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Planar maps

Planar map m = embedding on the sphere of a connected
planar graph, considered up to homeomorphisms

=<

> ®

- Rooted planar map = map endowed with a marked oriented edge
(represented by an arrow);

. Size | m| = number of edges;
- Corner (does not exist for graphs !) = space between two consecutive
edges around a vertex (trigonometric order).
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Planar maps

Planar map m = embedding on the sphere of a connected
planar graph, considered up to homeomorphisms

Planar map = planar graph +
cyclic order on neighbours

+

- Rooted planar map = map endowed with a marked oriented edge
(represented by an arrow);

. Size | m| = number of edges;
- Corner (does not exist for graphs !) = space between two consecutive
edges around a vertex (trigonometric order).
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Universality results for planar maps

« Enumeration: Kp_”n_S/2 [Tutte 1963];

1/4

« Distance between vertices: n ' [Chassaing, Schaeffer 2004];

« Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013,
Miermont 2013] and general Maps [Bettinelli, Jacob, Miermont 2014];

Brownian Sphere &,
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Universality results for planar maps

Enumeration: Kp‘”n_5/2 [Tutte 1963];

1/4

Distance between vertices: n '™ [Chassaing, Schaeffer 2004];

Scaling limit: Brownian sphere for guadrangulations [Le Gall 2013,
Miermont 2013] and general Maps [Bettinelli, Jacob, Miermont 2014];

Universality:

¢ Same enumeration [Drmota, Noy, Yu 2020];

» Same scaling limit, e.g. for triangulations & 2g-angulations [Le
Gall 2013], simple quadrangulations [Addario-Berry, Albenque 2017].
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Universality results for plane trees

. Enumeration:Kp_”n_3/2;

1/2

« Distance between vertices: n '“ [Flajolet, Odlyzko 1982];

» Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

N ‘v* i

474 Brownian Tree I,



Universality results for plane trees

. Enumeration:xp‘”n_3/2;

1/2

« Distance between vertices: n '“ [Flajolet, Odlyzko 1982];

» Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

« Universality:
« Same enumeration;

« Same scaling limit, even for some classes of maps, e.g.
outerplanar maps [Caraceni 2016], maps with a boundary of

size >> n /2 [Bettinklli 2015].

Models with (very) constrained boundaries
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. . Inspired by [Bonzom
MOtlvatlon Delepouve Rivasseau 2015].

Two rich situations with universality results:
Planar maps Plane trees

(B

0,0[< il Pavay S
!
5 /74 Brownian Tree I,

Brownian Sphere &,
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Model definition

7-conhected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.
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Model definition

7-conhected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a
large block concentrates a

macroscopic part of the mass
[Banderier, Flajolet, Schaeffer, Soria 2001;

Jonsson, Stefansson 2011].
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Model definition

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a
large block concentrates a Only small blocks.

macroscopic part of the mass
[Banderier, Flajolet, Schaeffer, Soria 2001;

Jonsson, Stefansson 2011].

Interpolating model using blocks!
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Outline of the talk

Phase transitions of block-weighted planar maps

. Model
I. Block tree of a map and its applications with William
Interlude. Quadrangulations Fleurat

Il. Scaling limits
V. Extension to other families of maps

V. Extension to tree-rooted maps \

VI. Perspectives
with Marie Albengue

& Eric Fusy
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l. Model



M d I Introduced by [Bonzom Delepouve
ode Rivasseau 2015];

General setting in [Stufler 2020].

Goal: parameter that affects the typical number of blocks.

> 0,
1 #blocks(m) b;% { I
We choose: P, (m) = where “%n=1maps of size n},
’ Z, me .M,

Z,,, = normalisation.
« u = 1: uniform distribution on maps of size n;
« 4 — 0: minimising the number of blocks (=2-connected maps);

« 4 — 00: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour whenn — 00?
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n ~ 55000
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Phase transition

Theorem [Fleurat, S. 24] Model exhibits a phase transition

atu = 9/5. Whenn = o0o:

« Subcritical phase u < 9/5: “general map phase” one
huge block;

. Critical phase u = 9/5: a few large blocks;
 Supercritical phase u > 9/5: “tree phase” only small
blocks.

We obtain explicit results on enumeration, size of blocks
and scaling limits in each case.

— A phase transition in block-weighted random maps
W. Fleurat & Z. S., Electronic Journal of Probability, 2024
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ForM, < P, ,

u<9/5

Results

u=9/5

u>9/5

Enumeration

Size of

- the largest
block

- the second
one

Scaling limit of
M

n
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ll. Block tree of amap
and its applications




Decomposition of a map into blocks

Inspiration from [Tutte 1963]
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Decomposition of a map into blocks

Inspiration from [Tutte 1963]

D — //\\\\

M(2) = B(zM*(2))

GS of maps — /
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Decomposition of a map into blocks

Inspiration from [Tutte 1963] M(z,u) = Z zlmly #blocks(m)
mel

D — //\\\\

M(2) = B(zM*(2))

GS of maps — /

GS of 2-connected maps —

With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/74




Results
For M, < IP’W u < 9/5 u=9/5 u>9/5

—Ny —5/2 —y —5/3 —Ny —3/2

p(u)

Enumeration p(u) p(u)

[Bonzom 2016]

Size of

- the largest
block

- the second
one

Scaling limit of
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Decomposition of a map into blocks

Inspiration from [Tutte 1963]

= Underlying block tree structure, made explicit by [aAddario-

Berry 2019].
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Decomposition of a map into blocks

(7

RN

o/./l\ l\d

i\

= Underlying block tree structure, made explicit by [aAddario-

Inspiration from [Tutte 1963]

Berry 2019].
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Decomposition of a map into blocks

(7

—A

o/./l\ l\d

i\

= Underlying block tree structure, made explicit by [aAddario-

Inspiration from [Tutte 1963]

Berry 2019].
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Decomposition of a map into blocks

Inspiration from [Tutte 1963] m

= Underlying block tree structure, made explicit by [aAddario-

Berry 2019].

20/74



Block tree: properties .

" (7
— . 7N
PR

. m is entirely determined by 7,, and (b,,v € T,,) where b is the
block of m represented by vin 1;

- Internal node (with k children) of T, <> block of m of size k/2.

1), gives the block sizes of arandom map M,

21/74



Block trees are BGW-trees

1-Bienayme-Galton-Watson (BGW) tree : random tree where

the number of children of each node is given by u
independently, with u = probability law on N.

Theorem [Fleurat, S. 24]

u> (0

f M, < P, . then there exists an (explicit) y = y(u) s.t.
Iy, has the law of a BGW tree of reproduction law p>**
conditioned to be of size 2n, with

Byy*ulio

ut(12k}) =

uBO) +1—u

22/74



0.16-

4/27°

0.14~

0.12+

0.10+

0.08~

0.06~

0.04+

0.02-

|y(u) = 4/27

| Subcritical

Phase transition for y(u)

GW

y) =y s.t. E(u™") =1

Critical GW

0

o1 9/

“Map regime”

sy 4 s 6 7
“Tree regime”
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Largest blocks?

» Degrees of 1), give the block sizes of the map M,;

- Largest degrees of a BGW tree are well-known [Janson 20121.

2474



Rough intuition

u<9/5 u=29/5 u>9/5

ﬂy(u),u({Zk}) ~ C'uk_S/2 ~ Cuﬂ'b]fk_S/z

BGW tree subcritical critical

Dichotomy between situations:
« Subcritical: condensation, cf [Jonsson Stefansson 2011];

« Supercritical: behaves as maximum of independent
variables.
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ForM, < P, ,

Size L, , of the k-th largest block

u<9/5 u=9/5 u>9/5

L

n,

L

n,

0.8 -

0.6 -

0.4+

0.2+

1

2

Size of the linear block X n—

N (1 _ [E(,u4/27’“))n

[Stufler 2020] In(n)  5In(n(n))

O(n*"°) 2In () 4ln (i)

27y 27y

+ O(1)

2/3
(n")
[Stufler 2020]
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Results

ForM, < P, , u<9/5 u=9/5 u>9/5

Enumeration p(u)~"'n=>"? p(u)"'n =" p(u)~"n="?
[Bonzom 2016]

Size of .

- the largest |~ (I —E@™"*)n /3 In(w) _ _ Slndn@) | 5
block . On") 21n<27y) 41n<2‘7‘y)

- the second On~")
one [Stufler 2020]

Scaling limit of
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Interlude: quadrangulations



Quadrangulations

Def: map with all faces of degree 4.

Simple quadrangulation = no multiple edges.

Size | q| = number of faces.

V)| =[ql+2 [E(@)]| =2]q].
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Construction of a quadrangulation from a simple core
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Construction of a quadrangulation from a simple core
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Construction of a quadrangulation from a simple core

30/74



Block tree for a quadrangulation

=y Sl
-

With a weight u on blocks: O(z, u) = uS(zO*(z,u)) + 1 — u

Remember: M(z, u) = uB(zM?*(z,u)) + 1 — u
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Map

Tutte’s bijection

Quadrangulation

RS

[Tutte 1963]
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Tutte’s bijection for 2-connected maps

Cut vertex => multiple edge

2-connected maps <=> simple quadrangulations

[Brown 1965]
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Block trees under Tutte’ : :':'ection

| D




Implications on results

u>0,
1 7blocks(q) @, = {quadrangulations
We choose: P, (q) = ~ where of size n},
n,u qeq,,
Z, , = normalisation.

n,u

Results on the size of (2-connected) blocks can be transferred
immediately for guadrangulations and their simple blocks.
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Results

ForM, < P, , u<9/5 u=9/5 u>9/5
Enumeration p(u)—n -5/2 p(u)—n —-5/3 p(u)—n -3/2
[Bonzom 2016] for 2-c case

Size of .

- thelargest |~ (I —E@™")n /3 In() __ 3Indn@) 5,
block . Sl 21n<27y) 41n<2‘7‘y>

- the second On")
one [Stufler 2020]

Scaling limit of
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lll. Scaling limits



Scaling limits

Convergence of the whole object considered as a (compact)
metric space (with the graph distance), after renormalisation.

du,v) =4

v @

M, < P, , (map or quadrangulation)
What is the limit of the sequence of metric spaces ((M,, d/n?))neN ?

(Convergence for Gromov-Hausdorff(-Prokhorov) topology)
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Scaling limit of supercritical and critical maps

Lemma ForM, < P,

- Ifu> 9/5,
(33(”) .
i Ly — I,
e Ifu=29/5,

Brownian Tree 7, 39/74 Stable Tree J 5,



Scaling limit of supercritical and critical maps

Lemma ForM, < P,

. Ifu>9/5,
C3(u)
1/2 TMn = T
n
. Ifu=9/5,
CH _
iz, 7T s

Proof Known scaling limits of critical BGW trees
« with finite variance [Aldous 1993, Le Gall 2006];
» infinite variance and polynomial tails [Duquesne 2003].
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Scaling limit of supercritical and critical maps

Theorem ForM, & P

n,u’

[Stufler 2020] If 1 > 9/5,

C/ C/
12 =M, = e pli2z e
[Fleurat, S.24] If u = 9/5,
CH —
y n1/3 l/ J3/2'
£ N

Brownian Tree I, 40/74 Stable Tree 773



Scaling limit of supercritical and critical maps

Theorem ForM, & P

n,u’

. [Stufler 2020] If u > 9/5,

c3(u) C5(u)
C7 2
nl/2 M, ~ e nl2 " — e
+ [Fleurat, s.24] If u = 9/5,
Cy - 7 C, Iy _
173 My — 3 137 = I3

Proof Distances in M, behave like distances in T}, !

n
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Supercritical and critical cases

Goal = show that distances in M, behave like distances in 1}, .

Let Kk =

numbers”-type argument

~("diameter" bipointed block). By a “law of large

Difficult for the
dMn(el, 62) il KdTM (61, 62) . critical case => large
" deviation estimates

2/74
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Scaling limits of subcritical maps

Theorem [Fleurat, S. 24] If u < 9/5, for M, - P, , and

denoting B(M,) its largest block:

Cy(u)

|
dGHP n1/4 M WB(MH) — 0.

Brownian Sphere &',

So, if cn™*B — &, then
C,(u)

cn /4

n

Sl
o ;o
PN ¢ - 4
R BT
ST S ;"1";
e el s i 4
SR s
i VOIS
[ ] B LA N B
e 2\
Ko T N
b SR
¥ S AEAN
2 4
5
R
e
: Znan

See [Addario-Berry, Wen 2019] for a similar result and method.
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Subcritical case

Decorations = groups of smaller blocks

Large block of size
O(n)

Diameter of a decoration < blocks to cross X max diameter of blocks
< diam(Ty; ) X (Om*P)V40 = diam(T,, ) X O(n/6+9)

TMn is a subcritical ~ 0(71 1/6+25) _ 0(n 1/4) \
BGW tree

[Chapuy Fusy Giménez Noy 2015]
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Subcritical case

@ O Decorations = groups of smaller blocks
\ \/

Large block of size

@ Diameters of decorations = o(n!/*).

The scaling limit of M (rescaled by n is the scaling limit of
uniform blocks!
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Scaling limits of subcritical maps

Theorem [Fleurat, S. 24] If u < 9/5,forQ, < P, , a
quadrangulation:

C(u)

1y 1/4 Q= &

e.

Moreover, (), and its simple core converge jointly to the
same Brownian sphere.

Proof

« Previous theorem;
 Scaling limit of uniform

simple quad. rescaled by nlA
= Brownian sphere [Addario-Berry
Albenque 2017].

47]74 Brownian Sphere &,
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ForM, < P, ,

Results

u<9/5

u=9/5

u>9/5

Enumeration
[Bonzom 2016]

p(u) "'n=>"

p(u)"n

—5/3

p(u)'n "

Size of

the largest
block

the second
one

~ (1 _ [E(//t4/27’u))n

@(n2/3)

[Stufler 2020]

@(n2/3)

In(n) B 5 In(In(n))

4 4
2In(5)  4in (5

+0(1)

Scaling limit of

C
1(M)M g

n1/4 n (4

Assuming the convergence of 2-
connected maps towards the
Brownian sphere
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V. Extension to other
families of maps




Extension to other models
[Banderier, Flajolet, Schaeffer, Soria 2001]:

TABLE 3. Composition schemas, of the form M = C o H + D,
except the last one where M = (1 4+ M) x (C o H).

maps, M(z)

cores, C'(z) submaps, H(z) coreless, D(z)

all, M, (Z)

loopless M»(z)

all, M, (Z)

nonsep. My(z) — 2
nonsep. Ma(z)/z — 2

bridgeless,

or loopless M3 (2)

z/(1 —2z(1 4+ M))? z(1 4+ M)?

simple M3(z) 2(1+ M) -
nonsep., M4 (z) z(1+ M)? —
nonsep. simple M;5(2) 2(1+ M) -

3-connected Me(2) M z+2M?/(1+ M)

bipartite, Bi(z) bip. simple, Bz(z) 2(1+ M) =
bipartite, B1(z) bip. bridgeless, B3(z) z/(1 — z(1 + M))? z2(1 + M)?
bipartite, Bi(z) bip. nonsep., B4(z) z2(14 M)? -
bip. nonsep., B4(z)  bip. ns. smpl, Bs(2) z2(1+4+ M) -
singular tri., T1(2) triang., z + 272(2) z(1+ M)° —
triangulations, T»(z) irreducible tri., T3(2) z(14 M)? —
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Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

TABLE 3. Composition schemas, of the form M = C
except the last one where M = (1 + M) x (C o H).

oH + D,

maps, M(z) cores, C'(z) submaps, H(z) coreless, D(z)
all, M (z) Elflﬁ)goe;?::; Ma(z)  2/(1—z2(1+M))?  z(1+ M)?
loopless Mo (z) simple M3(z) 2(1+ M) -

all, Mi(z) nonsep., M4(z) z(1+ M)? —
nonsep. My(z) — z nonsep. simple M5(z) 2(1+ M) -
nonsep. Ma(z)/z —2 3-connected Ms(2) M z+2M?/(1+ M)
bipartite, Bi(z) bip. simple, Bz(z) 2(1+ M) =
bipartite, B1(z) bip. bridgeless, B3(z) z/(1 —z(1+ M))? z(1+ M)?
bipartite, Bi(z) bip. nonsep., B4(z) z(1+ M)? -~

bip. nonsep., B4(z)  bip. ns. smpl, Bs(z) 2(1+ M) -
singular tri., T1(2) triang., z + 272(2) z(1+ M)° —
triangulations, T»(z) irreducible tri., T3(z2) z(1 4+ M)? —

Uc

81/17
9/5
135/7

36/11

52/27
68/3

16/7
64/37

— Unified study of the phase transition for block-weighted

random planar maps Z. Salvy (Eurocomb’23)
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Statement of the results

Theorem [S. 23] Model of the preceding table without

coreless maps exhibits a phase transition at some explicit u,.
Whenn — oo:

- Subcritical phase u < u,: “general map phase” one
huge block;

- Critical phase u = u,: a few large blocks;

- Supercritical phase u > u: “tree phase” only small
blocks.

We obtain explicit results on enumeration and size of blocks
In each case.
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V. Extension to tree-
rooted maps




Decorated maps are interesting

Theoretical physics point of view:

- Undecorated maps: “pure gravity” case (nothing happens
on the surface):;

« Decorated maps: things happen! new asymptotic
behaviours! new universality classes! excitement!
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Tree-rooted maps

= (rooted planar) maps endowed with a spanning tree.
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Tree-rooted maps

« Combinatorics well understood :
Mullin’s bijection;

[2"]M(z) = Cat,Cat,yy
[Mullin 67]

- Geometry not so much.
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Tree-rooted maps

« Combinatorics well understood :
Mullin’s bijection;

[2"]M(z) = Cat,Cat,yy
[Mullin 67]

- Geometry not so much.

We want a phase transition in tree-rooted maps.

=> Block-weighted tree-rooted maps.
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Mullin’s bijection

[z"]M(z) = Cat,Cat, [Mullin 67]
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[z"]M(z) = Cat,Cat, [Mullin 67]

58/74



Mullin’s bijection

/\‘ SNDIDASU IDNEODARG D

\

Dyck word of Dyck word of
size | 1] size |[m | — |[1]

[z"]M(z) = Cat,Cat, [Mullin 67]
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Mullin’s bijection

/\‘ SNDIDASU IDNEODARG D

\

Dyck word of Dyck word of
size | 1] size |[m | — |[1]
[ 1M (2) Zn: on Cat,Cat
Z 7) = n—
& o k k

[z"]M(z) = Cat,Cat, [Mullin 67]
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Mullin’s bijection

/\‘ SNDIDASU IDNEODARG D

\

Dyck word of Dyck word of
size | 1| size |m|—|t]

n

2
[z M(2) = Z (;) Cat,Cat,_,

Vandermonde & k=0
identity [z"]M(z) = Cat,Cat,; [Mullin 67]
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Model

Goal: parameter that affects the typical number of blocks.

u>0,
u#blocks( ) =
We choose: I, (1) = where maps of size n},
n,u me .,

n.u = normalisation.

« u = |: uniform distribution on maps of size n;

« u — 0: minimising the number of blocks (=2-connected
maps);

« U — 00: maximising the number of blocks (=
trees!).

Given u, asymptotic behaviour whenn — 00?
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Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a
decomposition of tree-rooted maps into tree-rooted blocks.

(7
— D® ¢
//l\/\d“\“

‘“ 3

M(z) = B(zM*(2))

/—j — GS of tree-rooted maps
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Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a
decomposition of tree-rooted maps into tree-rooted blocks.

(7
Q\Q //1’\\\\
— D® ¢
//l\/\d“\“

‘“ 3

M(z,u) = uB(zM*(z,u)) + 1 — u

/—j — GS of tree-rooted maps

60/74

GS of 2-connected tree-rooted maps



So everything should be easy, right?
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+1zn SO

n>0
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+1zn SO

n>0

4 —3
M) ~ — X 16" X n;
T
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+1zn SO

n>0

1

4 3 _
NIM@Z) ~ =X 16" X - Py =
U
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+1zn SO
n>0
|

4 3 _
NIM@Z) ~ =X 16" X - Py =
U

64
. M(p,) =38 ~ 1.2 so M is not algebraic...

3n \

P(z,M(z)) =0
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Tree-rooted maps are not so nice

M(z) = Z Cat,Cat,; 12" 50
n>0
1

4 . _
ZIM (D) ~—X 16" Xn 7 o Pu = 16
T

64
. M(p,) =38 3 ~ 1.2 so M is not algebraic...
' \
« Fortunately, it is still -finite P (Z’ M(Z)) =0

o0*M oM
Po(z)a—zz(z) + P, (Z)a_z(Z) + Py(2)M(z) + P5(z) = 0.
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+lzn SO

n>0

D-finite

4 . _
ZIM (D) ~—X 16" Xn 7 o Pu = 16
T

Algebraic

64
. M(p,) =38 3 ~ 1.2 so M is not algebraic...
’ \
« Fortunately, it is still -finite P (Z’ M(Z)) =0
0°M

oM
Po(z)a—zz(z) + P, (Z)a_z(Z) + Py(2)M(z) + P5(z) = 0.
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2-connected tree-rooted maps are naughty

Using M(z) = B(zM?*(z)) and the properties of M/, we show
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2-connected tree-rooted maps are naughty

Using M(z) = B(zM?*(z)) and the properties of M/, we show

, 437 — 8)*
e Pp=p,M(p,) = > ~ 0.091
74

is not algebraic so 5 is not D-finite

63/74



2-connected tree-rooted maps are naughty

Using M(z) = B(zM?*(z)) and the properties of M/, we show

, 437 — 8)*
e Pp=p,M(p,) = > ~ 0.091
74

is not algebraic so 5 is not D-finite

« Bis D-algebraic
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2-connected tree-rooted maps are naughty

Using M(z) = B(zM?*(z)) and the properties of M/, we show

, 437 — 8)*
e Pp=p,M(p,) = > ~ 0.091
74

is not algebraic so 5 is not D-finite

« Bis D-algebraic

P az—B()a—B()l’?() =0
(')yzy’&yy’ Y)Yy | = V.
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2-connected tree-rooted maps are naughty

Using M(z) = B(zM?*(z)) and the properties of M/, we show

D-algebraic

, 437 — 8)*
Or

D-finite
is not algebraic so 5 is not D-finite

Algebraic

« Bis D-algebraic

P az—B()()—B()B() =0
ayzyaayy’ Y)Yy | = V.
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Enumeration of 2-connected tree-rooted maps

Using M(z) = B(zM?*(z)) and the properties of M, we show

Theorem [Albenque, Fusy, S. 24]

437 — 8)°

"B(y) ~ X P X nTo .
Y 15(y) T P
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Phase transition

Theorem [Albenque, Fusy, S. 24] Model exhibits a phase

. On(4 — )
transition at uy = 107 — 8172 — 512 ~ 3.02.

When n — o0:

« Subcritical phase u < u,: “general tree-rooted map
C
phase” one huge block;

- Critical phase u = u,: a tew large blocks;

- Supercritical phase u > u.: “tree phase” only small
blocks.
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For Y

n n,u

U < Uc

Results

uzuc

U > Ue

Enumeration

Size of

- the largest
block

- the second
one

Scaling limit of

n
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For Y

n n,u

U < Uc

Results

uzuc

U > Ue

Enumeration

—Ty -3

p(u)

p(u)—nn —3/2 ln(n)_ 1/2

p(u)

—ny —3/2

Size of

- the largest
block

- the second
one

Scaling limit of

n
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For Y

n n,u

Results

U < Uc

uzuc

U > Ue

Enumeration

—Ty -3

p(u)

p(u)—nn —3/2 ln(n)_ 1/2

p(u)—n —3/2

Size of

- the largest
block

- the second
one

~ (I =E@")n

@(I”l 1/2)

@(n 1/2)

In(n) 3 In(In(n))

)
y()) hl(y())

+ O(1)

Scaling limit of

n
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For <

n n,u

Results

u < Ue

I/t=l/tc

U > Ue

Enumeration

(u)—n -3

p(u)—nn —3/2 ln(n)_ 1/2

(u)—n —3/2

Sreo | ~ (= Ewn
e e N R
In (-2
- the second O(n'?) "
one A

\

/

Ordered atoms of a Poisson Point Process

Scaling limit of

n
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Results

For M, & P U < Uc U= U U > U
Enumeration p(u)"'n p(u) =32 In(n)~ "2 ()" =32
Size of ~ (1 = E(u")n
- the largest o2 () 3indnw) | o
block n p :
- the second O(n'?) ") )
one
C( ) [Stufler 2020]
C2 hl(l/l)l/2 3\U
172 n = e T 7
Scaling limit of )

n
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For <

n n,u

u < Ue

Results

uzuc

U > Ue

Enumeration

—Ty -3

p(u)

p(u)—nn —3/2 ln(n)_ 1/2

p(u)—n —3/2

Size of o (1 _ [E(//tu))l’l
- the largest 1 In()  3In(ln(n))

blOCk ®(n ) n(-2 n(-2 +oh)
- the second O(n'?) () ()

one

[Stufler 2020]
CZ hl(l/l)l/2 f/]’ C3(l/l)
nl/2 pnl2 "

Scaling limit of .

n
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Interlude: tree-rooted
quadrangulations




CANCELLED

-rooted
tions

Interlud
quadr

M(z) = O(z) does not hold!



VI. Perspectives




Extensions to more involved decompositions

Block-weighted
- Maps into loopless blocks;
- 2-connected maps into 3-connected blocks...

TABLE 3. Composition schemas, of the form M = C o H + D,
except the last one where M = (1 + M) x (C o H).

maps, M (z) cores, C(z) submaps, H(z) coreless, D(z)
all, M (2) Efﬁ)goe;‘f::; Ma(z)  2/(1—2(1+M))?  z(1+ M)?
loopless M2 (z) simple M3(z) z(1+ M) —

all, Mi(z) nonsep., M4(z) z(1+ M)? -
nonsep. M4(z) — 2 nonsep. simple M5 (z) z(1+ M) -
nonsep. M4(2)/z —2 3-connected Meg(2) M z+2M?/(1 4+ M)
bipartite, Bi(z) bip. simple, B2(2) z(1+ M) —
bipartite, Bi(z) bip. bridgeless, B3(z) 2z/(1 —z(1+ M))? 2(1+ M)?
bipartite, B1(z) bip. nonsep., B4(2) 2(1+ M)? —

bip. nonsep., B4(z)  bip. ns. smpl, Bs(2) z(1+ M) -
singular tri., 71 (2) triang., z + 27%2(2) z(1+ M)® -~
triangulations, T>(z) irreducible tri., T5(z2) z(1+ M)? —
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Extensions to more involved decompositions

Block-weighted
« Tree-rooted quadrangulations;

- Forested maps;
- Maps endowed with a Potts model / Ising model;

« 2-oriented quadrangulations (resp. 3-oriented
triangulations) decomposed into irreducible blocks...

72/74



Critical window?

Phase transition very sharp => what if u = 9/5 * e(n)?

» Block size results still hold if u, = 9/5 — e(n), e3n - oo;

. For u, = 9/5 + &(n), this is the case as well: when °n — oo

L, ~ 27648 e *In(e’n)

p

(analogous to [Bollobas 1984]'s result for Erdos-Renyi graphs!);

 Results exist for scaling limits in ER graphs [Addario-Berry, Broutin,
Goldschmidt 2010], open gquestion In our case.

Is there a critical window? If so, what is its width?
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Thank you!



» Theorem 15. The random tree-rooted map M%“), drawn according to 1P>$,,“), exhibits the
following behaviours when n tends to infinity.
Subcritical case. For u < u., the largest bloc is macroscopic, and more precisely one has:

LB (M) — (1 - E(w)n (4
v c(uw)nln(n) m—00

Furthermore, for any fized j > 2, it holds that LB, (M%u)) = Op(n'/?) and for x > 0:

> N(0,1). (23)

j—2
_ A(x)P c(u)
(M(®) A(x) A\
P (LB] (M%) < x\/ﬁ) ——e 2% o where A(x) := 572 (24)
p:
Critical case. For u = uc, for any fized j > 1, it holds that LB; (Mﬁ,ﬁ“)) = Op(n'/2). More
precisely, up to a shift of indices, the sizes of the blocks exhibit a similar behavior as the
sizes of non-macroscopic blocks in the subcritical regime, namely, for x > 0:

J—1 D
P (LBj (M) < a;\/r_z) — e @) Z )\(;) : where A(x) := 0(21;(;) (25)
p=0

Supercritical case. For u > uc, for all fixed 5 > 1, it holds as n — oo that

In(n)  3In(ln(n))

_PB_ PB
In (y<5>) In (y<5>)

LB;(M®) = + Op(1).



» Remark 16. One can get a local limit theorem for LB;(M;"’) in the subcritical case as
in [24] (up to the technicality that nodes of the block tree have only even numbers of children).
Furthermore, one can state a joint limit law for the sizes LBj(Mq(zu)). For any fixed r > 1,

—2
c(u) { LB;(MM) | (d)
— 7 <7<
2 ( Jn ) o rsisrl oo A,

where the A; are the decreasingly ordered atoms of a Poisson Point Process of rate 1 on R,.
The same joint limit law holds at uc (with j from 1 to 7).
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