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Planar map = planar graph + 
cyclic order on neighbours 

Planar map  = embedding on the sphere of a connected 
planar graph, considered up to homeomorphisms

𝔪

= ≠
• Rooted planar map = map endowed with a marked oriented 

edge (represented by an arrow); 
• Size  = number of edges; 
• Corner (does not exist for graphs !) = space between two 

consecutive edges around a vertex (trigonometric order).

|𝔪 |

Planar maps
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Brownian Sphere 𝒮e

3

• Enumeration:  [Tutte 1963]; 

• Distance between vertices:  [Chassaing, Schaeffer 2004]; 
• Scaling limit: Brownian sphere for quadrangulations [Le Gall 

2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont 
2014];

κρ−nn−5/2

n1/4

Universality results for planar maps
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• Enumeration:  [Tutte 1963]; 

• Distance between vertices:  [Chassaing, Schaeffer 2004]; 
• Scaling limit: Brownian sphere for quadrangulations [Le Gall 

2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont 
2014];

κρ−nn−5/2

n1/4

Universality results for planar maps

• Universality: 
• Same enumeration [Drmota, Noy, Yu 2020]; 

• Same scaling limit, e.g. for triangulations & -angulations [Le 
Gall 2013], simple quadrangulations [Addario-Berry, Albenque 2017].

2q
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• Enumeration: ; 

• Distance between vertices:  [Flajolet, Odlyzko 1982]; 
• Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

κρ−nn−3/2

n1/2

Universality results for plane trees
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• Universality: 
• Same enumeration, 
• Same scaling limit, even for some classes of maps; e.g. 

outerplanar maps [Caraceni 2016], maps with a boundary of size 
>>  [Bettinelli 2015].n1/2

4

Models with (very) constrained boundaries

• Enumeration: ; 

• Distance between vertices:  [Flajolet, Odlyzko 1982]; 
• Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

κρ−nn−3/2

n1/2

Universality results for plane trees
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Interpolating model?

Planar maps Plane trees

Motivation
Two rich situations with universality results:

Inspired by [Bonzom 
Delepouve Rivasseau 2015]. 
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2-connected = two vertices must be removed to disconnect. 
Block = maximal (for inclusion) 2-connected submap. 

Model definition



/72

Condensation phenomenon: a 
large block concentrates a 
macroscopic part of the mass 
[Banderier, Flajolet, Schaeffer, Soria 2001; 
Jonsson, Stefánsson 2011].

6

2-connected = two vertices must be removed to disconnect. 
Block = maximal (for inclusion) 2-connected submap. 

Model definition
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Interpolating model using blocks!

Condensation phenomenon: a 
large block concentrates a 
macroscopic part of the mass 
[Banderier, Flajolet, Schaeffer, Soria 2001; 
Jonsson, Stefánsson 2011].

6

Only small blocks.

2-connected = two vertices must be removed to disconnect. 
Block = maximal (for inclusion) 2-connected submap. 

Model definition
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Phase transitions of block-weighted planar maps

with William 
Fleurat

with Marie 
Albenque & Éric 

Fusy

I. Model 
II. Block tree of a map and its applications 
Interlude. Quadrangulations 
III. Scaling limits 
IV. Extension to other families of maps 
V. Extension to tree-rooted maps 
VI. Perspectives

Outline of the talk
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I. Model

8
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We choose:  whereℙn,u(𝔪) = u#blocks(𝔪)

Zn,u

, 

 = {maps of size }, 

, 

normalisation. 

u > 0
ℳn n
𝔪 ∈ ℳn
Zn,u =

• : uniform distribution on maps of size ; 

• : minimising the number of blocks (=2-connected maps); 

• : maximising the number of blocks (= trees!).

u = 1 n
u → 0
u → ∞

Given , asymptotic behaviour when ?u n → ∞

Introduced by [Bonzom Delepouve 
Rivasseau 2015]; 
General setting in [Stufler 2020].

Model

Goal: parameter that affects the typical number of blocks.
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Subcritical case u = 1

n ≈ 55 000
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(Less) subcritical case u = 8/5

n ≈ 55 000
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Critical case u = 9/5

n ≈ 80 000
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Supercritical case u = 5/2

n ≈ 75 000



/7214

(More) supercritical case u = 5

n ≈ 50 000
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→ A phase transition in block-weighted random maps 
W. Fleurat & Z. S., Electronic Journal of Probability, 2024

Theorem [Fleurat, S. 24] Model exhibits a phase transition 
at . When : 

• Subcritical phase : “general map phase” one 
huge block; 

• Critical phase : a few large blocks; 

• Supercritical phase : “tree phase” only small 
blocks. 

We obtain explicit results on enumeration, size of blocks 
and scaling limits in each case.

u = 9/5 n → ∞
u < 9/5

u = 9/5
u > 9/5

Phase transition
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u < 9/5 u = 9/5 u > 9/5For Mn ↪ ℙn,u

Enumeration

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn

Results
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II. Block tree of a map 
and its applications

17
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Inspiration from [Tutte 1963]

Decomposition of a map into blocks
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Decomposition of a map into blocks
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Decomposition of a map into blocks
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Inspiration from [Tutte 1963]

Decomposition of a map into blocks
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Decomposition of a map into blocks
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Inspiration from [Tutte 1963]

Decomposition of a map into blocks
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GS of 2-connected maps

M(z) = B(zM2(z))
GS of maps

Inspiration from [Tutte 1963]

Decomposition of a map into blocks
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 With a weight  on blocks: u M(z, u) = uB(zM2(z, u)) + 1 − u

1
2

34

5
6

7

8
9 10

M(z, u) = ∑
𝔪∈ℳ

z|𝔪|u#blocks(𝔪)

GS of 2-connected maps

M(z) = B(zM2(z))
GS of maps

Inspiration from [Tutte 1963]

Decomposition of a map into blocks
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u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration
[Bonzom 2016]

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn

Results
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⇒ Underlying block tree structure, made explicit by [Addario-

Berry 2019].

Inspiration from [Tutte 1963]

Decomposition of a map into blocks
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⇒ Underlying block tree structure, made explicit by [Addario-

Berry 2019].

𝔪
T𝔪Inspiration from [Tutte 1963]

Decomposition of a map into blocks
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•  is entirely determined by  and  where  is the 
block of  represented by  in ; 

• Internal node (with  children) of   block of  of size .

𝔪 T𝔪 (𝔟v, v ∈ T𝔪) 𝔟v
𝔪 v T𝔪

k T𝔪 ↔ 𝔪 k/2

 gives the block sizes of a random map .TMn
Mn

𝔪 T𝔪
Block tree: properties
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Theorem [Fleurat, S. 24] 

If , then there exists an (explicit)  s.t. 

 has the law of a BGW tree of reproduction law  

conditioned to be of size , with  

.

Mn ↪ ℙn,u y = y(u)
TMn

μy,u

2n

μy,u({2k}) = Bkyku1k≠0

uB(y) + 1 − u

u > 0

-Bienaymé-Galton-Watson (BGW) tree : random tree where 
the number of children of each node is given by  
independently, with  = probability law on .

μ
μ

μ ℕ

Block trees are BGW-trees
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• Degrees of  give the block sizes of the map ; 

• Largest degrees of a BGW tree are well-known [Janson 

2012].

TMn
Mn

Largest blocks?
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u < 9/5 u = 9/5 u > 9/5

∼ cuk−5/2
μy(u),u({2k}) ∼ cuπk

uk−5/2

BGW tree subcritical critical

Rough intuition

Dichotomy between situations: 
• Subcritical: condensation, cf [Jonsson Stefánsson 2011]; 
• Supercritical: behaves as maximum of independent 

variables.
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u = 9/5

25

u < 9/5 u = 9/5 u > 9/5For Mn ↪ ℙn,u

ln(n)
2 ln ( 4

27y )
− 5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)
∼ (1 − 𝔼(μ4/27,u))n

Θ(n2/3)
Θ(n2/3)Ln,2

Ln,1
[Stufler 2020]

Size of the linear block × n−1

[Stufler 2020]

Size  of the -th largest blockLn,k k
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ln(n)
2 ln ( 4

27y )
− 5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

∼ (1 − 𝔼(μ4/27,u))n
Θ(n2/3)

Θ(n2/3)
[Stufler 2020]

[Bonzom 2016]

Scaling limit of 
Mn

Results
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Interlude: quadrangulations

27
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Size  = number of faces. |𝔮 |

, .|V(𝔮) | = |𝔮 | + 2 |E(𝔮) | = 2 |𝔮 |

Simple quadrangulation = no multiple edges.

Def: map with all faces of degree 4.

Quadrangulations
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Construction of a quadrangulation from a simple core
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Construction of a quadrangulation from a simple core
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Construction of a quadrangulation from a simple core
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Block tree for a quadrangulation

 With a weight  on blocks: u Q(z, u) = uS(zQ2(z, u)) + 1 − u

 Remember: M(z, u) = uB(zM2(z, u)) + 1 − u
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Map Quadrangulation

[Tutte 1963]

Tutte’s bijection
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Cut vertex => multiple edge

2-connected maps <=> simple quadrangulations 
[Brown 1965]

Tutte’s bijection for 2-connected maps
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Block trees under Tutte’s bijection
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We choose:  whereℙn,u(𝔮) = u#blocks(𝔮)

Zn,u

, 

 = {quadrangulations 
of size }, 

, 

normalisation. 

u > 0
𝒬n

n
𝔮 ∈ 𝒬n
Zn,u =

Results on the size of (2-connected) blocks can be transferred 
immediately for quadrangulations and their simple blocks.

Implications on results



/7235

ln(n)
2 ln ( 4

27y )
− 5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

∼ (1 − 𝔼(μ4/27,u))n
Θ(n2/3)

Θ(n2/3)
[Stufler 2020]

[Bonzom 2016] for 2-c case

Scaling limit of 
Mn

Results
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III. Scaling limits

36
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u

v

d(u, v) = 4

What is the limit of the sequence of metric spaces  ?((Mn, d/n?))n∈ℕ
(Convergence for Gromov-Hausdorff(-Prokhorov) topology)

 (map or quadrangulation)Mn ↪ ℙn,u

Convergence of the whole object considered as a metric 
space (with the graph distance), after renormalisation.

Scaling limits
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Lemma For , 

• If , 

. 

• If , 

.

Mn ↪ ℙn,u

u > 9/5
c3(u)
n1/2 TMn

→ 𝒯e

u = 9/5
c2

n1/3 TMn
→ 𝒯3/2

Scaling limit of supercritical and critical maps
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Lemma For , 

• If , 

. 

• If , 

.

Mn ↪ ℙn,u

u > 9/5
c3(u)
n1/2 TMn

→ 𝒯e

u = 9/5
c2

n1/3 TMn
→ 𝒯3/2

Proof Known scaling limits of critical BGW trees 
• with finite variance [Aldous 1993, Le Gall 2006]; 
• infinite variance and polynomial tails [Duquesne 2003].

Scaling limit of supercritical and critical maps
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Theorem For , 

• [Stufler 2020] If , 

,            . 

• [Fleurat, S. 24] If , 

,            .

Mn ↪ ℙn,u

u > 9/5
c3(u)
n1/2 TMn

→ 𝒯e
C3(u)
n1/2 Mn → 𝒯e

u = 9/5
c2

n1/3 TMn
→ 𝒯3/2

C2
n1/3 Mn → 𝒯3/2

Scaling limit of supercritical and critical maps
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Theorem For , 

• [Stufler 2020] If , 

,            . 

• [Fleurat, S. 24] If , 

,            .

Mn ↪ ℙn,u

u > 9/5
c3(u)
n1/2 TMn

→ 𝒯e
C3(u)
n1/2 Mn → 𝒯e

u = 9/5
c2

n1/3 TMn
→ 𝒯3/2

C2
n1/3 Mn → 𝒯3/2

Proof Distances in  behave like distances in !Mn TMn

Scaling limit of supercritical and critical maps
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e1

e2

Let . By a “law of large 
numbers”-type argument

κ = 𝔼("diameter" bipointed block)

dMn
(e1, e2) ≃ κdTMn

(e1, e2) .
Difficult for the 

critical case => large 
deviation estimates

Goal = show that distances in  behave like distances in . Mn TMn

Supercritical and critical cases
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Critical case u = 9/5

n ≈ 80 000
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Supercritical case u = 5/2

n ≈ 75 000
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(More) supercritical case u = 5

n ≈ 50 000
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Brownian Sphere 𝒮e

Theorem [Fleurat, S. 24] If , for  and 

denoting  its largest block: 

.

u < 9/5 Mn ↪ ℙn,u
B(Mn)

dGHP ( C1(u)
n1/4 Mn,

1
n1/4 B(Mn)) → 0

44

See [Addario-Berry, Wen 2019] for a similar result and method.

Scaling limits of subcritical maps

So, if , then 

. 

cn−1/4Bn → 𝒮e

C1(u)
cn1/4 Mn → 𝒮e
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Large block of size 
Θ(n)

Decorations = groups of smaller blocks

≤ diam(TMn
) × (O(n2/3))1/4+δ = diam(TMn

) × O(n1/6+δ)
 is a subcritical 
BGW tree

TMn = O(n1/6+2δ) = o(n1/4) .
[Chapuy Fusy Giménez Noy 2015]

Subcritical case

Diameter of a decoration ≤ blocks to cross  max diameter of blocks ×
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Diameters of decorations = .o(n1/4)

Large block of size 
Θ(n)

Decorations = groups of smaller blocks

The scaling limit of  (rescaled by ) is the scaling limit of 
uniform blocks!

Mn n1/4

Subcritical case
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Theorem [Fleurat, S. 24] If , for  a 
quadrangulation: 

. 

Moreover,  and its simple core converge jointly to the 
same Brownian sphere.

u < 9/5 Qn ↪ ℙn,u

C1(u)
n1/4 Qn → 𝒮e

Qn

46

Scaling limits of subcritical maps

Proof 
• Previous theorem; 
• Scaling limit of uniform 

simple quad. rescaled by  
= Brownian sphere [Addario-Berry 

Albenque 2017]. 

n1/4
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Subcritical case u = 1

n ≈ 55 000
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(Less) subcritical case u = 8/5

n ≈ 55 000
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C2
n1/3 Mn → 𝒯3/2

C3(u)
n1/2 Mn → 𝒯e

C1(u)
n1/4 Mn → 𝒮e

ln(n)
2 ln ( 4

27y )
− 5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

Assuming the convergence of 2-
connected maps towards the 

Brownian sphere

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

Θ(n2/3)
Θ(n2/3)

Scaling limit of 
Mn

[Stufler 2020]

[Stufler 2020]

[Bonzom 2016]

∼ (1 − 𝔼(μ4/27,u))n

Results
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IV. Extension to other 
families of maps

50
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Extension to other models
[Banderier, Flajolet, Schaeffer, Soria 2001]:
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→ Unified study of the phase transition for block-weighted 
random planar maps Z. Salvy (Eurocomb’23) 

uC

81/17
9/5

135/7

36/11

52/27
68/3
16/7
64/37

Extension to other models
[Banderier, Flajolet, Schaeffer, Soria 2001]:
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Theorem [S. 23] Model of the preceding table without coreless 
maps exhibits a phase transition at some explicit . 

When : 

• Subcritical phase : “general map phase” one huge 
block; 

• Critical phase : a few large blocks; 

• Supercritical phase : “tree phase” only small blocks. 
We obtain explicit results on enumeration and size of blocks in 
each case.

uC

n → ∞
u < uC

u = uC

u > uC

Statement of the results
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V. Extension to tree-
rooted maps

53
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Theoretical physics point of view: 
• Undecorated maps: “pure gravity” case (nothing 

happens on the surface); 
• Decorated maps: things happen! new asymptotic 

behaviours! new universality classes! excitement!

Decorated maps are interesting
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 = (rooted planar) maps endowed with a spanning tree.

≠

Tree-rooted maps
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[Mullin 67]

• Combinatorics well understood : 
Mullin’s bijection; 

 

• Geometry not so much.

[zn]M(z) = CatnCatn+1

Tree-rooted maps
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[Mullin 67]

• Combinatorics well understood : 
Mullin’s bijection; 

 

• Geometry not so much.

[zn]M(z) = CatnCatn+1

We want a phase transition in tree-rooted maps.

=> Block-weighted tree-rooted maps.

Tree-rooted maps
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Goal: parameter that affects the typical number of blocks.

We choose:  whereℙn,u(𝔪) = u#blocks(𝔪)

Zn,u

, 

 = {tree-rooted 
maps of size }, 

, 

normalisation. 

u > 0
ℳn

n
𝔪 ∈ ℳn
Zn,u =

• : uniform distribution on tree-rooted maps of size ; 

• : minimising the number of blocks (=2-connected tree-
rooted maps); 

• : maximising the number of blocks (= tree-rooted 
trees!).

u = 1 n
u → 0

u → ∞

Given , asymptotic behaviour when ?u n → ∞

Model
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The decomposition of maps into blocks extends into a 
decomposition of tree-rooted maps into tree-rooted blocks.

M(z) = B(zM2(z))
GS of 2-connected tree-rooted maps GS of tree-rooted maps

Block decomposition of tree-rooted maps
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M(z, u) = uB(zM2(z, u)) + 1 − u
58

The decomposition of maps into blocks extends into a 
decomposition of tree-rooted maps into tree-rooted blocks.

GS of 2-connected tree-rooted maps GS of tree-rooted maps

Block decomposition of tree-rooted maps
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So everything should be easy, right?
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n≥0

CatnCatn+1zn so

Tree-rooted maps are not so nice
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M(z) = ∑
n≥0

CatnCatn+1zn so

• Fortunately, it is still -finiteD

• ;[zn]M(z) ∼ 4
π

× 16n × n−3 • ;ρM = 1
16

•  so  is not algebraic… M(ρM) = 8 − 64
3π

≃ 1.2 M

-finiteD

Algebraic

M

M, B

P0(z) ∂2M
∂z2 (z) + P1(z) ∂M

∂z
(z) + P2(z)M(z) + P3(z) = 0.

P (z, M(z)) = 0

Tree-rooted maps are not so nice
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Using  and the properties of , we showM(z) = B(zM2(z)) M

•  is -algebraicB D

-algebraicD

-finiteD

Algebraic

M

B

M, B

•  

is not algebraic so  is not -finite

ρB = ρMM2(ρM) = 4(3π − 8)2

9π2 ≈ 0.091

B D

P ( ∂2B
∂y2 (y), ∂B

∂y
(y), B(y), y) = 0.

2-connected tree-rooted maps are naughty
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Using  and the properties of , we showM(z) = B(zM2(z)) M

Theorem [Albenque, Fusy, S. 24] 

[yn]B(y) ∼ 4(3π − 8)3

27π(4 − π)3 × ρ−n
B × n−3 .

Enumeration of 2-connected tree-rooted maps



/7263

Theorem [Albenque, Fusy, S. 24] Model exhibits a phase 

transition at . 

When : 

• Subcritical phase : “general tree-rooted map 
phase” one huge block; 

• Critical phase : a few large blocks; 

• Supercritical phase : “tree phase” only small 
blocks.

uC = 9π(4 − π)
420π − 81π2 − 512 ≃ 3.02

n → ∞
u < uC

u = uC

u > uC

Phase transition
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Results
u < uC u = uC u > uCFor Mn ↪ ℙn,u

Enumeration

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn
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− 3 ln(ln(n))

ln ( ρB

y(u) )
+ O(1)Θ(n1/2)

Θ(n1/2)

∼ (1 − 𝔼(μu))n

Ordered atoms of a Poisson Point Process

For Mn ↪ ℙn,u
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Results
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Interlude: tree-rooted 
quadrangulations
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 does not hold!M(z) = Q(z)

CANCELLED

Interlude: tree-rooted 
quadrangulations
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VI. Perspectives

69



/7270

Extensions to more involved decompositions

Block-weighted 
• Maps into loopless blocks; 
• 2-connected maps into 3-connected blocks…
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Extensions to more involved decompositions

Block-weighted 
• Tree-rooted quadrangulations; 
• Forested maps; 
• Maps endowed with a Potts model / Ising model; 
• 2-oriented quadrangulations (resp. 3-oriented 

triangulations) decomposed into irreducible blocks…
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Critical window?

Is there a critical window? If so, what is its width?

Phase transition very sharp => what if ?u = 9/5 ± ε(n)

• Block size results still hold if , ; 

• For , this is the case as well: when 
 

 

(analogous to [Bollobás 1984]’s result for Erdős-Rényi graphs!); 

• Results exist for scaling limits in ER graphs [Addario-Berry, 

Broutin, Goldschmidt 2010], open question in our case.

un = 9/5 − ε(n) ε3n → ∞
un = 9/5 + ε(n)

ε3n → ∞
Ln,1 ∼ 2.7648 ε−2 ln(ε3n)
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Thank you!

72


