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Planar maps
Planar map m = embedding on the sphere of a connected
planar graph, considered up to homeomorphisms

Planar map = planar graph +
cycliclorder on neighbours

+

¢ ® ®
- Rooted planar map = map endowed with a marked oriented edge
(represented by an arrow);

. Size | m| = number of edges;

- Corner (does not exist for graphs !) = space between two
consecutive edges around a vertex (trigonometric order).
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Tree-rooted maps

= (rooted planar) maps endowed with a spanning tree.
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Decorated maps are interesting

Theoretical physics point of view:

- Undecorated maps: “pure gravity” case (nothing
nappens on the surface);

- Decorated maps: things happen! new asymptotic
behaviours! new universality classes! excitement!
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Tree-rooted maps

« Combinatorics well understood :
Mullin’s bijection;

[2"]M(z) = Cat,Cat,yy
[Mullin 67]

- Geometry not so much.
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Tree-rooted maps

« Combinatorics well understood :
Mullin’s bijection;

[2"]M(z) = Cat,Cat,yy
[Mullin 67]

- Geometry not so much.

We want a phase transition in tree-rooted maps.

=> Block-weighted tree-rooted maps.
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l. “Block-weighted
maps’?

Joint work with William Fleurat
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Universality results for planar maps

« Enumeration: Kp_”n_S/2 [Tutte 1963];

1/4

« Distance between vertices: n'" [Chassaing, Schaeffer 2004];

« Scaling limit: Brownian sphere for quadrangulations [Le Gall
2013, Miermont 2013] and general Maps [Bettinelli, Jacob, Miermont

2014];

Brownian Sphere &,
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Universality results for planar maps

2 rutte 1963]:

1/4

- Enumeration: kp~"'n"

« Distance between vertices: n ' [Chassaing, Schaeffer 2004];

« Scaling limit: Brownian sphere for quadrangulations [Le Gall
2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont

2014];

« Universality:
¢ Same enumeration [Drmota, Noy, Yu 2020];

» Same scaling limit, e.g. for triangulations & 2g-angulations [Le
Gall 2013], simple quadrangulations [Addario-Berry, Albenque 2017].
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Universality results for plane trees

. Enumeration:Kp_”n_3/2;

1/2

« Distance between vertices: n '~ [Flajolet, Odlyzko 1982];

« Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

N ‘v* i
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Universality results for plane trees

. Enumeration:lcp_”n_3/2;

1/2

« Distance between vertices: n '~ [Flajolet, Odlyzko 1982];

« Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

« Universality:
« Same enumeration;
« Same scaling limit;
Even for some classes of maps; e.g. outerplanar maps [Caraceni 2016],

maps with a boundary of size >> n? [Bettinelli 2015].

Models with (very) constrained boundaries
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Motivation !Inspired by [Bonzom 2016].
Two rich situations with universality results:
Planar maps Plane trees

y

Brownian Sphere &, 9/38 Brownian Tree I,



Model definition

7-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.
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Condensation phenomenon: a
large block concentrates a

macroscopic part of the mass
[Banderier, Flajolet, Schaeffer, Soria 2001;

Jonsson, Stefansson 2011].
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Model definition

7-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a
large block concentrates a Only small blocks.

macroscopic part of the mass
[Banderier, Flajolet, Schaeffer, Soria 2001;

Jonsson, Stefansson 2011].

Interpolating model using blocks!
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M d I Inspired by [Bonzom 2016];
oae General setting in [Stufler 2020].

Goal: parameter that affects the typical number of blocks.

> 0,
1 #blocks(m) b;% { I
We choose: P, (m) = where “%n=1maps of size n},
’ Z, me .M,

Z,,, = normalisation.
« u = 1: uniform distribution on maps of size n;
« 4 — 0: minimising the number of blocks (=2-connected maps);

« 4 — 00: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour whenn — 00?
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ll. Block tree of amap



Decomposition of a map into blocks

Inspiration from [Tutte 1963]
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Decomposition of a map into blocks

Inspiration from [Tutte 1963]
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Decomposition of a map into blocks

Inspiration from [Tutte 1963]
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Decomposition of a map into blocks
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Decomposition of a map into blocks

Inspiration from [Tutte 1963]

D — //\\\\

M(2) = B(zM*(2))

GS of maps — /

GS of 2-connected maps —
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Decomposition of a map into blocks

M(Z, l/t) — Z Z|m|l/t#blocks(m)
Inspiration from [Tutte 1963] mel

D — //\\\\

M(2) = B(zM*(2))

GS of maps — /

GS of 2-connected maps —

With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u
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Decomposition of a map into blocks

Inspiration from [Tutte 1963]

= Underlying block tree structure, made explicit by [aAddario-

Berry 2019].
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Decomposition of a map into blocks
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= Underlying block tree structure, made explicit by [aAddario-

Inspiration from [Tutte 1963]

Berry 2019].
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Decomposition of a map into blocks
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= Underlying block tree structure, made explicit by [aAddario-

Inspiration from [Tutte 1963]

Berry 2019].
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Decomposition of a map into blocks

Inspiration from [Tutte 1963] T

= Underlying block tree structure, made explicit by [aAddario-

Berry 2019].
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Block tree: properties

" (7
— . 7N
PR

. m is entirely determined by 7,, and (b,,v € T,,) where b is the
block of m represented by vin 1;

- Internal node (with k children) of T, <> block of m of size k/2.

1), gives the block sizes of arandom map M,
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Galton-Watson trees for map blocks

1-Galton-Watson tree : random tree where the number of
children of each node is given by i independently, with u
= probability law on N.
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Galton-Watson trees for map blocks

1-Galton-Watson tree : random tree where the number of
children of each node is given by i independently, with u
= probability law on N.

Theorem [Fleurat, S. 24] u>0
fM, < P

of explicit reproduction law 1" conditioned to be of size

n.

_— then 7;, has the law of a Galton-Watson tree
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Results for non tree-rooted maps

Theorem [Fleurat, S. 24] Model exhibits a phase transition

atu = 9/5. Whenn — oo:

« Subcritical phase u < 9/5: “general map phase” one
huge block;

« Critical phase u = 9/5: a few large blocks;

. Supercritical phase u > 9/5: “tree phase” only small
blocks.

We obtain explicit results on enumeration, size of blocks
and scaling limits in each case.

— A phase transition in block-weighted random maps
W. Fleurat & Z. S., Electronic Journal of Probability, 2024
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How can we do the same for tree-rooted maps?
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lll. Tree-rooted maps

Joint work with Marie Albenque and Eric Fusy
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Model

Goal: parameter that affects the typical number of blocks.

u>0,
u#blocks( ) =
We choose: I, (1) = where maps of size n},
n,u me .,

n.u = normalisation.

« u = |: uniform distribution on maps of size n;

« u — 0: minimising the number of blocks (=2-connected
maps);

« U — 00: maximising the number of blocks (=
trees!).

Given u, asymptotic behaviour whenn — 00?
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Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a
decomposition of tree-rooted maps into tree-rooted blocks.

(7
— D® ¢
//l\/\d“\“

‘“ 3

M(z) = B(zM*(2))

/—j — GS of tree-rooted maps
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Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a
decomposition of tree-rooted maps into tree-rooted blocks.

M(z, u) = uB(zM*(z, u)) +

GS of 2-connected tree-rooted maps 26/38
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/—j — GS of tree-rooted maps



So everything should be easy, right?
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+1zn SO

n>0
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T
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+1zn SO
n>0
|

4 3 _
NIM@Z) ~ =X 16" X - Py =
/A

64
. M(p,) =38 ~ 1.2 so M is not algebraic...

3n \

P(z,M(z)) =0
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+lzn SO

n>0

D-finite

4 3 _
NIM@Z) ~ =X 16" X - Py =
U

Algebraic

64
. M(p,) =38 ~ 1.2 so M is not algebraic...

3n \

P(z,M(z)) =0
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+lzn SO

n>0

D-finite

4 . _
ZIM (D) ~—X 16" Xn 7 o Pu = 16
T

Algebraic

64
. M(p,) =38 3 ~ 1.2 so M is not algebraic...
’ \
« Fortunately, it is still -finite P (Z’ M(Z)) =0

oM oM
Po(z)a—zz(z) + P, (Z)a_z(Z) + Py(2)M(z) + P5(z) = 0.
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2-connected tree-rooted maps are naughty

Using M(z) = B(zM?*(z)) and the properties of M/, we show
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D-algebraic

, 437 — 8)*
Or

D-finite
is not algebraic so 5 is not D-finite

Algebraic
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2-connected tree-rooted maps are naughty

Using M(z) = B(zM?*(z)) and the properties of M/, we show

D-algebraic

437 — 8)?
O

D-finite
is not algebraic so 5 is not D-finite

Algebraic

« Bis D-algebraic

P az—B()()—B()B() =0
ayzyaayy’ Y)Yy | = V.
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Enumeration of 2-connected tree-rooted maps

Using M(z) = B(zM?*(z)) and the properties of M, we show

Theorem [Albenque, Fusy, S. 24]

437 — 8)°

[y"15(y) ~ 24— ) X p"t X n
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Phase transition

Theorem [Albenque, Fusy, S. 24] Model exhibits a phase

. On(4 — )
transition at u, = 07 — 8122 — 517 ~ 3.02.
ﬂ — —

When n — oo:

- Subcritical phase u < u,: “general tree-rooted map
phase” one huge block;

- Critical phase u = u,: a tew large blocks;

- Supercritical phase u > u.: “tree phase” only small
blocks.
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For Y

n n,u

U < Uc

Results

uzuc

U > Ue

Enumeration

Size of

- the largest
block

- the second
one

Scaling limit of

n
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Results
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U > Ue

Enumeration
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p(u)

p(u)—nn —3/2 ln(n)_ 1/2
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For Y

n n,u

Results

U < Uc

uzuc

U > Ue

Enumeration

—Ty -3

p(u)

p(u)—nn —3/2 ln(n)_ 1/2

p(u)—n —3/2

Size of

- the largest
block

- the second
one

~ (I =E@")n

@(I”l 1/2)

@(n 1/2)

In(n) 3 In(In(n))

)
y()) hl(y())

+ O(1)

Scaling limit of

n
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For <

n n,u

Results

u < Ue

I/t=l/tc

U > Ue

Enumeration

(u)—n -3

p(u)—nn —3/2 ln(n)_ 1/2

(u)—n —3/2

Sreo | ~ (= Ewn
e e N R
In (-2
- the second O(n'?) "
one A

\

/

Ordered atoms of a Poisson Point Process

Scaling limit of

n
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Results

For M, & P U < Uc U= U U > U
Enumeration p(u)"'n p(u) =32 In(n)~ "2 ()" =32
Size of ~ (1 = E(u")n
- the largest o2 () 3indnw) | o
block n - :
- the second O(n'?) ") )
one
C( ) [Stufler 2020]
C2 hl(l/l)l/2 3\U
172 n = e T 7
Scaling limit of )

n
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For <

n n,u

u < Ue

Results

uzuc

U > Ue

Enumeration

p(u)

—Ty -3

p(u)—nn —3/2 ln(n)_ 1/2

p(u)—n —3/2

Size of o (1 _ [E(//tu))l’l
- the largest 1 In()  3In(ln(n))

blOCk ®(n ) n(-2 n(-2 +oh)
- the second O(n'?) () ()

one

[Stufler 2020]
CZ hl(l/l)l/2 f/]’ C3(l/l)
nl/2 pnl2 "

Scaling limit of .

n
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V. Perspectives



Extensions to more involved
decompositions

Block-weighted

- Tree-rooted quadrangulations;

« Forested maps;

» Maps endowed with a Potts model / Ising model;

» 2-oriented quadrangulations (resp. 3-oriented
triangulations) decomposed into irreducible blocks...
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Thank you!



