A phase transition in block-weighted tree-rooted random maps

Journées Aléa 12 mars 2024

Zéphyr Salvy (he/they)

Planar maps

Planar map \mathfrak{m} = embedding on the sphere of a connected planar graph, considered up to homeomorphisms

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow);
- Size |m| = number of edges;
- Corner (does not exist for graphs!) = space between two consecutive edges around a vertex (trigonometric order).

= (rooted planar) maps endowed with a spanning tree.

Decorated maps are interesting

Theoretical physics point of view:

- Undecorated maps: "pure gravity" case (nothing happens on the surface);
- Decorated maps: things happen! new asymptotic behaviours! new universality classes! excitement!

- Combinatorics well understood: Mullin's bijection;
- Geometry not so much.

$$[z^n]M(z) = Cat_nCat_{n+1}$$

- Combinatorics well understood: Mullin's bijection;
- Geometry not so much.

$$[z^n]M(z) = \operatorname{Cat}_n\operatorname{Cat}_{n+1}$$

- Combinatorics well understood: Mullin's bijection;
- Geometry not so much.

$$[z^n]M(z) = \operatorname{Cat}_n\operatorname{Cat}_{n+1}$$

- Combinatorics well understood: Mullin's bijection;
- Geometry not so much.

$$[z^n]M(z) = Cat_nCat_{n+1}$$

- Combinatorics well understood: Mullin's bijection;
- Geometry not so much.

$$[z^n]M(z) = \operatorname{Cat}_n\operatorname{Cat}_{n+1}$$

- Combinatorics well understood: Mullin's bijection;
- Geometry not so much.

$$[z^n]M(z) = \operatorname{Cat}_n\operatorname{Cat}_{n+1}$$

- Combinatorics well understood: Mullin's bijection;
- Geometry not so much.

$$[z^n]M(z) = Cat_nCat_{n+1}$$

- · Combinatorics well understood: Mullin's bijection;
- Geometry not so much.

$$[z^n]M(z) = Cat_nCat_{n+1}$$

- · Combinatorics well understood: Mullin's bijection;
- Geometry not so much.

$$[z^n]M(z) = Cat_nCat_{n+1}$$

(([])[)((])[(])

- Combinatorics well understood: Mullin's bijection;
- Geometry not so much.

$$[z^n]M(z) = Cat_nCat_{n+1}$$

$$[z^n]M(z) = Cat_nCat_{n+1}$$

Dyck word of size |m| - |t|

$$[z^n]M(z) = \sum_{k=0}^n {2n \choose 2k} \operatorname{Cat}_k \operatorname{Cat}_{n-k}$$

$$[z^n]M(z) = Cat_nCat_{n+1}$$

[Mullin 67]

size | t |

Vandermonde
$$[z^n] \underline{M}(z) = \sum_{k=0}^n \binom{2n}{2k} \operatorname{Cat}_k \operatorname{Cat}_{n-k}$$
 identity
$$[z^n] \underline{M}(z) = \operatorname{Cat}_n \operatorname{Cat}_{n+1}$$

$$M(z) = \sum_{n>0} Cat_n Cat_{n+1} z^n \quad [Mullin 67]$$

We want a phase transition in tree-rooted maps.

=> Block-weighted tree-rooted maps.

I. "Block-weighted maps"?

Universality results for planar maps

- Enumeration: $\kappa \rho^{-n} n^{-5/2}$ [Tutte 1963];
- Distance between vertices: $n^{1/4}$ [Chassaing, Schaeffer 2004];
- Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont 2014];

Brownian Sphere \mathcal{S}_e

Universality results for planar maps

- Enumeration: $\kappa \rho^{-n} n^{-5/2}$ [Tutte 1963];
- Distance between vertices: $n^{1/4}$ [Chassaing, Schaeffer 2004];
- Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont 2014];

Universality:

- Same enumeration [Drmota, Noy, Yu 2020];
- Same scaling limit, e.g. for triangulations & 2q-angulations [Le Gall 2013], simple quadrangulations [Addario-Berry, Albenque 2017].

Universality results for plane trees

- Enumeration: $\kappa \rho^{-n} n^{-3/2}$;
- Distance between vertices: $n^{1/2}$ [Flajolet, Odlyzko 1982];
- Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

Universality results for plane trees

- Enumeration: $\kappa \rho^{-n} n^{-3/2}$;
- Distance between vertices: $n^{1/2}$ [Flajolet, Odlyzko 1982];
- Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

- Universality:
 - Same enumeration,
 - Same scaling limit, even for some classes of maps; e.g. outerplanar maps [Caraceni 2016], maps with a boundary of size $>> n^{1/2}$ [Bettinelli, 2015].

Models with (very) constrained boundaries

Motivation Inspired by [Bonzom 2016].

Two rich situations with universality results:

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Only small blocks.

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Only small blocks.

Interpolating model using blocks!

Goal: parameter that affects the typical number of blocks.

We choose:
$$\mathbb{P}_{n,u}(\mathbf{m}) = \frac{u^{\#blocks(\mathbf{m})}}{Z_{n,u}}$$
 where $u > 0$, $\mathcal{M}_n = \{\text{maps of size } n\}$, $\mathbf{m} \in \mathcal{M}_n$, $Z_{n,u} = \text{normalisation.}$

- u = 1: uniform distribution on maps of size n;
- $u \to 0$: minimising the number of blocks (=2-connected maps);
- $u \to \infty$: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour when $n \to \infty$?

II. Block tree of a map

Inspiration from [Tutte 1963]

GS of maps $M(z) = B(zM^2(z))$ GS of 2-connected maps

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

GS of maps
$$M(z) = B(zM^2(z))$$
GS of 2-connected maps

With a weight u on blocks: $M(z, u) = uB(zM^2(z, u)) + 1 - u$

Inspiration from [Tutte 1963]

⇒ Underlying block tree structure, made explicit by [Addario-

Inspiration from [Tutte 1963]

⇒ Underlying block tree structure, made explicit by [Addario-

Inspiration from [Tutte 1963]

⇒ Underlying block tree structure, made explicit by [Addario-

Inspiration from [Tutte 1963]

⇒ Underlying block tree structure, made explicit by [Addario-

Inspiration from [Tutte 1963]

⇒ Underlying block tree structure, made explicit by [Addario-

Galton-Watson trees for map blocks

 μ -Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with μ = probability law on \mathbb{N} .

Galton-Watson trees for map blocks

 μ -Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with μ = probability law on \mathbb{N} .

Theorem [Fleurat, S. 24]

u > 0

If $M_n \hookrightarrow \mathbb{P}_{n,u'}$ then T_{M_n} has the law of a Galton-Watson tree of explicit reproduction law μ^u conditioned to be of size

III. Results for non tree-rooted maps

Phase transition

Theorem [Fleurat, S. 24] Model exhibits a phase transition at u = 9/5. When $n \to \infty$:

- Subcritical phase u < 9/5: "general map phase" one huge block;
- Critical phase u = 9/5: a few large blocks;
- Supercritical phase u > 9/5: "tree phase" only small blocks.

We obtain explicit results on enumeration, size of blocks and scaling limits in each case.

→ A phase transition in block-weighted random maps W. Fleurat & Z. S., Electronic Journal of Probability, 2024

Scaling limits

Theorem [Fleurat, S. 24] Scaling limits:

- . Subcritical phase u < 9/5: $\frac{C_1(u)}{n^{1/4}} M_n \to \mathcal{S}_e$; (assuming the convergence of 2-connected maps towards the Brownian sphere)
- Critical phase u=9/5: $\frac{C_2}{n^{1/3}}M_n \to \mathcal{T}_{3/2}$;
- . Supercritical phase u > 9/5: $\frac{C_3(u)}{n^{1/2}} M_n \to \mathcal{T}_e$ [Stuffer 2020].

Proof for the supercritical and critical cases

Theorem For $M_n \hookrightarrow \mathbb{P}_{n,u'}$

• [Stufler 2020] If u > 9/5,

$$\frac{c_3(u)}{n^{1/2}}T_{M_n}\to \mathcal{T}_{e'}$$

$$\frac{C_3(u)}{n^{1/2}}M_n \to \mathcal{T}_e.$$

• [Fleurat, S. 24] If u = 9/5,

$$\frac{c_2}{n^{1/3}}T_{M_n} \to \mathcal{T}_{3/2},$$

$$\frac{C_2}{n^{1/3}}M_n \to \mathcal{T}_{3/2}.$$

Brownian Tree \mathcal{T}_{ρ}

20/41

Stable Tree $\mathcal{T}_{3/2}$

Proof for the supercritical and critical cases

Theorem For $M_n \hookrightarrow \mathbb{P}_{n,u'}$

• [Stufler 2020] If u > 9/5,

$$\frac{c_3(u)}{n^{1/2}}T_{M_n} \to \mathcal{T}_{e'}$$

$$\frac{C_3(u)}{n^{1/2}}M_n \to \mathcal{T}_e.$$

• [Fleurat, S. 24] If u = 9/5,

$$\frac{c_2}{n^{1/3}}T_{M_n}\to \mathcal{T}_{3/2},$$

$$\frac{C_2}{n^{1/3}}M_n\to \mathcal{T}_{3/2}.$$

<u>Proof</u>

- Known scaling limits of critical Galton-Watson trees
 - with finite variance [Aldous 1993, Le Gall 2006];
 - infinite variance and polynomial tails [Duquesne 2003].
- Distances in M_n behave like distances in T_{M_n} !

V. Tree-rooted maps

Joint work with Marie Albenque and Éric Fusy

Model

Goal: parameter that affects the typical number of blocks.

We choose:
$$\mathbb{P}_{n,u}(\mathbf{m}) = \frac{u^{\#blocks(\mathbf{m})}}{Z_{n,u}}$$
 where $u > 0$, $\mathcal{M}_n = \{\text{tree-rooted maps of size } n\}$, $\mathbf{m} \in \mathcal{M}_n$, $Z_{n,u} = \text{normalisation.}$

- u = 1: uniform distribution on tree-rooted maps of size n;
- $u \rightarrow 0$: minimising the number of blocks (=2-connected tree-rooted maps);
- $u \to \infty$: maximising the number of blocks (= tree-rooted trees!).

Given u, asymptotic behaviour when $n \to \infty$?

Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a decomposition of tree-rooted maps into tree-rooted blocks.

GS of 2-connected tree-rooted maps 1

Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a decomposition of tree-rooted maps into tree-rooted blocks.

$$M(z,u) = uB(zM^2(z,u)) + 1 - u$$
GS of 2-connected tree-rooted maps

So everything should be easy, right?

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \operatorname{SO}$$

$$M(z) = \sum_{n>0} Cat_n Cat_{n+1} z^n$$
 so

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3};$$

$$M(z) = \sum_{n>0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n$$
 so

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$
; • $\rho_M = \frac{1}{16}$;

$$M(z) = \sum_{n>0} Cat_n Cat_{n+1} z^n$$
 so

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$
; • $\rho_M = \frac{1}{16}$;

.
$$M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2$$
 so M is not algebraic...

$$P\left(z, M(z)\right) = 0$$

$$M(z) = \sum_{n \ge 0} Cat_n Cat_{n+1} z^n$$
 so

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$
; • $\rho_M = \frac{1}{16}$;

D-finite M

Algebraic M, B

.
$$M(\rho_M)=8-\frac{64}{3\pi}\simeq 1.2$$
 so M is not algebraic...

$$P\left(z, M(z)\right) = 0$$

$$M(z) = \sum_{n \ge 0} Cat_n Cat_{n+1} z^n$$
 so

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}$$
; • $\rho_M = \frac{1}{16}$;

D-finite M

Algebraic M, B

.
$$M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2$$
 so M is not algebraic...

• Fortunately, it is still D-finite

$$P\left(z, M(z)\right) = 0$$

$$P_0(z) \frac{\partial^2 M}{\partial z^2}(z) + P_1(z) \frac{\partial M}{\partial z}(z) + P_2(z) M(z) + P_3(z) = 0.$$

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so ${\it B}$ is not ${\it D}$ -finite

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so ${\it B}$ is not ${\it D}$ -finite

• B is D-algebraic

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so ${\it B}$ is not ${\it D}$ -finite

• B is D-algebraic

 $P\left(\frac{\partial^2 B}{\partial y^2}(y), \frac{\partial B}{\partial y}(y), B(y), y\right) = 0.$

Enumeration of 2-connected tree-rooted maps

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

Theorem [Albenque, Fusy, S. 24+]

$$[y^n]_B(y) \sim \frac{4(3\pi - 8)^3}{27\pi(4 - \pi)^3} \times \rho_B^{-n} \times n^{-3}$$
.

Phase transition

<u>Theorem</u> [Albenque, Fusy, S. 24+] Model exhibits a phase

transition at
$$u_C = \frac{9\pi(4-\pi)}{420\pi - 81\pi^2 - 512} \simeq 3.02$$
.

When $n \to \infty$:

- Subcritical phase $u < u_C$: "general tree-rooted map phase" one huge block;
- Critical phase $u=u_{C}$: a few large blocks;
- Supercritical phase $u>u_C$: "tree phase" only small blocks.

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration			
Size of - the largest block - the second one			
Scaling limit of M_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one			
Scaling limit of M_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^u))n$ $\Theta(n^{1/2})$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$
Scaling limit of M_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{u}))n$ $\Theta(n^{1/2})$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$

Ordered atoms of a Poisson Point Process

Scaling limit of		
M_n		

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$	
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$	
Size of - the largest	$\sim (1 - \mathbb{E}(\mu^u))n$	O (1/2)	$\ln(n)$ $3\ln(\ln(n))$	
block - the second one	$\Theta(n^{1/2})$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$	
		$\frac{C_2 \ln(n)^{1/2}}{n^{1/2}} M_n \to \mathcal{T}_e$	$\frac{C_3(u)}{n^{1/2}} M_n \to \mathcal{T}_e$	
Scaling limit of M_n	?			
	ı			

38/41

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest	$\sim (1 - \mathbb{E}(\mu^u))n$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln(n)} = \frac{3\ln(\ln(n))}{\ln(n)} + O(1)$
block - the second one	$\Theta(n^{1/2})$	$\Theta(n^{-1})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$
		$\frac{C_2 \ln(n)^{1/2}}{n^{1/2}} M_n + \mathcal{T}_e$	$ \frac{C_3(u)}{n^{1/2}} M_n + \mathcal{T}_e $
Scaling limit of M_n	?		The state of the s
		38 /41	

38/41

V. Perspectives

Extensions to more involved decompositions

Block-weighted

- Tree-rooted quadrangulations;
- Forested maps;
- Maps endowed with a Potts model / Ising model;
- 2-oriented quadrangulations (resp. 3-oriented triangulations) decomposed into irreducible blocks;
- Schnyder woods...

Thank you!