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Planar maps
Planar map m = embedding on the sphere of a connected

planar graph, considered up to homeomorphisms

Planar map = planar graph +
cycliclorder on neighbours

+

- Rooted planar map = map endowed with a marked oriented edge
(represented by an arrow);

. Size | m| = number of edges;
- Corner (does not exist for graphs !) = space between an oriented
edge and the next one for the trigonometric order.
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Universality results for planar maps

« Enumeration: Kp_”n_S/2 [Tutte 1963];

1/4

« Distance between vertices: n'" [Chassaing, Schaeffer 2004];

« Scaling limit: Brownian sphere for quadrangulations [Le Gall
2013, Miermont 2013] and general Maps [Bettinelli, Jacob, Miermont

2014];

Brownian Sphere &,
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Universality results for planar maps

2 rutte 1963]:

1/4

- Enumeration: kp~"'n"

« Distance between vertices: n ' [Chassaing, Schaeffer 2004];

« Scaling limit: Brownian sphere for quadrangulations [Le Gall
2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont

2014];

« Universality:
¢ Same enumeration [Drmota, Noy, Yu 2020];

» Same scaling limit, e.g. for triangulations & 2g-angulations [Le
Gall 2013], simple quadrangulations [Addario-Berry, Albenque 2017].

3 /72



Universality results for plane trees

. Enumeration:Kp_”n_3/2;

1/2

« Distance between vertices: n '~ [Flajolet, Odlyzko 1982];

« Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

N ‘v* i
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Universality results for plane trees

. Enumeration:lcp_”n_3/2;

1/2

« Distance between vertices: n '~ [Flajolet, Odlyzko 1982];

« Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

« Universality:
« Same enumeration,

« Same scaling limit, even for some classes of maps; e.g.

outerplanar maps [Caraceni 2016], maps with a boundary of size

>> n1/2 [Bettinelli 2O{5].

Models with (very) constrained boundaries
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Motivation !Inspired by [Bonzom 2016].
Two rich situations with universality results:
Planar maps Plane trees

y

Brownian Sphere &, 5/72 Brownian Tree I,



Model definition

7-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.
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Model definition

7-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a
large block concentrates a

macroscopic part of the mass
[Banderier, Flajolet, Schaeffer, Soria 2001;

Jonsson, Stefansson 2011].
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7-connected = two vertices must be removed to disconnect.
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Model definition

7-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a
large block concentrates a Only small blocks.

macroscopic part of the mass
[Banderier, Flajolet, Schaeffer, Soria 2001;

Jonsson, Stefansson 2011].

Interpolating model using blocks!
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Outline of the talk

A phase transition in block-weighted random maps

. Model
Il. Block tree of a map and its applications with William
Interlude. Quadrangulations Fleurat

I1l. Scaling limits
V. Extension to other families of maps

V. Extension to tree-rooted maps
VI. Perspectives \Albvglr:gtﬁaélzric

Fusy
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l. Model



MOdel |”3Dired by [Bonzom 2016].

Goal: parameter that affects the typical number of blocks.

> 0,
1 #blocks(m) b;% { I
We choose: P, (m) = where “%n=1maps of size n},
’ Z, me .M,

Z,,, = normalisation.
« u = 1: uniform distribution on maps of size n;
« 4 — 0: minimising the number of blocks (=2-connected maps);

« 4 — 00: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour whenn — 00?
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n ~ 55000
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Phase transition

Theorem [Fleurat, S. 23] Model exhibits a phase transition

atu = 9/5. Whenn — oo:

« Subcritical phase u < 9/5: “general map phase” one
huge block;

« Critical phase u = 9/5: a few large blocks;

. Supercritical phase u > 9/5: “tree phase” only small
blocks.

We obtain explicit results on enumeration, size of blocks
and scaling limits in each case.

— A phase transition in block-weighted random maps
W. Fleurat & Z. S., Electronic Journal of Probability, 2024

15 /72



ForM, < P, ,

u<9/5

Results

u=9/5

u>9/5

Enumeration

Size of

- the largest
block

- the second
one

Scaling limit of
M

n
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ll. Block tree of a map
and its applications




Decomposition of a map into blocks

Inspiration from [Tutte 1963]
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Decomposition of a map into blocks
M(z, u) = Z Zlml #blocks(m)

meH

D — //\\\\

M(z) = B(zM*(2))

GS of 2-connected maps — /
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u
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Results
For M, < IP’W u<9/5 u=9/5 u>9/5

—Ny —5/2 —Ny —5/3 —Ny —3/2

Enumeration p(u) p(u)

[Bonzom 2016]

p(u)

Size of

- the largest
block

- the second
one

Scaling limit of
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Decomposition of a map into blocks

Inspiration from [Tutte 1963]
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Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

\\\\

Inspiration from [Tutte 1963]

GS of 2-connected mapSﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u
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Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @
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= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
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20/72




Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

7

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72




Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

7

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72




Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

7

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72




Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

7

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72




Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

7

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72




Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

70

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72




Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

70

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72




Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

70

With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72



Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

70

With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72



Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

70

With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72



Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72



Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72



Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

20/72



Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med
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With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

/




Decomposition of a map into blocks
M(z,u) = 2 Zlmlu#bZOCkS(m)

med

Inspiration from [Tutte 1963] @

71

\ l\d L\

i\
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

/




Properties of the block tree

(7
> — 4%

l\./\d ‘)

‘“ 3

. m is entirely determined by 7,, and (b,,v € T,,) where b is the

block of m represented by vin 1;

- Internal node (with 2k children) of T, <> block of m of size k.

1), gives the block sizes of arandom map M,
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Galton-Watson trees for map blocks

1-Galton-Watson tree : random tree where the number of
children of each node is given by i independently, with u
= probability law on N.
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Galton-Watson trees for map blocks

1-Galton-Watson tree : random tree where the number of

children of each node is given by i independently, with u
= probability law on N.

Theorem [Fleurat, S. 23]

u> (0

f M, < P, . then there exists an (explicit) y = y(u) s.t.
1)y has the law of a Galton-Watson tree of reproduction
law 1" conditioned to be of size 2n, with

Byy*ulio

p(12k}) =

uBO) +1—u
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Phase transition

When is u”*" critical? (= E(u) = 17?)

1

FE(u'y = 1 & u =
W = e = ) By + 1

covers [9/5, + co) when y covers (0,pp = 4/27].
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Phase transition
0-167 l/tC — 9/5

4/27°
0.14-

0.12+
0.10-
0.08~
0.06~

|y(u) = 4/27
0.04-

yw) =y s.t. E(w’™") =1

| Subcritical
0.02- GW

Critical GW

“Map regime” “Tree regime”
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Largest blocks?

. Degrees of TM,,, give the block sizes of the map M, ;

- Largest degrees of a Galton-Waston tree are well-
known [Janson 2012].
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Rough intuition

u<9/5 u=9/5 u>9/5
ﬂy(u),u({Zk}) ~ C'uk_S/2 ~ Cuﬂb]fk_S/z
Galton- subcritical critical
Watson tree

Dichotomy between situations:
« Subcritical: condensation, cf [Jonsson Stefansson 2011];

« Supercritical: behaves as maximum of independent
variables.
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Size L, , of the k-th largest block

ForM, < P, u<9/5 u=9/5 u>9/5
41277
5 ~ (1= [E('u[ f ,u))n] () 5ln(in(m)
Stufler 2020 n(n n(In(n
2/3 — + O(1)
-3 Omn~") 21n (%) 41n (;‘Ty)
Ln,2 (l’l )
[Stufler 2020]

Size of the linear block X n~

0.8 -

0.6 -

0.4+

0.2+




Results

ForM, < P, , u<9/5 u=9/5 u>9/5

Enumeration p(u)~"'n=>"? p(u)"'n =" p(u)~"n="?
[Bonzom 2016]

Size of "

- thelargest |~ (I —E@™")n /3 In(w) _ _ Slndn@) | 5,
block . On") 21n<27y) 41n<2‘7‘y)

- the second On~")
one [Stufler 2020]

Scaling limit of
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Interlude: quadrangulations



Quadrangulations

Def: map with all faces of degree 4.

Simple quadrangulation = no multiple edges.

Size | q| = number of faces.

V(@) =1q]l+2, |E(@)|=2]q].
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Construction of a quadrangulation from a simple core

31/72



Construction of a quadrangulation from a simple core
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Construction of a quadrangulation from a simple core
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Block tree for a quadrangulation

With a weight u on blocks: O(z, u) = uS(zO*(z,u)) + 1 — u

Remember: M(z, u) = uB(zM?*(z,u)) + 1 — u
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Map

Tutte’s bijection

A

RS
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Quadrangulation

[Tutte 1963]



Tutte’s bijection for 2-connected maps

Cut vertex => multiple edge

2-connected maps <=> simple quadrangulations

[Brown 1965]
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Block trees under Tutte’s bijection

-




Implications on results

u>0,
1 7blocks(q) @, = {quadrangulations
We choose: P, (q) = ~ where of size n},
n,u qeq,,
Z, , = normalisation.

n,u

Results on the size of (2-connected) blocks can be transferred
immediately for guadrangulations and their simple blocks.
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Results

ForM, < P, , u<9/5 u=9/5 u>9/5
Enumeration p(u)—n -5/2 p(u)—n —-5/3 p(u)—n -3/2
[Bonzom 2016] for 2-c case

Size of .

- thelargest |~ (I —E@™")n /3 In() __ 3Indn@) 5,
block . Sl 21n<27y) 41n<2‘7‘y>

- the second On")
one [Stufler 2020]

Scaling limit of

37/72




lll. Scaling limits



Scaling limits

Convergence of the whole object considered as a metric
space (with the graph distance), after renormalisation.

du,v) =4

M, < P, , (map or quadrangulation)
What is the limit of the sequence of metric spaces ((M,, d/n?))nEN ?

(Convergence for Gromov-Hausdorff topology)
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Scaling limit of supercritical and critical maps

Lemma ForM, < P,

- Ifu> 9/5,
(33(”) .
i TM,,, — 7,
e Ifu=29/5,

Brownian Tree 7, 40/72 Stable Tree I 5/,



Scaling limit of supercritical and critical maps

Lemma ForM, < P,

. Ifu>9/5,
C3(u)
1/2 TMn = T
n
. Ifu=9/5,
CH _
iz, 7T s

Proof Known scaling limits of critical Galton-Watson trees

« with finite variance [Aldous 1993, Le Gall 2006];
« infinite variance and polynomial tails [Duquesne 20031.
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Scaling limit of supercritical and critical maps

Theorem ForM, & P

n,u’

[Stufler 2020] If 1 > 9/5,

C/ C/
12 =M, = e pli2z e
[Fleurat, . 23] If u = 9/5,
CH —
y n1/3 l/ J3/2'
£ N

Brownian Tree I, M/72 Stable Tree 773



Scaling limit of supercritical and critical maps

Theorem ForM, & P

n,u’

. [Stufler 2020] If u > 9/5,

c3(u) C5(u)
O/ Oy
nl/2 M, ~ e nl2 " — e
+ [Fleurat, s.23] If u = 9/5,
Cy - 7 C, Iy _
173 My — 3 137 = I3

Proof Distances in M, behave like distances in 7}, !

n
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Supercritical and critical cases

Difficult part = show that distances in M, behave like

distances in 1, .

Let k = E("diameter" bipointed block). By a “law of large

numbers 'type argument Difficult for the

dMn(el, 62) il KdTM (61, 62) . critical case => large
" deviation estimates
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Scaling limits of subcritical maps

Theorem [Fleurat, S. 23] If u < 9/5, for M, & P, , and

denoting B(M,) its largest block:

dop [ 2L )M —BM)) =0
GHP\ 14 """ 14 (M,) |

Brownian Sphere &,

So, if cn™*B — &, then

Cl(u)
cnl/a

S 3 <
n e N

o
; 4

See [Addario-Berry, Wen 2019] for a similar result and method.
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Scaling limits of subcritical maps

Theorem [Fleurat, S. 23] If u < 9/5,forQ, - P, , a
quadrangulation:

C1(M)
1y 1/4 0, = S

Moreover, (), and its simple core converge jointly to the
same Brownian sphere.

Proof

« Previous theorem;
 Scaling limit of uniform

simple quad. rescaled by nlA
= Brownian sphere [Addario-Berry
Albenque 2017].

47/72 Brownian Sphere &,



Subcritical case

Q O Decorations = groups of smaller blocks
\ '\/

Large block of size
O(n)

Diameter of a decoration < blocks to cross X max diameter of blocks
< diam(Ty; ) X (Om*P)V40 = diam(T,, ) X O(n/6+9)

T, is a subcritical
m,isasuderitical — _ 0y 116426y — )y 114y \
Galton-Watson tree

[Chapuy Fusy Giménez Noy 2015]
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Subcritical case

Q O Decorations = groups of smaller blocks
\ '\/

Large block of size
O(n)

Diameters of decorations = o(n'’%).

Diameter of a decoration < blocks to cross X max diameter of blocks
< diam(Ty; ) X (Om*P)V40 = diam(T,, ) X O(n/6+9)

T, is a subcritical
m,isasuderitical — _ 0y 116426y — )y 114y \
Galton-Watson tree

[Chapuy Fusy Giménez Noy 2015]
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Subcritical case

@ O Decorations = groups of smaller blocks
\ \/

Large block of size

@ Diameters of decorations = o(n!/*).

The scaling limit of M, (rescaled by n* is the scaling limit of
uniform blocks!
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For M, < IP’W

Results

u<9/5

u=9/5

u>9/5

Enumeration
[Bonzom 2016]

p(u)—nn—S/Z

p(u)—nn—5/3

p(u)—nn—3/2

Size of

the largest
block

the second
one

~ (1 = E@*?7)n

@(n2/3)

[Stufler 2020]

@(n2/3)

In(n) B 5 In(In(n))

+ O(1)

4 4
o (2—7y) 41n <2_7y)

Scaling limit of

C1(u)
y1/4

M — &

n €

Assuming the convergence of 2-
connected maps towards the
Brownian sphere

51/72

C5(u)

n [Stufler 2020]
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V. Extension to other
families of maps




Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

TABLE 3. Composition schemas, of the form M = C o H + D,
except the last one where M = (1 4+ M) x (C o H).

maps, M (z)

cores, C'(z) submaps, H(z) coreless, D(z)

all, M, (Z)

loopless Ms(z)

all, M, (Z)

nonsep. Ma(z) — z
nonsep. My(z)/z — 2

bridgeless,

or loopless M:(2)

z/(1 —2z(1 4+ M))? z(1 4+ M)?

simple M3(z) 2(1+ M) -
nonsep., M4 (z) z(1+ M)? —
nonsep. simple M5(z) 2(1+ M) —

3-connected Me(2) M z+2M?/(1+ M)

bipartite, B1(z) bip. simple, Bz(z) 2(1+ M) =
bipartite, B1(z) bip. bridgeless, B3(z) z/(1 —z(1+ M))? z(1 4 M)?
bipartite, B1(z) bip. nonsep., B4(z) z2(14 M)? =
bip. nonsep., B4(z)  bip. ns. smpl, Bs(2) z2(1+4+ M) -
singular tri., T1(2) triang., z + 272(2) z(1+ M)° —
triangulations, T»(z) irreducible tri., T3(z2) z(1 4+ M)? —
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Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

TABLE 3. Composition schemas, of the form M = C
except the last one where M = (1 + M) x (C o H).

oH + D,

maps, M(z) cores, C'(z) submaps, H(z) coreless, D(z)
all, M (z) E;lﬁ)goe;j::; M>(2) z/(1 —2z(1 4+ M))? z(1 4+ M)?
loopless Mo (z) simple M3(z) 2(1+ M) -

all, M(z) nonsep., M4 (z) z(1+ M)? —
nonsep. My(z) — z nonsep. simple M;5(2) z2(1+ M) .
nonsep. Ma(z)/z —2 3-connected Ms(2) M z+2M?/(1+ M)
bipartite, Bi(z) bip. simple, Bz(z) 2(1+ M) =
bipartite, B1(z) bip. bridgeless, B3(z) z/(1 —z(1+ M))? z(1+ M)?
bipartite, Bi(z) bip. nonsep., B4(z) z(1+4 M)? .

bip. nonsep., B4(z)  bip. ns. smpl, Bs(z) 2(1+ M) -
singular tri., T1(2) triang., z + 272(2) z(1+ M)° —
triangulations, T»(z) irreducible tri., T3(2) z(14 M)? —

Uc

81/17
9/5
135/7

36/11

52/27
68/3

16/7
64/37

— Unified study of the phase transition for block-weighted

random planar maps Z. Salvy (Eurocomb’23)
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Statement of the results

Theorem [S. 23] Model of the preceding table without coreless

maps exhibits a phase transition at some explicit u.
When n — o0o:

- Subcritical phase u < u,: “general map phase” one huge
b|OCk;

- Critical phase u = u,: a few large blocks;

- Supercritical phase u > u,: “tree phase” only small blocks.

We obtain explicit results on enumeration and size of blocks in
each case.
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V. Extension to tree-
rooted maps




Decorated maps are interesting

From a theoretical physics point of view:

- Before: “pure gravity” case (nothing happens on the
surface);

- Now: decorated map (things happen! new behaviours!
excitement!).
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Tree-rooted maps

= (rooted planar) maps endowed with a spanning tree.

M(z) = Z Cat,Cat, 7" [Mullin 67]

n>0

We want to study block-weighted tree-rooted maps.
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Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a
decomposition of tree-rooted maps into tree-rooted blocks.

M(z) = B(zM*(2))

_

GS of 2-connected tree-rooted maps 58/72
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+1zn SO

n>0
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Tree-rooted maps are not so nice
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+1zn SO

n>0
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+1zn SO
n>0
|

4 3 _
NIM(@2) ~ =X 16" X - Py = e
/A

64
. M(p,) =38 ~ 1.2 so M is not algebraic...

3n \

P(z,M(z)) =0
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+lzn SO

n>0

D-finite

4 3 _
NIM(@2) ~ =X 16" X - Py = e
U

Algebraic

64
. M(p,) =38 ~ 1.2 so M is not algebraic...

3n \

P(z,M(z)) =0
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Tree-rooted maps are not so nice

M(Z) — Z Catncatn+lzn SO

n>0

D-finite

4 . _
ZIM (D) ~—X 16" X n 7 o Pu = 16
T

Algebraic

64
. M(p,) =38 3 ~ 1.2 so M is not algebraic...
’ \
« Fortunately, it is still D-finite P (Z’ M(Z)) =0

oM oM
Po(z)a—zz(z) + P, (Z)a_z(Z) + Py(2)M(z) + P5(z) = 0.
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2-connected tree-rooted maps are naughty

Using M(z) = B(zM?*(z)) and the properties of M, we show

60/72



2-connected tree-rooted maps are naughty

Using M(z) = B(zM?*(z)) and the properties of M/, we show

D-algebraic

, 437 — 8)*
Or

D-finite
is not algebraic so 5 is not D-finite

Algebraic

60/72



2-connected tree-rooted maps are naughty

Using M(z) = B(zM?*(z)) and the properties of M/, we show

D-algebraic

, 437 — 8)*
Or

D-finite
is not algebraic so 5 is not D-finite

Algebraic

« Bis D-algebraic

P az—B()()—B()B() =0
ayzyaayy’ Y)Yy | = V.
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Enumeration of 2-connected tree-rooted maps

Using M(z) = B(zM?*(z)) and the properties of M, we show

Theorem [Albenque, Fusy, S. 24+]

437 — 8)°

Y 15Q) ~ Tad —ap P X
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Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a
decomposition of tree-rooted maps into tree-rooted blocks.

M(z) = B(zM*(2))

_

GS of 2-connected tree-rooted maps 62/72

(7
FIo — A%

/l )\ i\
1N J

‘“ 3



Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a
decomposition of tree-rooted maps into tree-rooted blocks.

(7
FIo — A%

/l )\ i\
JEAN J

‘“ 3

M(z,u) = uB(zMz(z, u) +1—u
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Phase transition

Theorem [Albenque, Fusy, S. 24+] Model exhibits a phase

. On(4 — )
transition at uy = 107 — 8172 — 512 ~ 3.02.

When n — oo:

- Subcritical phase u < u,: “general tree-rooted map
phase” one huge block;

- Critical phase u = u,: a tew large blocks;

- Supercritical phase u > u.: “tree phase” only small
blocks.

We obtain results on enumeration, size of blocks and
scaling limits in each case.

63/72




For M, & IP’W

U < Uc

Results

uzuc

U > Ue

Enumeration

Size of

- the largest
block

- the second
one

Scaling limit of

n
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For M, & IP’W

Results

U < Uc

uzuc

U > Ue

Enumeration

—Ty -3

p(u)

p(u)—nn —3/2 ln(n)_ 1/2

p(u)

—ny —3/2

Size of

- the largest
block

- the second
one

Scaling limit of

n
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For M, & IP’W

U < Uc

Results

uzuc

U > Ue

Enumeration

p(u)

—Ty -3

p(u)—nn —3/2 ln(n)_ 1/2

p(u)—n —3/2

Size of

- the largest
block

- the second
one

~ (1 = E@”)n

@(I”l 1/2)

In(n) 3 In(In(n))

@(n 1/2)

)
y()) hl(y())

+ O(1)

Scaling limit of

n
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Results

For M,, & P, , U< Uc U= Uc U > U
Enumeration p(u)"'n p(u) =32 In(n)~ "2 ()" =32
Size of
~ (] = P
- the largest =B On'?) Ing __ 3indne) o\
n - ;
_ Rizcslécond O(n') () ()
one
C2 N C3(l/l) N
nl1/2 ln(n)l/Z n ¢ n1/2 n e
Scaling limit of )

n
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Interlude: tree-rooted
quadrangulations




CANCELLED

Interlude: trée-rooted
quadrangulations

M(z) = O(z) does not hold!



VI. Perspectives



Extension to more involved
decompositions

« For maps : maps into loopless blocks, 2-connected
maps into 3-connected blocks;
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Extension to more involved
decompositions

« For maps : maps into loopless blocks, 2-connected

maps into 3-connected blocks;

TABLE 3. Composition schemas, of the form M = C o H + D,
except the last one where M = (1 + M) x (C o H).

maps, M(z) cores, C(2) submaps, H(z) coreless, D(z)
all, M; (2) Efligoe;‘f::; My(z)  z/(1—2(1+M)?  2(1+ M)
loopless M>(z2) simple M3(z) z2(1+ M) —

all, M;(z) nonsep., M4(z) z(1+ M)? —
nonsep. Ms(z) — 2z nonsep. simple Ms(z) z(14+ M) -
nonsep. Ma(z)/z —2 3-connected Meg(2) M z+2M?*/(1 4+ M)
bipartite, Bi(z) bip. simple, Bz(z) z(1+ M) .
bipartite, B1(z) bip. bridgeless, B3(z) z/(1 —z(1+ M))? z(1+ M)?
bipartite, Bi(z) bip. nonsep., B4(z) z(1+ M)? -

bip. nonsep., B4(z)  bip. ns. smpl, Bs(z) z(1+ M) -
singular tri., T1(2) triang., z + 271%(2) z(1+ M)® -
triangulations, T>(z) irreducible tri., T5(z2) z(1+ M)? —
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Extension to more involved
decompositions

- For maps : maps into loopless blocks, 2-connected
maps into 3-connected blocks;

- For decorated maps : tree-rooted quadrangulations
into simple blocks, Schnyder woods / 3-orientations /
2-orientations into irreducible blocks.
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Critical window?

Phase transition very sharp => what if u = 9/5 * e(n)?

. Block size results still hold if u, = 9/5 — &(n), e3n - oo;

» Foru, = 9/5 + £(n), this is the case as well: when

83n—>00

L, ~2.7648 ¢ *In(e’n)

9

(analogous to [Bollobas 1984]'s result for Erdds-Rényi graphs!);

 Results exist for scaling limits in ER graphs [addario-Berry,
Broutin, Goldschmidt 2010], Open question In our case.

Is there a critical window? If so, what is its width?
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Thank you!



