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Planar maps
Planar map = embedding on the sphere of a connected
planar graph, considered up to homeomorphisms

+

Planar map = planar graph + cyclic order on neighbours

Very interesting objects for computer science, mathematics & physics.
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Vocabulary for maps

Planar map = planar graph + cyclic order on neighbours

M
Corner = space between
two consecutive edges
Vertex — — around a vertex
V(M) =6 (trigonometric order).
o Face = connected
Edge- components of the
e(M) =7 space without the graph
¢ fM) =3
Exist for graphs Do not exist for graphs

Rooted planar map = map endowed with a marked oriented edge
(represented by an arrow).
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Outline of the lecture

Bijections for planar maps

Duality construction
. Tutte’s bijection

|. Cori—Vauquelin—Schaeffer’s bijection

— Handbook of Enumerative Combinatorics, Chapter
“Planar Maps”, G. Schaeffer (2015)

IV. Bouttier—Di Francesco—Guitter’s bijection

— “Planar maps as labelled mobiles”, J. Bouttier, P. Di
Francesco and E. Guitter (2004)

V. Conclusion

Other source: M. Albenque’s MPRI course.
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l. Duality construction



Duality
[Schaeffer 15, Figure 1.3]

M

[Schaeffer 15, Theorem 1] Duality is an involution on the set of planar
maps. It preserves the number of edges, and exchanges the numbers
of vertices and faces:

M** = M, e(M*) = e(M), and v(M*) = f(M).
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Euler’s formula for planar maps

M
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v(M) =6
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e(M) =17




Euler’s formula for planar maps

R
v(M) =6
e(M) =17
® ®

For all planar maps M, it holds that
vIM) + f(M) = e(M) + 2.
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Euler’s formula for planar maps
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For all planar maps M, it holds that

VM) + f(M) = e(M) + 2.

— True for trees
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Euler’s formula for planar maps

M T
® ®

v(T') = e(T)

1

v(M) = 6 AT) =1
JM) =3

e(M) ="

For all planar maps M, it holds that

VM) + f(M) = e(M) + 2.

— |nterpretation via duality
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Interpretation of Euler’s formula (1/2)

Spanning tree = tree of edges that covers all vertices.
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Interpretation of Euler’s formula (1/2)

Spanning tree = tree of edges that covers all vertices.

[Schaeffer 15, Theorem 2] The “dual of a spanning tree” is a spanning
tree of the dual.

[Schaeffer 15, Figure 1.4]



Interpretation of Euler’s formula (2/2)

For all planar maps M, it holds that
| VIM)| + |F(M)| = |E(M)| + 2.

| E(M) | edges of a map =
V(M) | — 1 edges of a spanning tree;

F(M)| — 1 edges of the dual spanning tree.
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Interpretation of Euler’s formula (2/2)

For all planar maps M, it holds that
| VIM)| + |F(M)| = |E(M)| + 2.

o
| E(M) | edges of a map =

V(M)
F(M)

— 1 ed

— 1 ed

. [Schaeffer 15, Figure 1.4]
ges of a spanning tree;

ges of the dual spanning tree.
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ll. Tutte’s bijection



Quadrangulations

Quadrangulation O = map with all faces of degree 4.

Therefore,

e(Q) =2/(0Q).

So, by Euler’s formula,

v(Q) = Q) + 2.
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Tutte’s bijection (1/2) [Tutte 1

[Schaefter 15, Figure 1.3] “incidence map”

Q(M)
M

What is the inverse of
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Tutte’s bijection (2/2)

Inverse construction:

@ 1

Theorem [Tutte 1963] Tutte’s bijection sends rooted

maps with n edges to rooted quadrangulations
with n faces.
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lll. Cori—Vauquelin—
Schaeffer’s bijection

(CVS)




CVS bijection

Bijection between quadrangulations and decorated trees.
— Trees are easier to study than maps!
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CVS bijection

Bijection between quadrangulations and decorated trees.
— Trees are easier to study than maps!

[Schaeffer 15, Theorem 10 and Corollary 7] The
CVS bijection sends rooted quadrangulations

with n faces and a marked vertex to rooted well-
labelled trees with n edges and an additional

global label in {+1, — 1}.
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Well-labelled trees

(Rooted) well-labelled tree = decorated rooted plane tree where
- Each vertex carries a positive integer label,

- There is a vertex of label 1;

- Along each edge, the difference in labels is at most 1.

[Schaeffer 15, Figure 1.18]
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Well-labelled trees

(Rooted) well-labelled tree = decorated rooted plane tree where
- Each vertex carries a positive integer label,

- There is a vertex of label 1;

- Along each edge, the difference in labels is at most 1.

How many are there?

[Schaeffer 15, Figure 1.18]
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Well-labelled trees

(Rooted) well-labelled tree = decorated rooted plane tree where
- Each vertex carries a positive integer label,

- There is a vertex of label 1;

- Along each edge, the difference in labels is at most 1.

1 <2n)
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Well-labelled trees

(Rooted) well-labelled tree = decorated rooted plane tree where
- Each vertex carries a positive integer label,

- There is a vertex of label 1;

- Along each edge, the difference in labels is at most 1.

1 <2n)
Cat, =
n+1 \n

rooted plane trees with n edges

Rl n
3" - Cat, = ( )
n+1 \n

rooted well-labelled trees with n edges

So
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(Bijective) enumeration of rooted maps

Theorem [Tutte 1963] Tutte’s bijection sends rooted maps with n
edges to rooted quadrangulations with n faces.

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection
sends rooted quadrangulations with n faces and a marked vertex to

rooted well-labelled trees with n edges and an additional global
label in {+1, — 1}.
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[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection
sends rooted quadrangulations with n faces and a marked vertex to

rooted well-labelled trees with n edges and an additional global
label in {+1, — 1}.

Quadrangulation with n faces = n + 2 vertices.
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n+1 \n

17/40



(Bijective) enumeration of rooted maps

number of rooted

number of rooted | |
m, =q, quadrangulations with

ith
maps with n edges n faces

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection
sends rooted quadrangulations with n faces and a marked vertex to

rooted well-labelled trees with n edges and an additional global
label in {+1, — 1}.

Quadrangulation with n faces = n + 2 vertices.

3" 2n
rooted well-labelled trees with n edges.

n+1 \n
( ) , 3" n
n =72.
In n+1 \n

17/40



(Bijective) enumeration of rooted maps

number of rooted

number of rooted

maps with n edges

— quadrangulations with
mn Qn
n faces

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection
sends rooted quadrangulations with n faces and a marked vertex to

n

rooted well-labelled trees with n edges and an additional global
label in {+1, — 1}.
2 - 3" (271) 2-3"2n)!
m _

"+ D+ 2)

Cnlm+2)!

( ) , 3" n
n =72.
In n+1 \n
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(Bijective) enumeration of rooted maps

Tutte’s + CVS bijections =>

T+ D+ \n ) mm+2)!

2.3 (271) 2-3"(2n)!
m —
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CVS construction: step 1(1/2)

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection
sends rooted quadrangulations with n faces and a marked vertex to

rooted well-labelled trees with n edges with an additional global
label in {+1, — 1}.
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CVS construction: step 1(1/2)

Take a rooted quadrangulations with n faces and a marked vertex.

[Schaeffer 15, Figure 1.18]
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CVS construction: step 1(2/2)

After step 1., only two possibilities for the faces: along an edge, the
labels vary

- At most by 1 (distance);

- By 1 mod 2 as quadrangulations are bipartite.

— By exactly 1.

[Schaeffer 15, Figure 1.18]

Proposition All guadrangulations are bipartite = their vertices can be
decomposed into black and white vertices such that there is no
monochromatic edge.
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CVS construction: step 1(2/2)

‘\ \o
) | 71
Proof. All cycles have even length.

Cycle separates the sphere into 2 connected components.

Z deg(f) = 2| black edges| + | blue edges| = 0 [2].
feside

Proposition All guadrangulations are bipartite = their vertices can be

decomposed into black and white vertices such that there is no
monochromatic edge.
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CVS construction: complete edition

Take a rooted quadrangulations with n faces and a marked vertex.
1. Label each vertex by its distance to the marked vertex.

20 [Schaeffer 15, Figure 1.18]
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Proof

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection
sends rooted quadrangulations with n faces and a marked vertex to

rooted well-labelled trees with n edges with an additional global
label in {+1, — 1}.

Proof outline
1. The construction produces a rooted well-labelled structure with n

edges with an additional global label in {+1, — 1};

This structure is a tree.
3. The construction is invertible.

N
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Proof: step 1

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection
sends rooted quadrangulations with n faces and a marked vertex to

rooted well-

label in {+1,

abelled trees with n edges with an additional global

—1).

1. Clearly, the result of the construction :
- Has 1 edge per face of the initial quadrangulation;
- |s well-labelled:

- Vertex-labelled by positive integers;

- At least 1 node labelled 1.
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Proof: step 2 (1/3)

2. The result is a tree:




| Proof: step 2 (1/3)




Proof: step 2 (1/3)

2. The result is a tree:

Labels on the left of blue edges are non-increasing.
There is one outgoing edge per blue vertex.
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Proof: step 2 (2/3)

A blue cycle
- Is oriented (1 outgoing edge per vertex);
- Constant label on its left.

=> |s around 1 vertex.

=> There is exactly 1 blue cycle, around the
marked vertex.
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Proof: step 2 (3/3)

[Schaeffer 15, Figure 1.4]

25/4u

=> Contracting the cycle, we
get a spanning tree for the

dual (of black+bold black),
whose “dual” is bold-black

=> Spanning tree!

e O‘*‘; '
‘\\‘ ' O
g ' \ |
| O ==Q. \ O “J“C‘
9 o
o —.
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Proof: step 3 (1/2)

3. The construction is bijective.

&

(LD

/40

Take a rooted well-labelled trees

wit
glo
1.

n n edges with an additional
oal label in {+1, — 1}.

Add a O vertex and connect it
to all the 1.

Go through the tree
clockwise and connect every

corner 1 >1 to the next

corner i — 1.
Root the first added edge
according to the global label.
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Proof: step 3 (2/2)

This is indeed the inverse construction.

@\: /

@Aﬁ
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Proof

This concludes the proof!

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection
sends rooted quadrangulations with n faces and a marked vertex to

rooted well-labelled trees with n edges with an additional global
label in {+1, — 1}.
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CVS bijection for distances in planar maps

Labels in the well-labelled tree give distances to the marked vertex.

Asn — o0,

- Height uniform (well-labelled) tree with n edges: n'’;

- Random label along a path of size n'? follows CLT, variations in

(n 1/2) 172 _ n 1/4
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CVS bijection for distances in planar maps

Labels in the well-labelled tree give distances to the marked vertex.

Asn — o0,

- Height uniform (well-labelled) tree with n edges: n'’;

- Random label along a path of size n'? follows CLT, variations in

(n 1/2) 172 _ n 1/4

Theorem [Chassaing—Schaeffer 04] In a uniform rooted

quadrangulation with n faces, the distance between the root

vertex and a uniform vertex behaves in ©(n'"*) asn - .

Extended to random uniform planar maps by an isometric
bijection [Ambjgrn—Budd 13].
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Scaling limit for uniform (rooted) planar maps

Theorem [Le Gall 13, Miermont 13, Bettinelli—Jacob—Miermont

14] Let M, be a uniform rooted quadrangulation with n faces or

uniform rooted maps with n edges. Then, there exists ¢ > 0
such that

c d), GH
€ N @6

S
A=

e.
n— o0
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Scaling limit for uniform (rooted) planar maps

Brownian Sphere &,
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Scaling limit for uniform (rooted) planar maps

Brownian Sphere &,
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V. Bouttier—Di

Francesco—Guitter’s
bijection (BDG)



BDG bijection

[BDG 04]
Abstract
We extend Schaeffer’s bijection between rooted quadrangulations and well-

labeled trees to the general case of Eulerian planar maps with prescribed face

valences to obtain a bijection with a new class of labeled trees, which we call
mobiles.
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BDG bijection

IBDG 04]
Abstract

We extend Schaeffer’s bijection between rooted quadrangulations and well-
labeled trees to the general case of Eulerian planar maps with prescribed face
valences to obtain a bijection with a new class of labeled trees, which we call
mobiles.

Eulerian = face-bicolored maps.

Special case considered here = bipartite maps (= vertices can be
decomposed into black and white vertices such that there is no
monochromatic edge).
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Mobiles

Mobile = plane tree such that
- Vertices are either unlabelled or labelled by an integer;
- Edges are between unlabelled and labelled vertices;

- Two labelled vertices v, v' adjacent to the same unlabelled vertex
and consecutive in clockwise direction satisfy

cv) > 7C(v)— 1.

Mobile is well-labelled if
- Each vertex carries a positive integer label;
- There is a vertex of label 1.

[BDG 04, Figure 3]
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BDG construction (1/2)

Theorem [BDG 04] The BDG bijection sends bipartite planar
maps with a marked vertex and n faces to well-labeled mobiles

with n vertices.

Take a bipartite map with n faces and a marked vertex.

1. Label each vertex by its distance @
to the marked vertex. , @
2. Add a vertex in each face and /
connect it to the vertices immediately (4)
followed clockwise by a smaller label.

[BDG 04, Figure 1] ey
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BDG construction (2/2)

Take a bipartite map with n faces and a marked vertex.

1. Label each vertex by its distance to the marked vertex.

2. Add a vertex in each face and connect it to the vertices
immediately followed clockwise by a smaller label.

36/40 [BDG 04, Figure 3]



Inverse construction

Same as for CVS!

1. Add a O vertex and connect it to all the 1.
2. Go through the tree clockwise and connect every corner labelled

1 > 1 to the next corneri — 1.

57740 [BDG 04, Figure 4]



V. Conclusion



Other bijections for planar maps

- Bijections for tree-rooted maps and other decorated maps;
- Seemingly unrelated objects are in bijection with (families of)
maps: families of Tamari intervals, families of A-terms, fighting

fish, 2-stack-sortable permutations...
- Decomposition of maps into smaller blocks;
- Algebraic representations of maps: triplets of permutations,

ramified coverings;
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Thank you!



