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Planar map = planar graph + cyclic order on neighbours

Planar map = embedding on the sphere of a connected 
planar graph, considered up to homeomorphisms

= ≠

Planar maps

Very interesting objects for computer science, mathematics & physics.
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Vocabulary for maps

Corner = space between 
two consecutive edges 
around a vertex 
(trigonometric order).

Rooted planar map = map endowed with a marked oriented edge 
(represented by an arrow). 

Edge
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Planar map = planar graph + cyclic order on neighbours 

Exist for graphs Do not exist for graphs

Face = connected 
components of the 
space without the graph
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Bijections for planar maps

Outline of the lecture

I. Duality construction 
II. Tutte’s bijection 
III. Cori—Vauquelin—Schaeffer’s bijection 
→ Handbook of Enumerative Combinatorics, Chapter 
“Planar Maps”, G. Schaeffer (2015) 

IV. Bouttier—Di Francesco—Guitter’s bijection 
→ “Planar maps as labelled mobiles”, J. Bouttier, P. Di 
Francesco and E. Guitter (2004) 

V. Conclusion

Other source: M. Albenque’s MPRI course.
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I. Duality construction

5
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Duality
[Schaeffer 15, Figure 1.3]

[Schaeffer 15, Theorem 1] Duality is an involution on the set of planar 
maps. It preserves the number of edges, and exchanges the numbers 
of vertices and faces: 

, , and .M** = M e(M*) = e(M) v(M*) = f(M)
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Euler’s formula for planar maps
M

v(M) = 6

e(M) = 7

f(M) = 3



/407

Euler’s formula for planar maps
M

v(M) = 6

e(M) = 7

f(M) = 3

For all planar maps , it holds that 
.

M
v(M) + f(M) = e(M) + 2
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Euler’s formula for planar maps
M

v(M) = 6

e(M) = 7

f(M) = 3

For all planar maps , it holds that 
.

M
v(M) + f(M) = e(M) + 2

T

v(T) = e(T) + 1

f(T) = 1

→ True for trees
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Euler’s formula for planar maps
M

v(M) = 6

e(M) = 7

f(M) = 3

For all planar maps , it holds that 
.

M
v(M) + f(M) = e(M) + 2

→ Interpretation via duality

T

v(T) = e(T) + 1

f(T) = 1
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Interpretation of Euler’s formula (1/2)
Spanning tree = tree of edges that covers all vertices.
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Interpretation of Euler’s formula (1/2)
Spanning tree = tree of edges that covers all vertices.

[Schaeffer 15, Figure 1.4]

[Schaeffer 15, Theorem 2] The “dual of a spanning tree” is a spanning 
tree of the dual. 
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Interpretation of Euler’s formula (2/2)

 edges of a map = 
•  edges of a spanning tree; 
•  edges of the dual spanning tree.

|E(M) |
|V(M) | − 1
|F(M) | − 1

For all planar maps , it holds that 

.

M
|V(M) | + |F(M) | = |E(M) | + 2
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II. Tutte’s bijection

10
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Quadrangulation  = map with all faces of degree 4.Q

Quadrangulations

Therefore, 
 

So, by Euler’s formula, 
e(Q) = 2 f(Q) .

v(Q) = f(Q) + 2.
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[Tutte 1963]Tutte’s bijection (1/2)
[Schaeffer 15, Figure 1.3] “incidence map”

What is the inverse of ?



/4013

Tutte’s bijection (2/2)

Theorem [Tutte 1963] Tutte’s bijection sends rooted 
maps with  edges to rooted quadrangulations 
with  faces.

n
n

Inverse construction:
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III. Cori—Vauquelin—
Schaeffer’s bijection 

(CVS)

14
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CVS bijection

Bijection between quadrangulations and decorated trees. 
→ Trees are easier to study than maps!
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CVS bijection

Bijection between quadrangulations and decorated trees. 
→ Trees are easier to study than maps!

[Schaeffer 15, Theorem 10 and Corollary 7] The 
CVS bijection sends  rooted quadrangulations 
with  faces and a marked vertex to rooted well-
labelled trees with  edges and an additional 
global label in .

n
n

{+1, − 1}
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Well-labelled trees
(Rooted) well-labelled tree = decorated rooted plane tree where 
- Each vertex carries a positive integer label, 
- There is a vertex of label 1; 
- Along each edge, the difference in labels is at most 1.

[Schaeffer 15, Figure 1.18]
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Well-labelled trees
(Rooted) well-labelled tree = decorated rooted plane tree where 
- Each vertex carries a positive integer label, 
- There is a vertex of label 1; 
- Along each edge, the difference in labels is at most 1.

[Schaeffer 15, Figure 1.18]

How many are there?
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Well-labelled trees
(Rooted) well-labelled tree = decorated rooted plane tree where 
- Each vertex carries a positive integer label, 
- There is a vertex of label 1; 
- Along each edge, the difference in labels is at most 1.

-1
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rooted plane trees with  edges

Catn =
1

n + 1 (2n
n )

n
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Well-labelled trees
(Rooted) well-labelled tree = decorated rooted plane tree where 
- Each vertex carries a positive integer label, 
- There is a vertex of label 1; 
- Along each edge, the difference in labels is at most 1.

-1

-1

-1+1

+1

+1

0

 

rooted plane trees with  edges

Catn =
1

n + 1 (2n
n )

n

So 

 

rooted well-labelled trees with  edges

3n ⋅ Catn =
3n

n + 1 (2n
n )

n
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(Bijective) enumeration of rooted maps

Theorem [Tutte 1963] Tutte’s bijection sends  rooted maps with  
edges to rooted quadrangulations with  faces.

n
n

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection 
sends rooted quadrangulations with  faces and a marked vertex to 
rooted well-labelled trees with  edges and an additional global 
label in .

n
n

{+1, − 1}
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(Bijective) enumeration of rooted maps

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection 
sends rooted quadrangulations with  faces and a marked vertex to 
rooted well-labelled trees with  edges and an additional global 
label in .

n
n

{+1, − 1}

number of rooted 
maps with  edgesn

number of rooted 
quadrangulations with 

 facesn
mn = qn
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(Bijective) enumeration of rooted maps

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection 
sends rooted quadrangulations with  faces and a marked vertex to 
rooted well-labelled trees with  edges and an additional global 
label in .

n
n

{+1, − 1}

Quadrangulation with  faces →  vertices.n n + 2

 rooted well-labelled trees with  edges.
3n
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(Bijective) enumeration of rooted maps

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection 
sends rooted quadrangulations with  faces and a marked vertex to 
rooted well-labelled trees with  edges and an additional global 
label in .

n
n

{+1, − 1}

Quadrangulation with  faces →  vertices.n n + 2

 rooted well-labelled trees with  edges.
3n

n + 1 (2n
n ) n

number of rooted 
maps with  edgesn

number of rooted 
quadrangulations with 

 facesn
mn = qn

(n + 2) qn = 2 ⋅
3n

n + 1 (2n
n )
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(Bijective) enumeration of rooted maps

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection 
sends rooted quadrangulations with  faces and a marked vertex to 
rooted well-labelled trees with  edges and an additional global 
label in .

n
n

{+1, − 1}

number of rooted 
maps with  edgesn

number of rooted 
quadrangulations with 

 facesn
mn = qn

(n + 2) qn = 2 ⋅
3n

n + 1 (2n
n )

mn =
2 ⋅ 3n

(n + 1)(n + 2) (2n
n ) =

2 ⋅ 3n (2n)!
n! (n + 2)!

.
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(Bijective) enumeration of rooted maps

mn =
2 ⋅ 3n

(n + 1)(n + 2) (2n
n ) =

2 ⋅ 3n (2n)!
n! (n + 2)!

.

Tutte’s + CVS bijections =>
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CVS construction: step 1 (1/2)
[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection 
sends rooted quadrangulations with  faces and a marked vertex to 
rooted well-labelled trees with  edges with an additional global 
label in .

n
n

{+1, − 1}
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CVS construction: step 1 (1/2)
Take a rooted quadrangulations with  faces and a marked vertex.n

[Schaeffer 15, Figure 1.18]
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CVS construction: step 1 (1/2)
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Take a rooted quadrangulations with  faces and a marked vertex.n
1. Label each vertex by its distance to the marked vertex.

[Schaeffer 15, Figure 1.18]



/4019

CVS construction: step 1 (2/2)
After step 1., only two possibilities for the faces: along an edge, the 
labels vary 
- At most by 1 (distance); 
- By 1 mod 2 as quadrangulations are bipartite. 
→ By exactly 1.

Proposition All quadrangulations are bipartite = their vertices can be 
decomposed into black and white vertices such that there is no 
monochromatic edge.

[Schaeffer 15, Figure 1.18]
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CVS construction: step 1 (2/2)

Proposition All quadrangulations are bipartite = their vertices can be 
decomposed into black and white vertices such that there is no 
monochromatic edge.

Proof. All cycles have even length. 
Cycle separates the sphere into 2 connected components. 

∑
f∈side

deg( f ) = 2 |black edges | + |blue edges | = 0 [2] .
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Take a rooted quadrangulations with  faces and a marked vertex.n
1. Label each vertex by its distance to the marked vertex.

[Schaeffer 15, Figure 1.18]

CVS construction: complete edition
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Take a rooted quadrangulations with  faces and a marked vertex.n
1. Label each vertex by its distance to the marked vertex.
2. Add edges in each face according to the following rules.

[Schaeffer 15, Figure 1.18]

CVS construction: complete edition
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Take a rooted quadrangulations with  faces and a marked vertex.n
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Proof
[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection 
sends rooted quadrangulations with  faces and a marked vertex to 
rooted well-labelled trees with  edges with an additional global 
label in .

n
n

{+1, − 1}

Proof outline 
1. The construction produces a rooted well-labelled structure with  

edges with an additional global label in ; 
2. This structure is a tree. 
3. The construction is invertible.

n
{+1, − 1}
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Proof: step 1

1. Clearly, the result of the construction : 
- Has 1 edge per face of the initial quadrangulation; 
- Is well-labelled: 

- Vertex-labelled by positive integers; 
- At least 1 node labelled 1.

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection 
sends rooted quadrangulations with  faces and a marked vertex to 
rooted well-labelled trees with  edges with an additional global 
label in .

n
n

{+1, − 1}
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Proof: step 2 (1/3)
2. The result is a tree:
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Proof: step 2 (1/3)
2. The result is a tree:
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Proof: step 2 (1/3)
2. The result is a tree:

Labels on the left of blue edges are non-increasing. 
There is one outgoing edge per blue vertex. 
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Proof: step 2 (2/3)

A blue cycle 
- Is oriented (1 outgoing edge per vertex); 
- Constant label on its left. 
=> Is around 1 vertex. 

=> There is exactly 1 blue cycle, around the 
marked vertex.
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Proof: step 2 (3/3)

=> Contracting the cycle, we 
get a spanning tree for the 
dual (of black+bold black), 
whose “dual” is bold-black 

=> Spanning tree!

[Schaeffer 15, Figure 1.4]
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Proof: step 3 (1/2)

Take a rooted well-labelled trees 
with  edges with an additional 
global label in .

n
{+1, − 1}

1. Add a 0 vertex and connect it 
to all the 1. 

2. G o t h r o u g h t h e t r e e 
clockwise and connect every 
corner  to the next 
corner . 

3. Root the first added edge 
according to the global label.

i ≥ 1
i − 1

3. The construction is bijective.
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Proof: step 3 (1/2)

Take a rooted well-labelled trees 
with  edges with an additional 
global label in .

n
{+1, − 1}

1. Add a 0 vertex and connect it 
to all the 1. 

2. G o t h r o u g h t h e t r e e 
clockwise and connect every 
corner  to the next 
corner . 

3. Root the first added edge 
according to the global label.

i ≥ 1
i − 1

3. The construction is bijective.
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Proof: step 3 (2/2)
This is indeed the inverse construction.
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This concludes the proof!

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection 
sends rooted quadrangulations with  faces and a marked vertex to 
rooted well-labelled trees with  edges with an additional global 
label in .

n
n

{+1, − 1}

Proof
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CVS bijection for distances in planar maps

Labels in the well-labelled tree give distances to the marked vertex. 
As , 
- Height uniform (well-labelled) tree with  edges: ; 
- Random label along a path of size  follows CLT, variations in 

.

n → ∞
n n1/2

n1/2

(n1/2)1/2 = n1/4
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CVS bijection for distances in planar maps

Labels in the well-labelled tree give distances to the marked vertex. 
As , 
- Height uniform (well-labelled) tree with  edges: ; 
- Random label along a path of size  follows CLT, variations in 

.

n → ∞
n n1/2

n1/2

(n1/2)1/2 = n1/4

Theorem [Chassaing—Schaeffer 04] In a uniform rooted 
quadrangulation with  faces, the distance between the root 
vertex and a uniform vertex behaves in  as .

n
Θ(n1/4) n → ∞
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CVS bijection for distances in planar maps

Labels in the well-labelled tree give distances to the marked vertex. 
As , 
- Height uniform (well-labelled) tree with  edges: ; 
- Random label along a path of size  follows CLT, variations in 

.

n → ∞
n n1/2

n1/2

(n1/2)1/2 = n1/4

Theorem [Chassaing—Schaeffer 04] In a uniform rooted 
quadrangulation with  faces, the distance between the root 
vertex and a uniform vertex behaves in  as .

n
Θ(n1/4) n → ∞

Extended to random uniform planar maps by an isometric 
bijection [Ambjørn—Budd 13].
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Scaling limit for uniform (rooted) planar maps

Theorem [Le Gall 13, Miermont 13, Bettinelli—Jacob—Miermont 
14] Let  be a uniform rooted quadrangulation with  faces or 

uniform rooted maps with  edges. Then, there exists  
such that 

.

Mn n
n c > 0

c
n1/4

Mn
(d), GH

n→∞
𝒮e
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Brownian Sphere 𝒮e

30

Scaling limit for uniform (rooted) planar maps
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Scaling limit for uniform (rooted) planar maps
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IV. Bouttier—Di 
Francesco—Guitter’s 

bijection (BDG)

31
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BDG bijection

[BDG 04]
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BDG bijection

[BDG 04]

Eulerian = face-bicolored maps. 
Special case considered here = bipartite maps (= vertices can be 
decomposed into black and white vertices such that there is no 
monochromatic edge).
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Mobiles Alexander Calder, Big Red

Christel Sadde, Les confettis

IKEA, KLAPPA
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Mobiles
Mobile = plane tree such that 
- Vertices are either unlabelled or labelled by an integer; 
- Edges are between unlabelled and labelled vertices; 
- Two labelled vertices ,  adjacent to the same unlabelled vertex 

and consecutive in clockwise direction satisfy 
.

v v′ 

ℓ(v′ ) ≥ ℓ(v) − 1

Mobile is well-labelled if 
- Each vertex carries a positive integer label; 
- There is a vertex of label 1. 

[BDG 04, Figure 3]
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BDG construction (1/2)

Theorem [BDG 04] The BDG bijection sends bipartite planar 
maps with a marked vertex and  faces to well-labeled mobiles 
with  vertices.

n
n

Take a bipartite map with  faces and a marked vertex.n

[BDG 04, Figure 1]

1. Label each vertex by its distance 
to the marked vertex. 

2. Add a vertex in each face and 
connect it to the vertices immediately 
followed clockwise by a smaller label.
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BDG construction (2/2)
Take a bipartite map with  faces and a marked vertex.n
1. Label each vertex by its distance to the marked vertex. 
2. Add a vertex in each face and connect it to the vertices 
immediately followed clockwise by a smaller label.

[BDG 04, Figure 3]



/4037

Inverse construction

1. Add a 0 vertex and connect it to all the 1. 
2. Go through the tree clockwise and connect every corner labelled 

 to the next corner .i ≥ 1 i − 1

Same as for CVS!

[BDG 04, Figure 4]
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V. Conclusion

38
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Other bijections for planar maps

- Bijections for tree-rooted maps and other decorated maps; 
- Seemingly unrelated objects are in bijection with (families of) 

maps: families of Tamari intervals, families of -terms, fighting 
fish, 2-stack-sortable permutations… 

- Decomposition of maps into smaller blocks; 
- Algebraic representations of maps: triplets of permutations, 

ramified coverings; 
- …

λ



Thank you!
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