Bijections for planar maps

SFB reading group 31 October 2024

Zéphyr Salvy (he/they)

Planar maps

Planar map = embedding on the sphere of a connected planar graph, considered up to homeomorphisms

Planar map = planar graph + cyclic order on neighbours

Very interesting objects for computer science, mathematics & physics.

Planar map = planar graph + cyclic order on neighbours

Exist for graphs

Planar map = planar graph + cyclic order on neighbours

Exist for graphs

Planar map = planar graph + cyclic order on neighbours

Exist for graphs

Planar map = planar graph + cyclic order on neighbours

Corner = space between two consecutive edges around a vertex (trigonometric order).

Exist for graphs

Do not exist for graphs

Planar map = planar graph + cyclic order on neighbours

Corner = space between two consecutive edges around a vertex (trigonometric order).

Exist for graphs

Do not exist for graphs

Planar map = planar graph + cyclic order on neighbours

Planar map = planar graph + cyclic order on neighbours

Exist for graphs

Corner = space between two consecutive edges around a vertex (trigonometric order).

Face = connected components of the space without the graph

$$f(M) = 3$$

Do not exist for graphs

Planar map = planar graph + cyclic order on neighbours

Exist for graphs

Corner = space between two consecutive edges around a vertex (trigonometric order).

Face = connected components of the space without the graph

$$f(M) = 3$$

Do not exist for graphs

Rooted planar map = map endowed with a marked oriented edge (represented by an arrow).

Outline of the lecture

Bijections for planar maps

- I. Duality construction
- II. Tutte's bijection
- III. Cori—Vauquelin—Schaeffer's bijection
 - → Handbook of Enumerative Combinatorics, Chapter "Planar Maps", G. Schaeffer (2015)
- IV. Bouttier—Di Francesco—Guitter's bijection
 - → "Planar maps as labelled mobiles", J. Bouttier, P. Di Francesco and E. Guitter (2004)
- V. Conclusion

Other source: M. Albenque's MPRI course.

I. Duality construction

Duality

[Schaeffer 15, Figure 1.3]

[Schaeffer 15, Theorem 1] Duality is an involution on the set of planar maps. It preserves the number of edges, and exchanges the numbers of vertices and faces:

$$M^{**} = M$$
, $e(M^*) = e(M)$, and $v(M^*) = f(M)$.

$$v(M) = 6$$

$$f(M) = 3$$

$$e(M) = 7$$

$$v(M) = 6$$

$$f(M) = 3$$

$$e(M) = 7$$

For all planar maps M, it holds that

$$v(M) + f(M) = e(M) + 2.$$

$$v(M) = 6$$

$$f(M) = 3$$

$$e(M) = 7$$

For all planar maps M, it holds that

$$v(M) + f(M) = e(M) + 2.$$

→ True for trees

For all planar maps M, it holds that

$$v(M) + f(M) = e(M) + 2.$$

→ Interpretation via duality

Interpretation of Euler's formula (1/2)

Spanning tree = tree of edges that covers all vertices.

Interpretation of Euler's formula (1/2)

Spanning tree = tree of edges that covers all vertices.

[Schaeffer 15, Theorem 2] The "dual of a spanning tree" is a spanning tree of the dual.

[Schaeffer 15, Figure 1.4]

Interpretation of Euler's formula (2/2)

For all planar maps M, it holds that

$$|V(M)| + |F(M)| = |E(M)| + 2.$$

|E(M)| edges of a map =

- |V(M)| 1 edges of a spanning tree;
- |F(M)| 1 edges of the dual spanning tree.

Interpretation of Euler's formula (2/2)

For all planar maps M, it holds that

$$|V(M)| + |F(M)| = |E(M)| + 2.$$

|E(M)| edges of a map =

- |V(M)| 1 edges of a spanning tree;
- |F(M)| 1 edges of the dual spanning tree.

II. Tutte's bijection

Quadrangulations

Quadrangulation Q = map with all faces of degree 4.

Therefore,

$$e(Q) = 2f(Q)$$
.

So, by Euler's formula,

$$v(Q) = f(Q) + 2.$$

Tutte's bijection (1/2)

[Schaeffer 15, Figure 1.3]

"incidence map"

12/40

Tutte's bijection (2/2)

Inverse construction:

Theorem [Tutte 1963] Tutte's bijection sends rooted maps with n edges to rooted quadrangulations with n faces.

III. Cori—Vauquelin— Schaeffer's bijection (CVS)

CVS bijection

Bijection between quadrangulations and decorated trees.

→ Trees are easier to study than maps!

CVS bijection

Bijection between quadrangulations and decorated trees.

→ Trees are easier to study than maps!

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection sends rooted quadrangulations with n faces and a marked vertex to rooted well-labelled trees with n edges and an additional global label in $\{+1, -1\}$.

(Rooted) well-labelled tree = decorated rooted plane tree where

- Each vertex carries a positive integer label,
- There is a vertex of label 1;
- Along each edge, the difference in labels is at most 1.

(Rooted) well-labelled tree = decorated rooted plane tree where

- Each vertex carries a positive integer label,
- There is a vertex of label 1;
- Along each edge, the difference in labels is at most 1.

How many are there?

(Rooted) well-labelled tree = decorated rooted plane tree where

- Each vertex carries a positive integer label,
- There is a vertex of label 1;
- Along each edge, the difference in labels is at most 1.

(Rooted) well-labelled tree = decorated rooted plane tree where

- Each vertex carries a positive integer label,
- There is a vertex of label 1;
- Along each edge, the difference in labels is at most 1.

(Rooted) well-labelled tree = decorated rooted plane tree where

- Each vertex carries a positive integer label,
- There is a vertex of label 1;
- Along each edge, the difference in labels is at most 1.

(Rooted) well-labelled tree = decorated rooted plane tree where

- Each vertex carries a positive integer label,
- There is a vertex of label 1;
- Along each edge, the difference in labels is at most 1.

$$Cat_n = \frac{1}{n+1} \binom{2n}{n}$$

rooted plane trees with n edges

(Rooted) well-labelled tree = decorated rooted plane tree where

- Each vertex carries a positive integer label,
- There is a vertex of label 1;
- Along each edge, the difference in labels is at most 1.

$$Cat_n = \frac{1}{n+1} \binom{2n}{n}$$

rooted plane trees with n edges

So

$$3^n \cdot \operatorname{Cat}_n = \frac{3^n}{n+1} {2n \choose n}$$

rooted well-labelled trees with *n* edges

(Bijective) enumeration of rooted maps

Theorem [Tutte 1963] Tutte's bijection sends rooted maps with n edges to rooted quadrangulations with n faces.

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection sends rooted quadrangulations with n faces and a marked vertex to rooted well-labelled trees with n edges and an additional global label in $\{+1, -1\}$.

number of rooted maps with n edges

$$m_n = q_n$$

number of rooted quadrangulations with n faces

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection sends rooted quadrangulations with n faces and a marked vertex to rooted well-labelled trees with n edges and an additional global label in $\{+1, -1\}$.

number of rooted maps with n edges

$$m_n = q_n$$

number of rooted quadrangulations with n faces

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection sends rooted quadrangulations with n faces and a marked vertex to rooted well-labelled trees with n edges and an additional global label in $\{+1, -1\}$.

Quadrangulation with n faces $\rightarrow n + 2$ vertices.

$$\frac{3^n}{n+1}\binom{2n}{n}$$
 rooted well-labelled trees with n edges.

number of rooted maps with *n* edges

$$m_n = q_n$$

number of rooted quadrangulations with n faces

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection sends rooted quadrangulations with n faces and a marked vertex to rooted well-labelled trees with n edges and an additional global label in $\{+1, -1\}$.

Quadrangulation with n faces $\rightarrow n+2$ vertices.

$$\frac{3^n}{n+1} \binom{2n}{n} \text{ rooted well-labelled trees with } n \text{ edges.}$$

$$(n+2) \, q_n = 2 \cdot \frac{3^n}{n+1} \binom{2n}{n}$$

$$(n+2) q_n = 2 \cdot \frac{3^n}{n+1} {2n \choose n}$$

number of rooted maps with n edges

$$m_n = q_n$$

number of rooted quadrangulations with n faces

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection sends rooted quadrangulations with n faces and a marked vertex to rooted well-labelled trees with n edges and an additional global label in $\{+1, -1\}$.

$$m_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} = \frac{2 \cdot 3^n (2n)!}{n! (n+2)!}.$$

$$(n+2) q_n = 2 \cdot \frac{3^n}{n+1} {2n \choose n}$$

Tutte's + CVS bijections =>

$$m_n = \frac{2 \cdot 3^n}{(n+1)(n+2)} \binom{2n}{n} = \frac{2 \cdot 3^n (2n)!}{n! (n+2)!}.$$

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection sends rooted quadrangulations with n faces and a marked vertex to rooted well-labelled trees with n edges with an additional global label in $\{+1, -1\}$.

Take a rooted quadrangulations with n faces and a marked vertex.

Take a rooted quadrangulations with n faces and a marked vertex.

1. Label each vertex by its distance to the marked vertex.

Take a rooted quadrangulations with n faces and a marked vertex.

1. Label each vertex by its distance to the marked vertex.

After step 1., only two possibilities for the faces: along an edge, the labels vary

- At most by 1 (distance);
- By 1 mod 2 as quadrangulations are bipartite.
- → By exactly 1.

<u>Proposition</u> All quadrangulations are <u>bipartite</u> = their vertices can be decomposed into black and white vertices such that there is no monochromatic edge.

Proof. All cycles have even length.

Cycle separates the sphere into 2 connected components.

$$\sum_{f \in \text{side}} \deg(f) = 2 | \text{black edges} | + | \text{blue edges} | = 0 [2].$$

<u>Proposition</u> All quadrangulations are bipartite = their vertices can be decomposed into black and white vertices such that there is no monochromatic edge.

Take a rooted quadrangulations with n faces and a marked vertex.

1. Label each vertex by its distance to the marked vertex.

Take a rooted quadrangulations with n faces and a marked vertex.

- 1. Label each vertex by its distance to the marked vertex.
- 2. Add edges in each face according to the following rules.

Take a rooted quadrangulations with n faces and a marked vertex.

- 1. Label each vertex by its distance to the marked vertex.
- 2. Add edges in each face according to the following rules.

Take a rooted quadrangulations with n faces and a marked vertex.

- 1. Label each vertex by its distance to the marked vertex.
- 2. Add edges in each face according to the following rules.

Take a rooted quadrangulations with n faces and a marked vertex.

- 1. Label each vertex by its distance to the marked vertex.
- 2. Add edges in each face according to the following rules.

Proof

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection sends rooted quadrangulations with n faces and a marked vertex to rooted well-labelled trees with n edges with an additional global label in $\{+1, -1\}$.

Proof outline

- 1. The construction produces a rooted well-labelled structure with n edges with an additional global label in $\{+1, -1\}$;
- 2. This structure is a tree.
- 3. The construction is invertible.

Proof: step 1

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection sends rooted quadrangulations with n faces and a marked vertex to rooted well-labelled trees with n edges with an additional global label in $\{+1, -1\}$.

- 1. Clearly, the result of the construction:
- Has 1 edge per face of the initial quadrangulation;
- Is well-labelled:
 - Vertex-labelled by positive integers;
 - At least 1 node labelled 1.

Proof: step 2 (1/3)

2. The result is a tree:

Proof: step 2 (1/3)

2. The result is a tree:

Proof: step 2 (1/3)

2. The result is a tree:

Labels on the left of blue edges are non-increasing. There is one outgoing edge per blue vertex.

Proof: step 2 (2/3)

A blue cycle

- Is oriented (1 outgoing edge per vertex);
- Constant label on its left.
- => Is around 1 vertex.
- => There is exactly 1 blue cycle, around the marked vertex.

Proof: step 2 (3/3)

=> Contracting the cycle, we get a spanning tree for the dual (of black+bold black), whose "dual" is bold-black

=> Spanning tree!

25/40

3. The construction is bijective.

Take a rooted well-labelled trees with n edges with an additional global label in $\{+1, -1\}$.

- 1. Add a 0 vertex and connect it to all the 1.
- 2. Go through the tree clockwise and connect every corner $i \ge 1$ to the next corner i 1.
- 3. Root the first added edge according to the global label.

3. The construction is bijective.

Take a rooted well-labelled trees with n edges with an additional global label in $\{+1, -1\}$.

- 1. Add a 0 vertex and connect it to all the 1.
- 2. Go through the tree clockwise and connect every corner $i \ge 1$ to the next corner i 1.
- 3. Root the first added edge according to the global label.

3. The construction is bijective.

Take a rooted well-labelled trees with n edges with an additional global label in $\{+1, -1\}$.

- 1. Add a 0 vertex and connect it to all the 1.
- 2. Go through the tree clockwise and connect every corner $i \ge 1$ to the next corner i 1.
- 3. Root the first added edge according to the global label.

3. The construction is bijective.

Take a rooted well-labelled trees with n edges with an additional global label in $\{+1, -1\}$.

- 1. Add a 0 vertex and connect it to all the 1.
- 2. Go through the tree clockwise and connect every corner $i \ge 1$ to the next corner i 1.
- 3. Root the first added edge according to the global label.

3. The construction is bijective.

Take a rooted well-labelled trees with n edges with an additional global label in $\{+1, -1\}$.

- 1. Add a 0 vertex and connect it to all the 1.
- 2. Go through the tree clockwise and connect every corner $i \ge 1$ to the next corner i 1.
- 3. Root the first added edge according to the global label.

This is indeed the inverse construction.

Proof

This concludes the proof!

[Schaeffer 15, Theorem 10 and Corollary 7] The CVS bijection sends rooted quadrangulations with n faces and a marked vertex to rooted well-labelled trees with n edges with an additional global label in $\{+1, -1\}$.

CVS bijection for distances in planar maps

Labels in the well-labelled tree give distances to the marked vertex. As $n \to \infty$,

- Height uniform (well-labelled) tree with n edges: $n^{1/2}$;
- Random label along a path of size $n^{1/2}$ follows CLT, variations in $(n^{1/2})^{1/2} = n^{1/4}$.

CVS bijection for distances in planar maps

Labels in the well-labelled tree give distances to the marked vertex. As $n \to \infty$,

- Height uniform (well-labelled) tree with n edges: $n^{1/2}$;
- Random label along a path of size $n^{1/2}$ follows CLT, variations in $(n^{1/2})^{1/2} = n^{1/4}$.

<u>Theorem</u> [Chassaing—Schaeffer 04] In a uniform rooted quadrangulation with n faces, the distance between the root vertex and a uniform vertex behaves in $\Theta(n^{1/4})$ as $n \to \infty$.

CVS bijection for distances in planar maps

Labels in the well-labelled tree give distances to the marked vertex. As $n \to \infty$,

- Height uniform (well-labelled) tree with n edges: $n^{1/2}$;
- Random label along a path of size $n^{1/2}$ follows CLT, variations in $(n^{1/2})^{1/2} = n^{1/4}$.

<u>Theorem</u> [Chassaing—Schaeffer 04] In a uniform rooted quadrangulation with n faces, the distance between the root vertex and a uniform vertex behaves in $\Theta(n^{1/4})$ as $n \to \infty$.

Extended to random uniform planar maps by an isometric bijection [Ambjørn—Budd 13].

Scaling limit for uniform (rooted) planar maps

Theorem [Le Gall 13, Miermont 13, Bettinelli—Jacob—Miermont 14] Let \mathbf{M}_n be a uniform rooted quadrangulation with n faces or uniform rooted maps with n edges. Then, there exists c>0 such that

$$\frac{c}{n^{1/4}}\mathbf{M}_n \xrightarrow[n \to \infty]{(d), GH} \mathcal{S}_e.$$

Scaling limit for uniform (rooted) planar maps

Theorem [Le Gall 13, Miermont 13, Bettinelli–Jacob–Miermont 14] Let \mathbf{M}_n be a uniform rooted quadrangulation with n faces or uniform rooted maps with n edges. Then, there exists c>0 such that

$$\frac{c}{n^{1/4}}\mathbf{M}_n \xrightarrow[n\to\infty]{(d), GH} \mathcal{S}_e.$$

Scaling limit for uniform (rooted) planar maps

IV. Bouttier—Di Francesco—Guitter's bijection (BDG)

BDG bijection

[BDG 04]

Abstract

We extend Schaeffer's bijection between rooted quadrangulations and welllabeled trees to the general case of Eulerian planar maps with prescribed face valences to obtain a bijection with a new class of labeled trees, which we call mobiles.

BDG bijection

[BDG 04]

Abstract

We extend Schaeffer's bijection between rooted quadrangulations and well-labeled trees to the general case of Eulerian planar maps with prescribed face valences to obtain a bijection with a new class of labeled trees, which we call mobiles.

Eulerian = face-bicolored maps.

Special case considered here = bipartite maps (= vertices can be decomposed into black and white vertices such that there is no monochromatic edge).

Mobiles

Alexander Calder, Big Red

Christel Sadde, Les confettis 33/40

Mobiles

Mobile = plane tree such that

- Vertices are either unlabelled or labelled by an integer;
- Edges are between unlabelled and labelled vertices;
- Two labelled vertices v, v' adjacent to the same unlabelled vertex and consecutive in clockwise direction satisfy

$$\ell(v') \ge \ell(v) - 1$$
.

Mobile is well-labelled if

- Each vertex carries a positive integer label;

34,40

BDG construction (1/2)

<u>Theorem</u> [BDG 04] The BDG bijection sends bipartite planar| maps with a marked vertex and n faces to well-labeled mobiles with *n* vertices.

35/40

Take a bipartite map with n faces and a marked vertex.

1. Label each vertex by its distance to the marked vertex.

2. Add a vertex in each face and connect it to the vertices immediately followed clockwise by a smaller label.

BDG construction (2/2)

Take a bipartite map with n faces and a marked vertex.

- 1. Label each vertex by its distance to the marked vertex.
- 2. Add a vertex in each face and connect it to the vertices immediately followed clockwise by a smaller label.

Inverse construction

Same as for CVS!

- 1. Add a 0 vertex and connect it to all the 1.
- 2. Go through the tree clockwise and connect every corner labelled $i \ge 1$ to the next corner i 1.

V. Conclusion

Other bijections for planar maps

- Bijections for tree-rooted maps and other decorated maps;
- Seemingly unrelated objects are in bijection with (families of) maps: families of Tamari intervals, families of λ -terms, fighting fish, 2-stack-sortable permutations...
- Decomposition of maps into smaller blocks;
- Algebraic representations of maps: triplets of permutations, ramified coverings;

-

Thank you!