviour when $n \to \infty$?

Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a decomposition of tree-rooted maps into tree-rooted blocks.

 $M(z) = B(zM^{2}(z))$ d maps
GS of tree-rooted maps

GS of 2-connected tree-rooted maps

Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a decomposition of tree-rooted maps into tree-rooted blocks.

 $M(z, u) = uB(zM^{2}(z, u)) + 1 - u$ e-rooted maps GS of tree-rooted maps

GS of 2-connected tree-rooted maps

So everything should be easy, right?

$$M(z) = \sum_{n>0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \operatorname{so}$$

$$M(z) = \sum_{n>0} Cat_n Cat_{n+1} z^n$$
 so

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3};$$

$$M(z) = \sum_{n>0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n$$
 so

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$
; • $\rho_M = \frac{1}{16}$;

$$M(z) = \sum_{n>0} Cat_n Cat_{n+1} z^n$$
 so

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$
; • $\rho_M = \frac{1}{16}$;

.
$$M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2$$
 so M is not algebraic...

$$P\left(z, M(z)\right) = 0$$

$$M(z) = \sum_{n>0} Cat_n Cat_{n+1} z^n$$
 so

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$
; • $\rho_M = \frac{1}{16}$;

.
$$M(\rho_M)=8-\frac{64}{3\pi}\simeq 1.2$$
 so M is not algebraic...

Fortunately, it is still *D*-finite

$$P\left(z, M(z)\right) = 0$$

$$P_0(z)\frac{\partial^2 M}{\partial z^2}(z) + P_1(z)\frac{\partial M}{\partial z}(z) + P_2(z)M(z) + P_3(z) = 0.$$

$$M(z) = \sum_{n \ge 0} Cat_n Cat_{n+1} z^n$$
 so

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$
; • $\rho_M = \frac{1}{16}$;

D-finite M

Algebraic M, B

.
$$M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2$$
 so M is not algebraic...

• Fortunately, it is still D-finite

$$P\left(z, M(z)\right) = 0$$

$$P_0(z) \frac{\partial^2 M}{\partial z^2}(z) + P_1(z) \frac{\partial M}{\partial z}(z) + P_2(z) M(z) + P_3(z) = 0.$$

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so B is not D-finite

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so B is not D-finite

• B is D-algebraic

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so B is not D-finite

B is D-algebraic

$$P\left(\frac{\partial^2 B}{\partial y^2}(y), \frac{\partial B}{\partial y}(y), B(y), y\right) = 0.$$

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so ${\it B}$ is not ${\it D}$ -finite

• B is D-algebraic

$$P\left(\frac{\partial^2 B}{\partial y^2}(y), \frac{\partial B}{\partial y}(y), B(y), y\right) = 0.$$

Enumeration of 2-connected tree-rooted maps

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

$$[y^n]_B(y) \sim \frac{4(3\pi - 8)^3}{27\pi(4 - \pi)^3} \times \rho_B^{-n} \times n^{-3}$$
.

Phase transition

<u>Theorem</u> [Albenque, Fusy, S. 24] Model exhibits a phase

transition at
$$u_C = \frac{9\pi(4-\pi)}{420\pi - 81\pi^2 - 512} \simeq 3.02$$
.

When $n \to \infty$:

- Subcritical phase $u < u_C$: "general tree-rooted map phase" one huge block;
- Critical phase $u=u_{C}$: a few large blocks;
- Supercritical phase $u>u_C$: "tree phase" only small blocks.

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration			
Size of - the largest block - the second one			
Scaling limit of M_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one			
Scaling limit of M_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^u))n$ $\Theta(n^{1/2})$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$
Scaling limit of M_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^u))n$ $\Theta(n^{1/2})$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$

Ordered atoms of a Poisson Point Process

Scaling limit of M_n		

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$	
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$	
Size of - the largest	$\sim (1 - \mathbb{E}(\mu^u))n$	O) (1/2)	$\ln(n) = 3\ln(\ln(n)) + O(1)$	
block - the second one	$\Theta(n^{1/2})$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$	
		$\frac{C_2 \ln(n)^{1/2}}{n^{1/2}} M_n \to \mathcal{T}_e$	[Stufler 2020] $\frac{C_3(u)}{n^{1/2}} M_n \to \mathcal{T}_e$	
Scaling limit of M_n	?		The state of the s	
	<u> </u>	69/74	The state of the s	

69/74

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$	
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$	
Size of - the largest	$\sim (1 - \mathbb{E}(\mu^u))n$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln(n)} - \frac{3\ln(\ln(n))}{\ln(n)} + O(1)$	
block - the second one	$\Theta(n^{1/2})$		$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$	
		$\frac{C_2 \ln(n)^{1/2}}{n^{1/2}} M_n + \mathcal{T}_e$	$\frac{C_3(u)}{n^{1/2}} M_n + \mathcal{T}_e$	
Scaling limit of M_n	?		The state of the s	
		69/74		

69/74

Interlude: tree-rooted quadrangulations

CANCELLED

M(z) = Q(z) does not hold!

VI. Perspectives

Extensions to more involved decompositions

Block-weighted

- Maps into loopless blocks;
- 2-connected maps into 3-connected blocks...

Table 3. Composition schemas, of the form $\mathcal{M} = \mathcal{C} \circ \mathcal{H} + \mathcal{D}$, except the last one where $\mathcal{M} = (1 + \mathcal{M}) \times (\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$
all, $M_1(z)$	bridgeless, or loopless $M_2(z)$	$z/(1-z(1+M))^2$	$z(1+M)^2$
loopless $M_2(z)$	simple $M_3(z)$	z(1+M)	_
all, $M_1(z)$	nonsep., $M_4(z)$	$z(1+M)^2$	_
nonsep. $M_4(z)-z$	nonsep. simple $M_5(z)$	z(1+M)	_
nonsep. $M_4(z)/z-2$	3-connected $M_6(z)$	M	$z + 2M^2/(1+M)$
bipartite, $B_1(z)$	bip. simple, $B_2(z)$	z(1+M)	_
bipartite, $B_1(z)$	bip. bridgeless, $B_3(z)$	$z/(1-z(1+M))^2$	$z(1+M)^{2}$
bipartite, $B_1(z)$	bip. nonsep., $B_4(z)$	$z(1+M)^{2}$	_
bip. nonsep., $B_4(z)$	bip. ns. smpl, $B_5(z)$	z(1+M)	_
singular tri., $T_1(z)$	triang., $z + zT_2(z)$	$z(1+M)^{3}$	_
triangulations, $T_2(z)$	irreducible tri., $T_3(z)$	$z(1+M)^2$	

Extensions to more involved decompositions

Block-weighted

- Tree-rooted quadrangulations;
- Forested maps;
- Maps endowed with a Potts model / Ising model;
- 2-oriented quadrangulations (resp. 3-oriented triangulations) decomposed into irreducible blocks...

Critical window?

Phase transition very sharp => what if $u = 9/5 \pm \varepsilon(n)$?

- Block size results still hold if $u_n = 9/5 \varepsilon(n)$, $\varepsilon^3 n \to \infty$;
- For $u_n = 9/5 + \varepsilon(n)$, this is the case as well: when $\varepsilon^3 n \to \infty$

$$L_{n,1} \sim 2.7648 \,\varepsilon^{-2} \ln(\varepsilon^3 n)$$

(analogous to [Bollobás 1984]'s result for Erdős-Rényi graphs!);

• Results exist for scaling limits in ER graphs [Addario-Berry, Broutin, Goldschmidt 2010], open question in our case.

Is there a critical window? If so, what is its width?

Thank you!

▶ **Theorem 15.** The random tree-rooted map $M_n^{(u)}$, drawn according to $\mathbb{P}_n^{(u)}$, exhibits the following behaviours when n tends to infinity.

Subcritical case. For $u < u_c$, the largest bloc is macroscopic, and more precisely one has:

$$\frac{LB_1(M_n^{(u)}) - (1 - E(u))n}{\sqrt{c(u)n\ln(n)}} \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0,1).$$
(23)

Furthermore, for any fixed $j \geq 2$, it holds that $LB_j(M_n^{(u)}) = \Theta_{\mathbb{P}}(n^{1/2})$ and for x > 0:

$$\mathbb{P}\left(LB_{j}(\mathbf{M}_{n}^{(u)}) \leq x\sqrt{n}\right) \xrightarrow[n \to \infty]{} e^{-\lambda(x)} \sum_{p=0}^{j-2} \frac{\lambda(x)^{p}}{p!}, \qquad where \ \lambda(x) := \frac{c(u)}{2x^{2}}.$$
 (24)

Critical case. For $u = u_C$, for any fixed $j \ge 1$, it holds that $LB_j(M_n^{(u)}) = \Theta_{\mathbb{P}}(n^{1/2})$. More precisely, up to a shift of indices, the sizes of the blocks exhibit a similar behavior as the sizes of non-macroscopic blocks in the subcritical regime, namely, for x > 0:

$$\mathbb{P}\left(LB_{j}(\mathbf{M}_{n}^{(u)}) \leq x\sqrt{n}\right) \xrightarrow[n \to \infty]{} e^{-\lambda(x)} \sum_{p=0}^{j-1} \frac{\lambda(x)^{p}}{p!}, \qquad where \ \lambda(x) := \frac{c(u_{C})}{2x^{2}}.$$
 (25)

Supercritical case. For $u > u_C$, for all fixed $j \ge 1$, it holds as $n \to \infty$ that

$$LB_{j}(M_{n}^{(u)}) = \frac{\ln(n)}{\ln\left(\frac{\rho_{B}}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_{B}}{y(u)}\right)} + O_{\mathbb{P}}(1).$$

▶ Remark 16. One can get a local limit theorem for LB₁(M_n^(u)) in the subcritical case as in [24] (up to the technicality that nodes of the block tree have only even numbers of children). Furthermore, one can state a joint limit law for the sizes LB_j(M_n^(u)). For any fixed $r \ge 1$,

$$\left(\frac{c(u)}{2} \left(\frac{\mathrm{LB}_j(\mathrm{M}_n^{(u)})}{\sqrt{n}}\right)^{-2}, \ 2 \le j \le r+1\right) \xrightarrow[n \to \infty]{(d)} (A_1, \dots, A_r),$$

where the A_i are the decreasingly ordered atoms of a Poisson Point Process of rate 1 on \mathbb{R}_+ . The same joint limit law holds at u_C (with j from 1 to r).